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In 1877 John Kerr described an experiment that demonstrated a quadratic change in re-

fractive index in a plate glass placed in a strong external electric field. This results in a

nonlinear relationship between the average electric polarization within the materials and

the intensity of the applied electric field. This opened the door for a new area of electro-

magnetic material science by incorporating nonlinearity into the basic Maxwell system,

which in general describes a linear relationship between the electric and magnetic fields.

Since then multiple other nonlinear effects have been found in materials that need to be

incorporated into Maxwell’s equations to accurately model the dynamical evolution of

the polarization driven by the electric field.

In this thesis, we explore a model of one linear and two nonlinear effects that are

incorporated into the Maxwell’s Equations via the macroscopic polarization. This will

include a single linear Lorentz dispersion, the nonlinear instantaneous electronic Kerr re-

sponse as well as the non-instantaneous Raman vibrational response. We will consider

one spatial dimension and investigate electromagnetic (EM) wave propagation in these

nonlinear materials. To do so, we will include these effects in our constitutive equations



for the relationship between the electric field and displacement and reduce our system

of partial differential equations (PDEs) into a system of nonlinear ordinary differential

equations (ODEs) by assuming traveling wave solutions. Using linear stability analysis

from dynamical systems theory allows us to predict behavioral changes in the electric and

magnetic fields for an EM traveling wave passing through a material. We will consider

the stability of steady states through an eigenvalue analysis of the linearized ODE sys-

tem and consider the character of arising bifurcations. We have proved that varying the

response time parameter of the Lorentz and Raman effects produces a degenerate Hopf

bifurcation, and the varying the velocity of our traveling wave solution results in a pitch-

fork bifurcation. We will also look for changes in behavior arising from a Leapfrog time

discretization of the ODE system of the Maxwell Lorentz-Kerr model relative to those in

the continuum case, with the predicted stability being preserved in the discrete case under

certain conditions.
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Symbol Parameter Definition Units

B Magnetic Induction T

D Electric Displacement C/m2

E Electric Field V/m

H Magnetic Field T ∗m/H

β εs − ε∞ Unitless

Γ Damping constant in the Lorentz Model 1/s

Γv Damping constant in the Raman Model 1/s

εs Permittivity in the limit of zero frequency Unitless

ε∞ Permittivity in the limit of infinite frequency Unitless

ε0 Permittivity of free space F/m

θ Relative strength of the Raman and Kerr effects Unitless

µ0 Permeability of free space H/m

Ω Spatial Boundary m

ω0 Resonance Frequency of the Lorentz Oscillator 1/s

ωv Resonance Frequency of the Raman effect 1/s

a Nonlinear Coupling constant m2/V 2
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Symbol Variable Definition Units

c Speed of light in a vacuum m/s

k0 Difference in the initial conditions of D, and E. v/m

v Velocity of the wavefront m/s

α Functions of (E, Y ) redefined throughout Unitless

φ Magnitude of the Lorentz Effect V/m

B Magnetic Induction T

D Electric Displacement C/m2

E Electric Field V/m

H Magnetic Field T ∗m/H

t Time Variable s

Q Magnitude of the Raman effect V 2/m2

ξ traveling wave coordinate m

X Q′(ξ) V 2/m3

Y E ′(ξ) V/m2

z One dimensional spatial variable m
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1 INTRODUCTION

In this thesis, we investigate the behavior of travelling wave solutions of nonlin-

ear Maxwell models modeling electromagnetic (EM) wave propagation in a nonlinear

optical medium. We consider Maxwell’s Equations in one spatial dimension and con-

stitutive equations that model instantaneous and non instantaneous linear and third order

responses in the electric polarization. These include the non-instantaneous linear Lorentz

response, the nonlinear, instantaneous electronic Kerr response, and the nonlinear, non-

instantaneous Raman vibrational response. The nonlinear instantaneous Kerr response

models the Kerr effect, in which the refractive index of the medium varies quadratically

with the electric field intensity.

After presenting the nonlinear Maxwell model, we use dynamical systems theory

to perform a bifurcation analysis to determine both local and global properties of the

systems of ordinary differential equations (ODEs) that result under the assumptions of a

travelling wave solution. This will allow us to make conclusions about the effects that

different responses have under the variations of parameter values, such as the velocity of

the travelling wave and the damping constant of the Lorentz model, resulting in a variety

of different types of global behavior.

1.1 Maxwell’s Equations

Maxwell’s Equations are a system of partial differential equations (PDEs) that

model the evolution of the EM fields in a material. They are, for a nonconductive, charge



4

free environment, in differential form, Faraday’s Law, the Maxwell-Ampere Law, and

Gauss’s Laws, respectively given by [4],

∇× E = −∂B
∂t
, (1.1.1a)

∇×H =
∂D

∂t
, (1.1.1b)

∇ ·D = 0, and (1.1.1c)

∇ ·B = 0, (1.1.1d)

where the B represents the magnetic induction field, H the magnetic field, E the electric

field and D the electric displacement field. Maxwell’s Equations are incomplete, and

must be completed by adding Constitutive Laws that encode the response of the material

to the EM field. In a linear medium we have

D = εE (1.1.2a)

B = µH (1.1.2b)

Where ε is the permitivity, and µ is the permeability in the material. Therefore, if we

assume these conditions, we can reduce the Maxwell System to depend only on the mag-

netic induction and electric fields:

∇× E = −∂B
∂t
, (1.1.3a)

∇×B = εµ
∂E

∂t
, (1.1.3b)

∇ · E = 0, (1.1.3c)

∇ ·B = 0. (1.1.3d)

We can show that this set of equations is equivalent to the electromagnetic wave equation,

which is known to have traveling wave solutions. By taking the curl of Faraday’s Law
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and the Maxwell-Ampere Law, yielding

∇× (∇× E) =− ∂

∂t
(∇×B) = −εµ∂

2E

∂t2
, (1.1.4a)

∇× (∇×B) = εµ
∂

∂t
(∇× E) = −εµ∂

2B

∂t2
. (1.1.4b)

We can then use the vector identity

∇× (∇× V ) = ∇(∇ · V )−∇ · (∇V ). (1.1.5)

Therefore, by Gauss’s Laws,

∇× (∇× E) = ∇(∇ · E)−∇ · (∇E) = −∇ · (∇E), (1.1.6a)

∇× (∇×B) = ∇(∇ ·B)−∇ · (∇B) = −∇ · (∇B). (1.1.6b)

Combining this with our previous result leads us to conclude that

∇2E = −µε∂
2E

∂t2
, (1.1.7a)

∇2B = −µε∂
2B

∂t2
, (1.1.7b)

which is the second order wave equation. Since we assumed a linear relationship in the

medium, the same equations also apply to theD field and theH field. Note that this result

is independent of the number of spatial dimensions, a fact which we will use to justify our

traveling wave assumption in a single spatial dimension. When we consider Maxwell’s

Laws in one spatial dimension, we need to decide what we mean by curl, and divergence.

The latter trivially reduces, but curl is an operation that must be computed in a minimum

of three dimensions. For this thesis we will define the one dimensional curl as

∇× V =
∂V

∂z
(1.1.8)
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With this definition for our ‘scalar cross product,’ we can define Faraday’s Law and the

Maxwell-Ampere Law in a charge free, nonconductive, uniform material, with one spatial

dimension, as

∂E

∂z
= −∂B

∂t
, (1.1.9a)

∂H

∂z
=
∂D

∂t
. (1.1.9b)

A common assumption in nonlinear optics is a linear relationship between the magnetic

induction and the magnetic field, with the permeability being that of free space which is

a common assumption in nonlinear optics [11]:

B = µ0H. (1.1.10)

We will also make the assumptions necessary for the form of Maxwell’s equations spec-

ified above. This leaves the constitutive equation between the electric displacement and

the electric field for us to introduce nonlinearities to account for several physical effects.

This will come in the form of polarization P , where

D = ε0(E + P ) (1.1.11)

where polarization represents the average amount of the material that forms a dipole mo-

ment in the presence of a strong electric field.

1.1.1 The Lorentz Model for Polarization

The simplest correction to the instantaneous linear model is to add the retarded lin-

ear Lorentz effect. This models an oscillator in the medium with a specific resonance

frequency and response time that depends on the responsiveness of the medium. Fre-

quently in this field, multiple independent oscillator are used to better approximate data
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with various response times and resonating frequencies. However for simplicity we will

only consider a single Lorentz oscillator in this report.

1.1.2 The Kerr Effect

In 1877, John Kerr performed an experiment demonstrating a quadratic relation be-

tween a strong electric field intensity and the refractive index of a material [12]. To do

this, he used Nicols and a generated electric field to measure the nonlinear relationship

between the polarization and the field. In the case of lower energy or intensity, this effect

is negligible due to its quadratic nature. However, for optical pulses at higher intensity

we see this effect more apparently with near instantaneous response time relative to the

retarded effects. As such in this report we will consider a model of the Kerr Effect (also

known as the Quadratic Electro-Optical Effect) as cubic term in the polarization.

1.1.3 The Raman Effect

The Raman Effect is a very famous and important effect in various fields of science.

It is used in chemistry to identify compounds through Raman Spectroscopy. It is a vibra-

tional response to an EM wave of interacting photons which result in virtual energy states

that absorb and emit photons of specific energies. This can be used to identify chemical

compounds through precise use of monochromatic lasers to create a narrow frequency of

light and detectors with a fine tolerance to determine the frequency emitted. The Raman

Effect is also known as Raman scattering and is a fundamental phenomenon in particle

physics described as the inelastic scattering of two electrons interacting via a virtual pho-

ton. This effect is important because the polarization of the material is dependent on the
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magnitude of the Raman Effect.This operates in smaller time scales than the Kerr Effect,

owing to delayed emission of photons when the molecules are in excited states. As such

an oscillator will be needed to model the response time.

1.2 Traveling Waves

We will note that for the following sections we will use subscript notation for partial

derivative for compactness of the form

∂f

∂x
= fx. (1.2.1)

We look for traveling wave solutions which reduce our system of PDEs into ODEs. Since

we are dealing with EM waves a common and reasonable assumption is to consider trav-

eling wave solutions with a velocity that is constant in the material. As such, we will

assume a one dimensional traveling wave solution in all field variables. This means that

for all different functions dependent on z, our one dimensional spatial variable, and t,

our time variable, we can take v, the velocity of the wavefront, and make the substitution

ξ = z − vt where ξ is our wave variable ξ. This results in our two dimensional functions

dependent on both space and time becoming dependent on a single variable. Thus, for all

functions f , we have

f(z, t) = f(z − vt) = f(ξ). (1.2.2)

This has further implications for the differential equations since, by the chain rule,

f ′ =
df

dξ
= ft

∂t

∂ξ
= fz

∂z

∂ξ
.

Therefore,

f ′ = −1

v
ft = fz. (1.2.3)
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We will show in the next chapter that the traveling wave assumption reduces our system

of PDEs into a system of ODEs. Using the theory of dynamical systems we will analyze

the systems of ODEs for local and global properties.

1.3 Constitutive Laws for Lorentz, Kerr and
Raman Effects

We now consider our Maxwell system under the linear relationship (1.1.10) to re-

move the H field with result

∂E

∂z
= −∂B

∂t
, (1.3.1a)

1

µ0

∂B

∂z
=
∂D

∂t
. (1.3.1b)

Therefore, if we assume a traveling solution of velocity v, get the derivatives in terms of

time and equate the two. We get the relationship between the electric field and displace-

ment of

Dt = − 1

vµ0

Ez. (1.3.2)

Assuming a traveling wave solution, as outlined in the next section, we can apply (1.2.3)

to get both derivatives in terms of the same variable. Thus,

v2µ0Dt = Et. (1.3.3)

Using this relationship in later derivations, we will be able eliminate D or E since we

will have a second relationship between D and E via the polarization relation. In a linear

dielectric medium there is a linear relationship between the E-field and the D-field. This

follows if we consider a field P that represents the amount of polarization in the medium,
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such that

D = ε0P. (1.3.4)

In linear dielectric medium we define the constant of proportionality as the electric sus-

ceptiblity χe, meaning that

P = χeE. (1.3.5)

As we take the limit as the frequency of the wave goes to infinity we see we can define

the corresponding permitivity as

ε∞ = χeε0, (1.3.6)

and then substitute (1.3.5) into (1.3.4),

D = ε∞E, (1.3.7)

which displays that the electric field is proportional to the electric displacement in a linear

medium. In a nonlinear material we have

D = ε0(P Linear + PNonlinear). (1.3.8)

Furthermore, we will consider both instantaneous and residual effects [3] meaning that,

P Linear = ε∞E + φ, (1.3.9a)

PNonlinear = a(1− θ)E|E|2 + aθQE, (1.3.9b)

φ is the lorentz oscillator,Q is the Raman oscillator, a is the third order coupling constant,

θ is the relative strength of instantaneous electronic Kerr and residual Raman effects.

The first term in each definition represents the instananeous response, while the second

contains the residual responses. In this thesis we will consider a single Lorentz pole for

the linear residual effect, the Kerr effect for the nonlinear instantaneous response, and
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the Raman Molecular Vibratational Response for the nonlinear residual response. By φ

and Q we will denote functions that correspond to the Lorentz Pole and Raman effect,

respectively. We will define Γ to be the reciprocal of the Lorentz response time, and Γv

to be the reciprocal of the Raman response time. As such we have Lorentz and Raman

oscillators that model the evolution of φ and Q as

φtt + Γφt + ω0
2φ = βω0

2E, (1.3.10a)

Qtt + ΓvQt + ωv
2Q = ωv

2E2. (1.3.10b)

In the above ω0 is the resonance frequency of the Lorentz oscillator, ωv is the corre-

sponding resonance frequency of the Raman oscillator, and β is the difference between

the permitivities at zero and infinite frequencies. This models the delay in response in

both the Raman and Lorentz poles as they take effect by coupling these oscillators to our

equation for electric displacement. Since our Lorentz model for φ is linear, φ will be

proportional to the polarization it induces. The Raman effect will have an additional term

E term to take into account nonlinearities in its equation with similar coefficients to the

Kerr effect. Therefore, our model, given these assumptions, is the following system of

PDEs.

Ez = −Bt, (1.3.11a)

Bz = µ0Dt (1.3.11b)

φtt + Γφt + ω0
2φ = βω0

2E, (1.3.11c)

Qtt + ΓvQt + ωv
2Q = ωv

2E2, (1.3.11d)

D = ε0(ε∞E + φ+ a(1− θ)E3 + aθQE). (1.3.11e)
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1.4 Energy Identities

In [2] it was found that an energy analysis can be done on this model with the

defininitywith the conclusion that for θ ∈ [0, 3
4
], and an assumption of periodic boundary

conditions on the spatial region Ω for all fields it follows that the rate of change of the

energy in the system εθ can be computed as

d

dt
εθ = −

∫
Ω

(
ε0Γ

βω0
2
(φt)

2 +
aθε0Γv
2ωv2

(Qt)
2

)
dz. (1.4.1)

where

εθ(t) :=

∫
Ω

(
µ0H

2 + ε0ε∞E
2 +

ε0
εs − ε∞

φ2 +
ε0
ω2

0

φ2
t +

aθε0
2ω2

v

Q2
t

+
aθε0

2
(Q+ E2)2 +

aε0
2

(3− 4θ)E4

)
dz

(1.4.2)

For physical reasons, all parameters must be non-negative, for reason of which we expect

that the energy in the system will be conserved or decay over time. In the limit as the

dampening terms of the Lorentz and Raman terms go to zero (i.e., Γ = Γv = 0), the en-

ergy is conserved, which is consistent with energy loss being dependent on the retarding

effects. Outside of the limit, the rate of change of our energy will be negative and depen-

dent on the magnitude of these terms. In order to preserve this identity, will assume that

θ falls within [0, 3
4
], which includes the case where the Raman effect is neglected (θ = 0).

Due to the phenomenological nature of these models, we can also slightly modify these

equations in order to get results that more closely matches our data. One such method

is to introduce multiple Lorentz poles into the constitutive laws in which each pole has a

different frequency and driving constant. However, for this thesis we will consider only

one pole.
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1.5 Nonlinear Schrödinger Equation

An alternative model that is frequently used to model an optical Kerr medium is the

nonlinear Schrödinger equation [14]

i
∂u

∂t
+
∂2u

∂x2
+ f(u) = 0, (1.5.1)

where f(u) is the part of equation containing nonlinearities we wish to model. For the

Kerr effect, a model for f is

f(u) = a|u|2u. (1.5.2)

Frequently this model is used for its simplicity, and its effectiveness at an approximation

to the Maxwell system. However, this equation is still an approximation to the Maxwell’s

equations used in this thesis, and as such may not preserve all the behavior of the Maxwell

models.
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2 QUALITATIVE BEHAVIOR OF THE
MAXWELL-LORENTZ SYSTEM WITH

KERR EFFECT

2.1 Bifurcation Analysis of Maxwell’s Equations

In this section we will reduce our model into a system of ODEs to preform a bi-

furcation analysis. This entails finding the equilibrium points, computing the Jacobian of

the system at these points, and computing the associated eigenvalues. This will tell us

if the points are stable, unstable, or something more complex. This will undoubtedly be

in terms of the parameters, and by examining how changes in the parameters change the

behavior of our system, we can infer the physical implications of the parameters. We will

divide the analysis into sub-cases each neglecting certain parameters in order to elucidate

the effect of each term of the model.

2.1.1 Undamped Lorentz Model with Kerr Effect

The simplest case we will consider is to neglect the Raman effect as well as the

dampening in the Lorentz Pole (θ = 0,Γ = 0). This reduces (1.3.11) into three equa-

tions: our Maxwell Relation, the constitutive equation for the electric polarization and the

Lorentz oscillator:

Et = v2µ0Dt, (2.1.1a)

D = ε0(ε∞E + φ+ aE3), (2.1.1b)

φtt + ω0
2φ = βω0

2E. (2.1.1c)
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Assuming a traveling wave solution on functions E,D, and φ, i.e., assuming

f(z, t) = f(z − vt) = f(ξ) with ξ := z − vt,

we can reduce our system of PDEs into a planar system of two ODEs. Since we are

assuming that E(z, t) = E(ξ) we have, by the chain rule,

∂E

∂z
=
∂E

∂t

∂t

∂ξ

∂ξ

∂z
=
∂E

∂ξ

∂ξ

∂z
=
∂E

∂ξ
:= Y. (2.1.2)

Rearranging this equation yields

Y = −1

v
Et. (2.1.3)

Repeating this process gives
dY

dξ
=

1

v2
Ett. (2.1.4)

The next step is to solve for Ett in terms of E and Y . If we differentiate (2.1.1a) we get

the relationship

Ett = µ0v
2Dtt. (2.1.5)

We then substitute this into (2.1.4), yielding

dY

dξ
= µ0Dtt. (2.1.6)

To get a second equation involving Dtt in terms of E and Y we take a time derivative of

(2.1.1b) which, by product rule, produces

Dt = ε0(ε∞Et + φt + 3aE2Et) = ε0φt + ε0(ε∞ + 3aE2)Et. (2.1.7)

Substuting in (2.1.1a) to change the Et term to a Dt term and grouping together Dt terms

yields the equation

Dt =
ε0φt

1− ε0µ0v2(ε∞ + 3aE2)
. (2.1.8)
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By taking a time derivative and applying the quotient rule, this equations becomes

Dtt = ε0
(φtt)(1− ε0µ0v

2(ε∞ + 3aE2))− (φt)(6aε0µ0v
2(EEt))

(1− ε0µ0v2(ε∞ + 3aE2))2
. (2.1.9)

We now need to consider how factor out the φ terms. Beginning by integrating (2.1.1a)

and assuming that the initial conditions of D and E are identical, it follows that

E = µ0v
2D. (2.1.10)

Substituting in our equation (2.1.1b),

E = ε0µ0v
2(ε∞E + φ+ aE3).

Solved for φ,

φ =

(
1

ε0µ0v2
− ε∞ − aE2

)
E. (2.1.11)

This equation also gives us enough information to find φtt in terms of E since, if we take

(2.1.1c) and get φtt alone, we have

φtt = ω0
2(βE − φ).

If we then substitute in (2.1.11),

φtt = ω0
2

(
β − 1

ε0µ0v2
+ ε∞ + aE2

)
E. (2.1.12)

Now we differentiate (2.1.11) to get

φt =

(
1

ε0µ0v2
− ε∞ − 3aE2

)
Et. (2.1.13)

Therefore if we take (2.1.9) and substitute in (2.1.3) to remove Et, (2.1.13) to remove φt

and (2.1.12) to remove φtt, we can remove the undesired functions:

Dtt = ε0

(
(ω0

2(β − 1
ε0µ0v2

+ ε∞ + aE2)E)(1− ε0µ0v
2(ε∞ + 3aE2))

(1− ε0µ0v2(ε∞ + 3aE2))2

−
(( 1
ε0µ0v2

− ε∞ + 3avEY )E)(6aε0µ0v
2(−vEY ))

(1− ε0µ0v2(ε∞ + 3aE2))2

)
.

(2.1.14)



17

Simplified,

Dtt =
1

µ0

6aE2Y − ω0
2( c

2

v2
− εs)E − aE3

c2 − ε∞c2 − 3av2E2
. (2.1.15)

Therefore, from (2.1.6) and the above result, we finally have the equation

dY

dξ
=

6aE2Y − ω0
2( c

2

v2
− εs)E − aE3

c2 − ε∞c2 − 3av2E2
. (2.1.16)

We will then make the change of variables as follows[10],

z =
c

ω0
√
ε∞
z̃, (2.1.17a)

t =
1

ω0

t̃, (2.1.17b)

ξ =
c

ω0
√
ε∞
ξ̃, (2.1.17c)

v =
c
√
ε∞
ṽ, (2.1.17d)

E =

√
ε∞
3a
Ẽ, (2.1.17e)

Y =
ε∞ω0

c
√

3a
Ỹ . (2.1.17f)

Note that omit the tilde for simplicity. This yields the following system of ODEs.

dE

dξ
= Y, (2.1.18a)

dY

dξ
=

2v2EY 2 − (v−2 − εs/ε∞)E + E3/3

1− v2 − v2E2
. (2.1.18b)

We will let (E∞, Y∞) denote the equilibria points, which are defined by

dE

dξ

∣∣∣∣
(E∞,Y∞)

= 0, (2.1.19a)

dY

dξ

∣∣∣∣
(E∞,Y∞)

= 0. (2.1.19b)

It follows from the first equation that Y∞ = 0. Therefore, for the second,

0 = −(v−2 − εs/ε∞)E∞ + E∞
3/3.
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This polynomial has three solutions each representing a different equilibrium of the sys-

tem with positions

(E∞, Y∞) = (0, 0) and (E∞, Y∞) =

±
√√√√3

(
1− v2

v2
− β

ε∞

)
, 0

 . (2.1.20)

In [11] it was found that the zero equilibrium of this system is nonhyperbolic, and for v ∈(√
2ε∞

3εs−ε∞ ,
√

ε∞
εs

)
it was found that the nonzero equilibria are saddle nodes connected by

a heteroclinic connection call kink-antikink solutions. Thus, this model exhibits traveling

wave solutions in the form of periodic orbits and heteroclinic cycles. See Figure 2.5. If

we then consider velocity outside this range, the three equilibria coalesce into a single

saddle at the origin. This is consistant with our energy analysis since at steady state either

centers or saddle will occur. If we then consider velocity outside this range, the three

equilibria coalesce into a single saddle at the origin. This is consistent with our energy

analysis since at steady state either orbits or saddles will occur.

2.1.2 Dampened Lorentz Model with Kerr Effect

We now expand our scope to consider nonzero dampening in the Lorentz pole.

This means that only the Raman effect is neglected (θ = 0), leaving us with the system

of PDEs:

Et = v2µ0Dt, (2.1.21a)

D = ε0(ε∞E + φ+ aE3), (2.1.21b)

φtt + Γφt + ω0
2φ = βω0

2E. (2.1.21c)

Assuming a traveling wave solution on functions E,D, and φ, that is., assuming

f(z, t) = f(z − vt) = f(ξ) with ξ := z − vt,
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FIGURE 2.1: Phase Portrait of Undamped Lorentz-Kerr System showing solution curves

generated in PPlane with v = .6545, ε = 7/3

we can reduce our system of PDEs into a planar system of two ODEs as follows. Since

we are assuming that E(z, t) = E(ξ) we have, by the chain rule,

∂E

∂z
=
∂E

∂t

∂t

∂ξ

∂ξ

∂z
=
∂E

∂ξ

∂ξ

∂z
=
∂E

∂ξ
:= Y. (2.1.22)

Rearranging this equation yields

Y = −1

v
Et. (2.1.23)

Repeating this process gives

∂Y

∂z
=
∂Y

∂t

∂t

∂ξ

∂ξ

∂z
=
∂Y

∂ξ

∂ξ

∂z
=
∂Y

∂ξ
. (2.1.24)
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FIGURE 2.2: Phase Portrait of Undamped Lorentz-Kerr System showing solution curves

generated in PPlane with v = .6545, ε = 2.4

Therefore,
dY

dξ
=

(
−1

v

)
Yt =

1

v2
Ett. (2.1.25)

We now need to solve for Ett in terms of E and Y . If we differentiate (2.1.21a) and then

substitute into (2.1.25) we have
dY

dξ
= µ0Dtt. (2.1.26)

To get a second equation involving Dtt in terms of E and Y we take a time derivative of

(2.1.21b), which produces

Dt = ε0(ε∞Et + φt + 3aE2Et) = ε0φt + ε0(ε∞ + 3aE2)Et.

Substuting in (2.1.21a) to change theEt term to aDt term and grouping togetherDt terms

yields the equation

Dt =
ε0φt

1− ε0µ0v2(ε∞ + 3aE2)
. (2.1.27)
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The time derivative of this equation is, by quotient rule,

Dtt = ε0
(φtt)(1− ε0µ0v

2(ε∞ + 3aE2)) + (φt)(6aε0µ0v
2(EEt))

(1− ε0µ0v2(ε∞ + 3aE2))2
. (2.1.28)

We now need to remove the φ terms. Beginning by integrating (2.1.21a),

E − E0 = µ0v
2(D −D0), (2.1.29)

and then assuming appropriate conditions for D and E, it follows that

E = µ0v
2D. (2.1.30)

Substituting in (2.1.21b) gives

E = ε0µ0v
2(ε∞E + φ+ aE3).

Solved for φ,

φ =

(
1

ε0µ0v2
− ε∞ − aE2

)
E. (2.1.31)

The time derivative of this equation is

φt =

(
1

ε0µ0v2
− ε∞ − 3aE2

)
Et. (2.1.32)

From (2.1.21c) we can solve φtt:

φtt = ω0
2(βE − φ)− Γφt.

Hence, by (2.1.31) and (2.1.32),

φtt = ω0
2

(
β − 1

ε0µ0v2
+ ε∞ + aE2

)
E − Γ

(
1

ε0µ0v2
− ε∞ − 3aE2

)
Et. (2.1.33)

Now, plugging (2.1.32), and (2.1.33) into (2.1.28) produces

Dtt = ε0
(ω0

2(− 1
ε0µ0v2

+ εs + aE2)E − Γ( 1
ε0µ0v2

− ε∞ − 3aE2)Et)(1− ε0µ0v
2(ε∞ + 3aE2))

(1− ε0µ0v2(ε∞ + 3aE2))2

+
(( 1
ε0µ0v2

− ε∞ − 3aE2)Et)(6aε0µ0v
2(EEt))

(1− ε0µ0v2(ε∞ + 3aE2))2
.

(2.1.34)
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Simplified,

Dtt = ε0(c2 6av2EY 2 − ω0
2( c

2

v2
− εs)E + aω2

0E
3

c2 − ε∞v2 − 3av2E2
+ Γc2Y

v
).

And, by (2.1.25),

dY

dξ
=

6av2EY 2 − ω0
2[( c

2

v2
− εs)E − aE3]

c2 − ε∞v2 − 3av2E2
+ Γ

Y

v
. (2.1.35)

For which if we then repeat the change of variables:

ξ =
c

ω0
√
ε∞
ξ̃, (2.1.36a)

Γ =
ω0√
3a

Γ̃, (2.1.36b)

v =
c
√
ε∞
ṽ, (2.1.36c)

Y =

√
ε∞ω0

c
√

3a
Ỹ , (2.1.36d)

E =

√
ε∞
3a
Ẽ, (2.1.36e)

with the result that, after dropping tildes, we get the nondimensional system.

dE

dξ
= Y, (2.1.37a)

dY

dξ
=

2v2EY 2 − (v−2 − εs/ε∞)E + E3/3

1− v2 − v2E2
+ Γ

Y

v
. (2.1.37b)

Notice the odd, but consistent implication that,

dY

dξ Γ 6=0

=
dY

dξ Γ=0

+ Γ
Y

v
. (2.1.38)

Again, we will omit the tilde for simplicity. This permits a bifurcation analysis of the

parameter Γ, beginning by determining if the equilibria of the system move from the

undamped case and, if so, how. To find the nullclines we will make the above substitution
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and solve directly. Clearly, the E nullcline remains solely along the Y = 0 axis; it is the

Y nullclines that concern us. Solving,

0 =
dY

dξ

∣∣∣∣
Γ 6=0,E∞,Y∞=0

=
dY

dξ

∣∣∣∣
Γ=0,E∞,Y∞=0

=
−(v−2 − εs/ε∞)E∞ + E∞

3/3

1− v2 − v2E∞
2 .

Therefore,

0 = (v−2 − εs/ε∞)E∞ − E∞3/3.

This equation is the same as the undamped case, so we are left with the same equilibria

points. We now move to a linearization and stability analysis of the zero equilibrium. To

begin we find the terms in the Jacobian matrix computed at the origin:

∂

∂E

dE

dξ

∣∣∣∣
E=Y=0

= 1, (2.1.39a)

∂

∂Y

dE

dξ

∣∣∣∣
E=Y=0

= 0, (2.1.39b)

∂

∂E

dY

dξ

∣∣∣∣
E=Y=0

=
1
v2
− εs

ε∞

1− v2
, (2.1.39c)

∂

∂Y

dY

dξ

∣∣∣∣
E=Y=0

= Γ
1

v
. (2.1.39d)

For the purposes of bifurcation analysis we will label the third term δ and the last term γ,

which is merely Γ scaled.

JΓ(0, 0) =

1 0

γ δ


Therefore the characteristic equation of the Jacobin for eigenvalue λ is:

(γ − λ)(0− λ)− δ = λ2 − γλ− δ = 0.
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Computation of eigenvalues reveals

λ =
γ ±

√
γ2 + 4δ

2
,

or, equivalently,

λ =

Γ 1
v
±

√(
Γ

1

v

)2

+ 4
1
v2
− εs

ε∞

1− v2

2
.

We also wish to consider the nonzero equilibria with appropriate Jacobian derivatives.

Computation reveals

∂

∂E

dE

dξ

∣∣∣∣
E=±

√
3( 1−v2

v2
− β
ε∞

),Y=0

= 1, (2.1.40a)

∂

∂Y

dE

dξ

∣∣∣∣
E=±

√
3( 1−v2

v2
− β
ε∞

),Y=0

= 0, (2.1.40b)

∂

∂E

dY

dξ

∣∣∣∣
E=±

√
3( 1−v2

v2
− β
ε∞

),Y=0

=
2(v−2 − εs/ε∞)

1− v2 − 3v2(v−2 − εs/ε∞)
, (2.1.40c)

∂

∂Y

dY

dξ

∣∣∣∣
E=±

√
3( 1−v2

v2
− β
ε∞

),Y=0

=
Γ

v
. (2.1.40d)

For the purposes of bifurcation analysis we will again label the third term be δ and the

last term γ, the latter of which merely is Γ scaled.

JΓ(0, 0) =

0 1

γ δ


Therefore the characteristic equation of the Jacobin for eigenvalue λ is:

(γ − λ)(0− λ)− δ = λ2 − γλ− δ = 0

and computation reveals the eigenvalues to be:

λ =
γ ±

√
γ2 + 4δ

2
.
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Reinputting our original variables yields the eigenvalues

λ =

Γ

v
±

√(
Γ

v

)2

+ 4
2(v−2 − εs/ε∞)

1− v2 − 3v2(v−2 − εs/ε∞)

2
.

These eigenvalues allow us to do a Bifurcation Analysis on all relevant parameters:

(Γ, v, εs, ε∞) more easily effort if we group together their products to give the new set

of parameters Γ, v, ε where

ε =
εs
ε∞
.

In summary, with this new trio of parameters the zero equilibrium eigenvalues can we

rewritten as

λ =

Γ

v
±

√
(
Γ

v
)2 + 4

v−2 − ε
1− v2

2
,

and nonzero equilibria eigenvalues as

λ =

Γ

v
±

√
(
Γ

v
)2 + 8

(v−2 − ε)
((3ε− 1)v2 − 2)

2
.

With respect to physical meaning and scaling factors we have limited the ranges of these

parameters to Γ ∈ [0,∞), v ∈ (0,
√
ε∞), and ε ∈ (1,∞). Note that ε∞ could potentially

take any positive value. We now consider regions of various behavior for our parameters.

Note that the nonzero equilibria only have a real position if we assume both ε− v−2 > 0

and v 6= 1.

Zero Equilibrium

Case 1 Γ = 0

For this case our eigenvalues reduce to:

λ = ±
√
v−2 − ε
1− v2
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Subcases

(v−2 < ε and v < 1) or (v−2 > ε and v > 1)

For this case we have a pair of real eigenvalues one positive and one negative resulting in

a saddle node.

(v−2 ≥ ε and v < 1) or (v−2 ≤ ε and v < 1)

For this case we have a pair of eigenvalues with zero real parts resulting in a non-

hyperbolic equilibrium.

Case 2 0 < Γ < 2v
√

ε−v−2

1−v2 (Assuming bound is real)

Since we assumed the upper bound is real we only have two subcases, both which have

the same behavior.

Subcases

(v−2 < ε) and (1 > v)

(v−2 > ε) and (1 < v)

This results in a pair of eigenvalues we positive real parts and nonzero imaginary parts,

indicating an unstable spiral.

Case 3 Γ > 2v
√

v−2−ε
1−v2 (Assuming bound is real) Since we assumed the lower bound is

real we only have two subcases.

Subcases

(v−2 < ε) and (1 > v)

(v−2 > ε) and (1 < v)

Both eigenvalues are purely real and positive resulting in an unstable source. Case 4

Γ > 0 (Assuming previous bound is imaginary) Subcases

v−2 = ε

Results in one purely real positve eigenvalues and one zero eigenvalues, yielding a non-
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FIGURE 2.3: Phase Portrait of Case 2 of the ODEs system generated from the Lorentz-

Kerr model with damping generated in PPlane with v = .6545, ε = 7/3, and Γ = .05

hyperbolic equilibrium.

v−2 < ε

Yields two purely real eigenvalues, one positive and one negative resulting in a saddle

node.

Nonzero Equilibrium

Note that for this section we will assume v−2 − ε > 0 which is required for the nonzero

equilbiria to exist.

Case 1 Γ = 0
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FIGURE 2.4: Phase Portrait of Case 3 of the ODEs system generated from the Lorentz-

Kerr model with dampening generated in PPlane with v = .6545, ε = 2.4, and Γ = .1

For this case our eigenvalues reduce to:

λ = ±2

√
2(v−2 − ε)

((3ε− 1)v2 − 2)

Subcases

v−2 > ε

This implies we have a pair of purely real eigenvalues, one positive and one negative

resulting in a saddle node.

Case 2 0 < Γ < 2
√

2(v−2−ε)
((3ε−1)v2−2)

Since we assumed the upperbound was real we only have one subcase.

Subcases

v−2 < ε
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FIGURE 2.5: Phase Portrait of Case 4 of the ODEs system generated from the Lorentz-

Kerr model with damping generated in PPlane with v = .6545, ε = 2.4, and Γ = .05

It follows that have two purely real eigenvalues one negative and one positive resulting in

a saddle node.

Case 3 Γ > 2
√

2(v−2−ε)
((3ε−1)v2−2)

Since we assumed the lowerbound was real we only have one subcase.

Subcases

v−2 > ε

It follows that have two purely real eigenvalues one negative and one positive resulting in

a saddle node.
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FIGURE 2.6: Bifurcation Diagram of Lorentz-Kerr model ODE system about Zero

Equilibrium with ε = 7/3. The behavior of the point changes as the lines are

crossed, with centers along Γ = 0 and connection of the curves when ε = v−2

Based on this behavior it is reasonable to conjecture that a Hopf Bifurcaiton exists in the

dampening parameter. To prove the existance of the Hopf Bifurcation, we will consider

the linearized system corresponding to our above Jacobian.

dY

dξ
= Y, (2.1.41a)

dY

dξ
= δE + γY. (2.1.41b)

Theorem 1 (Hopf Bifurcation Theorem). [13] Consider a nonlinear planar system of



31

0.650 0.652 0.654 0.656 0.658 0.660
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Coalescence Saddles

v

Γ

FIGURE 2.7: Bifurcation Diagram of Lorentz-Kerr model ODE system about

Nonzero Equilibrium with ε = 7/3. The behavior of the point changes as the

lines are crossed. We note that to the left of the line ε = v−2 the nonzero equilibria

merge with the zero equilbrium at the origin and do not move.

autonomous ODEs in the form

dX

dt
= J(Γ)(X) + Fnonlinear(X; Γ)

where X is a vector of unknown field variables and Γ is a parameter. Assume there is

an equilibrium point at the origin. Then, a Hopf-Bifurcation occurs at the origin with a

Hopf Bifurcation Point of Γ = Γ0 if the following conditions hold.

1. The nonlinear terms in Fnonlinear have continuous third order partial derivatives.
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2. The Jacobian of the system at the origin J(Γ) exists for small values of Γ− Γ0.

3. A(Γ) has complex eigenvalues dependent on Γ of the form α(Γ) ± iβ(Γ), with

α(Γ0) = 0 and β(Γ0) = ω 6= 0, i.e. the equilibrium is hyperbolic for small Γ and

non-hyperbolic for Γ = Γ0.

4. (Transversality condition:) The eigenvalues of the Jacobian cross the imaginary

axis with nonzero speed d, where

d =
∂

∂Γ
α(Γ)

∣∣∣∣
Γ=Γ0

,

ω being the real part of the eigenvalues dependent on Γ.

Furthermore, we can classify the Hopf-Bifurcation as follows.

( Genericity condition:) Assume we have a pair of ODEs, with Fnonlinear = (f, g)T .

Define a dependent variable on the third order derivatives of Fnonlinear as

a =
1

16
(fEEE + fEY Y + gY Y Y + gEEY )

+
1

16ω(0)
(fEY (fEE + fY Y )− gEY (gEE + gY Y )− fEEgEE + fY Y gY Y )

, with all derivative terms being computed at the origin.

Then, for Γ > Γ0, if ad > 0 (and for Γ < Γ0 if ad < 0), the system of ODEs has a non-

degenerate Hopf Bifurcation. In the case where ad < 0 the Hopf bifurcation is called

super-critical. In the case that ad > 0, the Hopf bifurcation is called; sub-critical. If

a = 0 then the bifurcation is called a degenerate Hopf. Note that if we can rule out limit

cycles almost everywhere in our region, the sub-classification is degenerate Hopf.

We shall apply this theorem to the zero equilibrium with parameter Γ with the

concession that Γ can be negative. Since our system of ODEs is infinitely differentiable
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for all partial derivatives, it follows that it has third-order continuous partial derivatives.

Since the only term in our linear system that depends on Γ is proportionally dependent,

Γ it follows that the Jacobian is valid close to zero. The eigenvalues we computed earlier

clearly show that, when Γ = 0, our eigenvalues are purely imaginary and for small values

are complex. This leaves the Transversality Condtion which will require a derivative to

prove, in particularly the derivative of the real part of our eigenvalues in terms of the

parameter as computed at zero:
d

dΓ
γ =

1

v
6= 0

Since this derivative is nonzero, we conclude that the Transversality Condition holds,

meaning that indeed a Hopf Bifurcation exists at Γ = 0 at the origin. Computation of a

results in 0 because none of the derivatives that match the order of the system survive the

ones that do not. We therefore can conclude that this is a Degenerate Hopf Bifurcation. To

prepare to extend to higher dimensional systems, we will now introduce another method

to come to the conclusion of degeneracy.

Theorem 2 (Bendixon-Dulac Criterion). [6] Let f(E, Y ), g(E, Y ) and φ be functions C1

in a simply connected domain D ∈ R2 such that T = ∂(fφ)
∂E

+ ∂(gφ)
∂Y

does not change sign

in D and vanishes at most on a set of measure zero. Then the system

E ′ = f(E, Y ), (2.1.42a)

Y ′ = g(E, Y ), (2.1.42b)

does not have periodic orbits in D. Note that if φ exists then it is called a Dulac function.

Consider the above system and conjecture

φ(E, Y ) = (1− v2 − v2E2)2/v2 (2.1.43)
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is a Dulac function. We then compute T ,

T =
∂(fφ)

∂E
+
∂(gφ)

∂Y
= Y

∂φ

∂E
+ φ

∂g

∂Y
=

− 4v2EY (1− v2 − v2E2)2/v2−1 + (1− v2 − v2E2)2/v2
(

4v2EY

1− v2 − v2E2
+

Γ

vω0

)
=

Γ

v
(1− v2 − v2E2)2/v2 .

(2.1.44)

Note that this quantity is not defined for large E, as the function breaks down at a discon-

tinuity in the system and is therefore a reasonable boundary. Therefore we conclude φ is

indeed a Dulac function. The system, therefore does not have periodic orbits for nonzero

Γ, and is zero when Γ = 0 as anticipated from our plots of the region. We again conclude

that this Hopf Bifurcation is degenerate.

In future sections we will want to investigate behavior of the system for an arbitrary

number of dimensions in

Theorem 3 (Bendixon Criterion in Rn). [5] We will define our system of ODEs as:

dx

dt
= f(x, t), x(t) ∈ Rn,∀t ∈ [0, T ]

A simple closed rectifiable curve invariant to the definition above cannot exist if one of

the following conditions is satisfied on Rn:

1. sup{ ∂fr
∂xr

+ ∂fs
∂xs

+
∑

q 6=r,s(|
∂fq
∂xr
|+ | ∂fq

∂xs
|) : 1 ≤ r < s ≤ n} < 0,,

2. sup{ ∂fr
∂xr

+ ∂fs
∂xs

+
∑

q 6=r,s(|
∂fr
∂xq
|+ | ∂fs

∂xq
|) : 1 ≤ r < s ≤ n} < 0,

3. λ1 + λ2 < 0,

4. inf{ ∂fr
∂xr

+ ∂fs
∂xs
−
∑

q 6=r,s(|
∂fq
∂xr
|+ | ∂fq

∂xs
|) : 1 ≤ r < s ≤ n} > 0,
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5. inf{ ∂fr
∂xr

+ ∂fs
∂xs
−
∑

q 6=r,s(|
∂fr
∂xq
|+ | ∂fs

∂xq
|) : 1 ≤ r < s ≤ n} > 0,

6. λn−1 + λn > 0.

To prove that the closed curve is the correct behavior of the system in the nonhy-

perbolic case G = 0 we will introduce a new theorem to prove existence of limit cycles.

Definition 2.1.1. Hamiltonian System:[7] Let D be any open subset of R2n and let H ∈

C2(D) whereH = H(x,y) with x,y ∈ Rn. A system of the form

ẋ =
∂H
∂y

ẏ = −∂H
∂x

is called a Hamiltonian system with n degrees of freedom on D.

We know that the Hamiltonian of this system exists and can be expressed as

H =
1

2
A2
t +

2

3
A3
t +

1

2
A2
z +

1

2β0

φ2
t −

1

2β0

φ2

where Az = H , β0 = β
ε∞
.

Theorem 4. [7] Any nondegenerate critcical point of an analytic Hamiltonian system(*)

is either a saddle or a center; furthermore (x0, y0) is a saddle for (*) iff it is a saddle for

the Hamiltonian function H(x, y) and strict local maximum or minimum of the function

H(x, y) is a center for (*).
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In order to prove that the origin in the nonhyperbolic case is a center, we will need to

get our Hamiltonian in terms of E, Y . It follows by the Ampere-Maxwell Law and our

previous assumptions that,

Azz = Hz = Dt,

Atz = Ht = Dz,

Therefore,

At = D and Az =

∫
Dzdt.

Under the assumptions made in the previous derivation,

D =
E

µ0v2
,

∫
Dzdt =

∫
Ez
µ0v2

dt =

∫
Y

µ0v2
dt =

∫
− Et
µ0v3

dt = − E

µ0v3

φt = (
c2

v2
− ε∞ +

3aEY

v
)

φ = (
c2

v2
− ε∞ − 3aE2)E.

It therefore follows that without non-dimensionalization,

H(E, Y ) =
1

2
(− E

µ0v2
)2 +

2

3
(− E

µ0v2
)3 +

1

2
(
E

µ0v3
)2 +

1

2β0

(
c2

v2
− ε∞ +

3aEY

v
)2

− 1

2β0

((
c2

v2
− ε∞ − 3aE2)E)2

(2.1.45)

Therefore,

∂H
∂E

= (
E

µ2
0v

4
) + 2(− E2

µ3
0v

6
) + (

E

µ2
0v

6
)

+
1

β0

((
c2

v2
− ε∞ +

3aEY

v
)
3aY

v
− (

c2

v2
− ε∞ − 3aE2)E(

c2

v2
− ε∞ − 9aE2))

(2.1.46)
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∂H
∂Y

=
1

β0

(
c2

v2
− ε∞ +

3aEY

v
)(

3aE

v
)) (2.1.47)

It follows that at a critical point

∂H
∂E

=
∂H
∂Y

= 0.

Trivially one such solution is (E, Y ) = (0, 0), meaning that the nonhyperbolic equilibria

is a critical point of the Hamiltonian making it a center or a saddle dependent on the sign

of higher order derivatives. It follows that,

∂2H
(∂E)2

=
1

µ2
0v

4
− 4E

µ3
0v

6
+

1

µ2
0v

6
+

1

β0

((
c2

v2
− ε∞ +

3aY

v
)
3aY

v

+ (6aE2)(
c2

v2
− ε∞ − 9aE2)− (

c2

v2
− ε∞ − 3aE2)(

c2

v2
− ε∞ − 9aE2)

+ (
c2

v2
− ε∞ − 3aE2)(18aE2)), (2.1.48a)

∂2H
∂E∂Y

=
1

β
(
c2

v2
− ε∞ +

6aEY

v
)(

3a

v
), (2.1.48b)

∂2H
(∂Y )2

=
1

β0

(
9a2E2

v2
). (2.1.48c)

It therefore follows that for the bounds we put on our parameters,

HEE(0, 0)HY Y (0, 0)−HEY (0, 0) =
1

β0

(
c2

v2
− ε∞)(

3a

v
) 6= 0

Therefore this critical point is either a minimum or maximum making the equilibrium a

center in the nonhyperbolic case.

Definition 2.1.2. [9]Kamke Function: Conisder a function F ∈ D ⊂ Rn, it follows

that such a function is a Kamke Function if for every x, y ∈ D, if x ≤ y with xi = yi

pointwise for some i, then Fi(x) ≤ Fi(y) where F = (F1, F2, ..., Fn).
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Theorem 5. [9] Consider our nonlinear, autonomous, smooth planar system of ordinary

differential equations, which we denote as,

X ′ = F (X)

and let F be a Kamke function. Let there exist functions ψ, ν : [0, T ] → Rn such that

ψ(t) ≤ ν(t), 0 ≤ t ≤ T, ψ(0) ≤ ψ(T ), ν(0) ≥ ν(T ) and,

D−ψ(t) ≤ F (ψ(t)), D−ν(t) ≥ F (ν(t)), 0 ≤ t ≤ T.

Then there exists a periodic solution x(t) such that ψ(t) ≤ x(t) ≤ ν(t), 0 ≤ t ≤ T . Note

that D− and D− are the upper and lower Dini Differential Operators.

Definition 2.1.3. Dini Differential Operators Let a, b be real numbers such that a < b

and f a function such that f([a, b]n)→ Rn. Then the four Dini Differential Operators are

D−f(x) = lim inf
|h|→0−

f(x+ h)− f(x)

h
, (2.1.49a)

D−f(x) = lim inf
|h|→0−

f(x+ h)− f(x)

h
, (2.1.49b)

D+f(x) = lim sup
|h|→0−

f(x+ h)− f(x)

h
, (2.1.49c)

D+f(x) = lim sup
|h|→0−

f(x+ h)− f(x)

h
. (2.1.49d)

whe note that if f is differentiable then all of these operators are equivalent to the regular

definition of differentiation.

We consider the system in question:

dE

dξ
= Y, (2.1.50a)

dY

dξ
=

2v2EY 2 − (v−2 − ε)E + E3/3

1− v2 − v2E2
, (2.1.50b)

where v−2−ε < 0. We call the righthand side F , and we will define the following vectors
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P0 =

E
Y

, P1 =

 E

Y − δ

, P2 =

E − δ
Y


It follows that F is Kamke if,

F1(P0) ≥ F1(P1)

F2(P0) ≥ F2(P2)

for all δ ≥ 0 such that E − δ ∈ D . This system is equivalent to,

Y ≥ Y − δ

2v2EY 2 − (v−2 − ε)E + E3/3

1− v2 − v2E2
≥ 2v2(E − δ)Y 2 − (v−2 − ε)(E − δ) + (E − δ)3/3

1− v2 − v2(E − δ)2

The first equation is trivially true, for second equation we will consider cases. Note

that if eitherE or δ are zero, the second inequality holds trivially. Now assumeE,E−δ >

0, then

2v2(E − δ)Y 2 − (v−2 − ε)(E − δ) + (E − δ)3/3

1− v2 − v2(E − δ)2 ≤ 2v2(E)Y 2 − (v−2 − ε)(E) + (E)3/3

1− v2 − v2(E − δ)2

≤ 2v2EY 2 − (v−2 − ε)E + E3/3

1− v2 − v2E2

Therefore, the second equation holds. Assume E,E − δ < 0 then,

−2v2(E − δ)Y 2 − (v−2 − ε)(E − δ) + (E − δ)3/3

1− v2 − v2(E − δ)2 ≥ −2v2(E)Y 2 − (v−2 − ε)(E) + (E)3/3

1− v2 − v2(E − δ)2

≥ −2v2EY 2 − (v−2 − ε)E + E3/3

1− v2 − v2E2

Which implies our second equation. Finally, consider the case whereE > 0 andE−δ < 0

then,

2v2(E − δ)Y 2 − (v−2 − ε)(E − δ) + (E − δ)3/3

1− v2 − v2(E − δ)2

≤ 2v2(E)Y 2 − (v−2 − ε)(E) + (E)3/3

1− v2 − v2(E − δ)2

≤ 2v2EY 2 − (v−2 − ε)E + E3/3

1− v2 − v2E2
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Therefore, our second equation holds, implying that F is Kamke across its domain.

Now that we know that F is Kamke, we can using this formula to prove the origin is a

center. Let,

ψ(ξ) =

0

0



ν(ξ) = r0

cos(ξ)
sin(ξ)


where T = 2π. Clearly, |ψ(t)| ≤ |ν(t)|,ψ(0) = ψ(T ) and ν(0) = ν(T ). Notice that since

we are proving that periodic solutions exist between two circles, we will take the absolute

value of everything rather than convert to radial coordinates. It also follows that,

D−ψ1 = 0

D−ψ2 = 0

D−ν1 = −r0sin(t)

D−ν2 = r0cos(t)

F1(ψ(ξ)) = r0sin(t)

F2(ψ(ξ)) = 0

F1(ν(ξ)) = r0sin(t)

F2(ν(ξ)) =
2v2r3

maxcos(t)sin
2(t) + |v−2 − ε|rmaxcos(t) + r3

maxcos
3(t)/3

1− v2 − v2r2
maxcos

2(t)

It therefore follows that trivially,

|D−ψ1| = |F1(ψ)|
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|D−ν1| = |F1(ν)|

|D−ψ2| = |F1(ψ)|

Nontrivially,

|D−(ν2)| = |r0cos(ξ)| < |
r0cos(ξ)

1− v2 − v2r2
0cos

2(ξ)
| < | r0cos(ξ)

1− v2 − v2r2
0cos

2(ξ)
|(r2

0(min(2v2, 1/3)|

< | r0cos(ξ)

1− v2 − v2r2
0cos

2(ξ)
||2v2r2

0sin
2(ξ) + |v−2 − ε|+ r2

0cos
2(ξ)/3| = |F2(ν(ξ))|

With the restriction that r0 > min(1/(2v2),
√

3). Therefore, for each corresponding value

of r0 in our restricted region, there exists a periodic solution X(t) such that,

|ψ(ξ)| ≤ |X(ξ)| ≤ |ν(ξ)|

Therefore, the origin is a center in the nonhyperbolic case.

We now consider the bifurcation occuring at the origin. We see three equilibria

coalesce into one, which suggests some form of Pitchfork Bifurcation.

Theorem 6 (Pitchfork Bifurcation Theorem). [8] Consider a nonlinear planar system of

autonomous ODEs in the form
dX

dt
= F,

where X is a vector of unknown field variables and v is a parameter. Assume there is

an equilibrium point at the origin. Then a Pitchfork-Bifurcation occurs at the origin with

v = v0 being the Pitchfork Bifurcation Point if the following conditions hold.

1. The all terms in F have continuous third order partial derivatives.
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2. The Jacobian of the system at the origin, J(v), exists for small values of v − v0.

3. Either one equilibria exists before v = v0 and three exist after, or three exist before

and one exists after.

4. The the function is odd:

−F(X; v) = F(−X; v) (2.1.51)

5. At the bifurcation point the following hold,

∂F
∂v

(0, 0)v=v0 = 0

∂2F
∂X∂v

(0, 0)v=v0 > 0

∂3F
∂3X

(0, 0)v=v0 < 0

We will look at our system at the point where v = ε−2. It follows that we have

assumed the system is sufficiently smooth, and already know that the Jacobian exists

for values close to the bifurcation. We also know from our analysis that condition 3 is

satisfied. We now look at the other conditions, starting with 4. It follows that,

−dE
dξ

(E, Y ) = −Y =
dE

dξ
(−E,−Y )

−dY
dξ

(E, Y ) = −2v2EY 2 − (v−2 − ε)E + E3/3

1− v2 − v2E2

=
2v2(−E)(−Y )2 − (v−2 − ε)(−E) + (−E)3/3

1− v2 − v2(−E)2
=
dY

dξ
(−E,−Y )

Therefore condition 4 holds. Finally we consider condition 5 which will require compu-

tation of many different partial derivatives. It follows that since the first equation does not

depend on v or E and only depends on Y in the first order,

∂

∂v

dE

dξ
=

∂2

∂X∂v

dE

dξ
=

∂3

∂3X

dE

dξ
= 0
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Regaurdless of the other other equation, this result indicates that the fifth condition will

not be satisfied. We therefore conclude that this particular bifurcation has many of the

characteristics of the pitchfork, but does not fit the qualifications of a pitchfork bifurca-

tion.
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3 QUALITATIVE BEHAVIOR OF
MAXWELL-LORENTZ MODEL WITH
BOTH KERR AND RAMAN EFFECTS

We now wish to include the Raman effect in our analysis and neglect none of the

parameters in questions. This means we have five equations to consider: the Maxwell

Laws, the constitutive equation for D, and the Raman and Lorentz oscillators:

Ez = −Bt, (3.0.1a)

Bz = µ0Dt, (3.0.1b)

D = ε0(ε∞E + φ+ a(1− θ)E3 + aθQE), (3.0.1c)

φtt + Γφt + ω0
2φ = βω0

2E, (3.0.1d)

Qtt + ΓvQt + ωv
2Q = ωv

2E2. (3.0.1e)

Assuming a traveling wave solution on functions B,E,D,Q, and φ, that is, assuming

f(z, t) = f(z − vt) = f(ξ) with ξ := z − vt,

we can reduce our system of PDEs into a planar system of four ODEs as follows: We

start by using the rearrangment in the introduction to get

Et = v2µ0Dt, (3.0.2)

assuming that E(z, t) = E(ξ) the chain rule yields

∂E

∂z
=
∂E

∂t

∂t

∂ξ

∂ξ

∂z
=
∂E

∂ξ

∂ξ

∂z
=
∂E

∂ξ
:= Y, (3.0.3a)

∂Q

∂z
=
∂Q

∂t

∂t

∂ξ

∂ξ

∂z
=
∂Q

∂ξ

∂ξ

∂z
=
∂Q

∂ξ
:= X. (3.0.3b)
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Rearranging these equations,

Y = −1

v
Et, (3.0.4a)

X = −1

v
Qt. (3.0.4b)

Repeating this process gives

dY

dξ
=

1

v2
Ett, (3.0.5a)

dX

dξ
=

1

v2
Qtt. (3.0.5b)

Beginning with (3.0.5b) and substituting (3.0.1e) and (3.0.4b), we arrive with X ′ in terms

of E,Q and X:
dX

dξ
=

((ωv
v

)2

(E2 −Q) +
Γv
v
X

)
. (3.0.6)

Differentiating (3.0.2) results in
dY

dξ
= µ0Dtt. (3.0.7)

To get a second equation involving Dtt in terms of E and Y we take a time derivative of

(3.0.1c), which produces

Dt = ε0(ε∞Et + φt + 3a(1− θ)E2Et + aθ(QtE +QEt)).

Substuting in (3.0.2) and grouping together Dt terms yields the equation

Dt =
ε0(φt + aθQtE)

1− ε0µ0v2(ε∞ + 3a(1− θ)E2 + aθQ)
. (3.0.8)

This result is consistent with the cases where we set θ = 0. Since the denominator is

composed entirely of the functions we seek in the final result, we shall call it α turning

(3.0.8) into,

Dt =
ε0(φt + aθQtE)

α
. (3.0.9)
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Note that

αt = −ε0µ0v
2a(6(1− θ)EEt + θQt) = ε0µ0v

3a(6(1− θ)EY + θX), (3.0.10)

that is, αt is also comprised of the variables we are considering. If we take a time deriva-

tive of (3.0.9) it follows, by quotient rule, that

Dtt = ε0
(φtt + aθ(QttE +QtEt))α− (φt + aθQtE)αt

α2
. (3.0.11)

Some of these terms are undesired and will need to be removed. To begin, we remove the

φ terms via integration of (3.0.2) and the assumption that the initial conditions of D and

E are identical. It follows that

E = µ0v
2D. (3.0.12)

Substituting in our equation (3.0.1c),

E = ε0µ0v
2(ε∞E + φ+ a(1− θ)E3 + aθQE).

Solved for φ,

φ =

(
1

ε0µ0v2
− ε∞ − a(1− θ)E2 − aθQ

)
E. (3.0.13)

Differentiating with respect to t, we have

φt =

(
1

ε0µ0v2
− ε∞ − 3a(1− θ)E2

)
Et − aθ(QtE +QEt). (3.0.14)

Making use of (3.0.1d) we can solve for φtt:

φtt = ω0
2(βE − φ)− Γφt.

Substituting this into this equation (3.0.13) and (3.0.14),

φtt = ω0
2

(
βE −

(
1

ε0µ0v2
− ε∞ − a(1− θ)E2 − aθQ

)
E

)
−Γ

((
1

ε0µ0v2
− ε∞ − 3aθE2

)
Et − aθ(QtE +QEt)

)
.

(3.0.15)
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Now, considering the term Qtt it follows by rearrangement of (3.0.1e) that

Qtt = ωv
2(E2 −Q)− ΓvQt. (3.0.16)

Note, further, that by (3.0.5b) and (3.0.16),

dX

dξ
=

1

v2
(ωv

2(E2 −Q) + vΓvX). (3.0.17)

Therefore using our definitions for Y and X we can solve for Y ′ in terms of our variables

by solving the following system.

dY

dξ
= µ0ε0

(φtt + aθ(QttE + v2XY ))α− (φt − avθE)αt
α2

(3.0.18a)

Qtt = ωv
2(E2 −Q) + vΓvX, (3.0.18b)

φtt = ω0
2(βE − (

1

ε0µ0v2
− ε∞ − a(1− θ)E2 − aθQ)E)

+ vΓ((
1

ε0µ0v2
− ε∞ − 3aθE2)Y + aθ(XE +QY )), (3.0.18c)

φt = −v((
1

ε0µ0v2
− ε∞ − 3a(1− θ)E2)Y + aθ(XE +QY )), (3.0.18d)

φ = (
1

ε0µ0v2
− ε∞ − a(1− θ)E2 − aθQ)E, (3.0.18e)

αt = ε0µ0v
3a(6(1− θ)EY + θX), (3.0.18f)

α = 1− ε0µ0v
2(ε∞ + 3a(1− θ)E2 + aθQ). (3.0.18g)

Therefore we have the system comprised of (3.0.18a), (3.0.17) and (3.0.3a)(3.0.3b) as

follows:

dE

dξ
= Y, (3.0.19a)

dQ

dξ
= X, (3.0.19b)

dY

dξ
= µ0ε0

(φtt + aθ(QttE + v2XY ))α− (φt − avθE)αt
α2

, (3.0.19c)

dX

dξ
=

1

v2
(ωv

2(E2 −Q) + vΓvX). (3.0.19d)
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with the equations for α, αt, Qtt, φtt, and φt as stated above. We now wish to find the

equilibria. The first two equations trivially imply that for all equilibria,

Y∞ = 0 and X∞ = 0,

which, put into the fourth, implies,

E2
∞ = Q∞.

Therefore, if we input these results into our other equation imply that at equilibria,

α = 1− v2

c2
(ε∞ + a(3− 2θ)E2

∞), (3.0.20a)

αt = 0, (3.0.20b)

Qtt = 0, (3.0.20c)

φtt = ω2
0(βE∞ − (

c2

v2
− ε∞ − a(1− 2θ)E2

∞)E∞, (3.0.20d)

φt = 0, (3.0.20e)

φ = (
c2

v2
− ε∞ − a(1− 2θ)E2

∞)E∞. (3.0.20f)

Therefore,

0 = c2 (ω2
0(βE∞ − ( c

2

v2
− ε∞ − a(1− 2θ)E2

∞)E∞)(1− v2

c2
(ε∞ + a(3− 2θ)E2

∞))

(1− v2

c2
(ε∞ + a(3− 2θ)E2

∞))2
.

Simplified,

E∞(β − (
c2

v2
− ε∞ − a(1− 2θ)E2

∞)) = 0.

Therefore we have the zero equilibrium,

(E∞, Y∞, Q∞, X∞) = (0, 0, 0, 0),

and also a pair of nonzero equilibria,

(E∞, Y∞, Q∞, X∞) = (−

√
1

(1− 2θ)a

√
c2

v2
− εs, 0,

1

a(1− 2θ)
(
c2

v2
− εs), 0),
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(E∞, Y∞, Q∞, X∞) = (

√
1

(1− 2θ)a

√
c2

v2
− εs, 0,

1

a(1− 2θ)
(
c2

v2
− εs), 0),

which are equivalent in E and Y to the previous case where θ = 0. We will now evaluate

the Jacobian at the origin by computing the following nontrivial partial derivatives.

∂

∂Y

dE

dξ
= 1. (3.0.21a)

∂

∂E

dY

dξ
= ω0

2 β − c2

v2
+ ε∞

(c2)(1− v2

c2
ε∞)

. (3.0.21b)

∂

∂Y

dY

dξ
=

Γ

v
. (3.0.21c)

∂

∂X

dQ

dξ
= 1. (3.0.21d)

∂

∂Q

dX

dξ
= −ωv

2

v2
. (3.0.21e)

∂

∂X

dX

dξ
=

Γv
v
. (3.0.21f)

(3.0.21g)

Therefore our Jacobian is

JΓ,Γv(0, 0, 0, 0) =



0 1 0 0

ψ Γ
v

0 0

0 0 0 1

0 0 −ωv2

v2
Γv
v


,

where,

ψ = ω0
2 β − c2

v2
+ ε∞

(c2)(1− v2

c2
ε∞)

which corresponds to the characteristic equation

0 =

(
λ

(
Γ

v
− λ
)
− ψ

)(
λ

(
Γv
v
− λ
)
− ωv

2

v2

)
.
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Therefore one of the following expressions must be zero.

0 =

(
λ

(
Γ

v
− λ
)
− ψ

)
,

0 =

(
λ

(
Γv
v
− λ
)
− ωv

2

v2

)
.

Yielding corresponding solutions

λ =

Γ
v
±
√

(Γ
v
)2 − 4ψ

2

and

λ =

Γv
v
±
√

(Γv
v

)2 − 4ωv
2

v2

2
.

These eigenvalues demonstrate that there is a change in stability occuring at the the origin

in both the damping constants of the Lorentz and Raman oscillators. With the possibility

of a full hopf bifurcation occuring if we set the two constants to be proportional to each

other by a positive constant. To determine if we have a bifurcation at the origin where,

for some m > 0 mΓ = Γv, we reinvoke the Hopf Bifurcation theorem. Since our system

is infinitely differentiable on our region of interest, it follows that it has continuous third

order partial derivatives in all four variables. The Jacobian computed above indeed exists

for all values of Γ and Γv and therefore exists for values close to the origin. Moreover,

our eigenvalues are indeed of the form we need and last we check that the Transversality

condition hold with the first pair of eigenvalues:

d =
∂

∂Γ
α(Γ)Γ=0 =

∂

∂Γ

Γ

v Γ=0
=

1

v

Since the velocity is always positive,the condition holds. This implies that we have at

least a simple Hopf at the origin. To determine if limit cycles exists, we invoke the sixth

condition of the Bendixon Criterion:

λ4 + λ3 = m
Γ

v
> 0
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As this condition holds, no limit cycles exist and we conclude that a degerate Hopf Bifur-

cation exist at the origin. Any approximation we make of the system should preserve this

behavior.

For a complete bifurcation analysis we proceed to consider the cases on the regions of

our parameters. Due to physical restrictions, we know that Γ,Γv ∈ [0,∞), v ∈ (0, c),

ωv, ω0 ∈ (0,∞), εs ∈ [ε∞,∞), and ε∞ ∈ (0, εs], with c being the only physical constant

in our eigenvalues.

Case 1

Γ = Γv = 0

In this case energy in the system is conserved, but the qualitative behavior could still

change. Subcase 1

εs − c2

v2

1− v2

c2
ε∞
≥ 0

It this case all eigenvalues have zero real parts resulting in a nonhyperbolic equilibrium

with likely center behavior. Subcase 2

εs − c2

v2

1− v2

c2
ε∞

< 0

In this case we have a pair of nonzero eigenvalues with zero real part, and a pair of purely

real nonzero eigenvalues with opposite sign. As such we have a nonhyperbolic equilib-

rium with likely saddle node behavior.

Case 2

ΓΓv 6= 0
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This is the most general case with energy lost in the system, behavior now depends on all

eigenvalues.

Subcase 1

εs− c
2

v2

1− v2
c2
ε∞

< 0

This cases yields at least two real eigenvalues of opposite sign resulting in a saddle node.

Subcase 2

( Γ
2v

)2 >
εs− c

2

v2

1− v2
c2
ε∞
≥ 0 and Γv > 2ωv

This yields 4 positive real eigenvalues resulting in an unstable source.

Subcase 3

εs− c
2

v2

1− v2
c2
ε∞
≥ ( Γ

2v
)2 and Γv < 2ωv

This results in four real eigenvalues, three of which are positve and one is negative result-

ing in a saddle.

Subcase 4

εs− c
2

v2

1− v2
c2
ε∞
≥ ( Γ

2v
)2

This yields four eigenvalues, at least two of which are complex all of which have positive

real parts resulting in an unstable spiral.
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We will now consider the nonhyperbolic equilbria, starting with the the case where

Γ = Γv = 0 and
εs− c

2

v2

1− v2
c2
ε∞
≥ ( Γ

2v
)2 at the origin. By [10] we know that this system is

Hamiltonian with corresponding function,

H =
1

2
(1 +Q)A2

t +
2

3
A3
t +

1

2
A2
z +

1

2β0

φ2
t −

1

2β0

φ2 +
1

4b
Q2
t +

1

4b
ω2
vQ

2

where Az = H , b = ω2
v

ω2
0

θ
3(1−θ) .

It follows by the Maxwell-Ampere Law and our previous assumptions that,

Atz = Ht = Dz

Azz = Hz = Dt

3.1 A Three Equation Approximation to the Four
Equation System

As an attempt at an approximation, consider a very rough linearization of the Ra-

man effect. For this derivation, will introduce a new variable u such that

u = φ+ aθEQ. (3.1.1)

Therefore by (3.0.1d) and (3.0.1e) we can create an oscillator equation for uwith the right

hand side containing E, Y, Y ′, Q and Qt as follows:

utt+Γut+ω0
2u = βω0

2E+aθE(ωv
2E2+(Γ−Γv)Qt+(ω0

2−ωv2)Q)+aθ(EtQ+2EtQt+EttQ)

Since we wish for this to depend solely on E,Et, Ett, Q, we will make the approximation

Qtt ≈ 0.
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This assumes some form of linearity in the Raman effect globally so the best application

is in smaller intervals of time and space. Therefore, by (3.0.1e),

Qt =
ωv

2

Γv
(E2 −Q)

It follows that

utt + Γut + ω0
2u = βω0

2E + aθE[ωv
2E2 + (Γ− Γv)

ωv
2

Γv
(E2 −Q) + (ω0

2 − ωv2)Q]

+ aθ[EtQ+ 2
ωv

2

Γv
Et(E

2 −Q) + EttQ] := h(E,Et, Ett, Q)

(3.1.2)

Hence for the new system we have the four equations

Bt = −Ez, (3.1.3a)

Dt = − 1

µ0

Bz, (3.1.3b)

D = ε0(ε∞E + u+ a(1− θ)E3), (3.1.3c)

utt + Γut + ω0
2u = h(E,Et, Ett, Q). (3.1.3d)

Assuming a traveling wave solution on functions B,E,D,Q, and u, that is, assuming

f(z, t) = f(z − vt) = f(ξ) with ξ := z − vt,

we can reduce our system of PDEs into a planar system of three ODEs as follows.

Since we are assuming that E(z, t) = E(ξ) we have, by the chain rule,

∂E

∂z
=
∂E

∂t

∂t

∂ξ

∂ξ

∂z
=
∂E

∂ξ

∂ξ

∂z
=
∂E

∂ξ
:= Y (3.1.4)

Rearranging this equation,

Y = −1

v
Et. (3.1.5)



55

Repeating this process yields
dY

dξ
=

1

v2
Ett. (3.1.6)

Notice that by (3.1.1), (3.0.1e) reduces to

Qt =
ωv

2

Γv
(E2 −Q). (3.1.7)

This implies by (3.1.4) that

dQ

dξ
= −1

v
Qt = −1

v

ωv
2

Γv
(E2 −Q). (3.1.8)

We now need to solve for Ett in terms of E, Y and Q. If we take (3.1.3a) and (3.1.3b)

and use (3.1.4) to get everything in terms of time, it follows that

Bt =
1

v
Et, (3.1.9a)

Dt =
1

µ0

1

v
Bt. (3.1.9b)

Therefore if we equate these two equations to remove Bt, we arrive at the equation,

Et = µ0v
2Dt, (3.1.10)

which, after substituting (3.1.6) and differentiating yields

dY

dξ
= µ0Dtt. (3.1.11)

To get a second equation involving Dtt in terms of E and Y we take a time derivate of

(3.1.3c), which produces

Dt = ε0(ε∞Et + ut + 3a(1− θ)E2Et).

Substuting in (3.1.10) and grouping together Dt terms yields the equation

Dt =
ε0ut

1− ε0µ0v2(ε∞ + 3a(1− θ)E2)
. (3.1.12)
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Since the denominator is comprised entirely of functions we will be working with we

shall call it α turning (3.1.12) into

Dt =
ε0ut
α
. (3.1.13)

Note that,

αt = −6a
v2

c2
(1− θ)EEt, (3.1.14)

which implies that αt also contains our desired functions. If we differentiate (3.1.13)

then, by the quotient rule, we have

Dtt = ε0
uttα− utαt

α2
. (3.1.15)

We now need to remove the u terms. We begin by integrating (3.1.10) and assuming that

the initial condtions of D and E are identical. It follows that

E = µ0v
2D (3.1.16)

Substituting in our equation (3.1.3c),

E = ε0µ0v
2(ε∞E + u+ aE3);

solved for u

u = ((
1

ε0µ0v2
− ε∞ − aE2)E). (3.1.17)

Taking a time derivative produces

ut = (
1

ε0µ0v2
− ε∞ − 3aEEt). (3.1.18)

Using (3.1.3d) to solve for utt results in

utt = h− ω0
2u− Γut,
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from which, if we then substitute in (3.1.17) and (3.1.18)

utt =

(
h− ω0

2

((
1

ε0µ0v2
− ε∞ − aE2

)
E

)
− Γ

(
1

ε0µ0v2
− ε∞ − 3aEEt

))
(3.1.19)

Therefore plugging (3.1.17),(3.1.18), (3.1.19) and our definition of Y ′ into (3.1.15) pro-

duces,

Dtt = ε0
(h− ω0

2(( 1
ε0µ0v2

− ε∞ − aE2)E)− Γ( 1
ε0µ0v2

− ε∞ − 3aEEt))α

α2

−
( 1
ε0µ0v2

− ε∞ − 3aEEt)αt

α2

(3.1.20)

Therefore, by (3.1.6),

dY

dξ
= µ0ε0

(h− ω0
2(( 1

ε0µ0v2
− ε∞ − aE2)E)− Γ( 1

ε0µ0v2
− ε∞ − 3aEEt))α

α2

−
( 1
ε0µ0v2

− ε∞ − 3aEEt)αt

α2

(3.1.21)

This, however, is incomplete. There is an Ett term inside the h function. As such we will

factor it out by introducing a function g such that

g(Q,E,Et) = h(Q,E,Et, Ett)− aθEttQ = h− aθv2dY

dξ
Q. (3.1.22)

Making use of g, we arrive at a solution for dY
dξ

, namely

dY

dξ
= µ0ε0

(
(g − ω0

2(( 1
ε0µ0v2

− ε∞ − aE2)E)− Γ( 1
ε0µ0v2

− ε∞ − 3aEEt))α

α2

−
( 1
ε0µ0v2

− ε∞ − 3aEEt)αt

α2

)(
α

α + aθv2µ0ε0Q

) (3.1.23)

We now wish to observe the equilibrium and bifurcation structure of the system and com-

pare to the four-equation case in which the Qtt is not neglected. If the behavior is suf-

ficiently similar we will consider this an acceptable approximation and draw our phase

portrait. We begin by finding the equilibria of the system. We will denote these points by
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(Q∞,i, E∞,i, Y∞,i). Trivially we know that at equilibrium

Y∞ = 0 and E∞2 = Q∞

Now looking at (3.1.23) to find E∞ and assuming that k0 = 0, we get

0 = E∞

(
βω0

2 + aθ(ωv
2E∞

2 + (ω0
2 − ωv2)Q∞)− ω0

2c2

v2
+ ω0

2ε∞ + a(1− θ)ω0
2E∞

2

)
We therefore have the zero equilibrium,

(Q∞,1, E∞,1, Y∞,1) = (0, 0, 0)

and nonzero equilibria,

(Q∞,2, E∞,2, Y∞,2) = (
1

a
(
c2

v2
− β − ε∞),

√
1

a
(
c2

v2
− β − ε∞), 0)

(Q∞,3, E∞,3, Y∞,3) = (
1

a
(
c2

v2
− β − ε∞),−

√
1

a
(
c2

v2
− β − ε∞), 0)

These equilibria are identical to the equilibria negating the Raman effect. We now move

on to computation of the jacobian at the zero equilibria. The appropriate partial deriva-
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tives are computed to be,

∂

∂Q

dQ

dξ

∣∣∣∣
E=Y=Q=0

=
∂

∂Q
(−vωv

2

Γv
(E2 −Q))

∣∣∣∣
E=Y=Q=0

= v
ωv

2

Γv
(3.1.24a)

∂

∂E

dQ

dξ

∣∣∣∣
E=Y=Q=0

=
∂

∂E
(−vωv

2

Γv
(E2 −Q))

∣∣∣∣
E=Y=Q=0

= 0 (3.1.24b)

∂

∂Y

dQ

dξ

∣∣∣∣
E=Y=Q=0

=
∂

∂Y
(−vωv

2

Γv
(E2 −Q))

∣∣∣∣
E=Y=Q=0

= 0 (3.1.24c)

∂

∂Q

dE

dξ

∣∣∣∣
E=Y=Q=0

=
∂

∂Q
Y

∣∣∣∣
E=Y=Q=0

= 0 (3.1.24d)

∂

∂E

dE

dξ

∣∣∣∣
E=Y=Q=0

=
∂

∂E
Y

∣∣∣∣
E=Y=Q=0

= 0 (3.1.24e)

∂

∂Y

dE

dξ

∣∣∣∣
E=Y=Q=0

=
∂

∂Y
Y

∣∣∣∣
E=Y=Q=0

= 1 (3.1.24f)

∂

∂Q

dY

dξ

∣∣∣∣
E=Y=Q=0

=
∂

∂Q
µ0ε0

wα + utαt
α(α− aθv2µ0ε0Q)

∣∣∣∣
E=Y=Q=0

= 0 (3.1.24g)

∂

∂E

dY

dξ

∣∣∣∣
E=Y=Q=0

=
∂

∂E
µ0ε0

wα + utαt
α(α− aθv2µ0ε0Q)

∣∣∣∣
E=Y=Q=0

= ψ (3.1.24h)

∂

∂Y

dY

dξ

∣∣∣∣
E=Y=Q=0

=
∂

∂Y
µ0ε0

wα + utαt
α(α− aθv2µ0ε0Q)

∣∣∣∣
E=Y=Q=0

= δΓ (3.1.24i)

Where,

δ =
c2

v2
− ε∞

v(1− v2

c2
ε∞)

> 0 and ψ = ω0
2β −

c2

v2
− ε∞

1− v2

c2
ε∞

Therefore we have the corresponding jacobian,

JΓ,Γv(0, 0, 0) =


v ωv

2

Γv
0 0

0 0 1

0 ψ δΓ


With characteristic equation,

0 = (v
ωv

2

Γv
− λ)((δΓ− λ)(−λ)− ψ)
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Therefore we have eigenvalues,

λ1 = v
ωv

2

Γv
,

λ2 =
δΓ−

√
(δΓ)2 + 4ψ

2
,

λ3 =
δΓ +

√
(δΓ)2 + 4ψ

2
.

This preserves our Hopf bifurcation for constant Γ, however we no longer have the possi-

bility of compex eigenvalues dependent on Γv. This approximation also assumes that the

damping constant of the Raman effect is nonzero, and is ill behaved for sufficiently small

Γv with optimal behavior when it is on the order of ωv2.
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4 A NUMERICAL METHOD FOR THE
DAMPED MAXWELL-LORENTZ

MODEL WITH KERR EFFECT

4.1 The Euler Time discretization

In this chapter we consider numerical methods for the Maxwell models discussed

in the previous chapter. We will discretize the ODEs of the damped Maxwell-Lorentz

-Kerr model with the Euler method, a finite difference method for ODEs [2]. We will

repeat our bifurcation analysis on the discretized systems, find the fixed points, and their

stability and show consistency of the discrete system with the continuous case for some

nonzero step sizes. We will utilize a uniform grid with step size ∆ξ > 0. We denote

discrete ξ values as ξn = n∆ξ, for n ∈ N. We also denote the approximate value of the

fields E and Y at point ξn as En and Y n respectively, i.e.

E(ξn) ≈ En, Y (ξn) ≈ Y n.

The Euler method is a first order finite difference scheme and makes the forward approx-

imation
dE

dξ

∣∣∣∣
ξn

≈ En+1 − En

∆ξ
. (4.1.1)

Note that this scheme is known to be first order accurate in ∆ξ. We will discretize the sys-

tem of ODEs found in section 2.1.2, where Γ 6= 0 and θ = 0. Using the transformations
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in that section we obtain the system of ODEs,

dE

dξ
= Y, (4.1.2a)

dY

dξ
=

2v2EY 2 − (v−2 − ε)E + E3/3

1− v2 − v2E2
+ Γ

Y

v
. (4.1.2b)

For simplicity in this section we will write

dE

dξ
= f(E, Y ), (4.1.3a)

dY

dξ
= g(E, Y ). (4.1.3b)

We will approximateE, Y on the discrete grid consisting of the points ξ0, ξ1, ξ2, . . . ξn . . . ,

along with their derivatives. Our discrete scheme can therefore be written as the following

set of discrete equations

D∆ξE
n =:

En+1 − En

∆ξ
= f

(
En, Y n

)
, (4.1.4a)

D̃∆ξY
n :=

Y n+1 − Y n

∆ξ
= g

(
En, Y n

)
. (4.1.4b)

Thus, under discretization, our system of ODEs becomes the algebraic system of differ-

ence equations,

En+1 = En + (∆ξ)Y n, (4.1.5a)

Y n+1 = Y n + (∆ξ)

(
2(v2)(En)(Y n)2 − (v−2 − ε)En + (En)3/3

1− v2 − v2(En)2
+

Γ

v
Y n

)
(4.1.5b)

Thus, our system is now written in the form of a two dimensional first order discrete

dynamical system

En+1 = F (En, Y n), (4.1.6a)

Y n+1 = G(En, Y n). (4.1.6b)
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4.2 Analysis of Discrete Dynamical Systems

To begin our study of this system, we first define analogous quantities for discrete

dynamical systems to those defined in the dynamical systems theory used previously

Definition 4.2.1. (Fixed Point) The point (E∞, Y∞) is called a fixed point of the system

if it is a constant solution to the system of discrete equations, i.e. for which

E∞ = F (E∞, Y∞), (4.2.1a)

Y∞ = G(E∞, Y∞). (4.2.1b)

Definition 4.2.2. (Amplification Matrix) We define the amplification matrix or Jacobian

computed at the fixed point (E∞, Y∞) to be the matrix

J(E∞, Y∞) =

FE(E∞, Y∞) FY (E∞, Y∞)

GE(E∞, Y∞) GY (E∞, Y∞)

 . (4.2.2)

We note that if ρ is the spectral radius (largest absolute value of all the eigenvalues), then

ρ will determine the stability of the fixed points.

We first consider the position of fixed points which are the discrete analog of the

equilibria in the continuous case. Ideally, these points would be identical in both cases. If

(E∞, Y∞) is a fixed point, then we have that

E∞ = E∞ + (∆ξ)Y∞, (4.2.3a)

Y∞ = Y∞ + (∆ξ)

(
2(v2)(E∞)(Y∞)2 − (v−2 − ε)E∞ + (E∞

3)/3

1− v2 − v2(E∞)2
+

Γ

v
(Y∞)

)
.

(4.2.3b)

Our first equation implies that since ∆ξ > 0, Y∞ = 0. Substituting this into our second

equation yields,

0 = (∆ξ)
−(v−2 − ε)E∞ + (E∞

3)/3

1− v2 − v2(E∞)2
,



64

Which yields three fixed points the zero,

(E∞, Y∞) = (0, 0)

and the nonzero fixed points

(E∞, Y∞) = (±
√

3(ε− v−2), 0).

These are identical to the continuous case which is indeed ideal. We now need to figure

out if the properties of stability still hold at these points in the discrete case. This, how-

ever, requires a new definition of stability. We first present some theorems on the stability

of the difference equations as dependent on the eigenvalues of J .

Theorem 7. [1] The fixed point (E∞, Y∞), which is a constant solution of the discrete lin-

earized system of difference equations (4.2.3a), is asymptotically stable iff the eigenvalues

of J are within the unit disk of the complex plane, if and only if

|Tr(J)| < 1 + det(J) < 2,

where in the Jury conditions above, Tr(J) is the Trace of the Jacobian matrix at the fixed

point and det(J) is the determinant of the Jacobian at he fixed point.

Theorem 8. [1] The fixed point (E∞, Y∞) of the linearized system (4.2.3a) is stable iff

the eigenvalues of J are within the unit disk of the complex plane where those on the unit

circle are semisimple.

We start by computing the various components of the Amplification Matrix at the
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zero equilibrium. We have

FE(E∞, Y∞) = 1, (4.2.4a)

FY (E∞, Y∞) = ∆ξ, (4.2.4b)

GE(E∞, Y∞) = ∆ξ

(
2v2(1− v2 + v2E2

∞)Y 2
∞ − (v−2 − ε)(1− v2)

(1− v2 − v2(E2
∞))2

)

)
,

+ ∆ξ

(
v2(ε− 1− 5

3
E2
∞)E2

∞

(1− v2 − v2(E2
∞))2

)

)
, (4.2.4c)

GY (E∞, Y∞) = 1− ∆ξΓ

v
+ (∆ξ)

(
4v2Y∞E∞

1− v2 − v2E∞
2

)
. (4.2.4d)

Notice that the characteristic equation of the Jacobian is

λ2 − (FE +GY )λ+ (FEGY −GEFY ) = 0.

Consider the zero fixed point. In this case, the Jacobian is given by

J(E∞ = 0, Y∞ = 0) =

 1 ∆ξ

∆ξ(ε− 1
v2

) 1 + ∆ξ Γ
v

 . (4.2.5)

To determine the stability of the zero fixed point, we determine the Jury condition to be

∆ξ2(ε− 1

v2
) < 0.

Since ∆ξ > 0, this implies a condition on v and ε. Thus, if ε < v−2, then the Jury

conditions are satisfied and the zero fixed point is asympototically stable.



66

5 CONCLUSION

In this report, we have considered inclusion of the nonlinear factors in Maxwell’s

equations. In particular, we have considered models for the Kerr and Raman effects in

nonlinear optics. Under the assumption of a traveling wave solution in the corresponding

nonlinear materials, we have analyzed the system of ordinary differential equations that

arise. Degenerate Hopf bifurcations and Pitchfork bifurcations are shown to arise in a

bifurcation analysis in which different parameters in the nonlinear model are varied. Our

analysis was for the case of a one spatial dimensional system. We have also considered

discretization of the ODE systems that result from Maxwell’s equations under the as-

sumption of a travelling wave solution. In the future we will consider nonlinear Maxwell

models for Kerr, Lorentz and Raman effects in two and three spatial dimensions and also

consider PDE based discretizations.
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