
PRINCIPLES
- -

OF

LOGIC DESIGN

W. Richards Adrion

James H . Herzog

Robert A. Short

n
PRINCIPLES

OF

LOGIC DESIGN

11 W . Richards Adrion

I
James H. Herzog

Robert A . Short

I
l I
I

11
Oregon State University

; J
Corvallis, Oregon

I

l

u
LI

Copyright © 1974 by

W. Richards Adrion
James H. Herzog
Robert A. Short

l
n
n
n
n
n

I
I
I
I
I
I
J

I

l
7 TABLE OF CONTENTS

n Page

l. Logic Design and Digital Machines l . l n l. 1 The Basic Digital Design Problem l. 2
l. 2 Number Systems and Binary Encoding l. 8

n l. 3 Design Specifications l. 24
l. 4 The Problems of Existence and Minimization 1. 48
l. 5 Notes - References - Problems 1. 50

n 2. Combinational Foundations 2 1

2 . 1 Logical Connectives and Electronic Gates 2 . la
2.2 The Switching Algebra 2 . 2
2 . 3 Switching Functions and Their Representations 2.21

J
2 . 4 Alternative Representations 2. 30
2.5 Notes - Refe rences - Problems 2 . 38

l I
3. Elements of Logic Design 3 . 1

3 . l Branch Networks 3.2
3.2 Gate Networks 3. 13

I]

3 . 3 Multiple Output Networks 3. 49
3 .4 Iterative Combinational Networks 3.58
3.5 Notes - References - Problems 3 .66

d 4 . Introduction to Sequential Design 4. l

!) 4 . 1 Sequential Logic Circuits 4 . 1
4.2 The State Diagram 4.4
4 . 3 The Latch 4. 7

I
4 . 4 Clocked Flip Flops 4. 11
4 . 5 Binary Counters 4. 14
4 . 6 Shift Registers 4. 16

ti
4 . 7 The Ar ithmetic Register 4. 20
4.8 Notes - References - Problems 4 . 23

J
5 . Design of Clocked Sequential Circuits 5. 1

5 . 1 Clocked Sequential Logic 5. 1
5 . 2 The Design Procedure 5.2
5 . 3 Design of Sequence Generators :/Counters 5 . 5
5.4 Design of Input Sequence Detectors 5. 10
5 . 5 Minimizati.on Revisted 5. 16
5.6 Sequential D esig n Using Read Only Memory 5.21
5. 7 Notes - References - Problems 5.23

TABLE OF CONTENTS (continued)

6. Design of Asynchronous Sequential Circuits

6 . l Introduction
6 . 2 Analysis of Relay Sequential Circuits
6 . 3 Design of Asynchronous Sequential Circuits
6. 4 Assignment of State Variables
6 . 5 Notes - References - Problems

7 . Fault Tol e rant Design

7 . l Hardwar e Redundancy
7 . 2 Co ding Redundancy
7 . 3 Fault Diagnosis
7 . 4 Comments - Problems - References

8 . The Impact of New Technology on Logic Design

8 . 1 Read Only Memory Design
8 . 2 Cellular Arrays
8 . 3 Programmable Logic Arrays
8 . 4 Universal Logic
8 . 5 Notes - Problems - References

7
n

Page n
6. 1 n
6. 1
6 . 2 n 6 . 9
6.18
6 . 21 n
7 . 1

7 . 3
7 . 18
7 . 28
7 . 35

8 . 1

8 . 2
8 . 8
8 . 13
8 . 15
8 . 21

I I

I
I I

I
I
J

l
l
n
n
n
n
I
I

11

J

j

1 Logic Design and Digital Machines

This study involves logic design and switching theory, in particular their

practical application to the logic design and understanding of digital machines.

Digital machines, of course, play an extremely important role in that large cla s s

of machines known as digital computers. But they also play an important role

in many other kinds of practical devices important in the design of communications

systems, digital control systems, counters, registers, digital meters, and so on.

The basic content of switching theory is very simple . It embodi e s that body

of machines and machine behavior that can be realized with "switches", things

that are either "on" or "off", and nothing, really, could be much simpler than that.

Of course the world is really comprised of very many complex structures which

are really composed of exceedingly simple lesser structures, so that we really

shouldn 1 t be too surprised that even though the elements of switching theory are

quite simple, their consequences are not necessarily so.

The goals of our study are several, and include at least the following:

1) to develop some understanding and capability in using the techniques, design

procedures, and models that have been developed for understanding and designing

digital networks;

2) to explore in some modest detail the kinds of questions with which logic

designers and practitioners concern themselves;

3) to develop an appreciation for the tremendous variation possible in digital

design requirements and specifications, i. e,, for the complexity of the 'finite'

digital problem, and hence an understanding of the need for systematic design

techniques by which to attack such problems;

4) to gain some practice with the fundamental tools and techniques of logic d e sign

I so that the reader can adapt the techniques to the "new" problem presented by his

own particular design constraints; and

I · 5) to provide an introduction to the literature so that the discerning student can,

in the future, dip into the ever growing literature in the field, and find it to some

J degree comprehensible, and advantageous to use.

1. 1 The Basic Digital Design Problem

As an abstract statement, logic design, representing the practical applica­

tions of switching theory, is that formal discipline concerned with the analysis and

synthesis techniques that are appropriate for the design of digital networks. Of

course that is almost like saying that "Computer Science is that discipline involved

with the study of computers 11• It's very true, but not at all illuminating . So let's

be a littl e mor e e x plicit - - at least insofar as agreeing on what we mean by a digital

network .

A di gital network is an assemblage of digital elements . At least that divides

our problem . And we can quickly agree that by assemblage we mean any arbitrary

interconn e ction of digital elements. So that leaves everything really dependent on

our agreement on what digital element is . Here we have one of three paths that we

can follow . The first two are valueless, although frequently used . The first calls

on circularity which is the basis for most dictionary definitions:

a) a digital element is the kind of thing of which digital networks are

composed.

The second calls on authoritarianism:

b) everybody knows what a digital element is, it is a thing that assumes

one of two possible output st?,tes as a function of its inputs, including

possibly its own output

and that usually ends the whole discussion right there. Actually everything is

contained in that one, although it's a little obtuse and hard to get any essential

features out of it . Instead we'll take the third alternative and simply define what

we mean by a digital element.

c) a digital element is one of two kinds of things: it is either

i) a thing which is capable of exhibiting one of two outputs , and it does

so as an instantaneous, deterministic function of its inputs, or it is

ii) a thing which is capable of exhibiting one of two outputs, and it does

so strictly as a function of what its input was an agreed (synchronous)

moment ago.

This last definition we shall accept and use as our operative definition, for it

divides switching theory into the two halves with which we shall be concerned :

1. 2

l
7
~

n
n
l

J

l
l combinational switching theory versus s e qu e ntial switching theory . For the

n
n
n
n

I

l

I
ll

j

LI

first kind of element i.ndi.cated above i.s assumed to develop i.ts output strictly as

a function of i.ts present inputs . Ti.me i.s not normally considered to play a role

i.n i.ts operation. This is, of course, a si.mpli.fyi.ng assumption, but i.s appropriate

for an adequately large range of devices . A basic assumption i.mpli.ci.t i.n the above

i.s that the number of possible inputs i.s fi.ni.te, and that the number of values of each

i.s likewise fi.ni.te. The s peci.fi.cati.on of a particular device, then, reduces to a

determination of which combi.nati.on of inputs produces a particular output, hence

the term combinational networks .

The second kind of element inferred above introduces the final full range of

complexity that enables us to describe and characterize everything of which di.gi.tal

machines are capable . For something that simply reproduces i.ts own input an

agreed time later introduces the notion of controlled ti.me into the picture. It

doesn't take a great leap of i.magi.nation to presume that i.t might be useful i.n some

instances to take advantage of that ti.me lapse to return the element's output to i.ts

own input i.n some way, so that i.ts output can indeed be a function of i.ts own pre ­

vious outputs, i.. e., of the past history of the element. This basic element i.s

termed a simple delay element. It i.s the epitome of "memory" i.n machines and

brings us to the larger class of networks known as sequential networks or sequential

machines.

At fi.r st i.t might seem that we have made a rather severe set of restrictions

1n defining our baisc memory element as a simple delay . It can be shown, however,

that the simple delay generalizes so that it can model any other kind of memory

element, hence that the restriction i.n no way limits that kind of behavior we can

observe in our resulting machines. And we shall quickly develop transformation

procedures for moving from any of the machine types to any other .

Another assumption that we shall generally make is one that is satisfying

from an engineering point of view, and furthermore is one that essentially deli.mi.ts

switching theory from the broader class of activity embraced by the term automata

theory. This assumption refers to the finiteness that we shall presume regarding

everything to be realized physically. Not only shall we usually assume a finite

number of digital elements i.n any network, but also that the number of inputs is

finite as well. Because of this finiteness of the number of di.gi.tal elements we can
1. 3

conclude that the number of states of any machine i.s also finite, as well as the

number of different outputs that are possible. Actually we have really said the same

thing twice there because the states of a machine will s·imply refer to the different

number of possible combinations on those outputs of the memory elements which

are used internally i.n the machine itself. We shall make all these terms more

precise as we need them. We note at present, however, that the usefulness of this

concept of the state of a machine leads dir .ectly to the use of the term finite state

machines to describe the kinds of digital machines with --which we are concerned.

Examples of digital elements are many, and we shall point to only a few to

make firm the kinds of things we are talking about. A familiar example is the

relay coil and contact which schematically can be shown as in Figure 1. 1. 1.

A-- Y -- B

x ______,_."-h y

+

Figure 1. 1. 1. Simple relay machine

wherein some variable ,x (a two..-valued variable: either ground or not- ground)

determines whether the relay coil Y is energized or not. Of course relays have

contacts, and this one is a "make" contact (i.. e., i.t closes when the coil is ener­

gized) labeled y. Clearly we can refer also to a useful transmission function that

characterizes the connectivity between terminals A and B of the contact network.

It i.s either shorted or open as a function of the variable x. We note that this

transmission function is also two-valued. (We also note in passing that this sort

of schematic diagram is -called a "d~tached schematic", i.. e., the contact related

to a certain coil need not be drawn i.n proximity to the coil itself. This obvious

convenience makes the schemc;1tics of some quite complex contact networks easily

drawn -- but an historically interesting note is that i.t wasn't until the mi.d-fi.fti.es

that this obvious graphical si.mpli.fi.cati.on was taken advantage of. Fri.or to this

ti.me the insistence that each contact had to be shown next to its coil led to horren­

dously complex diagrams that were exceedingly difficult to analyze.)

It i.s then easy to indicate assemblages of such contacts such as in Figure

1. 1. 2 .which defines a transmi.s si.on function T which is two-valued (being shorted if

1.4

l
l
n

n
11

j

j

j

J

l
n
n
n
n

l
l
ll

.1

J

J

J

X y T

Figure 1. 1. 2. A contact network.

and only if both coils X and Y are energized), or like .that in Figure 1. 1. 3 for

Figure 1. 1. 3. Altenative contact network .

which the function T is shorted if and only if either of the coils X or Y is e nergized.

Clearly such transmission functions can become almost arbitrarily complex. For

now we note only the possibility that the energization of a particular coil might be

a function of itself. A simple example is shown in Figure 1. 1. 4 in which X is

--C'
y

y

+
Figure 1. 1. 4. History- dependent relay network.

energized if either x or y is shorted, and of course once y is shorted then the coil

is energized for all future time regardless of subsequent changes in x. Thus this

network does react as a function of its own history, and verifies that a network nee d

not be simply a (combinatorial) function of its own inputs . Thus this network

remembers and this facility is only possible when feedback paths exist within the

network .

Another example of a digital element is the cryotron of Figure 1. 1. 5 which
T

Figure 1. 1. 5. Cryotron element.

is a (super cooled) device wherein the transmission function Tis a short circuit

U whenever the current I is nonzero. Thus the cryotron is essentially the same

"kind" of element as a relay contact; both are examples of a broader class of

things referred to as branch elements, and assemblages of such are referred to

1.5

l
as branch networks. The essential feature is that the two -,valued function involved 7
is basically a transmission function that describe$ the conditi.on of connectivity

throughout the network.

This is in opposition to the familiar gate networks exemplified by electronic

gate elements, reali.zed by semico]J.ductors or tubes usually, and symbolized by

such diagrams as in Figure 1. 1. 6

X

y

z

Figure 1. 1. 6. Gate element ,

in which the "output" function f is at a high (or low) voltage if and only if inputs x

and y and z are all at a high (or low) voltage. Of course these (as well as many

other different logic gate types) can be interconnected in a great many ways so that

functions of functions can be built up to any de sired complexity.

We could mention any number of other kinds of digital elements such as

magnetic cores, fluidic valves, mechanical linkages, mechanical switches, storage

spots on electrostatic devices, etc., etc., but this w9uld not further serve our

present purposes .

The point is, to return to our original train of thought, that a d igita 1 network

or machine is simply a collection of these things, suitably interconnected, usually

with certain variables which w~ control (''inputs II or "independent variables 11) and

certain variables which we wish to produce ("outputs" or "dependent variables'').

The basic engineering problem, then, is the consideration of the transfer network

N of Figure 1. 1. 7

x I I y =y (x , .. . , x)

1------t N 1---=--yl =yl L ' ... ,: I
xn · · m m 1 n

Figure 1. 1. 7. Basic digital machine model

so that we can produce a prescribed set of digital outputs as functions of the digital

1. 6

n
n
n
}

l
l

l
j

I
j

J

n
n

input. In these terms, the analysis problem is to determine the y . ' s when given
l

the x.' s and N. The synthesis problem is to determine an appropriate N when
l

given the x.' s and the prescribed dependent y . ' s .
l l

This puts our problems into the desired engineering context, and it remains n only for us to fill in the details. This is the function of the sequel.

n
n

11

u
u

1 , 7

1. 2 Number Systems and Binary Encoding

A salient characteristic of digital networks that are realizable is that they

are finite in all respects. It follows that the action of any digital machine is

des-cribable as being in one of a set of "c _onditions" or "states" corresponding to

the particular values · assumed by each of the elementi;, of which they are composed .

With the passage of time the machine perambU:lates through a set of such states as

it responds to its input changes, as well as to autonomous ·changes in its own

internal variables . Since the set of such ·states mu .st be finite, as must the allow­

able set of inputs, it follows that a sufficient .description of a machine is some sort

of listing of one "number" followed by another, each number related one - for - one

with the particular state it represents. Now in fact these numbers mi.ght be the

natural numbers, in which · case we are -concerned with conventional arithmetic and

arithmetic operations. Or they might be . simply marks or symbols in another area

of discourse, in which case we speak · of n~n .:.numeric processing.

For openers, ·then, we shall -briefly review some of the salient facts concern ­

ing numbers and their representations, We shall ~lso consider assuring facts

about the efficiency of bases, a·nd we shall ·pay a passing glance at the propositional

calculus, which is the historical antecedent to the switching algebra.

1. 2. 1 Positional or Polynomial Encodi.ng

As a starter, then, we po_int to the famili.ar fact that a most useful way of

representing a number i.s the one we use all the time - -the so ... called polynomi.al

representation

N . =

1).

~
i = - m

d
i

.r
l

n -·1 · - m
d rn + d

1
r + ... + d r ·

n n- . . -m

or more commonly written as

• • f
d) .

-:rn r

where we also conventionally omi.t the rand the parentheses when the r is clear in

context. We shall make little more of this f;lubject as some familiarity w i ll be

1. 8

l
n

n
n

J

J

J

l
n assumed. The r is of course the base, usually a positive integer greater than 1

n
n

n

(but not necessarily) and the d. refer to the digits, and these are also usually the
l

integers such that 0~ d . < r.
l

Thus, for example,

represents a number to the base 6, while

is evidently a number to the familiar base 10. That they are in fact the same num ­

ber points to the necessity for conversions from one base to another . Since every

number is representable in the form

(N)
r

for appropriate r, it follows that there must always exist transformations from one

base to another. In fact there are pretty algorithms for doing so in an impressive

11 way, but for our purposes straightforward, "brute-force" methods will suffice.

11

I
u
I
u
u
LJ

Thus

while the fact that
6 5 3 0

(109 \ 0 = 1 (2) + 1 (2) + 1 (2) + 1 (2) = (11 0 11 0 1) z

can be affirmed simply by subtracting out the largest possible powers of 2 at each

step in a successive, systematic sequence of subtractions. Thus

109
64
45
32
13

8
5
4
1

will develop the result above. The reader will be left to further develop these

techniques in ways most compatible to his liking.

Similarly we shall not go into details of the arithmetics involved for the

various bases, and a basic familiarity with the techniques involved is assumed.

1. 9

7
As with base 10 arithmetic i.t suffices to agree on addition and multiplication n
tables. For base 2 these are so simple that we can quickly construct them as an

example: n

e.g.'

Addi.ti. on x + y

Multi12li.cation

X
y

0

1

Sum

xy

0

0

1

X

0

1

1

1

0

1 1 0 1 = 13

+1111=11

1 1 0 0 0 24

y 0 1

0 0

0 1

X

0

1

y 0 1

0 0

0 1

Carry

1011=11

x l00l=_.2_

1 0 1 1

1 0 1 1

1 1 0 0 0 1 1 99

with subtraction and division being analogously defined . These are straightforward

augmentation s and will not be detailed here .

Now this is all well and good, but several qu es tions remain. In the first

place we ha ve aff irmed a multitude of representations for numbers, and we have

agreed that "number" i.n some sense must involve everything that finite state

machines can possibl y be about. But a moment's reflection will reveal that we

really must say much more about such representations for we have described an

infinity of representable numbers, whereas the salient fact about finite state

machines is that we can only accommodate a finite set of things, hence in any

given context can only represent a finite subset of the natural numbers.

Once we recognize the possibility that we can talk only about a finite set of

the numbers in any given context, then we are faced with the annoying task of

1. 10

n
n
n

1

J

I
J

j

l
n deciding just which finite set we shall talk about . This involves the notion of

selecting the particular encoding of the numbers that we shall use, and we shall

D verify that indeed a very large number of different possible codes are possible.

We shall look briefly at but a few of them, and the salient point we shall try to make n is that different codes are used to enhance different features of the machine, but

that furthermore each different code requires a re - examination of the computational n algorithms involved, and that things are not exactly as simple and straightforward

as the tables above would indicate .

1 I First we shall affirm in a simple way that the base 2 is indeed one of the

most natural bases for machines, arguing from the standpoint of efficiency.

1. 2 , 2 Efficiency of Bases

Although everybody knows that base 2 is most commonly used in machines,

it is worth noting that other representations have also been used . Ternary logic

, I machines (base 3) have been widely discussed in the literature, and some machines

have been built, principally to capitalize on the error - correcting and detecting

. I features that are possible with such encodings . Base 8 frequently occurs in repre -

sentations, principally because of the efficiency of packing numbers into base

j representations that are a power of two.

Decimal machines have also been built, more so in the early days, and the

principal motivation here has been the necessity for human communication with

the machine.

It must be admitted, however, that most of these nonbinary representations

were really binary when looked at at a lower level than the numbers themselves,

I e . g . , the decimal number 9, represented by a binary four-tuple 1001 looks

strangely binary, but the point is that the algorithms for handling such lldeci.mal"

J numbers were decimal algorithms, not binary algorithms . Thus though "9 11

might be represented by the four-tuple above, 1110 11 might look like 0001 0000,

j which is strangely "unbinary", and the addition, for example, of two such decimal

numbers involves strictly decimal rules for addition . Also there have been other

J direct representations of the nonbinary bases. Parametrons, for example, turn

out to exhibit three states rather than two, and have been the stimulus for much

U of the ternary logic development . Even base ten elements have been used,

1. 11

principally in relay machines, however, where the element involved is such as

a ten-position stepping switch, or the like. Electronic elements with ten stably

discernible states are not easy to come by, however, hence direct representa­

tions of nonbinary bases have been few and far between.

Given the fact that radix r will suffice to represent any number, it is none ­

theless interesting to ask whether there are any good engineering reasons for

preferring one base over another. We have mentioned the physical fact that

things like semiconductors, tubes, cores, cryotrons, etc., etc., operate most

reliably when switched between one of two states (e.g., rrrsaturated" versus

"unsaturated", or "ON 1
' versus 1'0FF 1

'). These are compelling engineering

reasons for naturally favoring the base two in machine realizations. But these

are not entirely convincing since a number of discernible levels could be care­

fully engineered appropriate for some larger radix if we care enough, i.e., if

it costs us enough not to do so.

To this end let us complete a modest, brief sort of engineering cost

analysis that will suggest the appropriateness of bases for number representa­

tions from a little different sort of argument.

Since we are always talking about a finite representation, we shall suppose

that the maximum number of numbers to be represented by our machine is some

prescribed M. We shall represent these numbers with some n digits, with each

digit capable of representing digit d to the baser. Clearly as r grows large,

n will diminish, and conversely, but this is reasonable since M bounds the size

of computational task we are able to do, and it is surely this computational task

that provides the prime motivation for our design in the first place.

Of course as r grows larger i.t is reasonable to expect that the 11cost~ of

realizing a single digit will grow as well. Certainly it i.s going to cost more to

realize a ternary digit than a binary digit , or a decimal digit than either. As a

reasonable and explicit engineering assumption, then, we shall suppose that the

-cost of realization of a digit is proportional to the base selected. Thus if num ­

ber N is represented as

i
N = ~ d . r

l

1. 12

l
n
D

n
f]

n

.J

I
I

l
n
n
n
n
fl

11

1

l I

I

then the cost c of representing a single digit is

For our total number of n digits, then, the tota 1 cost C is

This gives our total cost Casa function of two variables that are related, namely

n and r. If we can specify another relation between them, then we ought to be able

to eliminate one in our cost equation, and get our total cost in terms of one of them,

in particular in terms of r alone. But this relation is given by our preselected

constant M which represents the size of our computational task. Clearly for n

digits in base r we have

n
M = r

and since M is a constant, then so also is ln M, so we can solve for n as

ln M = n ln r = K 2

or

n =

Substituting this expression for n into our original formula for total cost we get

C = K nr = K K
1 1 2

r
ln r

= K
r

ln r

expressing our total cost strictly as a function of r, the radix we choose.

Of course we' re now in a position to plot our results as in Figure 1. 2 .. 1.

Differentiating to detect the minimum we get

ln r -
1

dC
r-

K
r

0 --- =
dr 2

(ln r)

ln r = 1

r = e = 2. 712 ...

as the optimal value of radix from these cost arguments.

1. 13

4

2 4 r~ 6 8 10

Figure 1. 2. 1. Cost as a function of radix.

Of course an irrational radix is a little hard to realize with physical elements,

but the obvious conclusion is that base 3 is optimum from this point of view, base

2 is next best, base 4 is pretty good. Base 10, on the other hand, is about twice

as expensive to realize as base 2.

Obviously this argument depends upon the original cost assumption, and the

reader is invited to insert his own assumption based upon more particular rele­

vance to the technology he might be considering, Probably the cost per digit is

something more than just proportional, Le., it probably costs considerably more

to get a base 4 digit than simply twice as much as for a base two digit, especially

when considerations of equal reliability, tolerance on element parameters, etc.,

are included. But at least to this point we have buttressed from a little diff e rent

analytic point of view our almost complete preoccupation in the following with

things that are two - valued.

1. 2. 3 Binary Codes

Probably the first point to be made about codes and coding is th e ir all per­

vasiveness in all of our communication activities, There is almost literally

nothing we can .do about avoiding the use of codes in one form or another, whether

we have reference to artificial or natural intelligence, hence it follows that it is

to our best interest to study them intelligently, and with an awareness of their

capabilities so that we can maximize their application to our own best interests .

Even in our cultural activities most of our communication is via codes of

1. 14

7
n
n
n
n
n

j

J

j

j

a

l
7
n
n
n
n
I
l
1

l

I
I
J

J

one sort or another, especially is there if much structure involved. For example,

even in art a great deal of the form, proportion, ratios of vertical to horizontal

lines, color schemes, etc., involve the acceptance of certain patterns which we

accept as culturally good . Only in some of the recent abstract paintings could we

agree that no coding is involved, but rather a direct appeal to primal feelings ..

Certainly much of our musical symbolism involves coding -- if this does not seem

evident compare the music from two very different cultures, e.g., country Irish,

say, versus Indian, and it is apparent codes are quite different from one another,

and probably mutually unintelligible.

Of course we are interested in codes for the transfer of information of a

more pristine sort. In these applications codes have been designed for two funda­

mental purposes: either to achieve secrecy, or to match the information to the

particular vagaries of the communication channel. While a great deal has been

written about the former, we shall be interested only in the latter. In the context

of machines, the character of codes in adapting to the "channel'' involved is molded

by at least three considerations:

1) the physical characteristics of the channel (in the case of machines this

results in codes being almost exclusively bi.nary codes, and if not

directly so, then at least bi.nary at the next level, e, g., as in the binary­

coded decimal codes);

2)

3)

the noise characteristics of the channel (in the case of machines this

results in the design of codes that have various error detection and

correction properties); and

the particular operation involved (in the case of machines this points

attention to codes that have particular algorithmic simplifications per­

haps, or that speed up addition, or in any other way accomplish the

computational task better).

Even within the context of codes based upon bi.nary representations the num ...

ber of possibilities is literally limitless . We shall consider briefly only the well-

known bi.nary-coded decimal codes at this point, and shall see that even this

restricted set presents a very large number of possibilities. Our present purpose

is to define the codes, and to illustrate that the algorithmic properties involved are

)_,. 15

very code sensitive, i.e., that even such a simple algorithm as that for addition

must be re-invented for each different code representation. We shall leave further

examination of special codes for error detection and correction for a later chapter.

By far the most common types of bi.nary encodings involve the bi.nary - coded

decimal codes and the name given to these codes reveals the purpose. We wish to

encode the decimal digits in bi.nary form. Clearly at least four bits are required in

order to represent the decimal digits, but four bits yields 16 different characters

which can be assigned to the ten decimal digits, and this can be done in a remarkably

large number of different ways. The natural tendency (only because it's easy for

us to read and to remember) is to assign the digits so that the four-tuples can be

read in the natural bi.nary ordering; thus

Di.git Code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000

9 1001

so that, for example, decimal 927 would be represented as 1001 0010 0111, and

all this is very simple. But notice we could have made the assignment of code

character to decimal digits in any one of

(16) (15) (14) (7) ·-
16 !
6!

different ways, which truly leaves a lot of options. All of these would be binary­

coded decimal (BCD) codes, and each would potentially yield different computational

algorithms.

Of the BCD codes there are some that possess the property that there exists

a set of numbers n 1, n 2 , n 3 , n 4 such that all ten dee imal digits can be represented as

1. 16

n
n
n
n

l

J

J

J

7
n
n
n
f I

11

for some set of w. = 0, 1. The code s of this type are called the weighted codes and
l

then are called the weights. The code given above is such a code with weights of

8, 4, 2, 1 (since it corresponds with the polynomial binary representation), hence is

sometimes called the 8421 BCD code. There are many such weighted codes, and

all have the advantage of computational simplicity which accrues from being associ­

ated with the particular set of known weights. (Not all the weights need be positive

either, nor unique from one another. For example there is a 6421 BCD code : 8 is

coded as 1010, 9 as 1011. Many others exist as well, but we shall not concern our­

selves further with them here .)

Of course if we don't limit ourselves to the efficiency of four - tuples for our

representation, then the number of po ssi bilities is literally boundless . For example

a well known code based on five-tuples is the 2-out-of-5 code

Digit 2-out-of-5

0 00011
1 00101
2 00110
3 01001
4 01010
5 01100
6 10001
7 10010
8 10100

9 11000

which is a nice "packing" of the possibili.ties since this exhausts all the five - tuples

l I with exactly two l's since there are just 10 possible . What are the advantages of

such a code? For one thing it is an example of a single-error-detecting code.

ti

u
u

That is any error in a single bit must transform the "word" into another which is

not in the code . If we designate the weight of a word as the number of 11 s contained

therein, then the 2 - out - of-5 code is a code of weight 2. Any single error must

transform the word into one of weight either 3 or 1 , hence any such error is

detectable simply by counting the number of ones. (Obviously the well known

"parity check" code possesses a similar error detecting capability . It is formed

from the 8421 BCD code by adding a fifth bit determ ined so that the total number

of 1' s will be even; thus

1. 17

Di.git Parity Code

0 00000
1 00011
2 00101
3 00110
4 01001
5 01010
6 01100
7 01111
8 10001

9 10010

and the occurrence of any single error will transform the parity code work into one

of odd weight, hence into a detectable error.) The 2-out - of-5 code has one other

important characteristic, however, and that is the constant weight - 2 words. This

means that whatever "dri ves " the ones does so with a constant "load" on the drivers .

If this is important, then so is the code. An important application is in represent­

ing the decimal digits on punched paper tape. Not only is the load on the punch

drivers constant, but so are the stress points on the tape so that no digit is apt to

11tearJJ more than any other .

By now it should be clear that the number of possibilities is truly without

limit, and one cuts and tailors to meet the particular application. Certainly for

every code, a complementary code exists wherein 11 s and O's are replaced with one

another. In most cases this would be an irrelevant change. But consider the

complementary code to the 2-out-of-5 code. If_ the particular environment were

such that 11 s were less error prone than O's (an unsymmetric channel) then clearly

the complementary 2-out-of-5 code would be l ess error prone than the direct code,

i.e., the "message" would get through correctly more often.

Of course if we are really worried about correcting errors, direct replica-

tion codes are sometimes used. For examp le , suppose that we simply replicate

each bit position in the 8421 BCD code. Thu s, for examp le , 6 would be encoded as

00111100, resulting in an 8 bit code word. Clearly if an error occurs in any

single position we can detect it, It seems that this is not a useful thing to do in

7
7

n
n
l

J

this case since we've already ind icated the even parity code which will also detect U
an error in any single position. But we need to be careful. If detection of a single

1. 18

1
n error is our only concern, then our observation is sound. But notice that the

replicated code will do much more. It will detect an error in every original bit n position, and furthermore will tell us exactly in which bit positions the errors

occurred i.. e., it is error locating as well as error detecting. Depending on n the context, this might be important information as well. A conceivable response

to the detection of an error is to request a retransmission or recomputation. n Depending on the probability of error it may indeed be necessary to limit the amount

of recomputation in order to get any useful work done at all. n Further replication continues to provide greater error capabilities. For

I
II

ll

l J

ll
J

example in a triply replicated 8421 BCD code, if 001101111010 is received we can

quickly decode it as the decimal 6, since the code not only exhibits error detecting

capabilities, but also can correct a single error in every original bit position.

Thus even though three errors were present in the word, as above, we could cor­

rectly decode it. Caution is necessary though, and the use of codes is always

fraught with di.re consequences if the code is not able to adequately cope with the

error producing characteristics of the environment. Thus if two errors had

actually occurred in the last (original) bit position in the above example, then we

would not only decode the word as a 7, but furthermore we would not even be aware

that an error had occurred. (All is not lost even in this case for there are also

useful codes called "burst" codes which tend to be good for errors that occur in

clusters, e.g., as might be the usual event in the presence of lightning flashes, or

other long duration but infrequent disturbances, but these are far beyond the scope

of our present considerations.)

Rather, let us now turn to the question of the dependence of arithmetic

algorithms (or any other algorithm for that matter) on the particular encoding that

is used. This is not an evident thing, and we shall indicate that differences exist

by pointing only to a very simple example. For it would seem clear that if it is the

decimal numbers that are represented, then the addition algorithm, for example,

should of course be the decimal addition table, with suitable allowances for occa­

sional carrys of course. But this is only true at the level of the decimal character

itself, and is not true at all at the level of the binary representation. If we are to

build an adder, it is exactly at that binary level at which we must operate . The

1. 19

l
reader who i.s unconvinced at this point should address himself to the logic design n
of an adder where the two addends are decimal characters, but represented i.n

terms of the 2-out - of-5 code. That code is well adapted to paper tape applications, n
but i.s definitely inappropriate i.f addition i.s what we have i.n mi.nd , In fact the

appropriate answer when asked to derive an algorithm for addition usi.ng the n
2-out-of - 5 code i.s:

1) convert all characters to the 8421 BCD code

2) use an appropriate 8421 BCD code algorithm for addition

3) convert the sum back to the 2-out-of-5 code

This i.s an eminently practical way of avoiding the real meaning of the guesti.on i.n

the first place, and reaffirms the original point; the algorithm for one code is not

the same as the algorithm for another,

To illustrate this i.n a simple example, let us compare the addition algorithms

for the well known 8421 BCD with another variant of the BCD codes known as the

excess - three, or XS3 code .

Bi.nary
4 - tuple

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Both are shown below for comparison purposes .

Decimal Character
8421 XS3

0

1
2
3

4

5
6
7

8
9

0

1
2

3

4
5
6
7

8
9

and as we've noted before the original decimal characters can be assign e d to only a

subs e t of the se x teen possible four-tuples . . The origin of the name ex cess - three

should be clear -- each BCD representation i.s simply the 8421 code "plus 3 11• Thus

1. 20

n
n

J

u
lJ

l
7 4-tuples which have no assignment are known as forbidden characters since some

special allowance must be made for them when they occur. To derive our 8421 n algorithm, let us proceed by example. Suppose we add, say 5 + 2 in decimal. In

the 8421 we confirm

n
n
n

II

I j

J

J

J

5 == 0101
2 == 0010
7 0111

and we perceive no difficulty since the code O 111 correctly denotes the proper

decimal character . Now try 6 + 5:

6 == 0110
5 == 0101

11 1011

which is correctly determined as "11" of course, but the machine doesn't know that,

for 1111" is not one of the decimal characters it has been taught to assign to each

decimal position. The proper path to resolve the problem is to augment our

algorithm so that whenever a "forbidden" character appears, and 1111 11 is one of

them, then we should "add 6 11 to the result in order to pass completely over the

forbidden range. Of course a carry will be produced in this process, but that is

the problem of the next stage. This gives 1 0001 as the correct result.

Finally, let's try something like 9 + 8:

9 == 1001
8 == 1000

1 7 1 0001

indicating the sum is one, and of course producing a carry. The carry is all

right, but the sum is definitely wrong. The problem again is that we have passed

over the forbidden range and landed, without signal, past it . Without signal, that

is, except for the production of the carry, and that means that we should "add 6"

again in order to ignore the six invalid or forbidden characters. Doing this in this

example we get 1 0111, again the correct result.

This turns out to encompass all possible cases, and our 8421 addition

algorithm for each digit becomes something like:

1) Perform regular binary addition

1. 21

2)

3)

If the character perceived is a valid character without carry, then make

no further correction; if not then

if an invalid character, add 6 , producing a carry for the next stage; or

4) if a valid character but with a carry, then add 6 anyway, and pas s the

carry along.

Now all this can be compared with the algorithm for the ex cess - 3 c o de .

Again suppose we add 5 and 2:

5 =
2 =

1000
0101
1101

Since each addend was in excess-3, then th e sum must be in excess - 6 , h ence must

ha v e a thr e e removed in order to return it to the proper XS-3 charact e r. Doing

this

1101
- 0011

1010

which then compared with the proper code for d e cimal 7 is seen to be th e correct

XS - 3 result .

Again let's try 6 and 5:

6 -- 1001
5 = 1000

1 0001

resulting in a carry, but also in an invalid character. To convert to XS - 3 we

should again subtract 3, but to "jump' } the forb i dden band we should thi s time add

a 6 . The net result is to add a 3 which we do

1 0001
+ 0011

1 0100

which is the correct XS-3 result for a 111 11 as the sum and a 111 11 as th e carry .

No different kinds of things occur in this case, so the XS - 3 algor ithm

becomes :

1) Perform regular binary addition .

2) If a carry is not produced, subtract 3.

1. 22

l
n
n
n
n
n

j

j

l
l
n
n
n
n
I
I

f I
I
J

, I

I
1

J

3) Otherwise add 3.

Comparing the two algorithms, they are certainly different, although it remains

moot whether one is "better" than the other or not. The 8421 requires a correc­

tion only in the event of an invalid character or a carry. The XS- 3 requires the

same correction at each addition, but only its sign depends upon the carry. The

point to be illustrated here was that they were different, and if you were going to

build an adder, based upon one or the other, it would be crucial to your career to

know which.

1. 23

1. 3 Design Specifications

Paramount amongst the problems of logic design is the first step: that of

transforming the verbal specification of exactly what is desired into a nonambigu­

ous, realizable network which does .that job which is intended . Since the first step

in this process involves the human mind in determining exactly what is required, it

should not be surprising that the initial specification of a problem statement and

solution is often not well defined, and the steps to an ultimate solution involve a

feedback sort of process whereby the "problem solver" must many times query

the "problem poser" to reconsider just exactly what "answer" was wanted to a

particular (unanticipated) set of values of the input variables.

In this section we shall briefly delineate two aspects relevant to the problem

of design specifications. The first concerns the formal reduction of the arbitrary

(binary) problem to the well-defined specification of the desired output for all

possible sets of values of the inputs. The second is an historically accurate

resume of the propositional calculus, at least those portions of interest to logic

design. The calculus was the first formal attempt at quantifying human thought

processes, and leads directly to the algebraic formalism of interest to logic

designers: the switching algebra.

1. 3. 1 Binary Mappings and Combinational Functions

If we are to simplify our (computational) world to a set of binar)'." values, then

it follows that the only kinds of networks of such values that we can build are those

which assign binary values to particular sets of the binary inputs involved.

This simplification of our world seems perhaps a little harsh, but it is com­

plete, and anything that is computatable, in a very complete and abstract sense,

is computable in terms of such a binary quantification.

As a very simple example, suppose we are concerned with the design of a

heater control to regulate the temperature in our office. We can easily address

the problem in terms of identifiable binary variables concerned with the environ­

ment of the office. First of all, we can agree that the heater should be either ON

or OFF. Our remaining problem is to determine the operation of this control in

terms of the indepen:"cfimt variables of interest.

1. 24

l
7
n
n
n
n

I
l I

I· I

J

j

Ll

n For example we might identify the variables of interest as whether our office

window is open or closed (distinctly a binary variable), whether the outside temper-n ature is less than 55 ° or not, and whether the door to the office is open (hence

drafty) or not. All these are clearly binary variables and it is our problem to

n
n

l

1

J

design the heater control as a desired function of these three variables:

w = true, implies that the window is open

t = true, implies that the outside temperature is less than

55°

d = true , implies that the door is open .

Our desired solution might turn out to be that:

The heater is to be on if and only if the window is open, the

temperature is greater than 55°, and the door is open; or the
0

window is closed, but the temperature is less than 55 , and the

door is closed .

Now this solution may be happy or not, depending on the particular individual.

The point is that it is a solution in that it prescribes a response for the heater

control as a function of the binary variables of interest. Suppose that we have a

relay coil that operates in response to each of the variables in the sense that

when a variable is "true" then the corresponding relay coil is operated. Then if,

for example

--W--

indicated a contact on the w relay that is open when the w relay is not operated,

while

-~-W'--

indicates a contact on the w relay that is closed when the w relay is not operated,

then surely the network of Figure 1. 3. 1. 1

h
w--t'--d

I a-+ _[w'--t -. -- d'

Figure 1. 3. 1. 1. Switching network for heater control

properly operates the relay 11h 11 which in turn controls the office heater.

1. 25

This sort of design technique is surely appropriate to digital design, and is

of sufficient generality to handle all possible such problems, whether they involve

the control of heaters, or the next "bit" to be inserted in a register as a function

of fifteen binary variables associated with a pattern to be recognized by a digital

machine.

In some sense, then, our problem is completely solved by such ad hoc tech­

niques. The reason that .the problem is not completely solved, however, is that

our simple example does not reveal the complexities of the problem that can exist

l
n
n
n
n

when the number of variables involved in the problem statement grows larger than l
two or three. Furthermore, even our interpretation of the English statement that

we posed above as a solution to the problem is not well defined, and can be inter -

preted in various ways.

To avoid these problems, it is necessary that an appreciable amount of form­

alism be adopted in order to handle such problems systematically, and without

ambiguity. To this end we shall briefly review some of the fir st attempts at

formalizing such verbal statements, and we shall see that these attempts lead

directly to the switching algebra appropriate for making such verbal specifications

explicit and realizable by switching networks of abritrary complexity.

1. 3. 2 The Calculus of Propositions

It might appear that the propositional calculus is properly the study of

logicians and philosophers, and hardly should be of interest to practical engineers

and computer designers. Our compelling interest is to work our way into a con­

sideration of a switching algebra that will be of immediate utility in the design of

networks of switches, and of things that act like switches.

Yet, as is often the case, the switching algebra that we shall develop is a

simple example of the early propositional calculus studied by George Boole in the

middle nineteenth century. Just as · surely as Heaviside, Gardner and Barnes

stood on the shoulders of Laplace, Fourier and Newton in the development of

modern circuit theory, so did Shannon · stand on the shoulders of Boole in his first

j

J

J

presentation of modern switching theory not very many years ago, j
There are several reasons for a brief consideration of the .calculus . A not

1. 26

l
fl minor one is that it is historically relevant, and provides a convenient introduction

to the stark formalism of the switching algebra . Another major reason is that the n specifications of ultimately deterministic machines start off as English literal state ­

ments, and the formalism of somethin g like the calculus is always necessary in n order to make such statements exact , manipulatable, and , as we shall see,

unambiguous . n Another reason is that it allows us to introduce many terms and procedures

]

l

in the calculus which we shall use later in the algebra, and hopefully by that time

they will seem like old familiar concepts .

Of course we have our option in th e order in which we consider these matters.

Many texts treat the propositional calculus , and then show the switching algebra as

a particular case of it . Others develop the algebra in a purely formalistic way,

and then give the propositional calculus as a "practical" application of it. We shall

choose the former, but we should realize that the ordering is just a matter of taste.

1. 3. 2 .. 1 Elements of the Calculus

The objective of the propositional calculus, which is a branch of symbolic

logic, is the pursuit of truth, and not many obj e ctives could be much nobler than

that . "Truth", however, much like the word "information" in information theory,

must be taken in context, (i.e . , Humpty Dumpty - like, it means exactly what we

mean it to mean at the time that we say it , and nothing more nor less.)

Thus in this context, truth is a two - valued thing wh i ch can be assigned to

j declarative statements . That is , a declarativ e statement is looked upon as a vari ­

able which can assume one of two values : True (T) , or not true (False, F) . Of

l J and other pair of marks would do all well (e x amples are T , l.. ; or 1, 0) but T , F will

serve our purposes .

I Such declarative statements are called propositions . Thus a proposition is a

declarative sentence to which the value T or F can be assigned . For example, such

j a proposition is i, where

i : Iran is in South America .

This proposition reminds us that it is with logical truth that we are concerne d,

and the fact that the above statement is factually false is irrelevant. Thus a

1. 27

proposition is a logical variable with the evaluation l' of F"to be determined, or

ar ·hitrari.ly assigned. Of course, Boole wasn't concerned with anything s·o trivial
I

as single propositions. His aim ·was to develop a model for the complex "laws of

thought" by which compounds of elementary propositions could be composed and

evaluated.

Thus in general we shall deal with a list of propositions designated ·by the

symbols p, q, r, ... and in this form they are -called uns-pecified or arbitrary

propositions (i.e., propositions to which a truth value has not been assigned). That

is, they are our propositional variables. It sh o uld be clear that propositions are to

considered en toto; that is

p: Panama is in Asia

.q: Quentin has red hair

are not to be split apart into classes, or sets, such as the "set of countries in

Asia" or the "class of people having red hair" such as would he our want if we

were -considering the syllogisms of classical (or Lewis Carrol) type logic, and

were attempting to come to conclusions about set membership . . Rather our propo­

sitions are to be considered as an unbrea .kable set of atoms with which one of the

two truth values are to be associated.

Of course we immediately disassociate ourselves from the logically undecid~

able sorts of statements like "the sentence I am uttering right now is false'' as

being in the class ·of things with which we are not concerned. These are games

from a sort of "naive propositional calculus ·11 which need not c oncern us.

Having recognized the variables of our -calculus, we then recognize the

values that they may assume as being the -constants of our discourse; these are the

marks T and F. Thus T and Fare our propos itional constants and we identify

them immediately as those particular propositions that are either always true, or

always false.

We shall of course want to relate propositions to one another. In particular

given p and q, i.f we have the situation that pis T whenever g is, and conversely,

then we write

p = q

which is called a tautology.

L 28

l
n
Ll

n
n

I
LI

1

n
D
n
n
1
I
l

I

I
I
I
J

j

u

1. 3. 2. 2 Comp o und Propositions

Given p, q, r , . .. (which are thus statements or elements describing some

universe of discourse of interest to u s- - perhaps even the real world!) we wish to

augment our propositions . t o include functions of these elemental propositional vari­

ables. This of course wi1s Boole's goal as well; he conjectured that all of the

reaches of rational human thought might be analyzable by examining the functions of

simple propositional variables . Thus w e want to consider things such as

f(p, q, r)

which, we shall insist , must be another propos ition, i.e ., another construct to

which an assignment of Tor Fis again relevant . Thus f is a dependent variable

which is to depend for its evaluation on the particular values of T or F assigned to

the independent variables which are the el e mental propositions p , q, r

Now can we go about systematically e x amining the nature of these functions

of propositional variables? One way is suggest e d by the finiteness of the number

of constants in our system. Since they are finite in number, we ought to be able

to exhaustively examine the functions of n v ariables, starting with n = 0 and

proceeding for n = 1, 2, 3,. . . We shall start this way , but shall not go very far

before we conclude that any further is folly .

Are there any functions of no variables? Certainly. These are simply our

two constants T and F . That is, the values of T and Fare evidently independent

of the assignment of values to any other propositions .

What about functions of a single v ariable? What do we mean by f(p)? Clearly

f(p) = pis such a function, and it is T whenever pis, which is all rather trivial,

and we don't seem to be making much headway . Of course there is only one other

possible (nontrivial) case and this is the single variable f(p) that is T whenever p

is F, and F whenever pis T. This f(p) is called the denial of p' (alternatively the

negative or complement of p). This f(p) is also written

p, p' , ,,___, p, not p

and so on, depending upon the stylistic taste of the particular user . The point is

that these symbols introduce the notion that functions can also be interpreted as

1. 29

operators on the variables of the argum en t off. Thus we are considering in this

instance unary operators , i.e., operators that reguire only a single argument.

For example if p is the proposition "Panama is in Asia 11, then p is the proposition

"Panama is not in Asia 11, or, probably better: 11It is not the case that Panama is

in Asia 11•

Have we exhausted the po ssi bilities ? Clearly so, in this case, although we

can always confirm the sit uation by systematically examining all of the possibilities

by enumerating them . This can b e most easily done by means of the so-called

truth table, or table of combinations, which is simply a wa y of displaying all the

possible values that th e indep endent variab l es can assume, and examining the

number of po ss ible f(p) that can b e formed by assigning the s ame constant s to f(p).

Thus for the single -v ariabl e case we ha ve

F

T

where the a . can be as signed arbitrarily as F or T. Thus the tota 1 number of dif -
1

ferent possible functions in such a tabl e is exa ctly the number of different ways of

filling in th e column labeled f(p) by filling in the different constants . Since there

are only two constants it follows that the number of d i ffer ent functions is exactly

2No. of rows in th e table

and in this case we have the poss i b i lities

which we see are ju s t

p

F

T

F

F

and we are through with this case.

F

T

T

F

f 0 (p) - F

\ (p) = p

f2(p) = p

f3(1) = T

1. 3 0

T

T

l
l
n
n
n
l
l

J

LI

u

l
n
D
n
n
r I

r I

J

Li
j

u
u

But what are the constants T and F doing in our tabulation, when we agreed

that they were functions of no variables? Clearly, this sort of enumeration includes

amongst the function of n variables, also the functions of n - 1 variables, n - 2 vari­

ables, etc. If a function f(p) is not actually a function of its argument p, we say that

it is vacuous in p (or redundant in p, or degenerate). We shall concern ourselves

with examining this situation more thoroughly later .

Now how about the functions of two arguments, i.e., the f(p, q)? Certainly

there are more of them, but again we can enumerate all possibilities by extending

our truth table

F

F

T

T

F

T

F

T

and substituting all the possible values for the a. = 0, 1. Since there are four rows,
l

there will clearly be

2
4 = 16

functions of the two variables . As before, of course, some of these will be

degenerate in the two variables. Also, some of them are of particular importance,

so we shall draw them forth in a little more detail at this point .

AND.

Given p and q we form the f(p, q,) that asserts both of them are T . This

f(p, q) is called their conjunction. Of course this is a two - variable operator, since

two arguments are involved. It is symbolized by f(p, q) = p/\q (or p· q , or just pq,

w:hich we shall fa var later on) . Thus P1'9 is just the proposition that is true when

and only when both p and q are true. We exhibit this function (or binary operator)

by the appropriate truth table

F
F
F
T

F
T
F
T

1. 31

F
F
F
T

The rule for a combination, i.e. , the name of the binary operation, is called a

logical connective, and in the case of conjunction the ·connective is seen to corres­

pond directly with the English usage of the word "and". Thus

p: Panama in is Asia

q: Quentin has red hair

pf\q: Pis in A and Q has R.

Furthermore, although we shall not dwell on such properties, we note that

the connective /\ di.splays all sorts of veri.fi.a ble properties such as

p/\q = q/\p

pl\p == p

T/\T = T

T/\F = F/\T = F

PAP= F

which can be used to "evaluate" or "simplify" more complex forms, e.g.,

p/\p/\q/\p = p/\ql\p I
p=T T,F
q = F

= TA FAT = T/\F = F

and so on.

OR.

In similar fashion, English statements are often 11or-ed" together. To

simulate this two-variable operator we define the f(p, q) that is T whenever either

p or q is T by the table

p

F
F
T
T

q

F
T
F
T

pvq

F
T
T
T

which defines the connective "v" (also written as p + q), and also called the disjunc­

tion or i.nclus i.ve - OR of p and q.

Of course, admitting that there is something called the inclusive- OR suggests

1. 32

n
n
n
n

u
J

J

J

l
n that there might be something called the exclusive - OR, and comparing the two

possibilities reveals an ambiguity that occurs in common English usage. Thus, if n we say either 11p or q II we may mean to include 11or both", or we may really mean

"but not both", and it is not always clear in language usage just which is meant. If n we say

"Either Paul is first in line or Quentin is first in line" n there is probably no ambiguity, since it's hard to admit that both might be first.

II

1 J

ll

u
LI

u

But if we say

11Eithe r Paul is fir st in line or Quentin is)a st in line 11

then it is not at all clear whether we mean to include the possibility of both or not,

since the events are not mutually e x clusive ,

In order to avoid this ambiguity we shall have to be precise where the mean ­

ing is not clear. We shall assume that p + q represents the inclusive - OR read as

11p or q or both", and for the other case we shall use p @ q to be read as 11p or q but

n~t both" . Thus the exclusive - OR, p @q is defined by the table

p

F
F
T
T

q

F
T
F
T

p@q

F
T
T
F

The operator 11@ 11 is also written sometimes as 11/ 11 and called the wnot equivalence 11

or 11not-equiv 11 operation. This suggests the possibility of relations between the

various operators that can be defined. For example, we can define intuitively

another binary operator as follows , Surely p and q are equivalent if they are pre­

scribed to have the same truth value, in order for the compound statement 11p ; is

equivalent to 'q 11 to be true. Thus the following truth table, using p ::= q for the

relationship, surely defines p "' q, hence the operator

1. 33

11- II = .

t

(1) (2~ (3)
p q p = q p :;;= q p i q

F F T F F
F T F T T
T F F T T
T T T F F

Now column (2) shows the d~nial of p :; q, which is reasonably called "t "'
and can be quickly identified as being the same operator as our exclusive-OR

' 1(9 11• Hence the 11not - equiv' 1 operator is just anothe;r name for our exclusive­

OR operator.

Incidently we have concluded that

and this 11theorem" can be considered proved simply by tb,e fact that we have

shown the corresponding columns in the truth table to be identical.

For, after all, two function are the sam,e if for every point in the

domain (combinations of values of the arguments) they have the same value in

the range (i.e., the same mapping to the function values). For a finite num ­

ber of values of the discrete variables we can always (in principle at least)

list all of the combinations of the arguments, and exhaustively verify whether

the two functions are the same or not. Clearly the rows of the ·truth table

constitute such a listing, and the identity of two columns verifies the assertion

in a completely adequate way. This method of proof is pE)rfectly general ,

provided we have time to list all the possibilities. It is called proof by perfect

induction, and is so referenced in the literature.

As before, with respect to any of these operators, a number of useful

computational tautologies can be derived. For example, with respect to v:

pVp = p; 1Yp = T

pVp = T; Fvp = p

pvq - qVp, etc., etc., and for the (9

p©p=F

p (9 p = T, etc, ., etc.

1. 34

n
n
n
n

J

1

J

J
J

n In evaluation, we proceed as before; thus

n
n
n
fl

d

j

u
u

pq V pr\/ s = TT V FF V T = T V F V T = T V T = T
p = T
q = T
r = F
s = T

and so on, for arbitrary expressions on these operators .

It is also important to note that just as in other case of binary operators these

connectives might also be order sensitive . Thus it is generally important that we

either agree beforehand on precedence of operators, or else we must carefully

use parentheses in order to designate which compound operator we actually mean.

Thus, for example , in the compound declarative sentence "John is sick or Mary is

away and the house is cold" , properly symbolized by

j vmh

it is not immediately clear whether we mean j V (mh) or (j V m)h. Of course these

might be the same, but it is not evident.

In order to verify whether they are the same or not, we can again call upon

perfect induction to check:

j m h mh j V m j V (mh) (j V m)h

F F F F F F F
F F T F F F F
F T F F T F F
F T T T T T T
T F F F T T F
T F T F T T T
T T F F T T F
T T T T T T T

and since the last two columsn are not identical, it follows that it is not the case

that

j V (mh) = (j V m)h

hence that in general we must be careful to prescribe our ordering, or else to

observe parentheses carefully in writing expressions in the binary operators we're

considering.
1. 35

l
Notice that the above was again an example of perfect induction. To show that 1

two functions are not the same, it suffices to show that they differ in at least one

row of the truth table that di.splays all of their possible values.

We could continue with an exhaustive consideration of the two-vari.a ble opera­

tors, but instead we' 11 pause for a bit and consider a few points that can be made

at this ti.me for arbitrary n-vari.able functions.

J. 3. 2. 3 Some n-Vari.able Observations

What do we mean by an n-vari.able function in the first place? By extension

we mean an f(p , p 2 , ... , p), where n is a finite (though arbitrary) number , and
1 n

the p. are again our elementary or independent propositional variables. The func-
1

Hon is well-defined if for every set of ."values" for the p.'s a value of£ is deter -
1

mined as either a T or an F.

Again, because of the finifeness of things, we can describe such a function by

simply listing all of its function values for each point in the domain. I.e., again

our truth table formalism extends directly to any n, and we can write immediately

that

p

F

F

F

T

n
p .

2

F

F

T

T

p
1

F

T

T

T

£(pl, '. ''' pn)

ao

al

_a2

a .
n

2 -1

and be assured that each of the possible n-variable functions corresponds to a

selection of the values of the a: from either T or F. 1 .

0£ course, we can also use this vehicle again to answer the question of how

many n - varia ble functions there are . As before, the answer is the number of

different ways of specifying the column for£ in the table. This is still

2No. of rows in the table

and the number of rows is in turn a function of the number of independent variables

1. 36

n
n
n
n
l

. I

J
u

l
n and is easily seen to be 2n . It follows that the number of different n - variable functions is

0
n
n
fl

I
J

u
u
t

which is eminently finite as predicted, and alluringly simple looking . But the allure

is deceptive for the number N(n) of such functions grows alarmingly fast, and

becomes very large even for reasonably small values of n. Thus we have

n

0

1

2
(Number of neurons in)

human nervous system ~ :

(Total number of games) -

of chess ~5

(:otal_ number of atoms\ · 6

tn umverse j ~:

N(n)

2

4

16

256

2 16 = 65,536
32

2 = 4,294,967,296

264 = 2(1019)

2128 _ 4(1038)

2256 _ 1075

and it becomes clear that any sort of exhaustive examination is completely out of

the question, and any proposed technique for doing so rapidly becomes hopelessly

swamped,

Nevertheless, we can completely , and formally describe all possible situa­

tions by the augmented truth table :

f

fO(pl,. '' 'pn)
n

pn pl f
2 2 -1 1

2n
rows (

F F

T T

At this point we might hope to proceed exactly as before for the case of two

variables. That is, we might define n -v ariable connectives, although we have

already seen that we can't do anything exhaustive. But some subset might be

1. 37

useful. For example, we can certainly . define an n-variable AND by extension as

A {p
1

, ... , p) = that f which is true whenever every p . is true
n n 1

and the n-varia ble OR as something like

0 (p
1

, ... , p) = that f which is true whenever~ p . is true.
n n 1

Obviously, then, our binary connectives are speciaLcases ·of such things, and we

agree that when n = 2 we :can write

and so on.

Az(Pl, Pz) = Pl/\ Pz

Oz(Pl, Pz) = pl V Pz

But can we do better? We should certainly hope so, for keeping track of the

possibilities, even the interesting ones, would simply become too horrendous a

bookkeeping task.

It turns out that we can do better, in fact ·we can easily show that just the two­

variable connectives we've defined so far will suffice to represent any n-variable

connective that we wish.

To verify this assertion we first of all need to affirm associativity for our

bi.nary connectives; namely we need to affirm that

and that

Furthermore to simplify the -reproduction, let us agree to write "A"

as II II from now on, i.. e.' pl/\ Pz = pl Pz, and write "v" with a "+", i.e.? that

pl V Pz = pl + Pz·

Having shown that associativity holds we can immediately affirm that our two

n variable .connectives :can be expressed in terms of our binary operators as

1. 38

n

n
n
I

I

J

J

l
7
n
n
n
r I

J

11

j

j

Now we argue a little further, toward the end of expressing all functions

in terms of these operators. What does the function A (p , ... , p) look like on
n 1 n

the truth table? It is simply a function that has a T assigned to the last row, and

an F everywhere else. Now any function of the form p >:<p >2:< . . . p ,:< , where p ,:~ is a
1 n l

notationalconvenience to indicate that the variable p. may appear either comple-
1

mented or not, is called a fundamental conjunction, or a fundamental product, or

a minterm, and is clearly just like A , i.e., it is a function that has a single
n

one in its last column. Just as clearly, any minterm can be expressed in terms

of A and the unary operator 11- 11 as
n

,::: :❖:

An (pl, Pz ,
.. ,,. ::::: :::::

'p:) = pl Pz

n
so that we have bootstrapped ourselves to the proposition that each of the 2

n - variable functions that are minterms can also be expressed in terms of our

binary operators, indeed just in terms of the And the Complement.

The final step we need is to observe that these minterms form a sort of

orthogonal set of functions by which any arbitrary function can be expressed

simply by ORing those pointed to by the rows wherein the arbitrary function

has T's assigned, Since we have already shown the OR to be associative it

follows that

t
i = 0

a . p
l 1

where our summation is over the rows wherein f has a T, and indicated by the

value of the a .. Thus if f has a Tin row i, then a.= 1, otherwise it is 0 .
l l

For example, for the 3 - variable proposition represented by

P3 Pz pl f(p1,Pz,P3)

F F F F
F F T T
F T F F
F T T T
T F F F
T F T F
T T T F
T T T T

1. 39

we have immediately that

and our general conclusion that any n-variable function can be represented only in

terms of our binary operators if we choose. In other words, every function can be

expanded as a summation of minterms, and such an expansion, which is clearly

unique, within commutativity, for every f, is called the disjunctive normal form

for £.

We could continue in this vein and illustrate lots of other n-variable facts of

life. Suffice it at this point to content ourselves with the fact that even though the

general situation becomes terribly complex and unwieldy, we can still express

everything in terms of the simple binary connectives that we've already developed.

Others are occasionally useful, however, and we shall examine a few more of

them at this time.

1. 3. 2. 4 Other Useful Connectives

Even though we have seen that we need nothing more than the connectives

already introduced in order to talk about any function we wish, there are still

many others of interest, and of ultimate practical importance . . We shall consider

only a few more briefly at this point.

Conditional

The function p:> q, sometimes called "p implies q", and equivalent to the

mathematical assertion "if p then q" is defined by the table

p

F
F
T
T

q

F
T
F
T

T
T
F
T

and although there is often some confusion on the logical validity of the second

row, it is assigned on the basis of the classical logic conclusion that a false

premise can imply anything.

We can relate this connective to a couple that we've already defined .

1. 40

l
7

n
n
l

u

n
[l

n
n
l

ii

j

I
I
I

LI

Theorem: p:Jq=pVq

Proof: We use perfect induction:

p q p-=:> q p p ·yq

F F T T T
F T T T T
T F F F F
T T T F T

and it suffices to confirm that the two columns for p .::,q and for p V q are identical.

Biconditional

In this case we assume that the implication runs both ways, that is that

(p.:> q)(q:, p). Since we have expressed this one in terms of the previous connective,

we can easily derive what this function looks like:

p q p::Jq q~p (p:::) q)(q :j p)

F F T T T
F T T F F
T F F T F
T T T T T

and examination of the last column shows that we've already met this connective

before. It is just the function p :.' q that we've previously defined. It corresponds

to the mathematical assertion "if£", i.e., "p if and only if q ", and the only thing

new is another theorem linking the various connectives:

Theorem: p ::= q = (p:::> q}(q=:>p)

DeMorgan's Theorems

Obviously we could go on like this through a great many such relationships.

We shall be content with only a few more that have special significance. One of

these is the theorem:

Theorem: pq = p V q p V q = pq

Proof: Again trivial by perfect induction.

These two relations are the well known DeMorgan laws for two variables. We

1. 41

shall examine later their generalization ton variables. Suffice it for now to note

that they enable us to conclude something further with regard to the general expan­

sion result noted earlier. We have concluded that any function can be represented

using only 11/\ 11 , "V", and 11 11, Now, on the basis of the first assertion abov e w e

conclude that 11/\ 11 and 11 11 will suffice, for whenever we have a 11\/ 11 occurring in an

expression we can always substitute an expression containing only 11/\ 11 and " ".

The assertion follows immediately . Of course, a little care must be taken .in assert ­

ing these things too glibly; the first statement evidently requires that the variables

be "primed II in order to make the substitution . But we need only observ e that if

p is a propositional variable, then so, of course is p, so that an equivalent s tate­

ment to the first DeMorgan assertion above is that

pV q = pq

and we are home free with all sorts of such combinations.

Equivalently, we ·note that the second DeMorgan theorem shows that we

can get along with just 't.v II and 11 11 if we wish.

This raises another interesting question: just how many connectives do we

need in order to express any function that we wish? We earlier showed that three

will suffice. We have just showed that two will suffice. Is it possible that amongst

all of the possible variants, that there are some single connectives that will s uffice?

This turns out to be the case, and is the reason for the interest in the Sh effe r

Stroke function and the Pierce Dagger function.

Other Connectives

The Sheffer Stroke pjq is the two-variable connective defined by the table

p

F
F
T
T

q

F
T
F
T

Pl q

T
T
T
F

Often referred to as "p stroke q", the English proposition is clearly "it is not the

cas e that p and q ' 1• This phrasing suggests an important theorem relating the

l

n
n

l

j

j

J
connecti ves: U

1. 42

n Theorem : p lg - pg

The proof is obvious by examination of the truth table. The significance, n however, is that the theorem is the first step in our argument to show that the

stroke function is sufficient for everything. It enables us to conclude that when-n ever we have a conjunction of variables we can replace the conjunction by a stroke

n
'l
l
1

l

J

J

I
J

and a complement. Thus

pg == p 1· q

and we are half way there. The remaining piece is suggested by simply replacing

q with another p in the theorem, for then we have

p Ip == pp == p

which says that whenever we have a II II it too can be replaced with a function using

only the stroke connective . Since we've previously concluded that 11{\ 11 and 11 11

are sufficient, it follows immediately that 11 I" is as well.

The term Stroke Function is not used as commonly at present as are the

terms that key on the English statement, and the connective is usually called the

11not-and' 1 connective, or the 11NAND' 1•

The assertion that the NAND is sufficient does not mean that displaying this

sufficiency in any given case is a trivial matter. We shall later be concerned with

systematic techniques for such display, using the least number of NAND connectives.

But for now we note that the reduction of even quite simple functions such as

(p + q)r == (p + q) Ir

== pgl r

== [(pfp)l(qjg)]lr

= ([(plp)\(q\q)Jlr} [{[(pip) l (q\q)] Jr}
-can get pretty messy, and involves careful use of the parentheses.

There is only one other connective that exhibits this same property, and this

fact makes it important enough to display at this time . This is the Pierce Dagger

U function, symbolized by p.l,q and defined by the table:

1. 43

p

F
F
T
T

q

F
T
F
T

T
F
F
F

Based upon its English statement equivalent that "it is not the case that either p or

q" it is not surprising that this connective also is known as the "not-or" or the

''NOR II connective.

To show that the NOR is also sufficient to represent any function we can take

yet a little different tack, based upon our steadily increasing store of relations.

Since we have seen that the NAND is sufficient, then it follows that if we can show a

realization of the NANP using only NORs, then we can also rnake the same conclu-

7
D
n
n
l

sion about the NOR. Let's try it that way: l
== pg == p + q == p + q

== Pfg

(p}p) t (q}q)

== [(p{,p)-J, (q-}q)H, [(p{p)} (q .tg)]

and we are through. (Again these transformations are indicated at this point only

to show existence, not efficiency. When "cost" becomes a factor, i.e., when two

NOR gates costs more than one, then we shall worry about efficiency of the repre­

sentation.)

Although the predominant practical inter est has been in the two-variable

connectives, there has also been considerable interest in other types. One of

these is the so-called majority connective, M (p, q, r), which is usually defined on

an argument of three variables (although it could clearly be defined in the same

way for any argument of any odd number of variables) as the statement "at least a

r

I
j

majority of p, q, r (i.e., at least two) are true". Thus it is defined by the table j

1. 44

u
u
r
I

l
n
n
n
n
n

u
L1

p q r M(p, q, r)

F F F F
F F T F
F T F F
F T T T
T F F F
T F T T
T T F T
T T T T

Of course we could define a multitude of similar connectives in terms of three or

more variables, corresponding to various constraints familiar in English discourse.

We shall avoid the temptation to do so, except to note that several of them, such

as the majority connective, have played a significant practical role. Suffice it for

now to illustrate the fact that the majority gate's flexibility can be suggested by

showing how it can "emulate" the action of lesser connectives. E. g., analysis

(or even simple examination of the corresponding English statements) will show that

M(p, q, F) = pl\ q

while

M(p,q,T)=pVq

so that the gate is capable of being specialized to either of the useful connectives

we've met in the two-variable case.

We shall not detail other connectives of interest. Clearly we shall ultimately

make the transition which involves connecting each of these connectives to a

logical "gate" realized, for example, electronically. The vagaries of electronic

realizations have ordained that the fewer - input gate types are the easiest to build

reliably, hence are of greatest interest to us. But the electronics do allow in many

case a greater number of gate inputs than two, and to the extent that these are

reliably realizable, then so too are the multiple input connectives associated with

them. Thus, for example, a three or four input AND is probably not too difficult,

but a seven input AND is probably pressing things.

1. 3. 2. 5 "Logic Design" with "Connective Blocks"

We shall terminate these considerations with an extension of our propositional

1. 45

calculus to a graphical equivalent that is intended to be entirely suggestiv e of the

sequel. We shall do this by making an id e ntification of the elements of our

calculus with the elements of a set of dir e cted graphs.

For example the notion of a "connecti ve " is suggestive of a "logic block".

Thus p /\ q is a block marked 1'1\ 11 that connects inputs p and q and produces p /\ q

on its "output" as in Figure 1. 3. 2. 5. 1:

P~q
~ ,

q .

Figu re 1. 3. 2. 5. 1. A connective block

Similarly, we could define the various oth e r blocks appropriate to whatever connec ­

tives we might find of use such a s in Fi gure 1. 3. 2. 5 . 2:

p~

q

(C) r
(d)

Figure 1. 3. 2. 5. 2. Oth er connective blocks

M(p, q, r)

>-

Clearly, to complete the association of pr o posi tions with graphs, we d es ignate the

propositions as the "signals" that app e ar on th e in terconnecting lines of the graph.

These signals can take on either of the values _T or F, Finally, then, compound

propositions must be representabl e by interconnecting the propositional blocks as

required. The resulting n e tworks of 11conn ecti.ve blocks II must stand in one-to-one

correspondence with the fµnctions of th e pr oposi tional calculus, and the evaluation

of a function must be mapped into the value of the ultimate output to the network .

For example the function p V (q;\r) must be equivalent to the network of Figure

1.3.2.5 . 3:

1. 46

n
n
n
n
n

j

u

7
n
n
n

p

q V
pV(q/\r)

r
Figure 1. 3. 2 .. 5. 3. A function realization

while the function (p/\g) V (p/\r) V (g/\r) must correspond to either of the networks

shown in Figure 1. 3. 2. 5. 4.

::] M 1~c >
r

(b)

r

Figure 1. 3 . 2. 5. 4. Alternative function realizations .

There are many other facets of classical logic that we could refer to for

insight on useful tools to use in the sequel. For example the so-called "predicate

calculus" enables us to sever · our propositions into "predicate" and "subject" in

I useful ways. E . g., the proposition "All Greeks are philosophers" can be con­

sidered in the theory of sets or classes as referring to two sets of things: those

that are Greeks, and those that are philosophers. Combinations of such consider­

ations lead to interested class assertions familiar to all followers of Lewis Carroll

and other devotees of classical logic. A useful side product are switching theoretic

constructs such as Venn diagrams for demonstrating such class assertions, and

I J proving elemental theorems in the switching algebra. We shall not look at these

for now, but instead shall be content with the formalization of a system which is

isomorphic to the propositional calculus that we shall call the "switching algebra".

J

1. 47

1. 4 The Problems of Existence and Minimization

Two basic concerns lurk in the background of every practical problem in

logic design, even though the designer may not be aware of them in every case.

In those cases where they do not play an important role, however, it is only

because the particular restrictive assumptions of the problem have already taken

them into account. It seems appropriate to close this introductory chapter with at

least an acknowledgment of the nature of these two basic concerns, for they

illuminate, and indeed result from the basically "engineering" characteristics of the

digital machine design problem.

For engineering, after all, is primarily a problem solving dis -ci.pli.ne, and

the first concern is not only an illumination of the various alternative solutions to

a problem, but indeed whether a solution exists at all. So, too, in the case of ·the

logic design problem: given a problem specification, . either verbal or more

precisely defined in terms of truth tables or algeb _raic representations, this specifi­

cation must be played off against the practical constraints that must be observed

by the designer. These practical constraints include some reasonable limitation

on the kinds of logi,c gate complexity he can provide, including limitations on the

fanin and fanout to the elements. More subtly though, they might also include

limitations on the layout of the logic elements, the total area involved, the pos­

sibility of restrictions on the interconnection structure that links them, and

ultimately forms the desired outputs, and so on.

Thus the first basic question of concern _is that of exi.~tence of a solution for

the de s·ire d problem. This question frames a lot of the questions .considered in

the following chapters, resulting in canonical forms, or techniques, by which

standard solutions to all realizable specifications ·can be generated.

The second basic engineering consideration, however, given a set of solutions

to a particular problem, involves determining an efficient solution amongst them.

In logic design this process is described as minimization, and is the second con­

cern to be highlighted here. In any given context, the . properties .of the solution

being minimized will vary. In a :i;elay contact network.we might be concerned with

the total number of simple contacts in a network, or alternatively in the total

number of relay coils involved, under the -constraint that a given coil can

1. 48

l
n

j

l
n
0
n
n
n
I

. I

r j

II
I
l J

u
I
J

LI

accommodate only a bounded number of contacts. In an electronic gate network the

concern might be the total number of gates, or alternatively the total number of

gate inputs, again usually with some reasonable bound on the total number of inputs

a g.iven gate can reliably sustain. In densely packed integrated chips, however, we

might care not in the least about the total number of elements we use (within

several thousands at least), but we might be very concerned about the total number

of leads assigned to the periphery of the chip, or about the total number of levels

of gates through which a signal must pass before appearing on an output of the chip,

and so on.

This second guestion of minimization, regardless of the parameters of con­

cern, is always the determinant of the particular logic design process employed,

and always provides a measure of its guality or success as a design technigue. The

important point to note is that the problem of design then becomes one of infinite

variety, depending only upon the local conditions that obtain, and which restrain

the designer from complete freedom of choice in his options. In the following

chapters we shall trace some of the most common methods of systematic design,

but it should always be remembered that each technigue is couched within a specific

set of assumptions regarding what is important, or costly, hence exactly what

should be minimized. It should always be remembered that each new environ­

mental context will lead to a re - examination of the parameters of importance,

hence of the ~articular logic design technigue that is sutiable for the new applica­

tion .

1. 49

1. 5 Notes - References - Problems

NOTES.

The basic material on number systems, coding, and verbal specifications

are represented in some form in many textbooks _ and papers on logic design,

switching theory; and computer organization. Extensive discussions on number

systems and arithmetic are contained in Flores (4) and Richards (8). The basic

notions ·of the propos ·itional ca-lculus t;ace back t.o · Boole (1) over 100 years ago,

and have since been adapted and augrriented by many people • . Recent treatments

will be found in Kohavi (5) and Krieger (6). Many books .are also available on the

general digital design formulation problem. _ These include Chu . (2), Dietmeyer

(3), and Phister (7") amongst many others, and these will provide further references

to the basic literature.

REFERENCES.

1. Boole, G., "An Investigation of the ·Laws of Thought," ·Dover
Publications, Inc., N_ew York, 1.854.

2. Chu, Y. ·, "Digital Computer Design Fundamentals, 11 McGraw-Hill
Book Co,, New Y:ork, 1962 _._ ·

3. Dietmeyer, D. L., "~ogic Design of .Digital Systems," Allyn and
Bacon, Boston, 19 71.

4. Flores, I., '-'The Logic of Computer Arithmetic, 11 Prentice-r-Hall, Inc.,
Englewood Cliffs, N. J., 1963.

5. Kohavi, Z., ''S~ftching ··and Finite Automata Theory, 11 McGraw-Hill
Book Co., New York, . 1970 . .

6. Krieger, M., ''Basic Switching .Cfrcuit Theory, 11 The MacMillan Co.,
New York, 1967.

7. Phister, M., ''Logical Design of Bigital Computers, 11 John Wiley,
New York, 1958.

8. Richards, . R. K., · "Arithmetic Operations in Digital Computers, 11

D. Van Nostrand Company Inc., Princeton, N. J., 1955.

1. 50

l

n

n
n

I
I
I

u

n
D
n
n
fl

I

I
I

I J

Li

J

PROBLEMS.

1.

2.

3.

Convert the following decimal numbers into binary numbers; for fractions
ex press the binary numbers to at least si x places and indicate if the
conversion is e x act or not:

a) 57 d) o. 865

b) 0 . 40625 e) 432.5625

c) 15/64 f) 2048

Convert the decimal numbers of Problem 1 into octal (base 8) numbers.

Given that (79 \ 0 = (142)b, determin e the value of b.

4 . Convert th e following binary numbers into decimal form:

(a) 0 . 101101

(b) 100,000

(c)

(d)

110 . 110

111011. 001101

5. Convert the following numbers to the base indicated:

6.

7.

8.

(a) (111) 3 = N 2

(b) (175) 8 = N 2

(c) (413 . 32\ = N 10

The number of atoms i.n the uni.verse is all e ged to be about 280 About
how many decimal digits would b e required to e x press this number
decimally? How about in ternary (bas e 3)?

Given that (16\o = (l00)b' determine the value of b.

Given that (292) 10 = (1204\, determin e the value of b .

In the following series , the same integer i.s expressed in different number
systems . Determine the mi.s sing m e mber of the series.

10,000, 121, 100, ? , 24, 22, 20, . • .

9 . Construct addition, subtraction, and multiplication tables for a radix 5
number system .

10.

11.

When the order of the digits of a certain three-digit decimal number i.s
reversed , the same number to the base 16 results . Find the number.

Work out a simple test for determining if a given bi.nary number is a
multiple of three .

1. 51

12.

13.

14.

How many weighted 4-bit BCD codes are there using only positive integer
weights?

Using the BCD XS3 code only, illustrate addition when applied to decimal
147 + 78.

Symbolize in the propositional calculus, and determine truth values of the
following compound proposition:

"If it is hot in Arizona and it is · raining outside or demonstrators are in
the streets; then it is hot in Arizona, demonstrator$ are in the streets,
and it is snowing in Ar gent.ina, II

So that we all have the same start let us symbolize the independent
propositionsas follows: . ·

It is hot in Arizona = H
It is raining outside = R
Demonstrators are in the streets = D
It . is snowing in Ar gentirta = S

If any ambiguities appear, please make sure that you make explicit how you
have re solved them.

15. Prove the tautology

.. .

Write in symboHc form the four possible interpretations of the following
ambiguo4s statement:

· "Peter is jaundiced or Quincy is neurotic and Roger is gone."

16. Draw a circuit using AND, OR and "NOT elements to produce an output for
each of the following conditions:

a) (A or B) and (not A or not B) and C

b) (A the same as B) and C, or (A di,fferent from B) and not C.

c) ·At least two of A; B, and . C.
.

17. Using a truth table verify th _at

(A:::>B):::> [Av(A/\B)] = A/\B -·

18 . Express the connective @ in terms of the connective 't.
19. Binary dig.its a,b~ c :ar.e to be added.together to give sls2 as i.n

a
b

+t
s s .. .

1 2 . . .

Let X = the trut~ function variable that is true ~hene .ver x = 1, and false
otherwise. Determine a truth functiona _1 expression for s2 and s 1, and con ­
struct a diagram of logic bloc~s that corresponds to these functions.

l. 52

l
1

□
ff
n
n

J

11

B

~

n
n
n
n

J

LI
a

2 . Combinational Foundations

In this chapter we shall develop some basic tools by which we can address

the logic design problem for combinational networks . Recall that the combinational

network is one wherein the "sequence" of inputs plays no role , the network has no

recall, and the outputs of a network are to be determined strictly as a "combina­

tional" function of the particular values of the binary inputs to the network. It will

be seen that all of our work is essentially a formalization directed toward realizing

prescribed truth values for specifications defined in terms of a set of binary input

variables .

2 .. 1

t

2. 1 Logical Connectives and Electronic Gates

There is no question that the application of the high speed, reli.a ble electronic

-switch has made all the difference in the development of digital machines to their

present significant level of application in sophisticated computing systems, as

opposed to the level attainable by mechanical calculators, simple control devices,

and the like. The application of the .conceptually simple gates, operating very fast

and .in large assemblages, has made possible the impact of the modern, large-scale

digita 1 computer on society.

Yet the heart of the system, the ele .ctronic gate, is a very simple device that

is nothing more than an embodiment of the logical connective gates we discussed in

the section on the propositional calculus. At the level of the gate itself,' of course,

there must be careful tailoring of the physical parameters, and a proper identifi­

cation of the values of the physical variables with the truth values of the binary

system. But at the level of logic design we need only concern ourselves with the

function of the gate as a logical connective, limited only by the number of variables

over which it operates (i.e., the fanin), and the relative ease with which the dif­

ferent connective types can be realized within any given technology.

The identification of such electronic gates as models of our logical connec;..

tives suggests means by which we can systematically formalize the rea li.zation of

arbitrary digital systems, and we proceed at this point directly to the relevant

algebraic formulation that is appropriate for such systems.

2. la

n
n

I
I
I
I
I
J

1

l
D
n
n

. l

L

t

I
I

j

2. 2 The Switching Alge bra

We are now going to concern ourselves with an algebra which directly corres­

ponds with the action of "switches", where a switch is anything that exhibits,

unequivocally, one of two possible positions, or states. We shall see that the

algebra is a direct application, if you will, of the propositional calculus, and is

one of the foundation stones of logic design to follow.

We shall take the approach of defining a formal system, referring briefly to

a physical correspondent in order to validate the postulates . of the system, and then

concern ourselves with the several theorems and other conclusions of the algebraic

postulates that will be relevant to our purposes.

2. 2. 1 Definitions

A switching algebra consists of a set of variables x,y, z, ... that can take on

either of the values, or marks, 0, 1 unambiguously, i.e.

X = 1 if£ X f 0

X = 0 if£ X f 1.

The algebra is made complete by defining several. operations for it. Two of these

are binary operations, + and -, while the third is a unary operation, denoted by

a 1 • We define these operations by means of a set of postulates which specify the

effect of the various operations on the constants, 0 and 1.

The postulates which specify the system, then, are

o + o = o o· o = o
0 + 1 = 1 + 0 = 1 O· 1 = l · 0 = 0

l+l=l 1-1=1

O' = 1

l' = 0

and from these all else can be shown to flow. Notice first of all that these postu­

lates completely specify everything that can happen by way of the constants, and the

effect of the operators upon them. Nothing less would be complete; anything more

would be redundant, or worse yet, inconsistent.

Secondly, we take note of the complete dualism between the operators + and

and the constants O and 1. If we take any of the postulates and map

2.2

t

. ~ +

l
n

then we will find that we have generated another of the postulates correctly . Much n
that is useful follows from this simple observation -- in particular that we need

expend only about half the usual amount of labor in theorem proving -- for each

theorem proved we shall get a dual theorem for free, simply by making the sub­

stitutions observed above. Once in a while this process will fall flat, since some

assertions will be the same as their duals, but in general the property is a produc­

ti ve one, and is often suggestive of alternative approaches to problems. We shall

make much of this property of dualism in what follows.

2 . 2. 2 Consistency

Of course in any system of postualtes there is the problem of consistency,

and if the postulates are inconsistent then all sorts of di.re consequences in terms

of contradictory conclusions can follow. We shall follow the cla$sic concern and

belay possible conc;:erns about consistency of our postulates by pointing to a parti ­

cular physical system (out of many that we might have chosen--the propositional

calculus itself being one) that satisfies the postulates. It will follow that theorems

in our algebra will have immediate application in the physical system we point to,

as well as the others that we can also show satisfy them.

Si.nee any physical system will do, we 1 ll again take the classic route and

utilize the relay conta .ct network. In particular we make the following associations

between the two · systems:

Algebra

Vari.able x

Vari.able x'

+

0

1

<
~

<
(

£

"
<.

►

r"

r"

►
>-
i>

2.3

Contact Networks

make contact on coil ---
t

break contact I

parallel connection ·-r!J--
series connection X ><
open circuit 0 - -----0

closed circuit

n

I

j

J

-0

l
n
n
n
n
fl

l

and these provide correspondences for each of the elements of our algebra. We

can quickly check the validity of the postulates i.n the physical system . For

example the postulate

0 + 1 = 1

translates to

(open circuit) parallel (closed circuit) = (closed circuit)

while

O· 1 = 0

translates to

(open circuit) series (closed circuit) = (open circuit)

etc., etc . Each of these i.s physically observable as are all the others, hence our

system i.s consistent, and we can proceed to derive theorems i.n i.t without fear of

contradiction , so long as we are careful.

2 . 2. 3 Basic Theorems

The important point to note here i.s that all else i.n the system must follow

J from our postulates, i.. e., be provable by reference to them. Of course we shall

play the usual game that any proved theorem becomes part of the bag of tools avai.1-

1 able for the proof of subsequent results.

I

u
J

j

j

There are a collection of basic theorems which we shall collect here for

reference. Some are surprising, and some are not. All are consequences of the

postulates, although we shall only indicate proofs for a few. We shall attempt to

cluster them under their common names, and shall try to include the dual theorems

together.

Idempotent: xtx=x X• X = X

(Proof by perfect induction . Simply consider all possible events.

0 + 0 = 0

1 + 1 = 1

Hence the result follows for a 11 x.)

Vari.ables and constants :

X f 1 = 1

x+0=x

2 . 4

X• 0 = 0

X' 1 = X

Commutativity: x+y=y+x xy = yx

Associativity:

(Notice we' 11 again use the convention of dropping the 11 ~ 11 whenever

convenient.)

(x + y) + z = x + (y + z) = x + y + z

(xy)z = x(yz) = xyz

Complementation: X + X 1 ::: 1 x· x' = 0

Distributivity:

Absorption:

x(y+z) = xy + xz x+yz = (x+y)(x+z)

(Note our implicit acceptance here of the usual precedence relations.

We'll not make more it it here, but recognize i.t as a problem to

always be aware of, The first of these forms is not surprising. It

affirms that multiplication distributes over addition, consistent with

the real numbers, hence not surprising . The second, however, is

always surprising at first sight since it asserts that addition distri­

butes over multiplication . If the first is true, then the second

obviously is by dualism. However, let's check the second anyway

by perfect induction :

X y z (x .+y) (x+z)

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 .1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

Since the last two columns

X + xy = X

x .+ x'y = x+y

are

yz x+yz (x+y)(x+z)

0 0 0
0 0 0
0 0 0
1 1 1
0 1 1
0 1 1
0 1 1
l 1 1

identical, the assertion is

x(x+y) ::, x

x(x' +y) = xy

proved,)

(These look a little funny too, although they can be easily proved by

perfect induction. Let's take advantage of the theorems we've

already developed, however, to prove the first one by algebraic

manipulation:

2.5

l
7
J
n
n
l
I
1

l

J

J

J

j

n
n
n
n
n
I
1

l J

I j

u

LJ

Consensus:

X + xy =

x • 1 + xy =

x(y+y') + xy =

xy + xy' + xy =

xy + xy + xy'

xy + xy' =

x(y+y') =

X• 1 =

X

Justification

X• 1 = X

X t X 1 = 1

x(y+z) = xy + xz

x+y=y+x

x+x=x

x(y+z) = xy + xz

X t X 1 = 1

QED .

We'll not often go through such detail, but this one provides a per­

fect example of the step- by-step application of the postulates and

previously - proved theorems .•

The second theorem obviously follows by dualism from the first.

The third should be proved by the reader if there is any hesitancy

about the argument made above, while the last one follows by

dualism from the third ,)

xy + x' z + yz = xy + x' z. (x+y)(x' +z)(y+z) = (x+y)(x' +z)

(This one looks even a little stranger yet, and implies a sort of

"law of the vanished middle". It is obviously relevant to the produc­

tion of simplest forms which will ultimately be of interest. If there

is any hesitancy remaining on the part of the interested reader,

this should be removed by a careful algebraic construction of the

proof. Again, they can both obviously be proved by perfect induc­

tion, and one follows from the other by dualism.)

DeMorgan (on complementation):

(x 1) 1 = X

(x+y)' = x 1y 1 (xy)' = (x' + y')

(These are not at all easily proved algebraically - -you might wish to

try it! - -although of course both are trivially proved by perfect

induction. Algebraically one can proceed by filling in all the steps

carefully in the following arguments:

2. 6

1 = (x+x') = (x+x')(y+y') = x' y' +x ' ytxy' txy

•.. (xy)' = x ' y' +x' y+xy' ... ,,
= x ' (y' +y) + xy '

= x ' + x y' = x'+y' as desired .

2. 2. 4 n - Varia ble Theorems

We have completed our ba s ic repertoire of theorems in two or three variables.

It remains only to identify the several n - variable theorems that will be of interest

and utility to us . The first is a si mple ex t en si on of the two -v ariable DeMo rg an

statements:

Theorem:

Proof:

X fl
n

0
0
1
1

f

(+ r f)' - I I I X x 2 T • • • X - X X •• , X
1 n 1 2 n

We can accommodate thi s one by a mixture of mathematical induc ­

tion and perfect induction . First we assume that the ass e rtion i s

true for n variables. I.e.,

Then f' = n + .•. +x ., and our desired new function on the left is
n 1 n

just (f' + x)' . To s how that th i s is the same as f x' , th e
n n+l n n+l

desired function on th e right, we can recognize that f itself is ju s t
n

a binary variable, even though a dependent one, and that we c an

examine the entire situation with a table of combinations on x
n+l

and f . Thus
n

f' f I fX x ' (f I + X)' f X I
n n n n+l n+l n n+l n n+l

0 1 1 1 0 0
1 0 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0

And since the last two columns in the table are identical, th en the

assertion holds for n+l variables as well . Alternatively we could

have u se d our previou s th e orem on two v ariabl es directly:

(f 1 f X) 1 = f 1 X
n n+l n n+l

which is the desired assertion on n+l variables , Of course ha vi ng

2. 7

n
D

n
n

l
r I

j

I
l J

J
u
LI

1

0

already proved the two - variable case, it follows that the theorem

is true for all n.

There is a useful further generalization of DeMorgan which can be shown,

although because it is a notational nightmare we shall refrain from proving it. n Succinctly stated it is the

n
n

11

1

lJ

J

u
u

Theorem: (f(x , x 2 ,,,,, X t, •)) 1 = f(x' , x 12 ,. , ,, X 1 •, t)
1 n 1 n

and in words this means that any algebraic form (consisting not only of variables,

but of the operators as well -- as parts of the form) can be transformed as indi­

cated by complementing all of the variables and by substitution + for ·, and con­

versely. Thus for example

directly without any further ado.

An important type of n-variable theorem accomplishes a different kind of

end, and is involved with expressing an aribtrary function in terms of simpler

functions, e.g., in terms of functions of a lesser number of variables. These are

therefore called expansion theorems and will play an important role in what

follows. The best known of these are the so-called Shannon theorems:

Theorem: f(x , ... , x., ... , x) = x .f(n , ... , 1, . . . , x) + x'.f(x , ... , 0, ..• , x)
1 1 n 1 1 n 1 1 n

Proof: By perfect induction: let x . = 0 and get f(x . , .. . , 0, . .. , x) for both
l l n

sides; let x. = 1 and get f(x , ... , 1, .• • , x) for both sides. That
l 1 n

covers the universe, hence the theorem is true in general.

Of course the dual form must be true as well, so we get immediately

Theorem: f(x ... ,x . , ... ,x)={x . tf(x , .. • ,O, .• • ,xn))(x'.+f(x , . .. ,l, ..• ,x))
1 1 n 1 1 1 1 n· ·

These theorems play a very important role in logic design . Not only do they

suggest immediate structural realizations of functions (in terms of systematic

tree expansions) but they suggest alternative algebraic forms which we shall

develop now. For what they affirm is that, given any function, we can

2. 8

systematically expand that functi.on in terms of a succession of variable expansions.

For example, expanding on x 1 and x 2 must yield

x 'x2f(O, l,x3, ... ,x) + x 'x2'f(O, O,x, ... ,x)
1 n 1 3 n

and so on. Continuing through all n variables we must get nothing but simple

product terms on the form

all summed together.

i
nf(" . .) • •• X ·1 l , 1 2 , ... , 1

n · n

The i. are simply the binary constants, hence the expres-
1

sion on the right side is an evaluati.on of th e function for the given n.:tuple, i.e.,

it is either a O or 1, while we' 11 use the con ve ntion on the x. that
1

0
X = X 1

i i

1
X = X .

i l

in order to keep the books straight. Thus in general

f(x , . , . , X) =
1 n I

all t - ... i
1 n

i i
f(. .) 1 n

1, ••• ,1 X ••• X
1 n n n

and this form is called the disjunctive normal form.

For the three~variable case the complete expansion looks like

Product terms like the above wherein each of the variables enters into each product

are called fundamental products, fundamental conjunctions, or minterms. The

latter term refers to the representation of a fundamental product on then-cube {or

map). Since the map has only a single vertex marked, it follows that such a term

is a minimum cube on then-cube, hence the name. The entire summati.on is also

referred to by various other names., including fundamental sum-of-products,

2.9

l

0
n
n
l

1

J

l
J

J

u
u

n disjunctive canonical form, etc ~ An important feature of this form i.s that i.t i.s

unique for each f, that i.s there i.s only one fundamental sum-of-products repre-n sentati.on for each£. (This i.s easily proved by contradi.cti.on--assume there are

two different ones- -then they must di.Her in at least one fundamental product- -n but then the two forms cannot evaluate to the same value for the independent vari­

able combination that makes that product true--ergo there cannot be two different

n forms.)

n

11

1

ll

j

u

are

Clearly there are 2n different fundamental products, and since the f(i., j, k)
n

the bi.nary constants, i.t follows that there are exactly 2 2 different functions

that can be represented by these forms, hence the numbers game i.s right and all

functions are covered. Si.nee the f(i., j, k) are just the evaluations of the function

for the various possible independent variable values, they of course correspond to

the entries i.n the table of combinations . Thus in general

X x2 X f
1 3

0 0 0 f(0, 0, 0)=f(000)=f 0

0 0 1 f(0, 0, l)=f(00l)=f
1

0 1 0 f(0, 1, 0)=f(0l0)=f2

0 1 1 f(0, 1, l)=f(0ll)=f3

1 0 0 f(l, 0, 0)=f(l00)=f4

1 0 1 f(l, 0, l)=f(l0l)=fs

1 1 0 f(l, 1, 0)=f(ll0)=f6

1 1 1 f(l, 1, l)=f(lll)=f7

where we have displayed any of the several notational forms that we might use to

indicate the same constant.

Of course, the dual expansion also must hold ture, and we can assert that
i i.

f(x , ... , x) = TT (f(i 1 , ••• , i ') + x 1 + ... + x n)
1 n all 1 n 1 n

and this form is known as the conjunctive normal form. It is obviously a product of

sums where a sum is a fundamental -sum, or maxterm .

2. 10

2. 2. 5 Alternative Operators and Functional Completeness

We ·can, in a sense, generalize our operators in our switching algebra, and

these generalizations will result in alternative forms for representing, and realiz­

ing switching functions as well.

Of course these possibilities correspond to those we have already observed in

the propositional calculus, hence we can rapidly survey those of interest at this

time without much detailed development.

The two-variabl~ operators will all be contained, of course, within the general

two-variable truth table of possibilities.

X

0

0

1

1

y

0

1

0

1

0

0

0

0

1

0

0

0

0

1

0

0

1

1

0

0

0

0

1

0

1

0

1

0

0

1

1

0

1

.1

1

0

0

0

0

1

1

0

0

1

0

1

0

1

1

1

0

1

0

0

1

1

1

0

1

1

0

1

1

1

1

1

1

1

As we've observed before we can consider any of these to be binary operators . .

Whether we ultimately do so, of course, will depend upon other factors than

algebraic manipulation, such as ease of physical realizability, etc.

We can recognize some of these operators already . Thus

f 8(x, y) = xy and is our AND operator

f 4 (x , y) = x+y and in our OR operator.
1 .

f 3 (x,y) = x' and is our NOT

as is f 5 (x, y) as well. Of course f 0 and f 15 we recognize as our constants.

Another useful one which we shall explore further in. the next section is

f 6 = x © y, which is the exclusive - or operator, and f9 = x ~ y = x@ y' which is

the complement of f 6 .

Finally we note

f (x, y) = x' y' = (x+y)' = X'tY
1

which is the Peirce dagger function, or NOR operator, and

f7(x, y) = x' +y' = (xy)' = xiv
which is the Sheffer stroke function, or the NAND operator, These two ar e

2 . 11

l
n
n
n
n

l

j

J
LJ

~ particularly useful in that they are the only operators we need. Let's examine

th is notion a little further .

n
n
n
n

l

j

I
I

A set of operators Sis functionally complete or logically complete if we can

write an expression for arbitrary fusing only the operators of the set. Of course

we can write expressions as defined so far using only the operators "+", "· ", and

", " . But it is a simple thing to extend our algebra to include operators of any kind

so long as the operator is clearly specified.

Thus, for example, the extended expression

xy EE) (y' +xrz).

surely has meaning, and can be evaluated just like every other expression so long

as we have cleared up matters like precedence and the like. Also we can manipu­

late them algebraically so long as appropriate theorems regarding such manipula­

tion can be demonstrated. The reader is forewarned at this point that the "obvious"

rules for algebraic manipulation do not necessarily hold for these operators, and

the road to logic design is strewn with rejected designs of those who assumed that

the obvious was true. As a simple example we can point to a couple of cases in

point. If the following expression occurs

a(b EE) c)

in an expression, one might be easily tempted to use the "equivalent" expression

(a EB b)(a 0) c)

to achieve some desired simplification. But this expression of equivalence has not

been proved, and the reader would use it at his peril. It happens to be true, and

the unwary reader might then be tempted to assume that

a EE) be = (a EE) b)(a EE) c)

would be equally vali.d, and here he would be wrong. There are two obvious

routes to take in order to avoid the pitfalls that are possible, other than simply

agreeing to never use expressions in our augmented algebra. One would be to

compile a large catalog of relevant theorems involving all the operators that might

be of use to us, in all their possible arrangements. This is untenable, and would

require another note book to accommodate. The other is to be careful, each time

we use such a transformation involving an unfamiliar operator, to verify that the

transformation is indeed proper, and in most cases this can be verified quickly by

2. 12
r

t

the methods of proof we've pointed to already.

To return to our train of thought, we have thus already verified that the set

S::: (+, ~, ') is complete by reason of the Shannon e~pansion theorems. Any f can be

expressed using only those three operators.

This ·creates a situation that has always been very challenging to switching

theorists. Given any finite set of things that is complete in some fashion, the ques­

tion of minimally complete sets always arises. To thi$ end we shall say that S is

minimally complete if the elimination of any element of S yields a set that is not

complete.

In this context we ask whether S = (+,:, 1
) is minimally complete? Echoing

an answer we observed before we note that anytime we have

h = f+g

we can choose to write instead that

h = (£' g')'

so that in a structural sense anytime that we have the operator of Figure 2. 2. 5. 1

f

g

Figure 2. 2. 5. L OR operator.

we can always replace it by the operator of Figure 2 .. 2 .. 5. 2

Figure 2 .. 2. 5. 2. Replacement of OR operator.

hence can always eliminate the : + by the assembly of ANDs anti NOTs. It follows

immediately that S = (., 1
) is complete. Since, try as we will, we cannot get x .oy

with the unary operator NOT nor can we ever generate x:' with just an AND · it

follows that the set (: , 1
) .!E_ now minimally complete.

2. 13

l
n
n
R

n
n

J

I
.J
I
LI

l
n
n
n
n
fl

f I

I I

j

u

u
u
u

Similarly, based upon the other DeMorgan form, S = (+,I) i.s also minimally

complete as indicated by the substitution of Figure 2. 2. 5. 3:

f

~h

g fg = (f'g')' g

Figure . 2. 2. 5. 3. Replacement of AND operator.

Given, then, that there are minimally complete sets, and of course only a

finite number of them we can then ask about the sets with the least number of

elements. We have two candidates with only two. Are there any with only a

single element? If so, they achieve the absolute mini.mum possible. To find

these we use the general method of proof utilized above:

1) Given S i.s complete

2) R eali.ze the elements of S using only elements of T

3) Then we can conclude that T is also complete.

It turns out that the NAND and the NOR are complete by themselves, and

there are no others. The latter statement you'd have to work on a little to show;

the former statement i.s easily verified by the methods we've already employed

and summarized above.

NAND

The NAND is complete by the substitutions shown i.n Figure 2. 2. 5. 4

(xy)' = x' +y'

x . (xx) 1 = x'

~
X

X -x===cD~~ (x')'+(y')' =x;y

Y I
y .

Figure 2 .• 2 .• 5. 4. Completeness of the NAND

2. 14

and it follows that since S == (+, 1) is complete, then so is T == (I). I. e.,

x' == xjx; x+y == (xix) I (yl y).

NOR

In a similar fashion we note the substitutions of Figure 2. 2. 5. 5.

(x+y)' = x' y'

x~ (x+x)' =x'
x-----(!J~

(x')'(y')' = xy

Figure 2. 2. 5. 5. Completeness of the NOR.

and since S = (., '·) is complete, then so is T = (r). I.e., x' = xtx; xy = (xtx)-t(yty) .

The switching theoretic implication is obvious. To realize any switching

function one needs only NAND' s, or NOR I s, and nothing else. Although the implica­

tion is obvious, we should not draw any inference from the above other than that the

possibility for doing so exists. I. e, , we have asserted only the existence of logic

design algorithms; the minimization of the number of operators (or gates) for a

particular function is quite another thing, and this will occupy us subsequently.

2. 2. 6 Exclusive-Or Expansions

Another useful gate is the exclui;;ive-OR, or mod-2 adder, and interesting

possibilities also are possible using it. To work our way systematically toward

the salient results we fir st recall the definitions

_:.f::l
0 0 1

1 1 1

0

1

0

0

1

1

1

0

and we see that the + and the EE> are "almost" the same function. They are the

l
7
n
n
n

j

same except for the specific case where the two arguments assume the truth value J
1. To examine this particular exception, let us define two functi.ons f and g as

u
2. 15

0

~ being dis joint iff fg = 0. That is two functions are disjoint if they never both

assume the value 1 for the same set of the independent variable values . For

n
n
n
fl

l
I I

II
I
u

1

J

example

X

0

0

0

0

1

1

1

1

y

0

0

1

1

0

0

1

1

z

0

1

0

1

0

1

0

1

f

0

1

1

0

1

0

0

0

g

1

0

0

0

0

1

1

1

certainly display two functions f and g that are disjoint.

Now if f and g are disjoint, it follows immediately that

f+g = f@ g

since it is simply impossible to arrange the independent variable values so that

they are ever both 1 at the same time. It follows that in any expansion of the form

xf + x 1f
1 2

that
x£ 1 + x'f = xf (9 x'f , 2 1 2

without further ado.

Next we note that n-variable conjunctions are eminently disjoint, e.g., that

(x 1x 2x 3)(x 1x 2x~) = O

hence that in the disjunctive normal form

f = X X X + X 1 X X + 123 123 ..•

we can immediately write that

f E ,:, ,:, ,:,
axxx

~ j 1 2 3

since each term is disjoint from all the others. This result already gives a new

canonical form, . and affirms that S = (©, ~ , 1) is also a logically complete set.

So far this is rather trivial, but it does aff i rm that we can occasionally

2. 16

f

interchange two gates types without any caution but the observance of certain

functional properties on the inputs to the gates.

Something quite different accrues, however, i.f we take but one more step,

namely to affirm the following

Theorem: x' = 1 (f) x

Proof:

X

0

1

x'

1

0

1 (f) X

1

0 QED.

But thi.s means that we can substitute as in Figure 2. 2. 6. 1

X ----®~---X'
Figure 2. 2. 6. 1. Eli.mi.nation of NOT operator.

at will, i.e., that we can eliminate all NOTs in a circuit (but we still ne e d the

constant) so that we conclude that yet another complete set is S =--{@, ·, 1), and

thi.s leads to an interesting alternative canonical form for arbitrary functions.

We shall take the approach of conclud ing what the nature of the from is,

and shall not now worry about transformation s between the equivalent forms .

If we proceed from the Shannon minterm form, we can clearly get nothing b ut

product terms all (f)ed together. Elimi.nati.ng all the NOTs as in

x' x 12x = (l(f)x)(l@x 2)x = x (f)x x @x x (f)x x x
1 3 1 3 3 13 23 123

yields products of differing lengths , but only on the unprimed variables . Is the num ­

bers game all ri.ght in this case? How many different kinds of product t er ms

can we get? Exactly n for single variable products,

(~) for three-variable products, etc., hence

n

I n
2 -1

i. = 1

(;) for two-variable products,

different ki.nds of products. Also one of the "products II might be the constant 1

2. 17

7
n
n
n

I

j

J

J

Ll

1

1 itself. Each of these might be in any given expansion for n so that there must be a

total of

0
n
n
n

' J

I

J

I

different forms representable by such forms, which we knew we must have in order

for all functions to be represented. Thus whereas the Shannon form is

f = f{ijk) X XJ X), i . k

t-...1 1 2 3
) = x . . if i = 1

i l

= x' if i ::e: 0
i

we now conclude the existerice of an equally general form

x~ = 1 if j = 0
l

= x. if j = 1
l

Of course in any particular case we already have the machinery for generat­

ing the form. Thus, for example, if

f= {1,2,4,7)

= x' x' x + x' x x' + x x' x' + x x x
123 123 123 123

= x' x' X EE> x' X XI EE> X x' x' EE> X X X
123 123 123 123

= (l©x 1)(l©x 2)x 3 EE> (l©x 1)x 2(l@x 3) EE> x 1(l@x 2)(1©x 3)

EE) XX X
1 2 3

= x 3 EE>x x EE>x x x
1 3 1 2 3

EE> X EE>x X EE>x X EE> X X X
1 12 13 123

= xl EE> x2 EE> x3

J which is intuitively self - evident on examination of the original function, which is

easily verified to be the general parity function of three variables.

On the other hand i.£ the originc1,l form were not already disjoint, we can

easily make it so by expanding within our conventional algebra until it is. For

example

2. 18

l.

f = xlx2 + x 2x 3 =XX X 1
1 2 3 + xlx2x3 t XX

2 3

= X X X 1 + x 2x
1 2 3 3

= XX X 1 @ x2x3 1 2 3

which is of the predicted form.

One nice thing about this form is th e ready computation of complements.

Thus if

then

f = X X @ x 3 (B
1 2

XX
1 3

f' = 1 @ f = 1 @ X X @ X @ X X
1 2 3 1 3

which is of the same form, and we' re don e.

Now there are a large number of similar canonic forms that we could

derive based upon the other possible gate types that we've mentioned. For

example, we could ask similar gue stions a bout the "equivalence" or "EQUIV''

gate defined by

X

0

0

1

1

y

0

1

0

1

X;; y

1

0

0

1

In this case we could start from scratch, as we did from the @ gate, or we

could make use of what we already know and observe that

(x@y)' = x;;; y

or

X @ y = (x ::: y) 1

and that

x = 0 = (x@0)' = x'

2. 19

l
n
0
n
n
l

l

j

j

u
LI

7
n
n

fl

l
11

j

J

hence that

X @ y :: (x :: y)' :: X = y = 0

From this it follows that wherever we have a EE> gate we have the equivalence

shown in Figure 2. 2 . 6 . 2,

X Ef)y

0

x~_x_®y

y

X Q
~ ----------- X Ef) y

or-~~-
y

Figure 2. 2 . 6. 2. Exclusive-OR replacement.

and for every NOT we can equate the forms of Figure 2. 2. 6. 3.

0

X "@- - x'
Figure 2. 2. 6. 3. NOT replacement .

It follows then that there must be a canonic form consisting of AND' s and

EQUIV' s only, as well as the constant 0. That is, just as earlier we concluded

that S :: (@, ~ , 1) must be a complete set, so must S :: (=, ~ , 0) be a complete set.

And for any such set we could detail the appropriate theorems and canonic forms

to any degree we would wish . We could do similarly for other gate types and

combinations as well.

But it is not our intention to do so . Instead it is only our i,ntention to e x plore

such possibilities to a depth sufficient to convince the reader that he can always

l} build his own catalog of pertinent facts relative to the particular logic design job he

might be faced with in the future. I.e. , it is clear that the designer can always

I build his own handbook of design tools (theorems?) depending upon the particular

freedoms and restrictions that he is faced with .

J
2 . 20

2. 3 Switching Functions and Their Repre sentati.ons

We have tried to make some d istincti.on between switching functions and the

multitude of different representations that are possible for ea _ch one. The point has

probably been overmade, yet in a context where there are so many different,

ambiguous representations of the same thing, it seems important to distinguish

between the functio;n itself, which is well defined, immutable, unique, stable,

reliable, etc., etc., and its various representations, within which most of the

problems 1 i.e.

In this section we shall attempt to specifically define what a switching func- .

tion is, we shall attempt to illustrate in an elementary way that most functions

are just about as complex as they can be, and finally we shall catalog in a syste­

matic way at least the most common forms with . which switching functions are

represented.

2. 3. 1 Basic Definition

Although there are many, many representations of switching functions, a

catalog of these representation types is confusing without first agreeing on just

what the fundamental definition of what we are talking about is~ For it is in these

distinctions that the ultimate engineering na.ture of the s_witching theory is revealed.

Although a switching function is no different from any other mathematically defined

function, it is always in its representations that the problems arise since it is the

representations that correspond with physical realizations,

As a reference point, however, we shall define a switching function conven­

tiona 11 y as a ma ppi.ng from the set of n-tuple s to the values of the switching con ­

stants, 0 and 1. Thus
n .

f(x , ... , X) = [Q, 1] ~ [Q, 1] 1 n .·
where the domain of the -~~pping is the bi.nary n-tuples, and the range of the func-

tion is simply the constan .ts.

If the domain of the mapping involves the entire set of Zn n~tuples, then we

have a completely specified function. · Since there are · 2n points in the domain, and

since each of these can be assigned independently to either of the constant values,

there are clearly

2.21

l
n
D
n

n

l

J

J

u
j

1

n
n
n

th
switching functions of n variables (corresponding to then Cartesian product of

the single variable domain [0, 1]); hence the numbers game is again verified from

this point of view.

The only reason for distinguishing completely specified functions is again of n engineering relevance, rather than mathematical completeness. For if the entire

set of n-tuples is not specified, then we have implications in the physical realiza-n tion that may lead to simplifications in the physical realization .

In any event, if the entire set of n-tuples is not specified, then we have an

incompletely specified function, and in the engineering context this simply means

that it is not of consequence to us what the value of the function is for certain of

l the domain points. These correspond to input values that are known as "don't

care" values, and they can sometimes lead to reduction in the physical complexity.

r J

1

l

j

I J

j

For example, consider the contact network of Figure 2. 3 , 1. 1

Figure 2. 3 . 1. 1. Example contact realization.

which we can algebraically (or otherwise) verify corresponds to the truth table

column for f :

X x2 X f fR 1 3

0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 0 1 ~

1 1 0 1 1

1 1 1 1 1

2.22

In our understanding, then, the above . contact realization is a particular repre­

sentative of the function £. Now suppose that f were not specified for every set of

input variables, e.g., suppose that f(l0l) were irrelevant to us. (The reason for

this irrelevance might be any of a number: perhaps in the physical context it is

7
7
n

known that the particular set of input values is precluded by some other event from n
ever happening; perhaps the consequence of input 101 is also to literally destroy

the network itself, rendering it inconsequential what the output of the network

itself is for the particular set of inputs.) Whatever the reason, if f(l0l) is not of

importance, then the contact network of Figure 2 . 3. 1. 2

t----'X

l •

Figure 2. 3. 1. 2. Simplified contact realization

is also a realization of the incompletely specified f that lists 101 as a don't care

condition. Of course the network itself does 1tcare 11 for each point, and results in

the column labeled fR in the previous truth table.

Since it corresponds with fin every row except that don't care row, however,

it is also a realization of th e function£. Since it's cheaper, it is to be preferred,

and our freedom to use it is warranted by the incomplete specification on our

function.

It is evident, then, that the incompletely specified functions are a larger

class that includes the completely specified functions. From the mapping point of

view they correspond to including a third range point; say D for don't care, and

can be counted

n .
f(x, ... ,x):[0,1] ~[0,1,D]

1 n
n

as including a total of 3 2 different functions.

2. 3. 2 Function Complexity

There is some reason to suspect that the complexity of switching functions

might not be as great as it might be, for we have seen that some portion of the

2. 23

n
n

1

J

J

J

j

u

1
n functions of n variables include those of a lesser number of variables. These are

called the degenerate, vacuous, or redundant functions. On the other hand if a n function of n variables is truly dependent upon all n of its variables then it is called

nondegenerate, or nonvacuous, or irredundant . Certainly if most of the functions

n
n

I
I

J

I

I J

J

of n variables are degenerate, then our problem as a function of n is not nearly as

great as might be . We can examine this question directly by counting the number

of functions involved.

As a first step, since everything is finite, we might simply start experiment­

ing with increasing n. For n = 0 we have the two constants . For n = 1 we have

seen that there are the two irredundant functions x and x', and then the two

constants 0, 1 to make up the total of 4 functions . For the case n = 2 we can still

successfully proceed in this fashion to classify the 222 functions. We will find

that six are redundant, i.e., 0, 1, x, x' , y, y' and the rest are not :

xy, x'y, xy', x'y' :·

x+y, x' +y, x+y', x' + y'

xy'+x'y, xy+x'y'

At this point we should have exhausted our patience, and if one is not

completely convinced of this, one should simply try to continue on and examine

the case for n = 3 by inspection alone. There are 256 such functions, and the

systematic examination of such would consume some little time. Fortunately we

can call upon a little more sophistication at this point and observe first that the

total number of functions for any case is made up of several contributors:

Total Number of Functions

where

Zn
= 2 = Total number nondegenerate + Total

number degenerate

= N(n) + D(n)

D(n) = Degenerate of n-1 variables + degenerate of n - 2 variables

I + . .. + degenerate of 1 variable + degenerate of O variables

Now since the number of functions of n-1 variables that will contribute to the

LI degenerate functions of n variables must be just

u
n .

()N (n '- 1)
n - 1

2 . 24

and of n-2 variables

and so on, it follows that we must be able to enumerate them all as

n n n
D(n) = ()N(n-1) + (2)N(n - 2) + ... + (0) N(O)

. n - 1 n-

and since

n
()N(n) = N (n)
n

we can express the whole thing in tidy form as

i
l: t)N(i) = C(n)

i ::: 0 1

This enables us to bootstrap our results up to any n of interest, for each N(n)

depends upon knowledge of the previous N (i) as m

Zn
N (n) == 2 -

n - .i
l;

i = 0

Using this formula to check our pre v ious results we can confirm that

2 2 2 2
N(2)=2 - (1)N(l) - (0)N(O)

- 16 - (2)(2) - (1)(2) = 10

for example, and that our next value

and so on. Carrying on for a few more values as in the table below

n C(n) N(n) m.&
C(n) 100%

1 4 2 50

2 16 10 37. 5

3 256 218 14. 8

4 65,536 64, 594 1. 43

5 4,294,967, 296 4,294,642,034 o. 7 5

2.25

n
n
n
n
l
I
I
I
I
I

l

J

J
LI

7
l we see the salient fact of this di scourse em e rging rather rap idly . Namely that

N(n) becomes the dominant contributor to C(n). (It can be shown that as n grows, n N(n) asymptotically approaches C(n). It follows that, at least from the point of

view of variable dependency, that almost all switching functions are just as com-

n
n
f I

i I

11

l1

plex as they can be.

2. 3 . 3 Switching E x pression s

It is clear that an expression needs to be carefully distinguished from a func ­

tion. Any of the algebraic form s that we've been considering can be used to express

the same switching function. In fact a moment's consideration will reveal that

there are many more forms (and certainly we can include graphic, n-cube, and

other circuit representations a s alternati ve forms that can b e used to express a

switching function) than there ar e functions .

In general, then, a switching expression is any finite combination of the

symbols x . , 0, 1, +,·, '. Defined recursiv e ly :
l

1. x, y , ... , 0, 1 are switching expressions.

2.

3 . Nothing else is a switching expression.

This really doesn't limit things much , but does give a nice, tight sort of

feeling about the whole thing . Thu s, for example

X = X + X = X + X + X = X + X + X + yy 1

a 11 represent the same switching function , while

x(x' +y) = xy = xy(z+z') = , , ,

is another infinite set of possibilitie s representing yet another function .

Clearly, then, each switching function has a large number of representations,

including algebraic forms, and we can conclude that the functions themselves form

I a sort of equivalence class upon their own possible repres entations. The only

reason for introducing this notion at all is that whenever one considers a class of

J equivalent things, one almost always looks for a class representative of some sort

to represent the class . This is usually a member that is the simplest repre­

sentative,

Except on purely abstract grounds, this simplest member is always chosen

B

in response to the engineering question that involves the notiop. of "cheapest". A

point to be made here, though, is that the notion of 11cheapest" ls a function of

"context 11, and until the context is defined, then there i.s no rati.ona 1 reason for

asserting that one .class member is to be preferred to any other.

For example, probably no argument would be forthcoming about the asser­

tion that of the equivalence class that includes

l
n
n

x=x+x=x+x+x~ n
that the single member xis -clearly the cheapest member. Often the criterion,

that the -above satisfies, that the cheapest member is the one that offers the least

number of variable occurrences, is satisfa _ctory. 'l'hus we would get few quarrels

in our application of the algebra in simplifying

x y + x' yz 1 + yz =

y(x + x'z') + yz -­

y(x + z 1) + yz =

yx + yz' + yz =

yx + y(z' +z) = yx + y = y

and asserting that the manipulation has resulted in a minimal form.

But on the other hand, consider

(x 1 + xix.3 + x 1 x~))'

- (x
1

+ x
2

x
3

+ x .x xt) 1

1 2 4

= (.xl O +x2x~) + .x2.x3)'

= (x +x x)'
1 2 3 (A)

and again we should probably agree that the above form, which has only three vari­

able occurrences, is ·certainly simpler than the one we started with.

Yet

x'(x x)'
1 2 3

(x +(x' +x')')'
1 2 3

(B)

(C)

(D)

are evidently equivalent expressions for the same function using only the simple

algebraic theorems we've demonstrated. They all achieve the same number of

2. 27

]

]

n literal occurrences. But suppose that it were very expensi ve to build the ","

operator. Then surely (A) is the best expression. On the other hand, if the

0 physical realization of the expression puts a high valuation on ANDs, then

certainly (D) is the cheapest, for it requires no ANDs at all. Similarly, (C) n requires no OR Is' etc. Clearly, then, the notion of "simplest" expression is one

that depends on what you have in mind, and without further directions than simply n · '\,find the simplest expression for ... ", one expression is a s "good" as another.

This has been an attempt to label the "minimality" question as strictly one n having engineering content, It is reassuring, perhaps, that obvious simplifica­

tions in the algebra do have physical counterparts. We indicate one such in the

following.

2. 3. 4 Contact Network Applications

In simple contact networks (incidentally, with respect to contact networks,

11 the word "simple" has a precise definition: a simple contact network i.s one com­

posed of simple contacts as opposed to "transfer" contacts; the reader is warned

that simple contact networks are not necessarily simple) the number of literal

occurrences in an algebraic expression does directly correspond with the number

of contacts required, hence with the most likely element of cost of such a network .

Thus every algebraic expression (with primes on the variables only!) that results

in an equivalent expression yields a different contact network that realizes the

same switching function . And the expressions with the lea s t number of variable

occurrences are clearly the cheapest in terms of these simple contacts . Thus not

only do the theorems have direct applications as in Figure 2. 3. 4 . 1

tJ 0

X + 1 - 1 ,(::~==⇒> L I 0

x-

u
(x+y)(x+z) <=-<==;>) --c:x:]-o

= x+yz <~(===::;>)

Figure 2. 3. 4. 1. Theorem applications .

2.28

but so also do the result of long strings of algebraic manipulations have direct

contact counterparts that exhibit diffe;rent costs, 'rhus in Figure 2, 3. 4. 2 the

l
n

algebraic manipulations D
cost ;:;1 6

= X X f X 1 X
1 2 1 3

x-.xf . 1 2
· cost = 4

x'--x
1 3

Figure 2. 3. 4. 2. Equivalent networks with diffel,"ent costs.

yield several different networks, all realizing the same functio:q, but at different

costs.

2. 29

fl
n
11

. I

J

I

u

l
n
n
n
n
1 I

11

j

I I

11

J

u

2. 4 Alternative R epresentations

Although our pristine definitions of a switching function as a mapping of the

n-tuples onto the range 0, 1 is correct and complete, it is practically almost worth­

less. For we always deal with switching functions in terms of their more useful

realizations as algebraic expressions, or maps, or the like. It would seem useful

at this po in t to pause and catalog the various ways in which we shall represent

switching functions, each of which has some utility in the practical embodiment of

such functions.

2. 4. 1 Algebraic Representations

As we have seen, any expression in our algebra is a switching expression,

hence is a representation of a switching function . As appropriate we shall augment

our algebra to include other operators where convenient or useful. For now,

however, we shall simply point to a typical expression

f(x X X) = X X t X X 1
3' 2' 1 2 1 3 1

as being such an expression, and we shall then use this function as a running

example in confirming the nature of our other representations.

2. 4. 2 Tabular Representations

These are characterized by our now familiar truth table, or table of

combinations:

x3 x2 X f
1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

2.30

t

Although this representation should be thoroughly familiar by now, there are a few n
more things to be said about it in order to reduce possible confusion. In the first

place, it is usually the case that the rows are arranged as above, that is with the

normal binary ordering on the values of the independent variables. This need not

be the case, however, and when it suits our purpo ses we shall reorder the rows in n
any way convenient to us. One such way that will arise involves an ordering of the

rows so that those of the same weight are adjacent as in

x3 x2 X
f 1

0 0 0 0 rows of weight 0

0 0 1 0
0 1 0 0 rows of w eig ht 1
1 0 0 1

0 1 1 1
1 0 1 0 rows of we ig ht 2

1 1 0 1

1 1 1 1 rows of weight 3

in which the natural binary ordering is not pres e rved in order to cluster the rows

of like weight together , Of course the column for f is assigned in the same way

in order to retain the identity of £.

Another point that needs to be made is that some agr ee ment mus _t b e made

about how the variables themselves are to be ordered in any particular instance.

Thus , in the above table , we have assigned to variable x 3 the position of greatest

weight when we interpret the positions in the normal binary ordering for the 8421

weighted code. Obviously if we had assigned x 1 this position instead we would get

something representationally different. The reason for sometimes arranging the

table as in the above is that in some arguments it is easier to augment from n t o

n+l variables in the table if x is assigned the column on the left. On the other n .

hand , given a fixed number of variables, it is natural to arrange the ordering

starting with x 1, x 2,... . The same possible confusion arises when we write

f(x , ... , x) in some instances, and f(x , ..• , x) in others. The prime fact to
1 n n 1

rem em b e r is that these are representational inconveniences, and of course they

do not affect the underly ing swi tching function at all. The practical way out of the

2.31

n
n

l

J

j

J
J

7 difficulty is to agree beforehand in any discourse just what the ordering is to be.

0£ course the particular ordering will greatly affect any representation that

interprets the rows of the table in terms of their binary number equivalents, as

will be seen to be the case in the following .

n 2. 4. 3 The Characteristic Number

n I£ we agree to use the conventional binary ordering in the truth table, then

of course the only portion of the table that transmits any information is the column n for £ itself, the so-called "output't column. Since this is the case, we need only

reproduce that column in order to prescribe £. This results in the characteristic

number , or the characteristic vector for £. This can be denoted C(f) and is

usually laid over on its side . Thus £or our running example

11

l

I I

J

J

C(f) = (00011011)

2. 4 . 4 The Decimal Sum Form

Obviously, since it suffices to simply list those rows where the output

column £or £ has 11 s in order to completely define £, and since we can assign a

decimal number to each of those rows corresponding to the decimal equivalent of

each row interpreted as a binary number, we can specify£ simply by listing those

rows . Thus £or our running example we have

£=~(3,4,6,7)

where we need to justify the meaning of the "~" sign, and we will do that immedi ­

ately in the following section. The representation is also often written

£ = ~ m(3, 4, 6, 7)

where m stands for minterm, This will also be apparent in the following section ,

Suffice it for now to observe that the "m" is completely redundant, so we shall

I choose to omit it. At any rate, such a representation that simply lists those rows

of the truth table, in decimal form, is called a decimal sum form, and is seen to

J be not really very sophisticated, although widely used , It should be noted again ,

however, that the form is meaningless until we have agreed on the ordering of

the variables in the representation ,

LI
2.32

2. 4. 5 The Disjunctive Normal Form

This is another algebraic form and follows imm~diately from the decimal

sum form above, or from our earlier arguments on the meaning of the Shannon

expansion theorems. Since each row of the table corresponds to a fundamental

product, or minterm, it follows that there exi s ts a disjunctive normal form which

is a summation of fundamental products corresponding one-for-one with the rows

of the truth table marked with a 11 1 11
• This form can be read directly from the

decimal sum form, for example, and we get

as the disjunctive normal form for ~pur r unning example. Of course we could have

gotten the same result algebraically as in

f =XX + x3 x' - (x' + x3)x2xl + x
3

(x 2 + x
2

) x~
2 1 1 3

= :x 1 xx t XX X +xx' x' + x3x2 x'
, 3 2 1 3 2 1 3 2 1 1

::: ' X 1 XX + x x 1 x 1 t XX x' +x X X
\ 3 2 1 3 2 1 3 2 1 3 2 1

which confirms our results.

As noted before, the principal consequ ence of the disjunctive normal form is

that it is unique to each function. Hence it forms a convenient starting place for

many synthesis techniques. Any sum-of~ products which is not in the normal form

is -called a reduced sum~of-products, and the original specification we started with

for f is an example. The reduced forms are not unique in general.

2. 4. 6 The Conjuncti v e Normal Form

By dualism we know that since there is a normal sum~of-products form for

every f that is unique, it follows that there is a normal product-of-sums form for

f that is likewise unique. We ·can quickly decide its nature by recalling that the

form for three-variables looks like

f(x
3

, x
2

, x
1

) = (.x
3

+ x
2

+ x
1

+ f(000))(x
3

+ x
2

+ x 1

1
+ £(001))

(x
3

+x 2 +x
1

+f(0l0)) ... (x~ +x 2 +x 1

1
+f(lll)).

Thus the . conjunctive normal form. consists of a product of fundamental sums, and

it remains only to confirm exactly which of the fundamental sums appears in the

2.33

n

n
n
n

I

. n expression for a given f. Since for any sum a we have

D
n
n
n

l

I

a + 0 = a

a + 1 = 1

we see that only those terms will appear in f that correspond with 110 1 s II in the truth

table representation. Thus, in a sense, while the disjunctive normal form yields

a listing of the 1i1' s II off, the conjunctive normal form is a listing of the 110 1 s '~of£.

Furthermore, notice that the binary constant appearing in each fundamental sum

appears in complemented form from the way that the variables appear. Thus

f(110) = 0 means that x~ + x~ + x 1 appears in the final product. With these

provisions we confirm for our running example that

f = (x +x 2+x)(x 3 +x 2+x ')(x +x 21 +x)(x 13 +x 2+x')
3 1 1 3 1 1

corresponding to the O's off that exist in rows 0, 1, 2, 5.

As noted before , these fundamental sums are also called maxterms, in

distinction from the previous minterms . Any fundamental product of sums that

does not consist of maxterms is called a reduced product-of - sums. For the

present f

f = (x 2+x~)(x 3 +x 1)

1 is an example of such, and can easily be generated from the conjunctive normal

form by application of our algebraic theorems.

2 . 4. 7 The Decimal Product Form

1 This is of course a direct extension from our decimal sum form, and is

simply a listing of the rows of the truth table that correspond with the O's of £.

J Thus it corresponds to the conjunctive normal form for £. Obviously it lists those

rows that are not in the decimal sum form (since, above all, f must be well defined).

J Thus in our running example since

f = ~ (3, 4, 6, 7)

j it follows immediately that the decimal product form must be

d

□

f = 1r (0 ; 1, 2, 5)

and of course these must correspond one - for-one with ithe terms observed

previously in the conjunctive normal form.

2.34

2. 4. 8 Geometric Forms

We can also usefully conclude that all of these representations are si mply

other ways of looking at the ·vertices of th en-cu be. · Clearly, whenever it suits our

purposes, we ·can designate f by marking the appropriate vertices on the cube

dire:ctly as in Figure 2. 4. 8. 1.

110 111 .

Figure 2. 4. 8. 1. Representat ion on the n -c ube

There is a variant of then-cube that is called the lattice that is sometimes of

use. In effect, to create the lattice we simply pi.ck up the .cube ·by its vertex of

greatest weight, and let the rest of it "hang 1
'. The result is that vertices of equal

weight are displayed on the same level. Th~s .Figure 2. 4 . 8. 2

011

001

Figure 2. 4. 8. 2. The lattic e represe·ntation ..

is the 3- cube latHce. The utility of the lattice will await fu:rther arguments, but

_it is clea .rly related to reordering of the truth table acc;ord-t':ng to rows of equa l

weight.

Finally, of course, we mention in o u_r catalog the transformation of the cube

that results in the vertices being repre~ented by cells in the map. These repre~

sentat-ions are the famous Ka'.1:naugh maps, and we simply recreate Figure 2. 4. 8. 3

as -the map

'

2.35

l

n

n
n

l
n
n
n
fl

1 1 1

1

Figure 2 .. 4. 8. 3, The Karnaugh map.

of our running example. The only point worthy of additional note here is that these

r I maps need only satisfy the fundamental re strict ion that each variable must be

associated with half the map , and that each such half must intersect the other

halves in exactly half the nodes of the cube . I.e . , the physically evident fact that

various rotations of the cube do not change the fundamental properties of the cube

l is true. The consequence, however, is that Figure 2. 4, 8. 4

I I
j

I
J
u
d

x4

0 4 12 8

1 5 13" 9

3 7 15 11

2 6 14 10

x3

Figure 2. 4. 8. 4, A four-variable Karnaugh map .

with the minterms decimally indexed as shown, is the same cube as Figure 2. 4. 8. 5.

x3

0 2 6 4

1 3 7 5

9 11 15 13

8 10 14 12

x2

Figure 2. 4. 8. 5 Alternative four-variable map.

w i,th the minterms indexed accordingly. This sort of arbitrariness causes no end

of confusion in the minds of students who insist that a map must be oriented in

exactly the way they first saw it in their fi.rst textbook. The salient philosophical

2 . 36
t

conclusion is the realization that it doesn't matter at all, and the useful opera­

tional conclusion is that that each user of such maps should select a conventi on

convenient to hi.mseU, and then use it consistently thereafter.

2. 4. 9 Function Measure or Weight

All the previous ;rep;resentations of a switching function have uniquely

specified the particular function of interest . There are other characterizati ons that

do not do so, yet are useful representcitives of particular features of switch ing

functions. One of these ·is the notion of weight or measure. The weight of a func­

tion or its ·measure w(f) is simply the number o.f l's in the output column of the

function . Thus

w(f) = Number of 1 1 s in C(f)

and the weight of the fraction in our running example is

wJf) = 4 .

It is ·clear that the w(f) does not uniquely specify a given function, but it does

characteri~e a class of functions. We -can list a few properties of the measure:

and s o on.

n
w(f') = 2 = w(f)

w(f+g) = w(f) + w'.(g) - w(.fg)

w(f$g) = w(f) + w(g) - 2w(fg)

Now the measure of a function turns out to be an equivalence relation on the

enti r e class ·of function~, and it is in this role that it plays it most significant

part. Thus we can quickly .check that

1. w(f) = w(f)

2. w(f) = w(g) >"' ,.. w(g) = w(f)

(reflexivity)

(symmetry)

3. w(f) = w(g), w(g) = w(h) .~ w(f) = w(h) (t;ransitivity)

and it follows that the measure w(f) divides all switching functions into non over ­

la pping classes, hence that

z2n =
n
~ No. of functions of weight i.

i = 0

and in several cases we shall find this a convenient way to partition the totality of

switching functions.

2.37

7
n
D
n
n
1

I
l
I

~ I

J

l
n
n

2. 5 Notes - References - Problems

NOTES.

Modern day switching theory and logic design, an admitted adaptation of the n propositional calculus, dates back to 1938 when Shannon (8) modified the formalism

in an appropriate way for relay contact circuits, and later extended the results to n important synthesis techniques (9). The first massive, practical treatment of

switching circuits is found in Keister, Ritchie and Washburn (4), while the first,

rl
l

J

I

J

J

J

J

I

carefully prepared analytical text on the subject is that by Caldwell (1) . A

thorough treatment of the algebra, with some applications, is found in Hohn (2) ,

and since then many modern texts have appeared (3, 5, 6, 7, 10) and these will be

found to give many further entries to the work done.

REFERENCES.

1. Caldwell, S. H., ''Switching Circuits and Logical Design," John Wiley,
New York, 1958 .

2. Hohn, F. E., "Applied Boolean Algebra: An Elementary Introduction, 11

(Second Edition), Macmillan, 19 66.

3. Hill, F. J. and Peterson, G. R., ''Introduction to Switching Theory and
Logical Design," John Wiley, 1968.

4. Keister, W., Ritchie, S. A., and Washburn, S., "The Design of Switch­
ing Circuits,'! D. Van Nostrand, New York, 1951.

5. Kohavi, z., "Switching and Finite Automata Thoery, 11- McGraw-Hill,
1970.

6. Marcus, M. P., "Switching Circuits for Engineers,''- Prentice-Hall,
Englewood Cliffs, N. J., 19 62.

7. McCluskey, E. J., "introduction to the Theory of Switching Circuits, "
McGraw-Hill, New York, 1965.

8. Shannon, C. E., "A Symbolic Analysis of Relay and Switching Circuits, ' 1

Trans. AIEE, vol. 57, pp. 713 - 723, 1938.

9. Shannon, C. E., "The Synthesis of Two-terminal Switching Circuits, 11

Bell Syst . Tech. J., vol. 28, pp. 59 - 98, 1949.

10. Torng, H. C., "Introduction to the Logical Design of Switching
Systems, 11 Addison - Wesley, Reading, Mass., 19 64.

2,. 38

t

PROBLEMS.

1.

2.

3.

4.

5.

6.

Design a three switch, light circuit (out of switches A, B, C) such that the
light L changes state whenever any switch is thrown.

Show that

(a) (x'+y,'-fxy) (x'.+y:')x ' y = 0

(b) (x+y'+xy') (xy+x'z+yz) = xy+x'y'z'

(c) (AB+C +D) (C' +D) (C 1 +D+E) = ABC' +D

In each step o! these demonstrations, which you should do algebraically,
please refer to the algebraic theorem you are using.

Simplify the following algebraic e xpressions. For the first six, indicate
which theorems you use in effecting the simplification:

(a) xy + xyz + yz

(b) xy + xy'z + yz

(c) xy + x 'yz' + yz

(d) (xy' + z) (x + y') z

(e) xy' + z + (x + y') z

(f) (xy' + z) (x' + y)z'

(g) xy' + z + (x ' y) z'

(h) (X -j- y 1) (Y + Z 1) (Z +x') (xyz +x'y'z')

Prove the following theorems of switching algebra (i) by perfect induction and
(ii.) by direct applications of previously proved theorems in only one or two
variables:

(a) xy + yz + zx = (x + y) (y + z) (z + x)

(b) x'y'z' +x'y'z +x'yz +xyz = (x' +y) (y' +z)

(c) (a+ b'c'd') (a'+ bed)+ (d + abc) (d' + a'b'c') = abc t a'b'c'

Determine whether ab+ a'b' +bed = ab+ a'b' + a'cd by any means you wish.

Given the switching function f(w, x, y, z) = xz+w ' y' z' +wx' y' determine:
(assume the variables are ordered w, x, y, z with w the highest weight)

("a) the truth table representation

(b) the characteristic number

(c) the decimal sum form

(d) the decimal product form

(e) the disjunctive normal form

(f) the conjunctive normal form

2.39

l

n
n
n

I
I
~

J

l
n
n
n
n
1

11

I J

j

LI

7.

(g) the Karnaugh map

(h) w(f)

Is S = (.:>, G) a logically complete set? · If so, p;rove it . If not, develop a
function that cannot be realized by this set . The symbol:> refers to a two
variable operation defined by

X y x';)y

0

0

1
1

0

1
0

1

1
1
0

1

8. Express the following switching function and its complement (a) in conjunctive
normal form , (b) in disjunctive normal ford, (c) in a Reed expansion,

9 .

(d) in decimal representation, (e) as a characteristic number, and (f) as a
set of marked vertices on the four-cube;

f = wxyz +-xyz + wy (w + z)

Find the complements of the following functions:

(a) f = a + be
(b) f =(a+ b)(a 1 c + d)
(c) f=abtb 1ctca 1 d

Prove that your answers are correct by showing that ££1 = 0 and f + f 1 = 1.

10 . Prove that the exc;:lusive OR operation is commutative, and associative, and
also that the AND operation is distributive with respect to it.

11. Construct Karnaugh maps for

12.

(b) f = X 1X 1 X I + X 1X 1X I + X 'X 'X I + X 1 X 1X I
23 4 134 124 1 23

(c) f = X 1 (X X + X 4)
1 2 3

Prove by mathematical induction on n that the function

f (x , x 2 , .. , x) = x @ x 2 @ ... @ x
1 . n 1 n

is equal to 1 if and only if an odd number of the variables x , x 2 , ... , x are
• 1 n

equa 1 to 1. (The symbol @ stands for exclusive - or,)

2.40

14.

15.

Write the t .ransmission function (i.e., the algebraic statement representing
a closed circuit) for networks (a) and (b) below. Form the complements of
each, and draw the networks represented by the resultant transmission
functions.

(a) B

,---- A' __ B _JE-------{)

C'

C'

DJ-F'
E

C' -- D'--- E'

A'

A switching function f of n variablei:, is called a neutral function if and only
if w (f) ::: zn-1, where w(f) is called the weight of f , How many neutral
functions of n vari ables are there?

A fun ction f is called symmetric if and only if all mi.nterms of a giv en weight
are eit her contained inf, or not, for each possible minterm weight. (th e
weight of a minterm is simply the number of l's in the binary representation
of the min term; e. g. , w' xyz is minterm O 111 and is of weight 3.) How
many sym m etric functions of n variables are there?

2.41

l
n
n
n
n

. I
I I
u
J

J
Ll

1

n
n
n
n
n

I I
I j

I 1

i I
11

ii
I
u
u

3 Elements of Logic Design

We now turn our attention to the organization of physical networks that will

accomplish the realization ('i.e., another alternative representation) of switching

functions. We shall be concerned with the organization or layout of such networks,

and not at all with their electronic realization (or mechanical , or fluidic, etc . , etc.)

Such organizational aspects of networks are what is usually referred to as

logic design. Thus what is involved is the application of the representations that

we have been considering to the realization of networks under the various constraints

under which the designer of physical systems must work. Logic design, then, is

e ssentially an engineering discipline because it always must be subservient to

questions of co st , and the 'Jgoodnes s II of any particular design must always be

measured in terms of cost.

In any discussion of logic design, then, one must always proceed from a well

defined base of just what the nature of the . devices are, and just what it is in the

physical construct that is important in terms of cost. For such cost criteria are

the only bases for deciding whether any given design is superior to others, or not.

Frequently the principal cost criteria have concerned total number of elements

involved, or total number of different element types, or minimal speed of network

response. More recently the appropriate criteria have not involved the total

number of elements, but rather total area required by a layout, the regularity of

the layout, its reliability by some appropriate measure, etc., etc. The point is

that logic design is simply meaningless without first agreeing on just what these

criteria and limitations are.

Thus the topic of logic design is one with endless variety, just as with other

aspects of switching ,theory that we've noted previously . We can only hope to give

a few examples in order to illustrate how our basic theory can be applied in the

practical situation . The particular technique that will be of ultimate interest to the

reader will depend upon the particular constraints he is faced with as a result of

the technology of interest at the time of application. Only with small probability

will that technique be a minor variation on any of the approaches we shall sum­

marize. But it is hoped that the basic techniques in boxing in a technical problem

will serve as launching points for the development of other logic design techniques

when their need arises.
3. 1

3. 1 Branch Networks

Combinational networ ks derive their name from the fact that their outputs

are strictly functions of the particular combinations appearing on their inputs, i.e.,

time plays no significant role. Combinational networks in turn are of two principal

types; branch networks and gate networks. (The question is not idle: an early

paper in switching theory addressed itself to exactly this question: whether there

could be other kinds of networks than the two we understand presently as repr e­

sented by the branch and gate networks ; needless to say there exists a proof that

no other kinds of basic network types can exis t.

The branch network is basically a network wherein the transmission in the

network is altered by the action of the branch elements. The relay contact is the

example par excellance, but ther .e are other examples as well, such as cryotrons,

and certain transistor -configurations. They are typically bilateral devices, and

can be connected in any fashion, and the only question of interest is the conflux of

variables that results in the completion of a circuit between a pair of terminals.

The gate network is quite a different beast. It is essentially a graph made

up of interconnected nodes wherein each node monitors several "inputs'/ and

provides at its "output'' (and there m.ay be several replicated versions of this

output) a signal that represents the t r uth value of the particular combination of

values appearing on the inputs. With one special restriction, gate :network s may

also be interconnected in any way, and the function is real-lzed on a specifi e d one

of the possibly available "output" lines. The specia.l restriction is that we agree

to never connect together the outputs of two diff eren t gates, for this results in lack

of determinism in the mathematics, and pa s sible melted terminals in the physical

embodiment.

Thus Figure 3. 1. 1

X

~+y

y

Figure 3. 1. 1. An OR gate,

is an OR gate that forms the output x+y, and Figure 3. 1. 2

3. 2

n
n
n
n
fl

tJ

j

J
u
El

n
n
n
n
fl

11

ll
J

u

u

x~©y

y

Figure 3. 1. 2. An exclusive-OR gate.

is an exclusive-or gate that forms the output x@y on its output, but Figure 3. 1. 3

X

y ----®>-
X --------(ffi\ ' ®
y -----

Figure 3. 1. 3. A prohibited connection.

is a network that we agree to never build since not only is the output not deter­

ministic for the input combination 11 1, 1 11, but the physical realization is unstable

as well.

The branch network has unquestionably seen a long decline in interest,

simply because most networks nowadays are of the other variety. Probably,

however, with respect to cleverness and intuition , and sheer perseverance, the

branch network has provided the most challenge to clever network theorists and

tinkerers. Very sophisticated analysts, from graph theory specialists to matrix

theory sophisticates, have dabbled with the branch networks , with very few general

results regarding minimality resulting from all these efforts.

The usual criterion in the branch networks translates into the number of

variable occurrences in the switching expression representing the function.

Thus, in terms of relay contacts, the expression

f = x 1 yz + x 1 y 1 z 1

translates directly into the network of Figure 3 . 1. 4

__J X 1
- y -z ---i_____.

~ L_ x'---Y, ___ z ,~

Figure 3. 1. 4. Typical branch network

3. 3

t

with a .cost in simple contacts of 6. Cl ear ly the algebraic factorization off into

f = x 1(x~ + y'z')

c orres ponds to th e network of Figure 3. 1. 5

-cy_z~ .----x'
Y'--z' ,

Fi gu re 3. 1. 5. Simplification of br anch network.

which ha s a cost of only 5, h ence is cheaper by th is criterion. Thus any algebraic

form that ha s a l esser numb e r of v ariabl e occurrences in the ex pression is i mmedi ­

at e ly a c h eaper n e two rk . The e nt ire ga m e th e n becomes one of clever alg eb raic

man i pulation in order t o p ro du ce for m s of l eas t complexity, a lthough we may be

willing t o u se man y l ev els of pa re nth eses in or der to do so. Thu s the n e tw o rk of

Figure 3. 1. 6 corr es p ondin g t o x (y z + y'(w+z')) + x'w(z+y')

C = 10

Fig ure 3. 1. 6. Br anch networ k exa mpl e

is certainly cheaper th an th e n e two rk co rr es pond ing t o an ex pan si on on th e min ­

terms in a dir e ct parallel realization.

The whole hous e of cards com es tumbling down , ho weve r, when it is r e alized

that branch network s that co rres pond to ex pr essions in ou r alg e bra ar e n ecess arily

limit e d to be series - parallel netw o rks. F o r that, after all, wa s the fundamental

phys ic al correspondence mad e with our bi.nary operators: '~+" was to corr es pond

with thing s in "parallel't, while "· Wwa s to corre s pond with thing s in "serie s ".

Every expression in our algebra mu st then c o rre s pond with what we rn ig ht call an

es s.entially seri es n et work, or with an essentia lly parall e l n e twork, For ex ample,

f ::: xyz ' + x '(w'y + z(y'z'))

is essentially parall e l as ind ica ted in Figur e 3. 1. 7

3. 4

7
D
n
n
n
l

J

LI

u

l
n
n
n
n
11

J

I

ti
11

J

j

I ky.;;' I
I I

£ - -

x'(w'y +z(y'z'))

Figure 3. 1. 7. Essentially parallel network

while

f = (x 1 + zw) (xy' '+ z)

is es senti.ally s eri.es

x' +zw xy' + z

Figure 3. 1. 8. Essentially series network.

as shown by the decomposition in Figure 3. 1. 8. Of course each subnetwork in

each case is in turn either essentially series or essentially parallel, and we -can

continue to break each of these down in turn. The result is a series-parallel

network of contacts that corresponds one-for-one in contacts with the number of

variable occurrences in the algebraic expression. The hooker in the whole argu­

ment is that many networks can be constructed that are simply not series-parallel

networks, hence are simply not describable (in terms of associating contacts

directly with variable occurrences) in our algebraic expressions. Probably the

simplest example of this kind of network is that of Figure 3. 1..9

Fi.gure 3. 1. 9. Example bridge network.

which uses the familiar bridge form, but is ~imply not directly the realization

J of any series-parallel algebraic form. This property depends crucially, of course,

upon the bi.lateral nature of the elements. It matters not to the contact that ground

LI
3. 5

passes m one direction through contact E for one path, and the other way for

another path.

This observati.pn would not be so unsettling i.£ it were possible to show that

there always exists a series-parallel form that is as "cheap" as any non-series ­

parallel form, but alas, such is not the case. The network given above is also an

example of such an assertion, and the interested reader can try to beat the above

cost of 5 contacts i.n any series - parallel network, and in doing so he will quickly

become a believer.

Even more unsettling, it can be proved that most all networks caµ be minim ­

ally realized only in networks that are not series-parallel.

Worse yet, all the networks we have given so far have at least been planar,

that is they cc\,n be drawn without crossovers on a sheet of paper. Certainly the

series-parallel networks are most eminently planar, as is the bridge network

given above. But some functions cannot be minimally realized unless we consid er

networks that are nonplanar. An example is the parity (even) function on four

variables shown in Figure 3. 1. 10.

f

Figure 3 . 1. 10. A nonplanar network.

This network cannot be drawn without the crossovers shown, and it can be shown

that no planar network -can a .chieve the same number of only 12 contacts . M oreover

it can further be shown that most networks are not only non -se ries-parall e l in th e ir

minimal realization, but they are also nonplanar .

This would appear to be a most unhappy state of affairs, and many attempts

at diff ere nt realizations have been investigated in an attempt to systematize th ese

networks and their minimization. The intere s ted reader might look into the

literature under tie sets and cut sets for attempts at providing analysis (and by

inversion, synthesis) techniqµes that will handl e this more general kind of n e twork.

3. 6

l
7

n
n.
n

J

.J
J

l
n The honest reporter must state that all of these attempts have been i.n vain,

n
n
n
11

l

I j

j

11

. I
j

J

LI

except for the most simple of networks involving a very few variables. There are

obvious connections with graph theory and matrix theory i.n describing the connec­

tivity of contact networks . These too, except intellectually, have provided no new

practical insights except for the case of a very few variables. Even the Sunday

afternoon game players have had a great deal to do with the mi.ni.mi.zation of these

networks, and the results have been di.splayed i.n tables of demonstrably minimal

contact networks for all functions through four variables that are available in

several reference works. But the point i.s that there are no such tables for five

variables, much less si.x, or seven. It seems strange that such complexity

accrues so rapidly for functions of such a limited number of variables.

As a practical consequence of these observations, the cost criterion that

simply counts the number of simple contacts, while still a reasonable one, i.s

inadequate i.n most instances taken by itself. Rather for networks of reasonable

size at all the usual ploy i.s to look for some regularity of structure wi.thi.n which

the network i.s embedded, and then to eliminate as many contacts as possible by

ad hoc methods.

A simple example of such a regular network i.s the mi.nterm network of

Figure 3. 1. 11 (i.n three variables, which is obviously generalizable to an arbitrary

number of variables).

x'
3

f(000)

f(001)

f(010)

- x 3 ·-• f(111)

Figure 3. 1. 11. Mi.nterm branch network

We simply qesi.gn a set of parallel lines, each one corresponding to a mi.nterm,

and to realize a particular function we connect together the appropriate mi.nterm

set that comprises f, and our realization of the arbitrary f i.s complete . Of course

we can then eliminate the unused lines, reducing the total number of contacts

required for the particular f. If we let C(n) be the maxi.mum number of simple

3, 7

contacts required for the realization of an arbitrary f it follows that
n

C(n) .::S n2

and at least we have bounded the potential complexity of our problem.

Si.mple as it is, this sort of approach is completely characteristic of many

of the systematic techniques by which the design of efficient contact networks .can

be approached. One always has a design algorithm at hand by which to proceed,

usually the regularity of the structure yields an upper bound on the possibl e

complexity of the realizations, and always some contacts can be eliminated in the

final realization. A direct extension from the basic network above are the tree

networks that depend upon successive factorization of the variables one at a time.

For example the three-variable tree looks like that in Figure 3. 1. 12

£(00 0)

£(001)

£(011)

f(111)

Figure 3. 1. 12.. Tree branch network

and such tree networks have provided starting points for a great many sy s tematic

techniques. Of course the number of contacts is readily bounded for then- variable

tree by counting the number of contacts in each level starting from the single node

at the left (root) and proceeding to the minterm nodes at the right (lea ves):

n · n-1 n
C (n) ~ 2 + 4 + 8 + . . . + 2 ::: 2 ('l + 2 + . . . + 2) = 2 (2 - 1)

which is a considerable better complexity result than for the minterm network

· itself. Any particular functi.on is easily realized, e.g., f = ~ (2, 3, 5, 6, 7) looks

like the network of Figure 3. 1. 13.

3.8

7
n
n
n
n

u

n
n
n
n
r 1

C = 14

f

Figure 3 . l. 13. A tree example

Of course we can trim away any unused contacts, as well as shorting any contacts l
whose output terminals are already shorted . For this network this yields the

l / reduction shown in Figure 3 . l. 14.

l

-· -X 1 ---X

-Lxll -cz2x-~
2

C = 6

Figure 3. l. 14 . Partially reduced tree

Also for this network we can readily see an application of the theorem x+x'y = x + y

j to eliminate one more of the x~ contacts, yielding the network of Figure 3 . l. 15 .

d
I
J

j

C = 5

Figure 3. 1. 15 . Reduced tree .

as our final result .

In the example above we -could of course get the same results ultimately by

algebraic manipulation since our ultimate realization turned out to be series ­

parallel. The tree realizations have greater power than this example would indi­

cate, though, and can also lead to nonplanar realizations . We can illustrate this

in the case of the parity network previously presented. The four - variable function

3.9

for even parity ca n b e ve rifi e d to be f::: ~ (0, 3, 5, 6, 9, 10, 12, 15), hence is realized

by the four - variabl e tree of Figure 3. 1. 16

d X I ---,-{)

x' i- 4

2 I C I r--- X 4---0
I L__x3 f I i

, I I I _ _ x,r-o
,-- xl I I I .--x4 o

I x'-L-LJ
1 L_ a I r-- 3 c1 I L_x4-- 0

X2--f-rl I x'
. I I L_ x __j T_i-- ~

11 3 d ; x4-__ I . ,____ o

1 I x4 0

I: Lx3-Cx
X I I+- 4-- 0

&-+ I Z-a __ X4---o

I X-- ' I 3--i __ x4 o

: ,_r-x~
I 1~ -X3 L_.

x IL x4 o 2---t, ~--X4 e>

x 3--------1Cx
4.....--- 0

Figure 3. 1. 16 . Tree realization of parity network.

1

0

0

1
0

1

1

0
0

1
1

0
1

0

0

1

This time w e hav e us e d 11 s on the outputs to show those terminals that would be

joined to ge th e r t o pr o du ce the desired £. The 0 1 s on the outputs indicate the

terminal s that w o uld b e left unconnected. Now we view the n e twork from the two

marked point s a - a' s ay . Since the subtrees from these two points lead to the same

selection of outputs, it follows that either one of the subtrees can be eliminated if

we but shortcircu it along the dotted line indicated between the points a and a' .

Similarly w e ob se r ve th e same possibilities for points b-b', c-c' and d-d'. Takin g

advantage of this ob se rvation, and it's at exactly this point that the nonplanarity

arises, we ge t a s a simplified version of the tree the following network of Figure

3.1.17.

3. 10

l
n
n
n

j

j

u
LJ

LI

l
n
n
n
n

1

II

J

u

j

u

f
x' ---x' 1

~xj I :2
I 3 4
I e
·-' --x f x4 1

3
I

3 ~I
X

4 0 1

I z : __ x3 x' 0 1 f I 4

I_I x,-Cz
2

Figure 3 . 1. 17. Partially reduced parity network.

In this form we again note the same possibility of shorting the points e - e' and

£- £' . Doing this we achieve, after rearranging the layout, the network we observed

before and reproduced in Figure 3. 1. 18 .

f

Figure 3. 1. 18. Reduced parity network ,

This process is generalizable, and the arbitrary parity function network on n

variables can be realized using only 4n-4 contacts.

We could explore all sorts of other directions at this point for the branch

networks . For e xample, the complete trees, since they can be used to realize

any £, are a member of a class of networks called all - function networks . There

are many other forms of all - function networks, and some of these achieve better

complexity bounds than the complete trees . We shall save these for a later

discourse .

Another cost factor that is discussed widely in the literature takes the

approach that the simple contact is not the important thing to count, but rather the

transfer contact, which is a combination of a make and break contact realized in

3 . 11

one package. The transfer contact requires only three "springs II in its construc­

tion, versus four springs in the separate construction of the two kinds of simple

contacts. Therefore this approach attempts to minimize springs rather than

contacts, and yields different rninimal networks in many cases. Another approach

seeks to "balance out" the appearances of the different variables i.n the realization.

The trees above obviously use many occurrences on some variables (near the

leaves) and only a few on others (near the root). In order to make the loads on dif­

ferent relays more nearly equal, there is another large body of techniques that

seeks to distribute the variables differently. There is no reason that each sub­

tree, as we proceed from the root, need be expanded on the variables in the

same order.

These and other similar questions are noted, and we shall do nothing more

with them at this point.

3. 12

l
n
n
n
n
l

j

J

I
u

n
n
n
n
fl

j

I

I J

j

3. 2 Gate Networks

In the gate networks we have consi.derably more desi.gn flexi.bi.li.ty than in the

branch networks and it is even more needful to properly defi.ne our area of dis­

course in order to be able to say anything meaningful at all. For, after all, a

contact can only do one thing: it can either provide a short circuit between two

terminals or an open circuit. A general n variable gate, however, can be what­

ever we defi.ne it to be; in particular it can be whichever of the 22n functi.ons of n

variables that we choose it to be . Of course i.t is more difficult to build an n vari­

able gate, than an n-1 variable gate. But it's important to recognize at the outset

that even more closely than for the branch networks our design problems are

restricted only by what we can afford to pay.

Thus, the answer to the question: what is the maximum number of gates

needed to realize an arbitrary function of n variables? i.s exactly one. That is

C(n) = 1 for all n if we use as our cost criterion the number of gates required.

Surely there must be more to logic design than this! And of course there is, for

our answer above, while correct, is very misleading, for it would require us to

build arbitrarily complex gates of very high cost, hence reveals nothing more than

that in this context the number of gates is not a realistic cost measure. Actually

we would be better advi.sed to peer within our complex n-varia ble gate and deter­

mine how many littler "gates II we would actually require in order to realize it.

For after all, what is a gate? It is simply an assembly as in Figure 3. 2. 1

with n inputs

Figure 3. 2. 1. General n -v ariable gate

J and a single output . Then inputs are bi.nary -v alued (corresponding to some assign ­

ment of the actual physical values such as ''high voltage"= 1, and "low voltage"= 0)

~ · such that the output which is also binary -v alued is determined as some specified

combinational function of the inputs. We would mark the gate somehow, as with f.
l

above to indicate just what the function is, and then we could proceed to construct

3. 13

deterministic networks from such gates. It is evident that such gates corres pond n
directly to our propositional cori.nectives on the one hand, and to the operators in

the extended algebra on the 0ther. Gates correspond directly with what we earlier n
called Uconnective blocks" and n~tworks of gates correspond with the prop os itional

networks designed at t):iat time.

It is evident, then, that without further cost restrictions I every expression

in our extended algebra correspond i;,tructurally to a gate n e twork. For exa mpl e

the expression

f(w, x, y, z) ::: (xy+z).:) [(w@z) x']

is realized directly by the gate network of Figure 3 i 2. 2

Figure 3. 2. 2 , Example gate n e twork.

and it would again appear that we've said everything that n ee ds to be said. The

cost criterion would reasonably be the total number of gates involved, and

simplification of a network would correspond to algebraic manipulations that reduc e

the number of operator appearc1,nces, i.e., connectives, in the alg e braic form.

Of course if we want to be more reasonal:,,le we would begi n to limit our options by

at least requiring a ' 1fanin 11 lhnitati.on on the gates we can use, i.e., on the num­

ber of input leads, and probably on the "fanout" as well, i.e., on th e number of

gates we woq.ld allow to be driven by a given gate. Thes e assumptions would b e

reflected from ou:J;- physical co;nl:itructi.on. difficulties, howev e r, and have nothing

to do with weaknesses in our- "logic''·

Although as logicians we are willing to assume that things happen without

the passage of ti.me, as circ .uit designers we are not. The more gates that a

given signal need pass through in contri.bl;lting to the output , the greater is the

3. 14

n
n
n

J

j

J

J
Ll

n passage of time necessary for that propagation to take place . Hence we might

~

n
n
11

I
l J

I
I

LJ

also be concerned about the number of levels of which a network is composed, and

might require, for example, that no network be "deeper II than three levels in order

to speed up the computational operation.

Although as logicians we might also be willing to manipulate almost any kind

of operator, as algebraists such will probably be trying on our patience since we

would need a great many manipulative theorems, and as circuit designers again

we would probably rather not . Certain of the connectives can be realized more

easily in certain technologies, and it is always an engineering truism that you can

make a great many things out of a small set of possibilities than out of a large set

such that each item is more accurate and reliable . For whatever the reason, the

logic design context is always phrased in terms of a relatively small allowable

set of operators or gate types. For all these reasons , the logic design in a

particular case is always severely restricted, and each restriction yields dif­

ferent algorithms for design. We shall consider only a few as examples.

3 . 2 . 1 Two-Level AND/OR Networks

The two - level AND/OR network (or its NAND, NOR variants) is usually

what people mean when they say "logic design". The development of such net­

works is a classic example of how algorithms can be developed, and how different

functional representations can be brought to bear on a problem. Beyond that, the

ultimate problem of producing demonstrably minimal circuits is still an unsolved

problem (and is likely to remain so) hence reiterates a theme that we've heard

before in these discourses.

Suggested by the basic Shannon decomposition theorem on minterms, the

two-level AND/OR is assumed constructed of AND and OR gates only , We are

willing to consider AND gates of an arbitrary number of inputs, as well as for the

OR gates, although we must admit when pressed that this is not really practically

obtainable . When pressed on this point we shall dodge the issue by pointing out

that we ·can always realize a gate on an arbitrary number of variables by cascad­

ing those of a lesser fixed number of inputs .

Now the first stumbling block is that we remind ourselves that the set

3. 15

l
S = (+ , ·) is simply not lo gically complet e . 0 £ course we want to realize arbitrary n
functions nonetheless, and the additional pro v ision that we s hall use to attain these

ends is to assume that we have both th e unprimed and prim e d variables available n
as inputs to the network. Aesthetically this lo oks a lit t l e lik e a self- serving a ss ump -

tion, but practically it turns out to be not un r eason able at all. Quite frequently n
the generation of a given function f is acc om pan ie d by gen e ration off' as w e ll and

both of these will usually be circulated wh e r ever n e ces sary as input variab l e s for

other networks. At any rate, that is th e nat ur e of our assumption, and with th e

primed variab l es also available i.t i s clear by reason of th e Sha nnon expan s ion

theorems that AND' s and OR' s are compl ete for any fun ctional r ealization.

Now we mak~ another assumption that can pr im arily b e jus tified only in

terms of overall network speed : we s hall as s ume that only two levels of logic are

to be allowed. T wo l evels are cleq,rly s uffici ent, again base d on referenc e to the

Shannon minterm form, but the principl e r e ason for desiring only two le ve l s is

because of the speed of network respon se, Cl e arly we can not realize all functions

with only a single l eve l of AND' s or OR' s, so th e tw o- l eve l networks achieve the

maximum speed possible within our lo gic a ssu mptions. Af ter having made the

assumption, however, we can obser ve t hat an a dditional ad v antage to th e two - l ev el

form is that it is regular in form, and e a ch n e tw o rk look s l ike e very other in its

basic characteristics.

The basic structure, then, of th e tw o - l eve l AND/OR is to assum e a l eve l of

AND' s feeding a collecting OR gate that fo r m s th e output. Thus the basic n etwork

looks like that in F igure 3. 2. l, 1.

f

Figure 3, 2. 1. 1 Ba sic AND/ OR form.

3. 16

n
n

j

u
u

l

n
n
fl

11

u
j

u
J

As a first pass at a reasonable cost criterion we can take a di.rect count of

the number of gates involved. Since the Shannon form indicates that we always

have a minterm expansion of any function, and since there are never more than 2n

of these, we can surely bound the cost of such network by
n

C(n)~ 2 +1

For example, the di.rect realization off= 2:: (1, 3, 12, 13) by means of its min-

terms is given in Figure 3. 2. 1. 2

X4
x~

x2
)(1
X4 ~
x3~
x2 / f
x1

x4 ~
x3 ·~
x'---:;:::.-, xr ,,-----

~t~A x2 . .
X

Figure 3. 2. 1. 2. A particular realization.

at a cost of 5 gates, and it should be clear that any arbitrary function can be so

realized by presenting each of its minterms on one of the input AND gates.

We can even observe the structure of another all-function network by this

approach. Suppose we associate a minterm with each input AND and provide it

with an extra input for the binary constant that goes with that minterm. Thus the

general structure of such an all-function network is as in Figure 3. 2. 1. 3
f (000 >--._,

X3----?
x'

2
x1

f(001)

f(111)

x3
x2

Xi

f

Figure 3. 2. 1. 3. An all-function network:

3. 1 7

and depending on how th e f(ijk) input s ar e s p eci ali ze d, it i s obv ious that any of th e

n - variable functions can be realized.

Our present purpos e , however, is to d eve lop an al gorithm for the minimal

realization of an arbitrary, but 1;,pe cified function within s uch a form . From th e

structure of the form it is clear that th e only alg e braic fo r m that can corr e spond

is a simple sum of a set of simpl e produc t s (wh e re by s imple w e mean with no

parentheses--thus tx+y)z · i s not a simple pr oduct, althou gh xy +x z is the simple sum

of a couple of simple products).

Of course th e Shannon mint e rm d e c o mp osi tion i s a n ex ampl e of such a r e p re­

s entation , and we conclud e that th e AND/OR n e tw o rk co rres po nding to th e mint e rm

e xpansion always e x ists fo r ev e ry function . If m i s th e n um be r of minterms in f ,

then surely

C(n) ~ m + l

for any function , Of course w e might hop e to do b e tter. In ge n e ral the minterms

of a function can be algebraically co;rnbin e d in v ar i ou s way s to yi e ld sums of a

lesser number of products, h enc e a real iz ati on that r e quir es f ew e r gates. For

example, consider th.e fu.pctiqn f = ~ (0, 2, 3 , 4, 5, 7) which r e quires 7 gates in th e

direct AND/ OR realization , Alge b r a ic ma ni pula~ion yi e ld $ a s alternative repr e­

sentations for f the e x pressions

f = x ' z' + y' z' + y z + xz

f = x ' z' + x y' + yz

£ = x'y + y'z' +xz

which require respecti v ely 5, 4, and 4 gat es in th e tw o- l eve l AND/OR r ealizat i on.

They are sum ~of -,products form s, but ar e cl early not comp o :;,e d of minterms . Any

sum - of - products which is not a .fundam ental (or mi.nt e rm) su m -o f - products will b e

called a reduced sum. A r e duc e d sum wh ic h ex hibits

1) the least possibl e number of product t e rm s , an d

2) within this restriction, th e l e ast numb e r pf variabl e occurrenc e s in

the expression

will be called a minimal sum for f , and w e shall abbr e'Viat e i t a s f The fir s t
ms

restriction above clearly correspond s to th e lea s t total numb e r of gates requir e d

in any realization, whil e the s e cond r e duc es th e numb e r o f ga t e inputs to th e l ea s t

3 . 18

l
n
n
n

j

J
J
J

l possible number within the first restriction. We shall accept for this discourse

the cost function implied by the two properties listed above, hence the cheapest

n
n
n
fl

11

I I

I

J

l

two-level AND/OR network is one corresponding to f , and our complete atten-. ms

tion in deriving a relevant algorithm will be in developing f for any arbitrary
· ms

function.

Now a first approach at deriving f might be algebraic. The three forms
ms

given for our example f above are all algebraically derived (the interested reader

might be interested in verifying the assertion) by starting with the minterm form

for f and simplifying, A disturbing fact is that the results of such algebraic

simplification display "local minima" because of the following fact. Given any

reduced sum-of-products we shall say that that form is irreducible of the deletion

of any literal results in a function that is no longer £. All of the three forms given

above are irreducible. From the forms of the example, while we can readily con-

clude that any f must certainly be irreducible, it does not follow that any
ms

irreducible f is an f
ms

On the othe;r hand, it can be shown that the last two forms

do meet both of our cost criteria, hence we can conclude that f is not a unique
ms

thing in general, that is that there may be . several reduced sums that are minimal.

All of this promotes a sort of feeling of elusiveness about the whole discourse that

is unsettling without further nar:i,-owing down of our options, and further pointing

to the particular representations that might be of help in our search for appropriate

f
ms

The key characteristic that turns out to be of help is the following: the only

algebraic manipulation that is of use in moving from the minterm form to any of

the reduced sums (without introducing any parentheses) is of the form

f = Ax + Ax' = A .

But this is just another way of saying that two minterms can be combined as above,

if and only if they differ in a single variable, or in terms of the n-cube, if and

only if they lie on adjacent nodes. This suggests that our n-cube representations

might be of utility in deriving such simplifications, and such turns out to be the

case, for then-cube representation, par_ticularly the map forms known as the

Karnaugh maps, provide efficient means for getting at the problem directly.

Thus the usefulness of the Karna ugh. map, at least in this context, derives

3. 19

from the fact that adjacencies on the map show where simplifications of the

desired type Ci;l,n be made. For examp l e the map of Figure 3, 2. 1. 4

w

z
1 y
1

X

Figure 3, 2, 1. 4. Map of a particular f

indicates two adjacent nodes are 1 in f and that immediately we can combine them

as in

wxyz + wxyz' = wxy, .

and in fact the final product itself can be read directly by identifying that part of

the map described by the two adjacent l's: wxy.

At this point, the interested reader should verify for himself that any simple

product of the variables must correspond to a subcube on th e general n-cube, hence

that the various simple products of which our minimal sums must be composed

comprise recognizable patterns of 11 s on the marked Karnaugh map, patterns

that correspond to the various differing dim ension subcubes of the map. For

examp l e:

wyxz 0 - cube an iso lat ed cell of the map 1 minterm

wxy 1-cube two adjacent 0 - cubes 2 minterms

wx 2- cube two adjacent I-cub es 4 minterms

w 3-cube two adjac e nt 2- cubes 8 minterms

1 4-cube two adjacent 3 -c ubes 16 minterms

and so on . Although these comments are mad e in terms of the 4-cube, it should

be obvious that they generali.z;e for general n-cubes.

Furthermore, these various kinds of cubes can all be readily identified

(visually) on the map (a gain the I -cube provides a convenient ex ample -- and

remember the end,-around adjacencies) ,' as be ing of the kinds shown in Figur e

3.2.1.5.

3. 20

l
l
n
n
n
r l

l

· I

l

I
J
u

l
n

n
n
n
l
I

f l
l

J

j

J

u
u
t

1
0-cube (a)

1

1
1-cubes (b)

1 1 1
'

1

1 1 1

1 1 1
2-cubes (c)

1 1 1

1 1 1

1 1

1 1 1 1 1 1
3-cubes, Etc. (d)

1 1 1 1 1 1

1 1

Figure 3. 2. 1. 5. Various cubes on four-variable map.

i.e., the various simple products of which our f might be composed correspond
ms

to the various subcubes indicated above, that is to the various sort of generalized

squares that might appear as "patterns I) in the n-cube.

Clearly, since these subcubes represent products in potential minimal sum­

of - products forms, they play an important role in the representation of arbitrary f

in terms of such products.

To this end we introduce a few definitions that you will find are widely spread

in the literature describing these affairs. We shall say that g is an implicant off

if whenever g is true, it follows that f is also. In the present context, if g 'is a

3. 21

product term that implies that f = 1 whene ver g - 1, th en g i s an implicant off.

Thus if

f = yz + .xz

then surely both yz and xz are implicants off.

Furthermore, we shall say that g is a prime implicant off if

1) g is an implicant of f, and

2) the deletion of any variable from g results in a produ<;:t term

that is not an implicant of £.

Thu s in our previous example, z is certainly not an implicant off, nor is y,

hence it follows that yz is a prime implicant of £. On th e other hand,

f :=o x yz + x ' yz + x y' z

is the minterm expansion for f, and of course all of th ese minterms are also

implicants of f. On the other hand, x' yz is not a prime irnplic ant since yz is also

an implicant off, and it can be gotten simply by deleting the vari able x' from

x'yz.

To this point we can make some conclusions regarding our search for f .
ms

In the first place it must obviously be irreducible algebraically, although we've

already verified by an earlier example that th i s is not suffici ent. Furthermore

we can now conclude that

f = ~ (a set of pr ime i mpli.<;:ant s
ms

"' ~ (c1, set of ma x imal cubes that co ve r f)

where we say that f covers f if it is 1 when eve r f is. Thu s our problem i s
ms

reduced to the graphical one of determ ining a covering set of cubes for f, where

each cube is as large as possible, and the total numb e r of cubes is minimized

(since each corresponds to a product term in the sum-of-pr o ducts expansion).

A first step before continuing the ar gume nt is t o c onvince ourselves that

each function is associated with a uniqu e set of prime implicant s. Every minterm

marked 1 on the map determines at least one maximal cube that contains it. For

example in the map of Figure 3. 2. 1. 6

3.22

l
7

n
n

I
I

j

u

1

7
D
n
n
f I

w

1 1 1 - - . z

y 1 1 !

X

Figure 3. 2. 1. 6. Map of example£.

minterm 1 is contained in prime implicant w'y'~', while minterm 13 is contained

in prime implicant xz. On the other hand minterm 5 is contained in both w'y' z ~nd

in xz. Clearly we can generate the total list of prime implicants by successively

J going through each minterm and listing the prime implicants which contain it. For

the example above our list would consist of only the two entries: xz, and w'y'z.

A function that uses all the prime implicants of f is called the complete sum

for f, which we'll designate f A reasonable conjecture at this time, then, would
cs

be to ask whether

f = f
ms - cs

as is certainly the case for our example above . To dispose of this conjecture

let us consider the map for the function considered earlier, namely f = ~ (0, 2, 3,

4, 5, 7) a s shown in Figure 3 . 2. 1. 7.

z

Figure 3. 2. 1. 7. Map of£.

If we determine all the prime implicants for this f from the map we will generate

j the list :

u
LI

f = x' y + yz + xz + xy' + y' z' + x' z'
C G

which is irreducible, and even worse than we had before for this function. So

clearly it is not the case that f = f and we must look further.
ms cs

3. 23

Rather the minimal sum consists of the minimal covering with such cubes,

and in the case of our example function either of the two coverings shown in

Figure 3 . 2. 1. 8
y y

X 1 1

z z

Figure 3. 2. 1. 8. Alternative covering s for f.

will do, corresponding to

f =x'y+xz+y'z' and f ==yz+xy' +x'z'
ms ms

as we pointed out before . This points out another disturbing fact: f
ms

is not even

unique, and for functions of considerable complexity it is possible that a very large

number of minimal forms can exist .

The above example also points to a counterexample for another conjecture

we might be tempted to make. That is, there are certain prime implicants about

which we obviously have no choice about including or not. These are the so-called

essential prime implicants. Ifina prime implicant ther e exists c;1t least one vertex

such that no other prime implicant con ta ins that vertex, then that prime implicant

is called essential. Clearly if f is to cover that particular v ertex, then it is
ms

necessary that that particular prime implicant be included in th e sum, In the

earlier f = xz + w 1 y' z that we used as an example, it is ev id ent that both prime
ms

implicants are essential: the first is substantiated by vert e x 1, while the second

is required by the presence of vertex 13. A reasonable conjecture, then, would be

to ask whether it is the case that

f = Z:: (all essential prime implicants)
ms

and a relevant data point to support this conjecture would appear, for example,

to be functions of the form shown i.n Figure 3. 2. 1. 9

3, 24

1

n
n
n
n

J

j

j

J

Ll l
0

n
n
n
n
n
n

11

ii

j

LJ

w

1

1 1 1
z

1 1 1
y

1

Figure 3. 2. 1. 9. An essential prime implicant example.

where we can quickly see that only the essential prime implicants need be included

in the expansion for f .
ms

(Readers who are seeing these arguments for the first

time will be strongly tempted to include the prime implicant xz in this expansion;

in such cases the implications should be considered carefully, and then avoided

from now on in the future.) Thus

f = wxy " + wyz + w 11xy + w'y "z

is the minimal sum i.n this case; it includes only the essential prime implicants,

and the reason that xz is not included is that all of its nodes are already covered

by those which are essential.

But on the other hand, the three variable example we considered earlier

and reproduced in Figure 3. 2. 1. 10

y

1 1 1
X

1 1 1

z

Figure 3. 2. 1. 10. An essential prime implicant
counter example ,

simply has no essential prime implicants whatsoever. (The reader is invited to

point to one .) Hence the conclusion, if our conjecture is correct, is that f = 0

in this case, which is of course patent nonsense. Hence we must conclude that the

conjecture is wrong, and that in general

f =~(all essential prime implicants)

+~(some nonessential prime implicants) .

3. 25

Hence the covering pr o blem is reduced to se l ecting some m.-ini.mal subset of the

nonessential prime implicants that is nec essary t o complet e th e covering job. It

is relevant to point out at this po in t that even for th is simple AND/ OR structure,

we have exhausted the determinism that exis t s anywhere in th e literature on this

subject, The selection of the minimal se t of nonessential pr i me implicants is an

unsolved problem, in general, and in fa .ct there are conj e ct ures that it lies within

the cla ss of "unsolvable' } problems. The best we can do,th en , is to exhibit means

by which some solutions can be found. Of course in the case of just a few variables

it will be relatively easy to exhibit all po ssible so lution s. But the ultimat e selec­

tion of just which so lution to pick will be l e ft up to th e disc er ning logic designer.

As an example, then, we might cons id er the fu nction

f = ~ (1, 2, 4, 5, 6, 11, 12, 13 , 14 , 15)

to be realized in a minimal two - level AND/OR network. Ou r program calls for

developing the prime implications off, and from th ese t o se l ect some minimal

subset on which to base the realization. To this end we map fas in Figure 3. 2 .. 1. 11

w

1 1
~'.--=

1 1 1
_,, z
' (•

1 1
y :,i:

1 1 1

X

Figure 3. 2. 1. 11. Minimizati on of ex ample f.

and conclude that the prime implicants are

essential {:
w'y'z covering minterm s {l, 5)

w'yz' (2, 6)

wyz (1 1, 15)

nonessential {;
xy ' (4, 5, 12, 13)

wx (12, 13, 14, 15)

x,z' (4 ,6, 12,14)

Of these, we hav e noted that A, B , and Car e all essential. (These can be

justified by the starred nodes on the map; each is uniquely associated with the

given prime implicant, hence must be included in any ex pan sion.)

3. 26

l
n
n
n
n
n

J

J
Ll

u

l
n
n
n
n
n
I

I I

I
J

u

Thus at this point we conclude that

f =A+B+C+D+E+Y
cs

and the remaining portion of our problem is concerned with which subset of the

nonessential prime implicants we need as well.

To this end we shall propose a systematic method for displaying our choices

that is known as the prime implicant table . In this table we shall initially carry

along the essential prime implicants as well, not that they are needed for this

particular example, since they (and their covered minterm sets) are already

known. But most machine related techniques (such as the Quine-McCluskey

tabular equivalent of our map methods to be considered later) generate all of the

pr'ime implicants,

essential.

i.e. ' f , and it still remains to distinguish those that are
cs

The prime implicant table is a way of displaying the coverages of all the

prime implicants, and of selecting which are required to do the job. It shows

the minterms to be .covered as row markers, and the prime implicants as column

markers:

A B C D E F

1 X

2 X

4 X X

5 X X

6 X X

11 X

12 X X X

13 X X

14 X X

15 X X

Now in this display we can readily determine which are the essential prime

implicants . They are the ones with only a single entry i.n a row. I.e., A is

essential since it is the only one covering minterm 1. Using this test we conclude

that A, B, Care all essential. Hence columns A, B, C and rows 1, 2, 11 can be

3 . 27

crossed from the table. We also note, however, that each of A, B, C cover other

minterms as well. For example A covers minterm 5, and we need not consider that

row any longer. Similarly we need not further consider row s 6 or 15 for the same n
reason, and these have been marked out a s well in the reduc e d prime implicant

table leaving n
4

12

13

14

D

X

X

X

E F

X

X X

X

X X

which describes succinctly th e balanc e of the covering p r oblem for this function.

We can finish our problem by inspecti on in this case. Cl earl y n on e of the single

prime implicants will cover all four minterms , certainly any two will, hence we

certainly don't need all three. Aga in let 1 s systematize our process, however, so

that we can handle problems of greater complexity. Conv enie ntly enough, the

balance of the problem can be easily phrased in terms of a pr o po s itional state­

ment regarding the necessary columns that must b e included. For example if

minterm 4 is to be covered, it is plain that we must ha ve ei th e r column D or

column F in the expansion. But for m'mte r m 12, we mu s t hav e D or E or Fas

well, while for minterm 13 we must ha ve D or E, and so on. Clearly this

propositional statement can be repr ese nted by the expressi on

P = (D+F) (D+E+F) (D+E) (E+F)

and we will accomplish our co verin g if thi s e xpression ha s tr ut h value 1.

Now the expression as stated as a product of sums i s n ot in a convenient

form, for what we want is a listing of which prime implicat io ns will suffice. I.e.,

we want a list tantamount to the propo si tion "P is tr ue if D and F is",

such as would be given by a sum of products representat ion of P, By now this

should be old hat; it simply requires us to expand P to a sum-of- products form by

"multiplying out", and every product term i.n the result will b e a sufficient cover­

ing set of prime implicants. Thus

3. 28

n
n

l

J

l
fl

n
n
n
n

11

I
j

ii
J

I
J

u

P = (D+F) (D+E+F) (D+E) (D+F)

= (D+F) (D+E) (E+F)

= (D+EF) (E+F) = DE+EF+DF+EF

=DE+ DF + EF

which affirms algebraically what we observed previously, that any pair of the

prime implicants will do. This does not complete the whole story, although it

would appear to do so. In this form we do not know the relative sizes of D, E, F

(i.e., how many variables are in each), so we actually have a little more checking

to do. But in this case they are all of the same size, hence the choice is

immaterial.

To complete our example, then, our minimal form is not unique, there are

three of them, and they are

{

D+F

f=A+B+C+ D+E

E+F

and any one of the three will yield a minimal circuit. For the first one we get

the network of Figure 3 . 2. 1. 12

;,·~
z

;·~
z'~
w
X --

y
X (r,

y'

:.~
Figure 3, 2, 1. 12 . Minimal network for£.

and we can guarantee its minimality.

f

3. 2 . 2 Two-Level OR/AND Networks

Whenever considerable effort has been expended in solving a certain problem,

it is always good sense to examine the relevance of the solution to other related

problems, hence expanding the application range of the newly developed bag of

3 . 29

tricks. Such should also be the case in logic design algorithms, and having

developed a well defined procedure for two~level AND/OR networks we should

hope to apply it almost directly to closely related networks. This we shall do in

this and the succeeding sections.

Because of the duality we have constantly noted in the algebra, we must sus­

pect that the algorithm could be almost directly applied to the minimization of two­

level OR/ AND networks. That such networks e~ist is evident from the Shannon

maxterm expansion, and the steps taken to their minimization in terms of reducing

the total number of ORs and of OR inputs should be identical. They are. Recall

that the maxterms present in the expansion are related to th e O's of the function,

rather than the 11 s. Combinations of the sums that w i ll result in efficient reduced

products -of- sums will therefore, by duality, be detectable from a map minimiza­

tion of the O's of £.

Thus for our previous example we have

f = ~ (1, 2, 4, 5, 6, 11, 12, 13, 14, 15) = rr (0, 3, 7, 8, 9, 10)

and we can represent these 0 1 s on the map of Figure 3. 2. 2. 1

ro"r- - - -
' -

- -,..,.-0 0'
'-, ./

~~ - (Ji")
'

; \ O; I

I 0- r-

'--'C-

I
)

\

I

I

Figure 3. 2. 2. 1. Complementary map for f.

and coalesce these into the duals of prime implicants as shown in the map above.

In this instance they all turn out to be essential and are stated as duals as wx'y',

wx' z', x'y' z', and w'yz, The sums corresponding to these pseudo implicants are

of course

f = (w'+x+y) (w'+x+z) (x+ytz) (w+y'+z') .

(The reader is again warned that the bitwise inversion previously noted with

respect to the decimal product form has also taken place here.) Now since all

the implicants were essential the expansion is unique, thus the minimal product

form, f is unique even though f was not.
mp ms

3.30

l
7
n
n
n
l

I
J

D

l
l
n
n
n
fl

l

l J

lJ
j

J

The network that corresponds to this minimal form for f is in Figure 3. 2. 2. 2

w'
X

y

w'

X

z f

X

y

z
w

~ y'
.'fl

Figure 3. 2. 2. 2. Minimal OR/ AND network.

and we note that it is not only different, but it is also cheaper than the two-level

AND/OR form. Thus the judicious designer, if he has the design freedom to do so,

will always examine both forms before accepting either.

An alternative way (which had better yield the same result) is to look at the

two-level OR/AND as the complement of a two-level AND/OR. That is by our

generalized DeMorg ·an theorem, anything that complements all the variables,

replaces ANDs with ORs, and ORs with ANDs of a network, must leave the network

still minimal, but for some other function, namely the complement of the original

function . By this reason our tactic should be to realize f' in a minimal AND/ OR

network (which is exactly our previous technique), then replace ANDs with ORs

and conversely, and complement all the variables. The result must be a two-level

minimal OR/AND network. That it must be minimal is evident; for if it were not

there would be some simpler form. But then we could invert the transformation

and imply a simpler realization for f'. But we already had a minimal realization

for f', hence a contradiction.

Taking this tack on our example function, we have

f = ~ (1, 2, 4, 5, 6, 11, 12, 13, 14, 15)

f' =~(0,3,7,8,9,10)

corresponding to the map of Figure 3. 2. 2. 3

3. 31

·W

1 1

1
z

1 1
y

I l

Figure 3, 2. 2. 3. M ap fo r f 1 •

l

n
n
n

and hence the f 1 "' wx 1 y' + w x 1 z 1 + x 1 y' z. Taking the comple m en t of both sides we
ms n

of course get the original network shown a bo ve , a s w e must, But th e point of view

is a little different, and is often e a sier t o re rn e mb er.

Thu s the two - level OR/AND is c o mpl ete ly solv ed us ing techniques for the

AND/OR case .

3 . 2. 3 Tw o-Le ve l NAND Ne tw ork s

A little surprising at fir s t g lan ce is th at th e two l eve l NAN D and NOR net -

works ar e also compl e t e ly accommodated by th e d e t e rm ination o ff ,
ms .

This takes a little argument, how ever, wh ic h w e proc ee d to de ve lop , and we shall

choose to do so in t er ms of the kinds of s tr uc tu r al e qui val ent s we've observed

before .

One of our elem entary th eore m s wa s t ha t ("x1) 1 :::: x, and int e rpreted structur­

ally this m eans that into any l e ad we can insert a cou pl e o:f N OT gates without

changing the 'lterminal behavior 11 at all. Th us we ha v e Figure 3, 2. 3 . 1

&------- • ~ -- 0 -- -0 -- -
Figure 3, 2. 3. L (x ')1 = x .

and the only significance is that thi s tr ivial ob se r va tion can s o m e times be usefully

applied , For example , consider the ba sic AND/OR s tr uc tur e of Figure 3 . 2. 3. 2.

Fi gure 3 , 2. 3, 2, Ba sic AND/OR s tr u c t ure.

3.32

l

j

J

J

J

l
n By our theorem we can insert a pair of NOTs into each lead betw e en the ANDs and

the OR without changing anything . Thus we have Figure 3 . 2, 3 . 3 and can assert

n
n
n
fl

l
I I

lj

J

that i t

Figure 3 . 2 . 3 . 3. Transformation of basic network.

is the same network as far as the inputs and output are concerned. But then we

can observe a couple of other structural equivalences on the NAND gate as shown

in Figure 3 . 2. 3. 4

AIB=AB=A +B

or

---~'I\ ___JJ;--

Figure 3 , 2 . 3. 4. NAND equivalent networks.

and now we are ready to thrust home. In the AND/OR network with inserted NOTs,

there is certainly no harm in associating one NOT with the AND, and one with the

OR as indicated by the clustering in Figure 3 . 2. 3. 5 .

\ --(~)~=o "/
.____ -------- -

/ 0 - - \ ~~~
1- ~J ---0 / I O'~
'- --- ' ~ / ----------,/

/r:'\ --0~ \ 0,,1- /
'- - --Figure 3 . 2 . 3. 5 . Appropriate NAND clusters.

Clustered this way , however, it is evident that ea .ch cluster is a NAND and can be

_I so replaced without any change in the terminal behavior . The equivalent network

LI
to the original is as in Figure 3. 2 . 3. 6

3 . 33

l

--"CD--

Figure 3. 2. 3. 6. Basic NAND structure.

utilizing nothing but NAND gates, and bei;ng directly a map of th~ minimal AND/OR

network we started with. Thq.s the design algorithm for minimal two - lev e l NAND

networks is somewhat as follows;

1. Design the minimal AND/OR network

2. Replace evel,"y gate in sight with a NAND

and it's as simple as that .

As a design exi,i.mple, consider f =~ (Q, 4, 5, 6, 7, 13, 15) which maps as

Figure 3. 2 . 3. 7
w

1 1

1 1
z

1 1
y

1

X

Figure 3 , 2. 3. 7. Ex~mple function map.

with the obvious f = w' y' z' + xz + w 1 x, and the corresponding minimal NAND
ms

network shown in, Figure 3. 2. 3, 8.

f

Figure 3. 2. 3. 8. Minimal NAND network .

3.34

l
n
n
n
n
l

I
I
j

j

J

□ I

n
n
D
n
n
r I
I
7
11

i I
11

Li

u
u
r

3. 2. 4 Two-Level NOR Networks

Having accomplished the NAND situation with so little trouble, we should not

be surprised that the NOR case is equally as easily dispatched. By duality we

might also expect the transformation to be based upon the OR/ AND network rather

than the AND/OR. Thus consider the transformations suggested by the NOR

algebraic identities of Figure 3. 2. 4. 1.

A{,B = A + B = A· B

~-
er"

~
Figure 3. 2. 4. 1. Basic NOR transformations .

It follows that in the two-level OR/ AND we can make the direct transformations

shown in Figure 3. 2, 4. 2

Figure 3 . 2. 4. 2. Transformation from OR/AND to
NOR/NOR.

hence conclude that the algorithm for the two-level NOR synthesis can be phrased as

1. Design the minimal two - level OR/AND

3.35

t

2. Replace every gate with a NOR.

Alternatively, we can design the minimal AND/OR network for f', replace every

gate with a NOR, and then complement the input variables. Either route will

suffice . A point to be reiterated is that minimality is as sure d in these constructs

always by reference to the original structure. If the result is not mi:riimal, then

neither was the starting n etw ork. But it was, so then also is the derived conse-
n

quence from it. n
We conclude again with the same example f = ~ (0, 4 , 5 , 6, 7, 13, 15) . This

time we construct the map for f' as in Figur e 3. 2. 4 . 3, n
w

l 1

1 1
z

1 l
y

1 l 1

X

Figure 3. 2. 4. 3. E xam pl e NOR map.

determining the f 1 as x'z + x 1y + wz', whence the minimal two-lever NOR net-
ms

work is as in Figure 3. 2. 4. 4 ;

X ------

z' -------

f

w'

z ------­

Figure 3 . 2. 4. 4. M ini mal NOR network.

3. 2 . 5 Incompletely Specified Func;:tions

Next we point to a d iffe rent sort of specificatio n on switch ing functions, with

the end in viE;Jw of affirming how our same methods of composition can handle the

new situation with equal ease.

3.36

J

J

u
LI

n In certain cases there are certain of the input combinations that are of no

consequence in the specification--either , because the external environment is such n that they will never happen, or because if they do happen other consequences (e.g.,

self-destruction) will render the output produced by our networks of no consequence. n Whatever the reason whenever certain input combinations are present they are

called Don't Cares, and they provide a certain extra degree of freedom that the n designer can use in simplifying his networks. In the mathematical domain these

n

f I
I I

II
ti
11

u
u
u
□

would correspond to specifying only a subset of the domain, i.e., to incompletely

specified functions, as previously noted.

The point is, from the designer's point of view, since these inputs are

don't cares so far as the specification is concerned, the designer is then free to

assign them as he will in order to further simpli.fy his realizations.

There is an important point to be made here, which often results in confu­

sion when this subject is first considered. Once the physical network is built, then

it definitely does care what the output is for all inputs. I.e., the network is

deterministic, and will respond in some predetermined way to all inputs--the only

point is that the designer can s~lect those particular outputs to suit his own

purposes.

For example, suppose we are asked to realize the function on the preceding

page, under the conditions that minterms (1, 3, 9, 11, 12) are don't care inputs.

We would denote this as f = ~ (0, 4, 5, 6, 7, 13, 15) + ~D (1, 3, 9, 11, 12) and map it

as in Figure 3. 2. 5. 1
w

1 1 D

D 1 1 D
z

D 1 1 D
y

l
X

Figure 3. 2 . 5. 1. Don't care function.

with the D's indicating the don't care nodes. The minimal solution in this case

would appear to be to assign the value of 1 to the D's at 1, 3, 9, 11 and the value of

0 to the D at 12. This results in

3 . 37

f = z + w' x + w' y'

as the si.mplest realizati.on of thi.s i.ncompletely speci.fi.ed f, i.n the two,-level

AND/OR form of Fi.gure 3 . 2. 5. 2.

w'
f

0
X

w'

Fi.gure 3. 2. 5 . 2. M inimal d on't care network.

On the other hand, were we designi.n g a mini.mal two - l eve l OR/AND for

the same function y,e might look at f' (but with th e same don't care nqdes) as

indicated i.n Figure 3 . 2. 5. 3

w

D 1

D D
z

D D
y

1 1 i l
X

Figure 3. 2. 5 . 3. Alternati ve don't care map.

and come up with the minimal f' as

f' = w z ' + x' y

which in the two- level OR/ AND form yi e ld s .for f the netw o rk of Figure 3. 2. 5. 4 .

w•~

z f

X

'y'

Figure 3 . 2. 5. 4 , Minimal OR/ AND form.

3.38

n
n
n
n
n

1

j

J

J

u
LI

n Notice that in this case the D's were assigned quite differently, and in general

are freely assigned in any fashion that will make the network simpler . But notice n that the two networks are the same only for the specified nodes; for don't care

inputs they may not produce the same output value at all. Yet they are both realiza -

n tions of the particular fas partially specified .

n 3. 2 . 6 Quine-McCluskey Reductions

The Quine-McCluskey procedure is a tabular representation process for

~ I generating the prime implicants of any function, i.e. , the result of the process is

f
cs

While the map methods get cumbersome at five or six variables, the Quine -

McCluskey table, adapted to machine realizations, can carry the process on to a

significantly greater number of variables, say 12 to 14. The process is best

I adapted to machines, and is tedious to do by hand, hence our present goal is only

to discuss the notions involved, and the interested reader is invited to explore

1 I further into specific embodiments of the process on his own.

The basic notion is to simply revert back to numerical equivalents of what

I we went to the maps to perceive visually. Each minterm is represented by a

binary number corresponding to its variables, e.g., wx'yz would be represented

by 1011. Adjacencies between two minterms are then detected by the distance

between the corresponding codes, i . e., minterms 1011 and 1010 would be detected

j and replaced by 101-, with the 11- 11 indicating an eliminated variable. All possible

such minterm adjacencies are systematically so tested, resulting in two sets

I (either of which might be empty):

1) a set of minterms which didn't combine with anything, hence are

I J themselves prime implicants, and

2) . a set of 1-cubes (e.g . , such as 101- above) which are listed in the

J second column of the developing table.

I
Now the set of 1-cubes generated in the second column also present pos-

sibilities for even further reduction. These can be tested pairwise at a time,

exhausting all possibilities, and generating thereby yet a third column of 2-cubes

that exist in the function. For example if the coded 1- cube 101- existed in the

second column along with the code 111 - , then this combination would imply that

3.39

combination 1-1- should be entered i.n the third column, indicating that wy was also l -
an implicant off. In brief this process is continued until no new implicants are

indicated.

As a simple example, consider f = ~ (0, 5, 10, 15). We would list the min:..

terms in the first column as in

1st

0000

0101
1010

1111

and would test each possible pair to see if any were distanc e 1 apart. None are,

so we conclude immediately that the minterms themselves are the prime impli­

cants, and the minimal sum is

f = w'x'y'z' tw'xy'z +wx'yz' +wxyz.
ms

Notice that we did at least arrange the minterms in groups corresponding to

increasing weight in the minter .m representation. That way we only have to

examine adjacent groups i:p order to see k adjacencies; for surely a word of weight

l .can be distance 1 only from words of weight i-- 1 or of weight i+l.

As a bit more complex example, let us consider f = ~ (0, 4, 5, 6, 7, 13, 15)

which we've used as an example before, Again in column 1 we list the minterms

in groups corresponding to their weight as in

1st

J 0000 (0)

-JO 100 (4)

0101 (5)
0110 (6)

0111 (7)
1101 (13)

1111 (15)

2nd

0 - 00 (0, 4)

and have indicated our first pairwise comparison, i. e~ , that between 0000 and

n
n
n
l
l

I
I

0100 in the first colt;tmn. Since th ese are distance 1 apart we make an entry in the U
second column of 0-00, indicating that there is an implicant corresponding to

u
3 . 40

l
n
n
n
n
n

I
11

j

j

w'y'z' in£. Notice also that we are carrying along the minterms contained in each

code, which the machine wouldn't do, but it will make it easier for us to keep track

of the books. Notice we've also checked minterms 0000 and 0100 . The implication

of these check marks should not be missed. They do not mean that we won't con­

sider these minterms in other possible combinations with the remaining minterms;

they do mean that we can conclude that these particular minterms are not prime

implicants since they obviously are included in yet a larger one . We continue in

this way , comparing next, for example, 0100 with 0101 yielding 010 - as another

entry in the second column. Doing this systematically we get

1st 2nd

/0000 0) 0 - 00 0, 4)

✓0100 (4) 010 - (4, 5)

v-{)101 5)
01 - 0 (4 , 6)

✓0110 6) 01-1 (5, 7)
-101 (5, 13)

✓0111 (' 7) 011- (6, 7)
✓1101 (13)

-111 (7,15)

✓1111 {15) 11-1 (13, 15)

and notice that we have checked all entries in column 1, hence there are no min­

terms that are also prime implicants. Now all the entries in column 2 are

implicants, and we proceed to form a column 3 to determine whether any of them

combine into 2 - cubes. To combine any pair in column 2 it is again necessary that

they differ by distance 1 in their non rt _ 11 columns, and that, of course their

"-" columns coincide . Thus 0-00 and 010 - cannot combine, nor can 01 - 1 and 10-1,

but 010- and 011 - can into 01--. Proceeding in this fashion we get for the 3rd

column

1st 2nd 3rd

✓oooo 0) ,:<o-oo 0, 4) 01 - - (4, 5, 6, 7)

✓0100 4) ✓ 010- (4, 5)
01-- (4, 6, 5, T)

✓0101 (5)
✓01-1 (4, 6) - 1- 1 (5, 7, 13, 15)

✓0110 (6) .101-1 (5, 7)
-1-1 (5 , 13, 7, 15)

✓0111 (7)
✓-1-1 (5, 13)

✓1101 {13) /011- (6, 7)

✓l. 11 (15)
/-111 (7, 15)
/11-1 (13, 15)

3 . 41

and our proc ess terminate s for the re are no combinations po ssi ble in the fourth

column. Two points are worth noting. In th e second column we were unable to

combine the first entry with anything. W e have denoted thi s by a 11,:<11 and this

means that we have found a prim e im plicant . Also notic e in the fourth column that

everything occurs tw i ce. Thi s is simply a verification that the 2 - cubes can be

built up two differ ent ways by combining 1-cu bes as shown in the two maps of

Figure 3. 2. 6. 1.

-
VI 1) I'-:

/1 I \
l

:=1 (: \1) \ 1;

Figure 3, 2. 6. 1. Diff e r en t two - cube formations.

This effect will always occur so w e shall si mply rem ove one of e ach duplicate pair

by a check mark as well. In the for /mation of a 4th c o l u mn indicating 3-cubes as

implicants, we would of course consid e r only one of such a duplicate pair in making

possible further combinations. Sinc e th ere are no furth er combinations possible m

the 3rd column, we star the remaining entries that we' ve be e n una bie to combine

further, for this means we have i d en tified th e m as pr i me implicants as well.

Thu s our final table looks lik e

1st 2nd 3r d

/0000 (0) ,,, 0 - 00 0 , 4) ,,, 0 1-- (4, 5, 6, 7) ,,, ,,,

i/0100 (4) ✓010 - 4, 5)
/ 01-- (4, 6, 5, 7)

/01 - 0 4, 6) ,,,
- 1-1 (5, 7, 13, 15) ,,,

✓0101 (5)
✓ - 1 - 1 (5, 13, 7 , 15)

✓0110 (6) i/01-1 (5, 7)

✓o111 (7)
i/-101 (5, 13)

✓1101 (13)
/011 - (6, 7)

V1111 ' (15)
✓- 111 (7, 15)
✓11-1 (13 , 15)

from which we conclude that the pr i me implicants ar e co ded as

0 - 00

01 --

- 1- 1

3.42

l
7

n
n
n

I

j

J

l
n
n
n

corresponding to f = w'y'z' + w'x + xz as we saw before. Of course in this case
cs

we know that the result is also f , but in general we should still have before us
ms

the task of selecting the minimal covering set.

3. 2 .. 7 Multiple Level Networks

Although most of the standard techniques for the derivation of minimal net-n works are directed toward the two- level forms, it is inevitable that multiple level

networks must always be considered in practical cases of any generality. Of

fl course the salient feature of the two-level networks is that they cause the least

ti.me delay possible in the transmission of a signal from input to output.

Of course the number of levels may not be an i mportant criterion in some

cases. We may seek to minimize something else, like gate inputs, and in these

I cases the use of multiple levels can often effect further economies.

General procedures for developing such networks that are demonstrably

11 minimal according to any particular criterion, however , are usually difficult to

apply, and are often computationally intractable. As a result, recourse is usually

made to ad hoc techniques tla t come up with networks that are "pretty good" as a

rule, but about which no assertions regarding minimality can easily be made. We
I

11

lJ

1

I
J

u

shall content ourselves in this discourse with simply a couple of examples in order

to illustrate the kinds of problems involved.

Consider the simple example

f = xyz + x'y' + y 1z'

which we can quickly check is already in minimal sum form. It follows that the

cheapest two - level AND/OR network is in Figure 3. 2. 7.1.

X

y

z

x'

y'
y'

:::0-
----· z' -------­

f

Figure 3 . 2. 7. 1. Minimal two-level network for example.

We note that this network "costs" us four gates, and ten gate inputs. Suppose that

3.43

it is the number of gate inputs that is of interest to us. In this event we note that

we can rewrite f by factoring out the common y' in the rightmost two terms of the

minimal sum as

f = xyz + y'(x 1 + z')

which corresponds to the network of Figure 3. 2. 7. 2

X

y

y'

A

x'-/'\/ _,_-yu .
z'

Figure 3. 2. 7. 2. A multiple level form.

requiring only nine gate inputs. Hence a saving can be effected. Notice, however,

that the network requires three levels of gates.

Of course, at least in terms of networks comprised of AND gates and OR

gates, multiple level networks must always correspond to some factorization of

the sum-of-products or of the product-of- sums forms, and conversely. Thus,

for example, the expression

f ::; xy(w + z') + x' z(w + yz')

certainly is realized with AND' s and OR' s and since some factorization is indicated

we can conclude that it corresponds to a network of a great e r number of levels

than two. In particular it corresponds to the network of Figur e 3 . 2. 7. 3

X

w

z'

y

z'~

Figure 3. 2. 7. 3. A four - level network.

3.44

l
1

n
n

j

. I

I
u
u

l
,..l

D
n
n

f I
1

I I

I J

whi.ch exhi.bi.ts four- levels . . It wi.ll be left to the reader's curi.osi.ty to decide whether

simpler networks exi.st that realize thi.s same function more simply.

Another compelling reason for gai.ni.ng some fami.liari.ty wi.th the multiple level

networks i.s the practical limitations of fani.n that must exi.st i.n any particular case.

The mi.ni.mal sum form for a function of n variables implies AND gates of up ton
n-1

inputs, and an OR gate that may require 2 inputs: Certainly for most practical

networks these i.nput requirements are untenable and some other approach must be

taken, and such always results i.n an increase i.n the number of levels.

Suppose we wish to limi.t ourselves to gates of no more than two inputs. This

i.s extreme, but certainly such limitations imply gates of greater reli.abi.lity than

any others. One solution to the di.lemma would be to realize the arbitrary AND

gate by either cascading the simpler gates, or by treeing them. For example a

fi.ve-i.nput AND gate can certainly be realized as i.n Figure 3, 2. 7. 4

v~

w / x /9~ vwxyt,

y z

Figure 3. 2. 7. 4. A 5-i.nput AND.

or as i.n Figure 3. 2. 7. 5

X

y

Figure 3. 2. 7. 5.

vwxyz

Alternative 5-i.nput AND.

whi.ch utilize simpler gates wi.th only two inputs. Obviously the multiple i.nput

OR gate can be si.mi.larly realized by cascading or treeing simpler OR gates.

J As an example, an earlier realization of

f = xyz + y'(x' + z')

lessened the number of gate inputs, but still required one AND gate of thr ee

inputs. If our limitations held us to t;wo-input gates, then an alternative realiza­

tion for the same network would be as in Figure 3. 2 . 7. 6

3.45

X

y

f

Figure 3 . 2. 7 . 6. Fanin limit e d netwo r k.

u si ng nothing by two - input gates.

Also of interest would be the e x t en s ion . of these po ss ibilities to gates of e>ther

types, for ex ample NANDs and NOR s. To illustrate th ese po s sibilities algebraic­

ally is a notationally mes sy (h enc e err or prone) task. Howev e r, in most cases,

transformations such as we've utilized b efore will suffice. Suppose, for example,

that w e have the function

f = vwxyz + v 1w 1 x 1 y ' z 1

to reali ze. In minimal two - lev e l form th e network is cl e arly as in Figure 3. 2. 7. 7

X ·A
vJ

:;~
z'

f a,~--

Fi gure 3. 2. 7 . 7 . Tw o- le ve l NAND ex ample.

requiring fi.ve-i.nput AND gates. Suppose we are limited to only three inputs.

Certainly on e solution i.s a s i.n Fi gu re 3. 2. 7. 8

f

Figure 3. 2. 7. 8. Network with fan in of three.

3, 46

n
n
n
l

l

J
J
u

l
n by our methods above, and requiring three levels. Now suppose we further wish

D
n
n
n
l
I

f)

I

I

l J

j

j

u
u
B

to realize the network utilizing only NAND gates, again with the three-input limita-

tion on fanin. Utilizing the identity transformation that assures us that two NOTs

in cascade does not affect the logic function on a lead, we can redraw the previous

network as in Figure 3. 2. 7. 9

f

Figure 3. 2. 7. 9. Insertion of NOT gates.

where we have inserted NOTs judiciously in order for us to proceed with the trans­

formation to NANDs. The transformation is indicated by the dotted lines in

Figure 3. 2. 7 , 10

f

where we note that we have one set of NOTs left over that we can't combine with

either an AND or an OR. But that's all right, for of course a NOT is just a parti­

cular case of the NAND (one with its inputs tied together) and these observations

lead us directly to Figure 3. 2. 7. 11

w I v~

X I~
yy I _____ JD--
z~

VI w-----w
w~~

x'~

Figure 3, 2. 7. 11. Final NAND gate realization

3. 47

as a final realizq,tion of the function utili:z;ing NANDs of no more than three inputs ..

We could do a similar set of transformations for a NOR realization, or indeed

for any mix of such gates that we ·might wish. We could ext end these kinds of tech­

niques to si milar considerations for other sets of logic gates, but for our purposes

the present discourse will suffice for ou;r brief look at th e nature of the multilevel

de sign problem.

3.48

n
D
n
n
l

l
. I

J

J

l
n
n
n
n
n

. I

11

u

3 . 3 Multiple Output Networks

We shall mainly ignore this large class of networks, which is the obvious

generalization of single-output network synthesis, except to make a couple of

observations on the nature of the problem.

Clearly, as we move from the single output realization of Figure 3. 3. 1

Figure 3. 3. 1. Single output networi<.

to the multiple output realization of a set of swtiching functions of Figure 3. 3. 2,

X
n

Figure 3.3.2 . The genera 1 multiple output network.

the basic first question of interest to switching theorists, namely that of existence

of a solution, is already answered. For we always have an immediate realization

in terms of m separate, single-,output networks, as indicated in Figure 3. 3. 3.

X 1 ~ f 1 (x ' • • • ' X)
X ~ ., 1 Il

n ,

f (x , • , • ,x)
m 1 n

Figure 3. 3. 3. Single output realization of multiple
output network.

Thus the only practical problem of interest is that of minimization--in many

cases large savings can be made by realizing substantial portions of the N . in
l

common. This, then, is the only object of multiple output pynthesis.

3. 3, 1 Bilateral Networks

We have previously noted that the bilateral (contact) networks can be tricky,

largely resulting from the fact that they are bilateral in the first place. Any path

3 . 49

we set up from one point to another, say from point A to point B, also sets up a

path from point B to point A. This fact make s multip l e output savings more co m ­

plex in general for relay networks (indeed impo ssi bl e for purely contact networks

not involving coils internal to the network).

l
n
n

A large and interesting class of problems invo lve multiple output sets which n
are disjunctive, that is each pair\• fj in the desired set of functions\, ... , fm n
are disjoint, Le., f .f .= 0. Even in this case, when trying to eli minate as many

l J
contacts as possible, the designer mu s t b e very ca r efu l not to introduce so - ca lled

"sneak paths", which are quite literally de s ign mistake s that result in disjoint out- l
puts being connected together inadvertently for so me val ues o f the input variables.

It is not our purpose to examine bilat era l synthesis to any degree of thorough ­

ness at this time, Instead we shall only po int t o a couple o f ex amples of what can

be done.

The complete tree on n variab l es (someti me s call e d the complete decoding

tree) often pro vides a convenient starting point for the realization of sets of dis­

joint functions; indeed it directly provides a realization of the set of functions

wherein each function is a minterm (which is why it's called a complete decoding

network). Thus Figure 3. 3. 1. 1

[
y

X --- --- y

Figure 3. 3. 1. 1. Th e compl e te d ecoding tree.

is an evident realization of the set of funct ions

fo(x, y, z) = x'y ' z '

\(x, y, z) - x 'y'z'

f 7 (x, y, z) ::: xyz

3.50

J

j

J
u

D
n
n
n

11

11

II
l I
u
l 1

LJ

u

Of course any other disjoint set can be realized just by collecting together

the minter ms contained in each. For example the set ·

\ =~(0,1,2,3,7)

f2=~(4,6)

is evidently realized by the tree of Figq.re 3. 3. 1. 2,

Figure 3. 3. 1. 2, Realization of two output functions.

and carrying out the obvious simplifications observed, before, we quickly get the

network of Figure 3. 3. 1. 3

Figure 3. 3. 1. 3. Simplified two-output network.

as a pretty good realization of the function pair. (One must forgo the temptation to

"factor out the pair of z' contacts since this would introduce an incorrect path to

Many function classes possess particularly simple and regular tree expan­

sions in this sense. An important class of such functions are those called the

symmetric functions, in particular the elementary symmetric functions. A func-
'

ti.on that consists of all the minterms of a given weight i and nothing else is an

elementary symmetric function S.. Thus in terms of three variables
1

s0(x, y, z):: x'y'z'

S 1(x, y, z) = x'y'z + x'yz' + xy'z'

3.51

t

S 2(x, y, z.) = x' yz + xy' z + xyz'

s3 (x, y, z) = xyz

These functions turn out to play a special role in ma ny ar ea s. Our purpose

here is to illustrate their realization in terms of the compl e t e t ree . Again in

terms of three variables we get an immediate realization a s in F i gure 3. 3. l. 4.

Figure 3. 3. 1. 4. Realization of symmetric functio n s,

Thi s time we are tempted to factor a "z" from the s 1 o ut put , and a "z" from

the s2 output, and if we do it carefully it will work this tim e , and we get something

like Figure 3 . 3. 1. 5,

;;-7

Figure 3. 3. 1. 5. Simplified symmetric fun ction n e twork.

and if we redraw this carefully we get a very well known form, as s hown in

Figure 3. 3. 1. 6.

3,52

l
n
n
n
l

J

J
LJ

1

n
n
n
n

II

i I

j

u

/ 0 so

- ,,-/- ', /-~-~o \

,/4~'/~-os 2

/x L~ L 2z

Figure 3. 3. 1. 6. Final form of network.

This form generalizes for any number of variables. For example for four vari ­

ables we have the network of Figure 3. 3, 1. 7

-w
/ X / y

+-, --'-~ W -_,.L- X ---"-- y

7
Figure 3. 3. 1. 7. General form of ~ymmetric function

network.

and so on . The number of contacts C(n) grows like 2+4+6+ , .. °'. 2(1 +2+3+ ... +n)

or as n(n+l), again a considerably better growth rate than for the general tree.

Again there are many more things we could say about branch element

synthesis, but these examples will suffice for our present purposes.

3. 3. 2 Gate Networks

The goal in multiple output gate networks is the same as before; having

generated a particular gate output , we 1d like to use it in as many places as pos ­

sible in common . .

We shall proceed mainly in terms of a couple of examples in order to indicate

3 . 53

possible approaches to the problem of synthes is . Suppo se we ha v e the three

functions set to r ealize :

£ · = (0 4 7)
· 1 ' '

f2 = (0, 3, 4)

f3 = (3,4,5,6,7)

If we examine the corresponding maps of Fig u re 3. 3. 2, 1

y y y

f I X I I ' I I : I f 2 : li--------,----1 I ~, I : i

1 1 1 1
, -

1

z z

Figure 3. 3. 2. 1. Maps of three -out put function se t.

we find that the best prime implicant expansion s are

f = xyz + y' z'
1

f 2 = x'yz + y'z'

f 3 ,:: X + yz

and it seems evide1+t that the best solution would be to u se th e i mplicant y' z' m

common as in Figure 3. 3. 2. 2.
X .

y ?3[)--- -
z ----- -~ X I _):}_) ---, ',;-,• f 1

-----y . A

7. ----

Figure 3. 3. 2. 2,

' f
3

7 gate s

16 inputs

But a little clos e r examination shows that the yz ter m c an be formed from

two other expressions that are also needed, i.. e., xyz for f , and x 'yz for f .
l 2

Since these two have to be formed sep arately anyway, i.t mak es better sense to use

them to form yz, rather than form i.t separately. D oing th is w e get the network

l
l
n
n
n
n

J

J

J

J

of Figure 3. 3. 2_. 3, j

3 . 54

u
u
□

1

n
n
n
n
f 1

l
11

l I

11

lJ

Li

u

6 gates

15 gates

Figure 3 . 3. 2. 3. Simplest multiple output network,

which is cheaper than our original try.

This possibility would have been systematically detected had we gone to the

complete class of so-called multiple input prime implicants in making our choices.

This complete class consists not only of the prime implicants functions, but of all

their intersections as well. Thus

f = ~ (0 4 7)
1 ' '

with p . L I s xyz y'z'

f2 = ~ (0, 3, 4) with . I p . 1, S x 1yz ylzl

f3 = ~ (3, 4, 5, 6, 7) with • I p. 1. S X yz

f = ~ (0 4) with • I ylzl
1 2 '

p. 1. S

f
13

= ~(4,7) with • I p. 1. S xyz xyrzr

f23 = ~ (3' 4) with p. LI s x'yz xyrzr

fl23 = ~ (4) with • I p. 1. S xy1 z 1

from which we can list the prime implicants to serve as candidates for our covers

as

A - xyz

B = y1zr

C - x 1yz

D = X

E - yz

F = xy 1z 1

Then we can proceed to a generalization of the prime implicant table which

LJ shows each output function in an independent section, such as in

3 . 55

t

A

,,,
0 ,,,

f 4
1 ,,,

7 '•' X

0

f2
,,, 3 '•'

4

3
4

f ,,, 5 ,,,

3
6
7 X

B

X

X

X

X

C

X

X

D

X

X

X

X

E

X

X

F

X

X

X

On this table we have indicated certain rows with stars : these indicate rows

that have a single x in them, hence require that the corre s ponding prime implicants

be realized. These implicants are indicated by arrows on the columns.

0£ course these selected implicants will also cover other ro ws as well, and

we could systema tically proceed to a reduced . prime implicant table, as before, in

order to select which of the remaining implicants are needed in or der to completely

cover all the functions. Doing this in this case we shall find that neither impli­

cants E nor F are needed, hence we are through, and n eed r e alize only A, B, C, D

which is what we included in our realization of the network abov e .

Thu s the multiple output case from this point of view c an be approached using

the same machinery deve loped for the single output case; Obviously the tables

get bigger, and the detection mechanism must be more car e fu lly executed, but the

principl e is the same.

n
n
n
n
fl
l
l

J

J

In pa ssi ng we shall mention another conceptual approach which is character- j
istic of many arguments made in combinational network th eo ry, although we shall

not pursu e examples of it at this time. The notion is to somehow reduce the

multiple problem at hand to a simpler problem represented by th e "previous case",

which i.s presumably completely solved, In this case we can force th e general

multiple output problem into a strictly single-output probl em provided that we

3.56

j

u
lJ

l
n appropriately "dummy 11 thin gs up. Using our three variable three-function

n
n
n
fl

I
I I
l I
J

I
j

problem as an example, let us create a single output function f of five variables

f (V, W, X, y, Z) = VW fl (X, y, Z) f VW I f 2 (W, y, Z) + V I W f 3 (X, y, Z)

using the dummy variables v and w to point to which of the original functions is

involved. (Clearly we could so handl e up to four output functions with the two

dummy variables.) Now we have explicitly a single-output function, and can

minimize it to exhaustion using our techniques for such minimization. Presumably

our result is some other realization for f than the form above. It remains to form

the three separate outputs, but this can e asily be done in a final gate for each out­

put where we specify whixh output we wish by use of the dummy variables again.

Thus f 1 = vwf, f 2 = vw'f, f 3 = v'wf, and so on, as in Figure 3. 3. 2. 4.

V __ _,

w

X

y

Figure 3.3.2.4.

f
N

Multiple output set

V

w~ fl

~£2

, __ vw_,3:(D---,, A I---),,:,.. £3

reduced to single output problem.

Depending upon the facility with which we can carry out the single - output minimiza­

tion on the increased number of variables, this approach can be a quite powerful

technique.

3 . 57

3. 4 Iterative Combinational Networks

While the two=level logic networks optimize the speed with which a network

can respond with t he truth value of an arbitrary switching function 3 there are many

o ther features that we might prefer to optimize. One of these is an enfor ced

degree of c o mm on ality with which each variable is treatedj as exemplified by the

iterative combinat ion al networks.

The simplest iterative network is the linear cascade, or one dimensional net­

work characterized by the general structure of Figure 3 . 4. 1

F ig ure 3. 4. l. General iterative combinational cascade.

wherein each variable enters a cell, and it is underst oo d that ea ch cell internally

is to be the sam e as every other. The variables y are assigned t o the leftmost

inputs of cell i, and the variables Y are assigned to the outputs on th e right which

proceed on down to the next cell of the cascade. Obviously Y . = Y . ..1.., . Of course
1 1 I 1.

the y
1

must be considered boundary conditions, to be supplied exte rn ally, and the

variables Y are generally used to form the "outputs" of the iterative network.
n

(Other conceptualizations are possible, and useful: e.g., there is n o reason t o

limit the cell in puts to one independent variable, in general there m ight be k such

x inputs; there is als o no reason to restrict the outputs to the last cell, each cell

might also b e required to produce a set of, say, m outputs z , ... , z al on g the
· 1 m

entire cascade . We shall make these generalizations only if required in our dis-

course, h owe ve r. There is also no good reason to limit ourselves t o the linear,

or o ne dimensi on al cascade either. Two dimens tonal, or indeed n= dimensional

arrays are also but direct generalizations of the linear cascade. Va:rious degrees

of connectivity between cells of the cascades and arrays are als o poss ible, but

these need not con c ern us in this first .. pass discourse either.)

Such iterative 'networks are also described as cellular arrays or networksj

and much that is re levant to them in the literature will be fo und under this name"

For present purposes the linear iterative cascade will se rve eminen tly, and

3.58

n

n

n

I

I

LI

l we shall restrict our present discussion to it.

D
n
n
n
1

l

l
j

l I

j

The essential feature about the linear cascade is contained in a consideration

of the nature of they., the signals generated to the left of cell i. For they must
1

obviously contain complete information about the first i-1 variables, sufficient so

that on observing their value, cell i can examine variable x., and generate a suf-
1

ficient set of similar signals to pass along to cell i+l.

Now it can be shown in general that any function can be realized in such a

cascade, although some functions can be realized more simply than others. Since

our goal is to illustrate the nature of the cascades themselves, we shall restrict

ourselves only to the kinds of functions that have simple realizations.

Functions that are most easily realized are those i.n which the particular

variables involved in the specification are immaterial, but rather some grosser

characterization of the true minterms is possible, Such a characterization is

exemplified, for example, by any specification of a function f that requires it to

be true depending upon the number of variables that are true, e.g., the function

that is true if£ exactly 3 of the independent variables are true, i.e., s3 (x , ... , x).
1 n

Another would be that function which is true if£ an even number of variables has

been true. It is irrelevant in these descriptions just which variables are involved,

but only how many. Another sort of problem is one involving a pattern amongst

the variables: for example we might specify f to be true if£ the pattern 1011 has

appeared somewhere amongst the variables in their ordering from 1, ... , n. We

might not care what the rest of the variables have been, or we might require that

they all be O. These are two different problems, but both are within the class

that we are pointing to. The point is, again, that it does not matter which vari­

ables satisfy the criteria, but only that the total cascade of variables do.

For problems of such nature, the role to be played by they . is clear; they.
1 1

must be sufficiently complex only to transmit the information to cell i as to the

"state II of affairs up to that point in the cascade, so that cell i can generate

similar "state" information along to the next cell in the cascade, of course as

appropriately modified by the action of cell variable x. itself.
1

A simple example should help to clarify some of the notions involved, and

will suggest a general procedure to be followed. As a starter let's fall back on an

3. 59

old acquaintance, the parity function. L et u s assume that we wish to realize the

even parity function in an it e rati v e cascad e. Notice that the parity function is one

of the class of things we've been poi nting to: it matters not which v ariables enter

into the relation, only that an even numb er o f them ha ve been true , Now we focus

attention strictly on cell i of the cascad e, as in Fi gure 3. 4 . 2.
X

y

Figure 3. 4. 2. Typ i cal casc ade cell.

Obviously we can do nothing ab o ut variab l e x . exce pt respond to it. Th e
1

significant thing is to examine th e natur e o f th e y ..
l

Th ey re pre se nt signals from

the left indicating what has happened s o far, and for th is probl e m we need only the

answer to one bit of information: hav e th e tru e v ariable s t o ce 11 i been even or

odd? We can "encode" this informati on a bou t the s tate of the cascade through

cell i - 1 by using only one binary lead , although th e e ncodin g is still up to us. For

the single binary variable from the left l e t us a ssig n y : = 0 t o odd parity and y i = 1
l l

to even parity. Clearly if we have th e ca se y. = 1 and x . = 0, th e n we wish to
1 l

prescribe that Y. = 1 as w e ll for th e action of ce ll i has not aff ecte d the parity to be
l

passed along to cell i + 1. On the oth e r ha nd if x. = 1, then w e wish to prescribe
1

that Y. = 0, indicating that the parity ha s cha n ged. But thi s is cl e arly as pr e scri.p -
1 -

tion of cell i as a two-input network on y . , x . , as input v ariabl es which realizes
l 1

the function Y.. Using our familiar t rut h tab l e technique s we can prescribe cell i
l

as defined by

X. y, Y .
1 l l

0 0 0

0 l 1

1 0 1

I 1 0

whence Y . = x.y'. + x'.y . ·- x . @ y . realiz e d by eit h e r th e c e ll of Figur e 3 . 4. 3
l l l l l l l

3.6 0

n
n
l

l

j

J

LJ

u

l

n
n
n

. I

I I

11

I
I
u
J

X
i

Figure 3, 4. 3. A cell reali.zati.on.

or by simply the cell of Figure 3. 4. 4.

Y.
l

X
i

Figure 3. 4. 4. Alternative cell realization.

Evidently it is important that the fi.rst cell of the cascade be properly set to the

value y = 1, since that would be consistent with the notion of even parity. Finally
1

f is 11 realized 11 on the last cell of the cascade, Y , by detecting whether Y = 1 or
n n

not. Thus a three-variable cascade would look like that of Figure 3. 4. 5.

X x2 X

~1-7 ,-l-7 ,-1 -7

: ~~ : I 4-l---1 I e f I ""(I) I
I I I I I I

L---~ I ____ , ~- __ _J

Figure 3. 4. 5. The three-variable cascade.

To harken back to familiar thi.ngs, let us verify what the same question

would yield for the branch network realization. · In thi.s case we start from the

abstract picture of the nature of the information to be transmitted by the 11state 11

variables: we mu$t transmit two states, one for even parity and one for odd

parity. Again because the branch networks are basically a different beast, how­

ever, we must retain both 15tates as separate leads. The reason for this is that

the particular state transmitted forward will be indicated by a ground on one of

the leads, hence the two states must be kept separate, for a ground proceeding on

both would indicate that the input to the cell i was 11both 1' states, while a ground on u neifher ·would indicate '11neither JI state was occupied. Either is equally untenable,

3. 61

s o we keep the states distinct on two separate leads. Thus Figure 3. 4~ 6

X. (conta •ct action in cell i)

~ r-1_~ a
y i ------, r---- Y.

I Cell i I il
1 ~ L- y

Y. I 1 L __ _

Figure 3 . 4. 6. Typical branch element c;:ell.

i s our general picture in this case, and it remains only to fill in the box with

contacts in order to generate the Y . .
l

We -could go to a truth table representation

in this .case as well, although i.t would have many don't cares. Suffic e it to

intuite by inspection in this cc;tse, and this is usually possibl~ for contact netwo r ks,

that the formulation in this case is

1 1 I Q
Y. = y. x. + y. x .

l l l l l

Q 1 Q I
y . = y. x. + y , x.

l l l l l

which is directly realized by the contact configuration of Figure 3. 4. 7

,- ----~ --7
I - 1 --r --~y-~-- -:-
11 -e::::i-1-i~ I

1 ·

'------ -- I

Figure 3. 4 . 7. ;E3ra:q.ch element realization of typical cell.

:l

n
n

I

which ought to look strangely like the -configuration we've seen before when deduc - · J
ing the form of the parity function network from the complete tree .

As another exampl~, suppose that we wish to ;realize in a branch-type

ite r ative cascade three different outputs on an arbitrary number of variables, in

particular the outputs are to correspond to the number of true variables mod u lo 3 . J
The reader is invited to confirm that the cell in :figure 3. 4. 8 on the contacts of x.

l

do indeed reali~e this function.

$. 62

. ,._ . -.._ .. ____ ._ .. ,... ----· . ___ ,. __ -·

n
n

yl

x ' ------- -i
x,

--------- 1 ---r--~'---- X'
i

x,

--------- x~ i

Celli

Figure 3. 4 . 8. Mod tre e cell r e ali z ation.

On the other hand, a gate type realization could take advantage of a binary

encoding on the input leads to realize this sa m e function set. We only need

observe which of the four states from the l e ft obtai.ns, and to do thi.s we need only

two binary variables. But as w e know, two binary variables can encode four dif -

11 ferent states, hence we shall have one input combination as a don't care. We shall

arbitrarily assign this don't care to the 11 states on y 1,y 2 and agree to assign the

J encoding

j

11

d
J

u
LI

leading to the truth table for

yl y
2

0 0

0 1

1 0

1 1

output functions

X. yl Yz l

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

3. 63

State

0 mod 3

1 mod 3

2 mod 3

don't care

yl and Y2:

yl y2

0 0
0 1
1 0
D D
0 1
1 0
0 0
D D

Using our map techniques to find reasonabl e realizations for these functions we

get the functions of Fi.gure 3. 4. 9,

X
i D

D

1

1

Figure 3. 4. 9 . Mod three cell intercell function,s.

or

y = x:.y +x'.y
l 1 2 1 1

as realized by the cell of Figure 3 . 4. 10 .

Figure 3. 4. 10. Gat e r e ali zatio n o f typ i cal cell.

Of course the final output from the cascad e is d en ot e d by the encoding on the

final Y 1, Y 2 pair . If th e se outputs are d esi red a s a set of final output lines, then

we shall have to have a .collecting s et of AND gates on th e output s omething like

y '

~
1

y'
2

y' ::@-1

Y2
yl :@-
y '

2

with intervening NO'r gates as requ ire d .

3 , 64

f
0

f
1

f2

7
n
n
n
n

1

u

J

n As a final example of this kind of desi.gn, we shall consider a problem more

in the "pattern recognition" class, rather than in the "weight'' classes treated so

D far. Suppose we wish to realize in an iterati ve cascade the function which is true

if£ the pattern 1101 has been observed, and otherwise all the independent variables

n
n
n

11

j

l
J

u
Li

a

are O.

First we must carefully decide the d isjoi nt set of s tates that will properly

describe the cascade to cell i, so that it can correctly modify the state of cell

i+l. A sufficient way of describing the necessary set of sta tes is the following:

State D escri pt ion

A Ha ve seen nothing but 0 1 s so far

B Ha ve just seen a 1

C Ha ve ju s t seen a 11

D Ha ve ju s t seen a 110

E Have just seen a 1101

F Flu s h - patt ern cannot be realized

The only new concept here is the "flush" state and it corresponds to the fact

that the information to cell i in the cascade is such that the function can never be

rearized , regardless of the remaining length of the cascade; hence the value of

x. (and x . , etc., become immaterial).
l l + 1

This is a six- state cascade, hence at lea s t thre e variab l es are ne e ded to

encode the information. Of course three variab l es can enco de eight s tates, so we

shall ha ve at our disposal two states to as sig n as don't cares. Otherwise the

procedure is exactly analogous to the preceding, and th e rernai:nder of the solution

for this cascade is left to the intuition, and interest of the reader.

3. 65

3. 5 Notes .= References = Problems

NOTES.

Minimization problems have been extensively covered in the li.te:rature in

almost ev~ry conceivable variety. Early map methods were introduced by Veitch

(8), althou.gh the usual present form of the map is due to Karnaugh (2). Tabular

reductions were devised by McCluskey (5) as an adaptation of earlier work by the

logician W. V. 0. Quine. The case of multiple .. level networks is treated by

Lawler (4) and Karp (3), while the multiple output minimization problem is found

in Bartee (1) and McCluskey and Schorr (7). The basic work on iterative combina­

tional networks is also by McCluskey (6). Again many other modern te~s will be

found to include a review of most of this material.

REFERENCES.

1. Bartee, T. C., "Computer Design of Multiple Output Logical Net­
works, 'J IRE Trans. Electr. Compt., v ol. EC = 10, pp. 21-30, 1961.

2. Karnaugh, M., "The Map Method for Synthesis of Combinational
Lo g i c C i r cu its , 11 T rans . A IEE , v o 1. 7 2, pt. 1 , pp. 5 9 3 - 5 9 8 , 1 9 5 3 .

3. Karp, R. M., "Functional Decomposition and Switching Circuit
De sign, rr, SIAM J. , pp. 29 1 ~ 3 3 5, June 1 9 6 3.

4. Lawler, E. L. ''An Approach to Multi.level Boolean Minimization, 11

J. ACM, vol. 11, pp. 283 - 295, 1964.

5. McCluskey, E. J., "Minimization of Boolean F1mctions, 'I Bell Syst.

6.

7.

Tech. J., vol. 35, pp . 1417=1444 ~ 1956.

McCluskey, E. J., "Iterat iv e Combinational Switching Networks:
General Design Considerations, 11 IRE Trans. Electr. Compt.,
vol. EC ... 7, pp. 285-29L 1958.

McCluskey, E. J., and Schorr, H., "Es se ntial Multiple-Output Prime
Implicants, 11 in Mathematical Theory of Automata, Proc. Polytech.
Inst. Brooklyn Symp. , vol. 12, pp. 43 7- 45 7, 19 6 2.

8. Veitch, E. W., "A Chart Method for Simplifying Truth Functions, 11

Proc. ACM, Pittsburgh, Pa., pp. 127=133, 1952.

3. 66

n
D
n
n
I

I

J

1

~ PROBLEMS.

n
n
n
11

I

II

11

l I
u

Li
tt

Consider the function f(w, x, y, z) = 'I: (0, 4, 5, 7, 8, 9, 13, 15) (with w, x, y, z

arranged in order of decreasing weight) :

a)

b)

c)

d)

e)

f)

g)

Realize f in a contact network using the least number of simple contacts
that you can.

Determine f Is it unique? If not, list them all ,
cs

Determine f . Is it unique? If not list them all.
ms

Realize fin a minimal two - le v el AND/OR network.

Realiz e £ in a minimal two-le v el OR/AND network.

Realize f in a minimal two - level NAND network.

Realize fin a minimal two - l ev el NOR network.

2 . Draw a relay contact n e twork for each of the following functions:

3.

4.

5 .

a) f=A(BC' +B'C)

b) f = ABC+ AB'C + A' BC

c) f = AD + BC + (B + C)(A + D)

d) f = (AB + C) (BC + D)(CD + A)

e) f(A, B , C, D) = ~ (0, 2, 6, 15)

f) f(A, B, C, D) = -rr (1, 5, 10, 13)

Find all minimal sum s for the functions in Problem 2.

Draw minimal two - le v el gate networks for the functions in Problem 2

(using AND - OR logic).

See how much further you can simpli.fy the realizati,ons of Problem 4 if you

are not restricted to two - level networks.

6 . a) Realize g = ~ (0, 4, 5, 7, 8, 9, 13, 15) + ~D (2, 3, 11) i.n a minimal two-

7.

b)

a)

b)

level AND/OR network .

Realize g i.n a minimal two - level OR/ AND network.

Design a minimal AND - OR network (two - level) for the function

f = (0, 1, 2, 5 , 6 , 13 , 14),

Do the same for f = ~ (1, 4, 6 , 8, 11, 12) + ~ (2, 5, 13, 15)
D

(a) first by ignoring the don't cares

(b) then by utilizing them

3. 67
r

8.

9.

10.

For the s pe ci fication f ::.: ~ (0, lll 3ll 4ll 9, l0ll 11) + ~D (S, 15) with the variables

ordered acc o rdin g to decreasing weightll find a m in imal su m e xpression for f.

Is your expression unique? If notll how many e q u iv al en t forms are there?

(£ = f(x
4

_, x
3

, x
2

ll x
1

)).

Find an ec onomical contact realization for the f un ct ion s peci fi ed in problem

8. (The number of single contacts is the cost c riteri on o)

Find a minimal NOR gate realization {two=l ev el) for the fun ction specified in

problem 80 (You may assume that complem ent e d v a riables ar e available as

inputsll a s well as the uncomplemented variable s o) Is you r network unique?

If notll how many m inimal forms are there?

11. You are gi v en a b ox of exclusive=OR gates and AND gateso Yo u are asked to

realize f(x4ll x 3ll xzll xl) = ~ (3ll 8ll 9, l0ll 12ll 13ll lS)o

But on in v estigation you find that your excl us ive= OR ga t es have only 3 inputs,

and your AND' s only 2 inputsl1 and that only uncor npl e m en ted v ariables are ·

available as inputs.

You do findl1 h owever, that the input combinatio ns ·corres ponding to rows 2»

11, and 14 of the table of combinations ar e guara ntee d ne ve r to occur.

What' s th e be s t network you can design un d e r th ese c on d iti on s if each of your

gate s is e g ua 11 y c o s tl y?

12. Find one of the s i mple s t functions of four va ri abl es l1 us in g uncomplemented

variable s onlyll for which (a) w(f) = 7l1 (b) w(f)::: 10 ? a·.d w(f) == 13. "Simplest'~

means th e lea s t number of vari a ble occurr ence s , and w e a ll ow only AND and

OR operation s . Write out the minimal expr es si on in eac h ca s e .

13. Use the tabular Quine-McCluskey method to d eve lo p all th e pr i me implica­

tions of the se ven=variable function f ::.: ~ (47? 67 ~ 75, 99 ~ 107).

14. A binary full adder is a 3=input, 2=output n e t tha t p r ovi d es th e sum (S) and

carry (C) digit s in response to two inputs (a and b) a nd a p r evious carry (c).

Synthesiz e a gate network (assuming all x. and x ~ ava il a bl e) us ing AND and
· 1 l

OR gates to s imultaneously realize Sand C with th e rni ni .mum number of

gate input s .

15. Suppose that you also had exclusive _;QR gat e s a vailab l e in P r oblem 14.

How would y o ur realization change?

3. 68

l
n
D
n
n
11

n

I

LI

II
. I

l

IJ

J

j

LI

16 . Realize a typical cell in an n - variable iterative cascade which will produce a

t r ue output if and only if e x actly two of th e input variables in succession have

been true. How many minterms doe s then - v ariable function contain?

a) Assume relay contacts only for your realization .

b) Assume gate s (ANDs , ORs , and NOTs only) are available .

3 . 69

4 Introduction to Sequential D e s i gn

4. 1 Sequential L ogic Circuit s

The logical circuits we ha v e s tud ie d u p to thi s ti.me are known as combina ­

tional logic circu its. Schemati c ally th ey ca n be represented fLS s hown in Figure

4 . 1. 1. The output Y is a function of the in put X.

X
1

Logic

Network

y
1

X - - ,-,.-,_ _ __ _ __ __J y
m n

Figure 4. 1. 1. The Combinational L o gi c Circuit.

Each element of the output ma y be written as a log ic al functio n of the input

v ector X = (x , x 2 , ... x)
1 m

yl = f (x , , , . X)
1 m

Yz = f 2(x , .. , X)
1 m

Eq . 4. 1. 1

yn - f (x , ... X)
n 1 m

The elements in the bo x ar e an y co mbin ation o f l o g i c gat e s connected in the

customary way as discu sse d pr ev io us ly. In pa r t icu lar no o ut p ut s are all owed to be

"fed back" to form inputs of other lo gic gat es.

In this chapter we shall extend the design pr oce dur es to in cl u de networks

which respond not only to pres en t in pu t s but also the cum u la ti v e effec t of all past

inputs. Figure 4 . 1. 2 shows a generali z e d s equentia l logi c n e twork.

Input

Variables

State

Variab l es {

C m

yl· .
y •

p

Figure 4 . 1. 2. The

Log i c Netwo rk

Memo ry

ge n e ral i zed

4 . I

z
n

s1

s q

}
Ou tpu t

Vari able s

} Excitation

Variables

s e q uentia l l ogic n e twork .

l
7
n
n.
n
n

j

1

J
j

LI

l
n
n
n
n
l

I

The output is now a function not only of the input variables but also of the

state variables of the systems (or the state of the system).

of the device can be described by the follow i ng equations:

The complete behavior

z
n

= F (x 1, ... x , y 1, ... y)
n m p

Eq. 4 . 1. 2

Eq . 4. 1. 3

At this point it is convenient to define a n e w symbol related to the state

variable y . It can be seen fro 'm Figure 4. 1. 2 that there is a cyclical flow of

information through the logic network and memory. As a result of this flow the

state variables change as a function of the excitation variables. The change in

state variables is not immediate , however, since it is moderated by the memory.

We circumvent this problem by defining a variable y ,:, which indicates the next

state of state variable y. Equation 4. 1. 4 indicates the relationship between the

excitation variables and the next state.

gives

Eq . 4. 1. 4

* y = H (s , s 2 , ... s)
p p 1 q

Substituting the values of the excitation variables in Eq. 4. 1. 3 into 4. 1. 4

y 1 = I (x , x 2 , ... x , y , ... y)
1 1 m 1 p

Eq . 4 . 1. 5

y; = Ip (xl' x2, .. . xm' y 1' ... y p)

The exact representation of the relationships shown in Eq . 4. 1. 4 and 4. 1. 5

is dependent on the block in Figure 4. 1. 2 labeled Memory , A digital memory

device is defined to be any device capable of perpetuating an output after the

stimulus eliciting the output has been removed . For design purposes we shall

4. 2

deal almost exclusively with variou s types of flip flops to perform the memory

function. Other forms of memory such as magnetic cores present no challenge

to the theory but needlessly complicate the design implementation and will be

avoided.

The flip flop memory elements we shall $tudy are of two types: clocked

and asynchronous . In a clocked flip flop all changes of state are initiated by an

external syrichroni.zing signal called the system c .lock. The use of a synchronizing

clock greatly simplifies the design of sequential circuits. Clocked circuits are

used almost exclusively in digital computers and most special purpose sequential

digital system s . It is the clock which initiates all state changes in an orderly and

paced fashion.

Asynchronous logic design does not u s e a clock signal. State transitions

are initiated instead only by the excitation -variables. Changes in state variables

may cause -changes in excitation variables which may cause additional changes in

state variables etc.

Asynchronous networks generally perform faster than their clocked counter­

parts but introduce design problems associated with oscillation, differences in

propagation times of gate s , and trouble shooting.

4. 3

l
l
[]

n
n
n
l
I
-l

J

l
_,

l
J

l
l
n
n
n
f1

l

I
I j

I

J

J

4. 2 The State Diagram

For both analysis and design purposes the state diagram provides a con ­

venient means of specifying the sequential behavior of a network. The states on a

state diagram is indicated by a series of circles ; one for each possible state of the

system. The state may be specified either by listing the value of the state vari­

ables or by as signing an alphabetic symbol.

The effect of system inputs (x 1, x 2 ...) is indicated by arrows originating

from the present state and terminating on the next state. In some cases the

present state and next state may be identical. Each arrow is labeled with a binary

representation of the values of the input variables, a slash(/), followed by the

binary representation of the output variables.

Two general examples will be shown. The first is a forward/backward

binary counter; the second is a network to determine the cessation of rotation of

a mechanical device.

Example 4. 2. 1

Develop the state diagram for a clocked sequential network which will

count forward in the binary sequence if x = 1. The circuit is to count backward

iJ x = 0. The count is to con ta in only 2 bits and follow the sequence z 1 z 2 = 00, 01,

10, 11, 00, 01 etc.

Solution:

Figure 4 . 2 . 1 shows a possible state diagram for the device described .

Figure 4. 2 . 1. State diagram for a forward/backward
binary counter.

4 . 4

In Figure 4. 2 .. 1 the state variables have not been assigned. To distinguish

between the four states shown., a minimum of two state variables are required.

N = number of states

n = number of state variables
n

2>N Eq. 4. 2. 1

For a complete specification of the device we may assign the four combina­

tions of our two state variables in any manner as long as each state has a unique

state variable assignment.

Figure 4. 2. 2 shows a possible state variable assignment indicating the

arbitrary nature of the assignment.

1/00

\

1/11 /10

Figure 4. 2. 2. Arbitrary assignment
of state variables.

Figure 4. 2. 3. Assignment of state
variables such that state variables
are identical to output variables.

In Figure 4. 2. 3 the state variables have been assigned in such a way that they

have the same value as the output variable. This is often possible in counters.

When this is done the overall design may be simplified considerably. This will be

considered further in Chapter 5.

Example 4. 2. 2

n

n
n
n

I

I
_,

A rotating device is equipped with an electro-optical sensor system as shown)

in Figure 4. 2 .. 4 which provides a logic O when the sensor is "looking" at the black

portion of the rotating disc and a logic l when "looking'' at the white portion. A

clocked sequential logic device is needed to determine if the disc has stopped

4.5

I

I} rotation. The disc is defined to be stopped if three consecutive 1' s or 0 1 s are

received from the sensor.

n
n
n
11

j

I
j

Figure 4. 2. 4.

Solution:

Sensor Logic

Output

Rotation sensor.

An initial state s0 is selected. Three consecutive 1 1 s or O's direct us to a

state which provides a failure indication. Recovery is automatic when motion

again starts .

0/0 0/0

0/0

0/0

1/0

1/0

Figure 4. 2. 5. State diagram of rotation sensor.

0/1

1/1

Z = 0 No alarm

Z = 1 "Stopped"

alarm

For the device in the example three state variables would be required for

implementation.

........... , .. ,,

4. 6

4. 3 The Latch

The flip flop will comprise the basic memory building block for the sequen­

tial circuits which will be designed. Flip flops come in several different configura­

tions. The skilled designer should be capable of selecting the best type for a

particular application.

The latch or Set-Reset flip flop i.s the most basic ' unit of logic memory. It

can be easily constructed from NAND gates or NOR gates. It is commonly used in

asynchronous applications. It also is a building block of the clocked flip flops to be

discussed later.

The latch is easily implemented as one of the circuits shown in Figure 4. 3. 1.

The interter input on the NAND representation is included to allow both flip flops

to have changes initiated by a logic 1.

Set .~
Q

Set

Q- Re~et -- Q

a b
Figure 4. 3. 1. Two realizations of the latch circuit.

s Q

R Q

Figure 4. 3. 2. Symbol for the latch.

l
7
n
n
n
n

I
I
j

Consider the NAND gate R-S flip flop of Figure 4. 3. l(a). Assume the R-S I
inputs take on the condition R = 0, S == 1. Gate A has a 1 output because of the logic

0 input from the inverted set input. Gate B has an output of logic O since both of J
its inputs are logic 1. One input is the inverted reset input and the other is the

logic 1 input from the output of gate A.

4. 7

l
~

n
n
n
11

j

. l
I
J

I
l

I
l I
]

I
J

The flip flop is said to be in the 1-state since Q = 1. If Sis now changed to 0

giving R = 0, S = 0, gate A remain$ at logic 1 because of the logic O input it receives

from Gate B. Gate B remains at logic O because both of its input a re logic 1. With

both R = 0 and S = 0 the flip flop "remembers II that sometime in tlle -past the condi­

tion S = 1, R = 0 existed and retains Q = 1 at its output.

If the S = 1, R = 0 condition is repeated, there will be no change in the outputs

of the flip flop. In this case Gate A now has two inputs which are logic O; only one

is necessary to provide the logic 1 output. Gate B retains its two inputs of logic 1

and remains at logic 0.

The flip flop of Figure 4. 3. l(a) is completely symmetric in its logic construc ­

tion with respect to the reset and set inputs . The inputs S = 0, R = 1 force the flip

flop to the condition where the output of Gate A is O and the output of Gate B is 1 .

This is called the O state of the flip flop.

The circuit of Figure 4. 3. l(b) is also an R-S flip flop. The condition R = 1,

S = 0 causes gate D to become logic O. · The R = 0 and O output from Gate D cause

Gate C to become logic 1. This output condition will remain the same if R = 0,

S = 0. Again the circuit has memory properties and behaves identically to its

NAND gate companion for conditions R = 0, S = O; R = 1, S = O; R = 0, S = 1.

The condition R = 1, S = 1 causes both outputs of the NAND gate flip flop to

become logic 1: it causes both outputs of the NOR gate flip flop to become logic 0 ..

The condition R = 1, S = 1 implies a certain ambiguity of purpose and is normally

considered an invalid input condition.

The response of a flipflop to its input condition (R, S) can only be described if

the initial state of the flip flop is known. Figure 4. 3. 3 is a state diagram describ­

ing the behavior of the latch with inputs x 1 x 2 = SR.

01/0

00/0

10/0

01/1

10/1

00/1

Figure 4. 3. 3. State diagram description of the latch.

4. , 8

l
Table 4. 3. 1 presents a tabular description of the latch . It appears in much ~

the same form as a truth table . Th e next state (Q ,:,)is present e d as a function of

the inputs R,S and present state Q.

Present Next
State Input State
Q R s Q ,:,

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 Input Invalid

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 Input Invalid

Table 4 . 3. 1. Characteristics of the latch.

For design purposes it is useful to present the inputs required to produce a

desired state transition, In Table 4 . 3. 2 the Xis used as a "don't care" condition .

Present Ne x t
State Stat e Inputs

, ,,

Q Q ''' R s

0 0 X 0

0 1 0 1

1 0 1 0

1 1 0 X

Tabl e 4 . 3. 2. Design characteristics
of the latch .

The following examples sugges t possible application s of the latch . The

design procedure is largely h eu ristic . Chapt er 5 will present a more detailed

design procedure and outline pos si ble p ro blem areas.

Example 4. 3. 1

As part of the safety syste m of a manned spacecraft, several system

4. 9

n
n
n

j

j

u

l
~ components are continuously monitored to detect failure conditions. A failure

condition is indicated by a logic 1 signal appearing at the D terminal which is n generated whenever the component de vi ates from its prescribed behavior. Some ­

times the failure condition will exist for only a brief instant of time and then n return to its normal range. Design a system to continuously monitor the failure

detect circuit and 1'remember II if a failur e condition appears.

n
n

Solution :

The latch is an ideal component for such a situation. A possible design is

shown in Figure 4 . 3. 4. The latch if initially put in the O state by momentarily

entering a logic 1 on the reset terminal. A failur e causing a logic 1 on the se t

line will put the flip flop in the 1 state and actuate the indicator. The indicator

l will remain on until the flip flop is again placed in the O condition.

]

l
j

j

j

J

j

j

u

!failure detect s Q Alarm Indicator

Manual

Reset
R

Figure 4. 3 . 4. Failure detect system.

4. 10

4 . 4 Clocked Flip Flops

Two types of flip flops are commonly used in the design of clocked sequential

circuits; these are the JK flip flop and the D type. Two variations of clocking also

exist for each type of flip flop .

Type D

The type D flip flop has a single input terminal labeled D. Its terminal

behavior is described in Table 4. 4 . 1.

Present Next
State Input State
Q D Q':<

0 0 0

0 1 1

1 0 0

1 1 1

Table 4. 4. 1. Terminal characteristics of the
type D flip flop .

The D flip flop also has one or more terminals which can cause transitions

without the aid of a system clock . These are commonly called preset and clear

and are normally used for entering initial conditions into the flip flops.

JK Flip Flop

The JK flip flop uses two input variables to specify the next state condition .

The terminal beh ::wior is described in Table 4. 4. 2 .

4. 11

l
n
n
n
n
n
I
I
J

I
I

I
J

J

J

J
J

7
n
n
n
n
n

I l

I

11

11

11

u

Present Next
State Input State

,,,

Q J K Q'''

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Table 4 . 4. 2. Characteristics of JK flip flop.

For design purposes the JK inputs necessary to produce specified state

changes are shown in Table 4. 4. 3.

Present Next
State State Inputs ,,,

Q Q ''' J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

Table 4 . 4 . 3. Design characteristics of the JK
flip flop.

The JK flip flop also may have additional preset and clear terminals for

entering initial conditions.

The Clock

The clock signal is used in sequential design to initiate all changes of state

in flip flops. Since the state variables effect the excitation variable of the flip flops

it is important to i solate the present state from th e next state. If this is not done

the possibility for uncontrolled oscillation exists.

Two techniques are commonly used, the 11master - slave 11 and the 11edge

4 . 12

trigger". In the master-slave formulation two internal latches are used in

"bucket brigade" style to pass information from the input "master" section to the

output "slave') section, The sequential operation is shown in Figure.4. 4. 1.

1.

2.

Isolate slave from master

Enter information from inputs to the master.

r
3. Disable inputs

4. Transf~r information from slave to master (new output)

Figure 4. 4. 1. Transfer of information in the Master ­
Sla v e flip flop.

In the master-slave flip flops all state trans .:itions occur on the 1 to O transi­

tion of the clock pulse. This is helpful in the heuristic design of counting circuits.

In the edge triggered flip flop, input information is transferred to the output

on the leading edge of the clock pulse. The transfer occurs only during the small

instant of time that the clock amplitude is betwe en two thresholds ,

The behavior is shown in Figure 4. 4. 2.

Upper

threshold

Lower

thre shold
Input s

enabled

Input s

di sabled

Figure 4. 4, 2. Transfer of information i.n the edg e triggered
flip flop.

In the edge triggered flip flop all state transition occur on the O to 1 transition of

the clock pulse,

4 . 13

1

7
n
n
n
n

l

. I

j

j

u

l
n
n
n
n
11

j

ti
j

4 . 5 Binary Counters

Either the Type Dor J - K flip flop may be connected into binary counters

using heuristic design techniques. These counters may be either of the ripple type

in which changes in the state of flip flops start at the least significant bit and "ripple"

sequentially toward the most significant bit or a synchronous type in which all bit

locations change simultaneously .

Figure 4. 5. 1 and 4 . 5 . 2 show ripple counters using the two types of flip

flops. In both cases the input signal (the pulses to be counted) is introduced at th e

clock terminal of the least significan t bit location. The least signifi.cant bit changes

state with every pulse. A change of state of each bit location is initiated by a 1 to

0 change of its next least significant neighbor . The 1 to O changes are easily uti­

lized by connecting the output of one bit location to the clock input of its neighbor.

Pulses to be
counted

1

Least

significant

bit

K QO
clock

1

1

J

K Ql
clock

1
'
J

K Q2
clock

Figure 4. 5. 1. Typical ripple counter us ing JK master- slave flip flops.

Pulses to b

counted

e

~

Least

significant

bit

Qo -

D
-
Q(1

_..

clock

I

-

Q< - Q2 -
"

D ----D
- -
Ql

,_
Qz -

clock clock

I I

Figure 4. 5 . 2 . Ripple counter using type D edge triggered flip flops.

4 . l'4

Binary counters of any arbi.trc1,ry length may be constructed by repetitions of

the basic circuitry . The ripple effect rnay cause some problems. Consider the

counter with a 2a 1 Q 0 = 011. The next pulse should lead to Q Q Q 0 = 100.
2 1

Since

changes must start with the least significant bit a series of transitional conditions

lasting a short time will exist between the 011 and 100 states. These transitions

are indicated in Table 4. 5 , 1.

Qo Ql Q2

Initia 1 state 1 1 0

Least significant bit changes 0 1 0

Ql bit changes 0 0 0

Q 2 bit changes final state 0 0 1

Table 4. 5. 1. Intermedi,ate states in a ripple
counter

Care must be ·used to be certain that circuitry connected to the counter does

not respond falsely to the intermedic;1.te conditions shown i.n Table 4. 5. 1. The time

required for ripple propagation in long counters may make them unsuitable for

some operations,

The speed of the binary counter may be considerably increased by causing

all transitions to occur simultaneously rather than in a serial mode. Figure 4. 5. 3

shows a three stage synchronous counter. The input logic to each of the JK inputs

is easily verified by noting that an input affects a counter section only when all less

significant counter sections conta,in logic l's. All state changes occur simultane­

ously. The disadvantage of the parallel transition counter is the extra logic gates

required.

1 J Qo J Q1 -Q4) J Q2

1 K K K
clock clock clock

Pulses to

be countea ·

Figure 4. 5. 3. Synchronous counter.

4. 15

l
l
n
n
n
n

1

j

J

n
D
n
n

11

I j

J

4. 6 Shi.ft Registers

The shift register finds many appli.cati.ons i.n the construction of arithmetic

circuits and encoding networks for communication. It is conveniently constructed

from J-K flip flops or Type D Fli.p Flops as shown in Figure 4. 6. 1 and 4. 6. 2.

With each clock pulse information initially placed in the register i.s shifted one

location tot he right . Information shifted into the fir st stage is determined by its

input conditions.

Input

System
clock

Input

System

clock

J Q J Ql-----,J Q

K Q1------+ K Q ,---- --<K Q

Figure 4. 6. 1. Shift register constructed with JK
flip flops.

- D Q D Q D Q ,__.

I I I

Figure 4. 6. 2. Shift register constructed with type D
flip flops.

Recirculating Shift Register

Figure 4. 6. 3 shows a variation of a shift register in which the output of the

last stage is used as an input to the first stage. Information is continually recircu ­

lated. A single logic 1 circulated through several register sections might conveni­

ently be used as a means for providing sequential logic signals for timing purposes .

4 ·· 16 . ;

~

Jo Qo '1 Ql J Q2 2
J

-- - K2 Q'J K clock Qo Kl clock Ql
0 clock

Clock -- I I I -

-- - H--

Figure 4. 6. 3. Recirculating shift register.

An array of recirculating shift regif'iters in which one register is used to

hold one bit location of a computer word is sometimes us e d as a sequential access

memory system.

Shift Register Generator

Shift register gen(;)rators are formed by generating a logic function of the

various flip flop outputs and using it as an input to the shift register . The general

case is shown in Figu~-e 4. 6. 4.

Jo Qo Jl Ql J Q

t~ r (n n
t I

- - -
Ko ~ Kl Ql K Q

0 n n

Clock I I

Comb ina torial / Qo
Logic

,

Q1
Circuit ~ Q2

Figure 4. 6. 4. The shift regist e r generator .

If the combinational logic network is correctly chosen , the set of outputs
n

0 00 1 .. . Qn will assume 2 - 1 uniqu e states b e for e a rep e tition occurs (n = number

of shift register elements) . Table 4 . 6 . 1 indicates combinational logic functions

which will produce ma x imuµi length sequences.

4 . 1 7

1

n
D
n
n
r 1

J

J

j

u

l
n
n
n
11

II
I
lJ

J

J

n Function n Function

1 Qo 11 QB EE> QlO

2 Qo@ Ql 12 Ql (f) Q9@ QlO@ Qll

3 Ql@ Q2 13 Qo@ QlO@ Qll @Ql2

4 Q2@ Q3 14 Ql <D Qll <D Ql2 <D Ql3

5 Q2 (D Q4 15 Ql3 (D Ql4

6 Q 4 (D Q5 16 QlO <D Ql2 <D Ql3 <D Ql5

7 Q5 (f) Q6 17 Ql3 (D Ql7

8 Ql @ Q2 (D Q3 (D Q7 18 QlO <D Ql7

9 Q 4 (D QB 19 Ql3 (D Q (f)
16 Ql7 (D Ql8

10 Q6 <D Q9 20 Ql6 <D Ql9

Table 4. 6. 1. Logic functions for generating maximum l ength
sequences.

For all cases in Table 4 . 6.1 any initial condition except 00 ... 0 may be

used. For example n = 3, with initial condition 100, will produce the following

sequence:

Initial condition 100

Clock pulse 1 010

2 101

3 110

4 111

5 011

6 001

7 100 (repeat of initial
condition)

The shift register has m.any of the same features as a binary counter, Both

assume approximately 2n unique states and then repeat the same sequence. The

binary counter has the advantage of incrementing one count in a binary counting

4 . 18

sequence. The shi.ft regi.ster generator has the advantage of bei.ng completely l
synchronous i.n i.ts state changes (no rippli.ng) whi.le requi.ri.ng relati.vely li.ttle

extra logic. ~
Some uses for shi.ft register generators include the following:

1. Sequencing of operati.ons involving sequential timing signals. The output n

2.

states of the SRG are decoded to provide a series of sequencing logic

signals.

The random appearing property of the bits is often used as the basis

for a binary random noise generator. By the use of digital to analog

conversion techniques an analog noise generator having easily specified

characteristics may be constructed.

4. 19

n
n

J

J

J

J

l
1
n
n
11

f l

I
J

l J

j

4 . 7 The Arithmetic Register

Registers for temporary storage of operands and instructions play an

important role in the operation of digital computers . Figure 4 . 7. 1 shows a typical

register configuration for the Arithmetic operations of a digital computer .

Control si gnal

from

opera t ion decoder

Operand from

Memory

Memory Access Regi ster

Arithmetic / Logic Circuitry

Accumulator

Figure 4 . 7 . 1. Typical register configuration for arithmetic in a
digital computer.

One of the operands is assumed to be the accumulator . The second is

retrieved from bulk memory and stored in the Memory Access Register , The con ­

tents of the two registers are combined in the Arithmetic/ Logic circuitry as

specified by the control signal from the operation decoder . The flow of informa ­

tion between all registers i.s controlled by clock signals generated in the control

unit of the computer.

Figure 4. 7 . 2 is an example of computer circuitry to perform the following

operations.

Add

Shift

- Add contents of accumulator and memory access
register and store sum in accumulator .

- Shift the contents of the accumulator left one
position .

4 . 20

Shift

"carry" out to

next rmit

Carry from

adder

From memory

From accumulator

Load

7

_ Figure 4. 7. 2. Typical computer circuitry for add , shift, complement, load.

Shift I
_c__ _,_____

D

Memory Access Register

11 carry" from

previous stage

Accumulator

::::::J ::.::::I

n
D
n
n
fl

l

J

J

lJ
J

j

u

Complement

Load

- Complement all bits of the accumulator.

- Transfer the contents of memory access register
to the accumulator.

Although a complete operational description is not appropriate at this point, it is

informative to note the dependency of even large computer systems on relatively

simple registers, counters, and combinational logic.

4 . 22

4. 8 Notes - References - Problems

The material in this chapter is covered in a wide variety of standard texts in

the field. Of the texts listed below, the treatment in Chapter VII of Booth (1) is

particularly relevant. Material relating to detailed flip flop characteristics is

best obtained from manufacturer's specification sheets .

2.

Booth, T. L., (1971), "Digital Networks and Computer Systems",
John Wiley, New York ,

Dietmeyer, D. L., (1971), "Logic Design of Digital Systems",
Allyn and Baron, Boston,

3. Krieger, M., (1967), "Basic Switching Circuit Theory", MacMillan,
New York.

EXERCISES

1. Derive a state diagram for a network which will have a O output until four

consecutive logic l's have been sequentially received. The output is to

change to 1 and remain 1 thereafter.

2 . Repeat problem 1 with the condition that the iogic l's need not be consecutive.

3. Determine the sequence of states for the following networks of flip flops.

OOD-
0 -z

Clock

1

1

J Oz

K Oz

(a)

1 J 01

1 K 01

(b)

4, 23

01
I D

01 -

- 1 J

1 K

D

Oo
-

oo
-

Oo

Oo

Initial State

Oz010o = 111

l
l
0
n
n
l

I

I
LJ

l
n
n
n
n
n

r J

I
J

11

I
11

I I
j

4.

1 J Q2 J Q1 7' Qo

K Q- [S QQ 1 F Q

Clock

C

An swer

Q2 Ql Qo

0 0 0

1 0 0

0 1 0

1 0 1

0 1 1

1 1 1

0 1 1

1 1 1

etc .

Discuss the behavior of the followin g circuit as a contact bounce eliminator;

"1"

"0"

double throw

switch

Break before m a ke

4. 24

5 Design of Clocked Sequential Circuits

5. 1 Clocked Sequential Logic

This chapter i.s concerned primarily wi.th the design of sequential networks

using clocked flip flops for memory elements. Both the type D flip flop and the JK

flip flop will be -considered. A synchronizing clock signal will be implicit in all

designs in this ·chapter and will generally not be included on circuit designs. At

this point it is not necessary to distinguish between ''edge triggering" and

"master ~slave" operations providing both types are not intermixed in the same

design.

5. 1

I
n
□
n
n
n
I

d
I
I
LI

1

n
J
n
n
n

5. 2 The Design Procedure

De sign of clocked sequential networks can proceed in a very straight forward

manner using a minimum of intuitive and "heuristic II methods . For any design the

following suggested steps provide a partitioning of the design problem into an

orderly sequence of steps.

5. 2. 1 Prepare a State Diagram

In this operation the complete description of the desired network should be

put in a well organized form. The state diagram is an ideally suited form for this

prupose. Special care may be warranted to assure that all states used are inde­

pendent. The use of two or more states which are equivalent will not affect the

performance of the circuit but may needlessly complicate the design of the network

and result in a higher "cost" realization in terms of component requirements.

The "equivalence" problem and an algorithmic approach to its solution will

be discussed in section 5. 6.

5 . 2. 2 Assign State Variables

The number of states in the state diagram determines the minimum number

of state variables sufficient to design the network . Each state variable requires

one storage element or flip flop . Use of the minimum number of state variables

will result in the use of the minimum number of flip flops. The assignment of

state variables to the states may be done in an arbitrary manner providing all

states have a unique assignment.

Although the state assignment is arbitrary , it has an effect on the overall

"cost" of the network. A few suggestions will be given which will be sufficient for

a good start. For some designs it may be essential to examine alternative state

variable assignments and their effect on system cost. The following rules suggest

a reasonable way of assigning state variables.

1. If your network requires an initial state, assign this state the assign­

ment 00 ... 0. Besides agreeing with intuition it allows the use of the

a synchronous "clear ' 1 terminal on the flip flops to initialize operation.

(Some flip flops do not have a pre -set capability. If the pre -se t terminal

5. 2

is available, any state can be easily initialized.)

2. Pick the state which has the most other states adjacent to it (transi-

3.

tions to on from other states). Try to assign the adjacent state state

variables which differ in only one position.

In the case of counters or timing sequence generators, it is often

desirable to have one or more of the ptate variables be identical to the

system output. If this is the -case one Qr more of the state variables

can also function as output variables.

n

n
n

The above are only suggestions and may be violated at will without destroying n
the basic integrity of the network.

5. 2. 3 State Transition Specification

Using the results of 5. 2. 1 and 5. 2. 2 specify the next state as a function of

the present state and present input. This may be conveniently done in tabular form

(the transition table) or in the form of a K map. In most cases the assignment of

state variables will not exhaust the total number of unique assignments possible.

The next state designation for unused state assignments may be treated in two

ways.

1. They may be considered don't care conditions.

2~ They may be assigned to a "recovery" state.

Method 1 may result in a condition in which the next state is the same as the

current state. A malfunction or transient which might cause the circuit to enter

such a state would result in the inability of the network to escape. A cycle of unused l
states is another possible situation which should be avoided.

By directing all unused states back into a properly chosen '~used" state of the J
system, recovery from some types of malfunctions may be possible.

5. 2. 4 Output Specification

Specify the output as a function of the present state and input. This informa-

tion is also contained in the state diagram and may be -conveniently expressed in a

tabular form or a K map.

5. 3

l

n
n
n
n
11
. I

I
f I

I
l I

11

J

l

u
u

5. 2. 5 Excitation Design

Using the design characteristics of the appropriate memory device specify

the excitation variables (J, Kon the JK flip flop or Don the type D flip flop). In

the case of the D flip flop the excitation variable, D, is identical to the next state

and the table prepared in 5. 2. 4 can be used .

5. 2. 6 Design Completion

Complete the design by using combinational logic design procedures to

design the networks specified in 5. 2. 4 and 5 . 2 . 5 .

The design procedure described will be further elaborated upon by example

in the following sections .

5.4

5. 3 Design of Sequence Generators/ Counters

Counters and sequence generators are usuaJly distinguished by a lack of input

variable intera _ction. Transitions between states are initiated by the clock signal.

In the ·case of an event counter the logic signal related to the occurrence of the

event may form the clock for the network.

Example 1

Design a network to produce sequentially and cyclically the following output

in 5 timing intervals. Type D flip flops are to be used.

2122

1 00

2 01

3 11

4 01

5 00

repeat 00

01

1 1

etc.

Solution:

The procedure des ·cribed in the previous section wi.11 be used.

5. 3. 1 State Diagram

Figure 5. 3. 1 shows an acceptable state diagram for this network. Five

states are needed . Since no inputs are needed, nothing appears before the "/"

I
n

n
n

i.n Figure 5. 3. 1. I

5.5

l
n
n
n
n
n

l I

II

..

/00 /01

/01

Figure 5 . 3 . 1. State diagram for sequence generator .

5 . 3. 2 Assignment of State Variables

A minimum of three state variables are required. A possible assignment is

shown within the parenthesis in the state diagram. State variables 2 and 3 are

identical with the specified device output. This eliminates the need to design a

separat e output network . The first state variable is selected to assure uniqueness

in the state designation .

5 . 3 . 3 . State Transition Specification

The following K map specifies the next state as a function of the present state

1 and input (in this example there is not input) . Unused states are assigned don't

i j
ti
J

J
LJ

care entries.

01 11 10

XXX XXX 000

1 011 101 :xxx 100

Figure 5 . 3. 2 . K map of next state as a function of
present stat e.

5. 6

5 . 3 . 4 Output Specification

In this example the state variables have been selected to be identical with the

required output. No further design is necessary

z = Q
1 2

z = Q
2 3

5 . 3. 5 Excitation Design

Because of the simplicity of the D flip flop the excitation variable design is

relatively straight - forward for D 1, D 2 , and D 3 .

Present Next
State State ,,,

Q Q ''' D

0 0 0

0 1 1

1 0 0

1 1 1

Table 5. 3. 1. Design characteristic;:s of type D
flip flop.

5. 3. 6 Design Completion

From Table 5. 3. 2 the logic for D 1, D 2, D 3 may be derived

Q3
2 00 01 ·q 10

0 0 X X 0

1 0 1 CI) 0 X 0 1

D3 = Ql

Table 5. 3 . 2 .

The complete design is shown in Fig\lre 5. 3. 3 .

11 10

X 0

X 0

1

n
n
n
l

J

I
j

u

1

n
n
n
n

I
l

f I

i l
j

j

u

Q1 - Q
2

Qp ~·Vi> D2 D1 Q2 Q·V Q .
3

Q3 Q1 ~ Q2

Figure 5. 3 . 3. Completed design for counter.

Example 2. Repeat Example 1 using JK flip flops .

Solution:

Q1 D

Q3

Q3

--z
2

Up through step 5 . 3. 4, all results are identical to Example 1. The excita­

tion design is the first departure from Example 1. The design characteristics of

the JK flip flop are repeated in Table 5. 3. 3.

Present Next
State State

,,,

Q Q''' J K

0 0 0 d

0 1 1 d

1 0 d 1

1 1 d 0

Table 5. 3. 3. Design characteristics of JK flip flop.

Using the state transition information of Figure 5. 3. 2 and the design charac ­

tersitics of Table 5 . 3. 3 K maps for each of the excitation variables may be pre­

pared. Figure 5. 3. 4 shows the completed design .

··5. 8

~1Q2
00

3
10 01 11 10

0 0 X 0 0 X X 0

1 0 X 1 0

Jl =Q2
Q1Qz Q1 2 Q1Q2

\ = Ql

01 11 10 Q3
i

00 01 11 10 Q3 00 01

X X 0
I

I
X X X X 0 X X

1 X X X 0 1 [___ ~ 1 X X 1 0 0

Kl= ()3 K3 = Ql

Table 5. 3. 4. Design minimization for excitation network.

Q-
Jl Ql

Ql Iz Qz <~\ 13 Q ,
2 3

Q3

o -3 .Kl Q2 1-K
2 Q2 Ql K3 Q3

Figure 5 . 3 . 4 . Completed counter design using JK flip flops .

5.9

l
l
n
n
n
l

J

J

1
D
n
n
rl
I
l

11

j

II
J

J

5 . 4 Design of Input Sequence Detectors

Sequence detectors are usually speci.fi.ed to respond according to the ti.me

hi.story of an i.nput signal. They are useful for a variety of purposes involving

arithmetic and monitoring functions . The design procedure is identical to the

counting circuits of the previous section .

E x ample 3

Complete the design of the rotation sensor speci.fi.ed in Figure 4 . 7 of chapter

4 . The devic e i.s to determine if rotation has stopped by sensing a sequence of

thre e con s ecuti v e 1' s or O's .

Solution:

Three state variables are required . A possible state assignment is shown in

Figure 5 . 4 . 1. Type D flip flops will be used.

0/0 0/0

0/1

1/1

1/0 1/0

Figure 5 . 4 . 1. State assignment for the rotation sensor .

The required state transitions ar e shown in the Figure 5 . 4 . 2 . Note that in

I the K map representation the input variable is now included .

j

u
5. 10

XQ1 XQ1

Q3 00 01 11 10 Q2Q3 00 01 11 10

00 001 XXX XXX 101 00 0 X 0

01 011 001 111 101 01 0 0 0 0

11 010 001 110 101 11 0 0 0 0

10 010 001 110 101 10 0

Output z = XQ l Q3 + XQ;Q 3

Figure 5 . 4. 2. Tabl e of next state and outputs as a function of present
state a,nd input.

The individual K maps for D 1, D 2 , p 3 may be prepared directly from Figure

5 . 4. 2. The output logic may be minimized directly from the output K map of

Figure 5. 4. 2.

XQ1 XQ1

Q2Q3
00 01 11 10

92Q3
00 01 11 fO

00 0 X 00 p X 0 00

01 0 0 1 1 01 0 01

11 0 0 1 1 11 0 11 0 1 0 1

10 0 0 10 0 10 0

D =X
1

D = XQ + XQ Q
2 1 1 3 D'.? = Q2 + XQ1

+ x<:\ Q2 + X<~\

Figur e 5. 4 . 3. K map$ for e,xcitation variable design .

5. 11

l
7
0
n
n
fl

J

1

J

l
n
n
n
n
n
I
l

I
l

f I

l J

J

1

u
u

Q1 ;.D7
X D1 i:~ -D2

Q1 Q1
Q2

Q2

x l
Q1

~ I
D3

X

Q1

·- Z output

Figu:r-e 5 . 4. 4 , Complete design .

Example 4

Design a clocked sequential circuit for us e as a combination lock . The

initial input condition as obtained from push button switches is x 1 x 2 = 00 , The

sequence x 1x 2 = 01 , 11, 10, is to open the lock . The lock is to remain open

until the input x 1x 2 = 00 at which time it is to again lock.

Solution :

The clock frequency will be chosen high enough so that it will be impossible

to change two input variabl e s in the time inter v al between clock pulses .

The state diagram for the circuit is s hown in Figure 5 . 4. 5 . Four stat es

are needed ; they are arbitrarily assigned two stat e variables .

11/0

10/0
00/0

F i gure 5. 4 . 5 .

01/0

State diagram for combination lock .

5. 12

l
The output variable has been assigned a value of Z = d for the transition into n

state 10 and the transition from state 10 to 00. In both cases the output is changing.

It makes little difference if the value assumes its new assignment as rapidly as n
possible or remains at its prior value for an additional clock pulse. The don't care

condition ma y allow some simplification of the logic. The following transition n
table represents an alternate method of specifying the required state changes,

n e x citation logic, and output logic.

Present State Input Next State Fl~p Flop Logic Output n Q>!< -~
Ql Qz X xz Q ''' Jl K J2 K2 z

1 1 2 1

0 0 0 0 0 0 0 d 0 d 0 l
0 0 0 1 0 1 0 d 1 d 0

0 0 1 0 0 0 0 d 0 d 0

0 0 1 1 0 0 0 d 0 d 0

0 1 0 0 0 0 0 d d 1 0

0 1 0 1 0 1 0 d d 0 0

0 1 1 0 0 1 0 d d 1 0 I
0 1 1 1 1 1 1 d d 0 0

1 0 0 0 0 0 d 1 0 d d I
1 0 0 1 1 0 d 0 0 d 1

1 0 1 0 1 0 d 0 0 d 1

1 0 1 1 1 0 d 0 0 d 1

1 1 0 0 0 0 d 1 d 1 0

1 1 0 1 0 1 d 1 d 0 0

1 1 1 0 1 0 d 0 d 1 d J
1 1 1 1 1 1 d 0 d 0 0

Table 5. 4 . 1. State transition table for combination lock. J

The logic circuits needed for J 1' Kl, J 2' Kz, Z may now be d e signed using
J

a four variable K-map.

J
u

5. 13

n
D
n
n
n
I

11

11

11

II
lJ

l J

u

Q Q

X
1 2 00 01

1x2
00 0 0

01 0 0

11 0 (i
10 0 0

QQ

X
1 2 00 01

X
1 2

00 0 d

01 (i d)
-

11 0 d

10 0 d

00 01

00 0 0

01 0 0

11 0 0

10 0 0

z =Q Q
1 2

Figure 5. 4. 6.

11 10

d d

d d

I cl) d

d d

11 10

d 0

d 0

d 0

d 0

11 10

0

0

0

d

11 d d 0

10 d d 0
-- -
K =xx +Qx

1 1 2 2 1

------- Q 1 Q?
x,~ 00

1 2
00

01

11

10

~ d

d

d

If d

K =x
2 2

01 11

1 1

0 0

0 0

1 1

K maps for d e sign of combination lock.

10

1

0

0

0

10

d ../

d

d

d '\

The complete de sign for the combination lock is shown in Figure 5 . 4. 7.

Further minimization might be possible by trying a different assignment of state

variable, using the product of sums repr e sentation, or trying to find common

terms for a mult i ple output representation.

5 . 14

1i Ql x~v~ -
x2 -

Q

I)-
-

K
x2

I_/ ' 1

Q1 -

J 2

K
2

Q2

-
Q2

I

1

n
0
n
n

I I
Clock n

Q=[)---1 z
Q2

Output

F ig ure 5. 4.J. Circuit design for combination lock .

5 . 15

11

J

J

u

n
n
n
n

11

l J

u

5. 5 Minimization Revisited

In the design of combinational logic the problem of minimization is well

defined. Techniques such as K maps, Quine-McCluskey tabular procedures and

computer aides help the designer to produce good realizations with a minimum of

effort.

With sequential logic the design of minimum cost circuits is more demanding.

Each of the following parts of the design process can contribute extensively to the

economy of the final design.

1. Specification of circuit behavior - the state diagram

2.

3.

a) minimal representation

b) state redundancy

Assignment of state variables

a)

b)

relation of state variables to output variables

The number of state variables used . (The minimum number of

state variables does not necessarily produce the minimum cost

final result.)

Combinational logic minimization

a) Two level realization

b) multi leve 1 r ea liza tion

c)

d)

multiple output design

read only memory

4. Hardware choices

a) NAND or NOR gates

b) Type D or JK flip flop

Most of the above considerations are the responsibility of the logic designer.

lJ Even bad choices will result in a working circuit; - but perhaps at a higher cost .

In the state diagram description of a sequential design it is possible that

f superfluous states may exist. Testing for such conditions and eliminating them

may result in significant cost reduction.

u Two states may be combined into a single state if they are equivalent. A

simple test for equivalence can be performed on either the state diagram or the

state transition table .

5. 16

2.

For the state diagram (the arrow out t e st) two states are equivalent if

all arrows out of both states for corresponding i.nputs terminate on the

same or equivalent states and hav e identical outputs . It is possible for

one state to have input conditions not allowed by the other.

For the state transition table ; two states are equi valent if all correspond­

ing inputs to both states result in a transition to the same or equivalent

states with identical outputs ,

The removal of redundant stat e s i s i mportant for economy of de sign. With

few e r states it may be possibl e to use fe w er m e mory elements . It may also allow

greater minimization in th e desi gn of th e exc itation for the fl i p flop m e mory drive .

The following ex ample illustrat e s th e proc ess of redundant state removal

(combination) and rei;;ulting de s ign simplification .

Example 5

A rotating device ts equipped with a disk and optical sensors as shown in

Figure 5 . 4 . 8 . Design a clock e d s e quential circuit which will distinguish between

clockwise and counter-clockwise rotation of the disk.

Solution:

The logic outputs from the s e nsors form a :repetitive sequence which is

different from the clockwis e and count e r - clockwi se cases as shown in Table 5 . 4. 2.

Sensorx~

Figure 5. 4 . 8 . Ro t ating disk with sensors .

5. 17

l
1
n
n
n
il

J

I
I

I
I
J

n
D
n
n

1

I
. j

l

LJ

xl x2 X x2 1

1 0 1 0

1 1 0 0

0 1 0 1

0 0 1 1

Clockwise Counter Clockwise
Sequence Sequence

Table 5. 4. 2. Input variables for clockwise and counter
clockwise disk rotation.

Figure 5. 4 . 9 is a state diagram for the circuit. Z = 1 is used to represent

clockwise rotation. The circuit automatically responds to changes in direction.

./
✓--

,,.,,/ 01/1
// .,

.,
/

01/1 /
/

/

/
/

I 10/0 I
I

/ 10/0

I 11/1 10/0

e

\
11/1

00/0

\~
- ,~

. 11/1 ~~ 10/1

----------..

01/1

11/0

11/0

00/0

/

.... r
v·

00/0

10/1

11/0

01/0

00/1

01/0
00/1

:::------~0i 00/1
g /

./

01/0

10/1

Figure 5. 4. 9. State diagram for circuit to detect direction of rotation
for a disk.

5. 18

State eguiva lence may be investigated by tabulating "arrows out II conditions.

The results are shown in Table 5. 4. 3. The state destination is shown following the

l
r l

second slash. n
State Arrows Out

a 10/0/a, 00/0/b, 11 / 1/e

b 00/0/b, 10/1/£, 01/0/c

C 01/0/c, 00/1/g, 11/0/d

d 11/0/d, 01/1/h, 10/0/a

e 11/1/e, 10/0/a, 01/1/h

f 10/1/£, 00/0/b, 11/1/e

g 00/1/g, 01/0/c, 10/1/f

h 01/1/h, 11 / 0 / d, oo I 1/ g

Table 5 . 4 . 3. Arrows out conditions for Figure 5. 4. 9.

Two states are equivalent if their arrows out conditions are identical.

States a, b, may not be combined because the common input condition 10

results in different outputs .

States (a, e) (b, £) (c, g) and (d, h) may b e combined.

diagram is shown in Figure 5. 4. 10.

10/0

11/1

01/1

01/0

The modified state

00/1
01/0

Figure 5. 4. 10. Reduced state diagram formed by combining states
of Figure 5. 4. 9.

5. 19

n
n
f I
I
I
I

l

1

J

j

J

l

~

n
n
fl

, I
. l

I
I

l I

ll
J

u

The combination of equivalent states has resulted in a reduction to four

states; thus only two state variables are needed . These may be arbitrarily

assigned to complete the design .

5. 20

5 . 6 S e qu ential Design Us ing R e ad Only Memo ry

The a va ilability of r e liable , economical, and compatibl e read only memory

(ROM) offers a n attractive d es ign alternati ve for sequential logic n e twork. Use of

ROM requires only passing attention .to the state variable as s ignm ent problem since

all assignment s will work equally well . Consider Table 5 . 6. 1 which is a "next

st at e II and "output" de scri ption of the combination l ock of E xa mple 4 .

Contents

Addr ess
Ne x t State Output

Pre se nt State Input ,,, ,,, ,,, ,,,

Ql Q2 Output

Ql Q2 X xz (D 1) ('D) z
1 2

0 0 0 0 0 0 0

0 0 0 1 0 1 0

0 0 1 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 0 1 0 1 0

0 1 1 0 0 1 0

0 1 1 1 1 l 0

1 0 0 0 0 0 1

1 0 0 1 1 0 1

1 0 1 0 1 0 1

1 0 1 1 1 0 1

1 1 0 0 0 0 0

1 1 0 1 0 1 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0

Tabl e 5. 6. 1.

Table 5 . 6 . 1 can be easily implemented using ROM . The c ombined four bits

of "P rese nt State'Land "input" information can be us e d as an "addre ss " input to a

5 . 21

7
l
n
n
n

J

j

l
n ROM. In the address are stored the excitation variables necessary for state transi ­

tion and the output variable.

0
n
n
n

11

I
j

II
11

J

If type D flip flops are used the D e x citation is identical to the next state.

The complete design is shown in Figure 5. 6. 1.

X
2

-

Read only

memory

Ql

D1

Q2
D2

z

-

,
'

,

Figure 5. 6. 1. Use of ROM for a sequential logic network.

5.22

5 . 7 Notes - References - Problems

Most standard te x tbooks present a treatment on clocked sequential design. A

good general treatment is presented in Booth (1) . For treatments with more

mathematical rigor the works by Dietmeyer (2), Hill and P e terson (3) and Krieger

(4) are suggested.

2.

3.

4.

Booth, T . L., (1971), 11Digital Networks and Computer Systems 11,

John Wiley, New York.

Dietmeyer , D . L ., (1971), 11Logic Design of Di gital Systems 11,

Allyn and Baron , Boston .

Hill , F . J., Peterson, G . R . , (1968), 11Introduction to Switching
Theory and Lo g ical Design 11, Wiley, New York.

Krieger, M ., (1967), 11Basic Switching Circu i t Theory' 1, MacMillan,
New York.

EXERCISES

1. Design a counter using JK flip flops which will produce the sequence:

2.

3.

00
01
11
10

Repeat using type D flip flops .

Using the same instrumented disk shown in Figure 4 . 7, design a network

which will have a logic 1 output if the disk remains in the same position for

three consecutive clock pulses. (Assume that the disk does not normally

make a full revolution in one clock period .) Include both the state transition

table and the state diagram,

Analyze the following clocked sequential circuit which uses J - K flip flops

and NAND gates. Obtain the state diagram.

5. 23

l
n
n
n

J

u

l
D
n
n
I
I

J

I
J

ll

J

u

X -•q ;:v ~
Q2

J1 Q1 \ :;vf x1D
Q2 Q1

X
1

Q2

x2

Q2

4 .

5.

-[>t
x1 D Q1

DJD
K Q1

$; J K2 1

~D Q1

Develop the state diagram for a synchronous sequential circuit which

initially starts with an output of O l. At each clock pulse thereafter, the out­

put is to be replaced by the binary representation of the modulo 4 product of

the present output and a 2 digit binary number presented as an input. The

input may be different at each clock pulse .

Design a synchronous sequential circuit using only type D flip flops and NOR

gates which will implement the following state diagram . Show all steps in

your design process including the state transition table and the Karnaugh

maps for the excitation of the flip flops . Use only 2 level logic . Minimize

the logic required.

5.24

Q2

Q2

00/11

11/00

01/01
10/11

11/10

10/10

6 . Des ign a clocked sequential circuit to generate the sequence :

0

0

1

Q
2

0

1

0

For a memory element use a device with the following characteristics:

Present State Input Next State
Q T Q

0 0 0

0 1 1

1 0 1

1 1 0

7. Complete the design of example 5 using type D flip flops.

5.25

l
7
0
n
n
l

)

J

J

I
J

n
n
n

6 Design of Asynchronous Sequential Circuits

6. 1 Introduction

In a clocked sequential circuit the present state and the next state are

delineated by a clock pulse. The clock establishes a common time for the state

transition of all state variables. n In asychronous circuits, state transitions are not controlled by a clocking

'1 l

l
1 I

j

I

i J

I
J

j

J

element. They are instead determined by the response time of the device to its

external stimuli. Typical asynchronous elements are the Set-Reset Flip Flop and

the electromechanical relay,

6. 1

t

6. 2 Analysis of Relay Sequenti~l Circuits

A relay circuit becomes sequential rather than combinational when the con­

tact network which energizes the relay::; contains contacts associated with the

relays themselves .

Consider the relay circuit of Figure 6. 2. 1.

y -- -- z

Relay y

J
Figure 6. 2. 1. A r~lay sequential circuit. ,

The state variable associated with this circuit is y, the state of the relay.

Th e analysis may be completed by means of a state transition table . The next

s tate of y is determined by the present state of y and the effect of the input vari­

ables.

Present state Input Next state Output
y X x2 . y ':'. z

1

0 0 0 0 0

0 0 1 1 0

0 1 0 0 1

0 1 1 1 1

1 0 0 1 0

1 0 1 1 0

1 1 0 1 0

1 1 1 1 0

Table 6. 2. 1. State transition table for relay circuit of
Figure 6. 2~ 1.

6. 2

1

7
n
n
n
l

I
j

I
J

J

l
n
n
n
n
n

f I

gram.

The same information present in Table 6, 2 . 1 may be shown in a state dia-

00/0

10/0

01/1
11/1

00/0
01/0
10/0
11/0

Figure 6. 2. 2. State diagram for relay circuit of
Figure 6, 2 . 1.

Some observations may be made here .

1. State transitions are initiated by changes in the input variables .

2.

3 .

Transitions take place immediately . No external clock governs the

change of state .

Non transitory conditions are indicated by rrrself loops" on the state

diagram.

When conditions are such that the next state and the present state are identi -

cal the state is said to be stable. Otherwise the state is unstable .

f I E x ample

I
ti
j

I

Anal yze th e following r e lay circuit.

-X-Yl

y -- y - ---+-----<
1 2

X- - y 2

J_

Figure 6. 2 . 3.

6. 3

yl __ zl

y2 -- z2

J_

Solution:

Fir st obtain the state transition table and state diagram.

Present state Input Next state Output
,,,

,
,,, ,,,

yl y2 X yl y2 z z
1 2

0 0 0 0 0 0 0

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 1 1 0 1

1 0 0 1 0 1 0

1 0 1 0 0 1 0

1 1 0 1 1 1 1

1 1 1 1 0 1 1

Table 6. 2. 2. State transition table for Figure 6. 2 . 3.

0/01

1/00 1/01

0/11.

1~
1/11

-,, ______

0/10

Figure 6. 2. 4 .. State diagram for Figure 6 . 2. 3 ,

From Table 6. 2. 2 it can be seen that a state is never stable if X = 1. For

the condition X = 1 the device cycles through all four possible states at a speed

6.4

·1

n
n
n
n
1 l
I

j

.)

I
I

1

u

7 dependent only on the inherent speed of the device. This situation is called a

buzzer cycle.

The buzzer cycle may be desirable as a basis for a digital oscillator. The

buzzer cycle is unique to asynchronous sequential circuits. The circuit might be n the basis of a random number generator . As the cycle X = 1, X = 0 is completed

the output will correspond to one of the binary numbers 00, 01, 11, 10. n The circuit of Figure 6. 2. 4 demonstrates another phenomenon unique to

II

II
lJ
J

1

u

asynchronous circuits, the ra~e condition.

X

I

Figure 6. 2. 4.

6. 5

x--z

X

l_

Present state Input Next state Output
, ,, ,,, ,,, ,,,

yl y2 X yl y2 z

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 1 0

Table 6 . 2 . 3 . State transition table for Figure 6 . 2. 4.

The problem depicted is subtle . Assume that the system starts 1n state 00

with x = O; the state is stable. If xis changed to x = 1 the transition table indicates

that the next state is to be y 1y 2 = 11. If, however, the devices associated with

y 1 and y 2 are not identical, one device may assume the value 1 before the other .

This means that momentarily the device will be in either y 1 y 2 = 01 or y 1 y 2 = 10.

If the former results, no further changes will occur since y y = 01 is a stable
1 2

state. Thus the specified next state transition never happens. If the latter occurs

the unstable condition y y = 10 and x = 1 is entered. The next state for this
1 2

condition is y 1 y 2 = 11, the desired condition .

The conditions described above are called races. They are identified by

state transition tables in which the next state differs from the present state by two

or more state variables . Races may be critical, in which case the desired next

state may never be reached, or the race may be safe, where the correct state is

always eventually reached .

Another subtle problem which may occur in asynchronous logic is the

Switching hazard.

Figure 6. 25 .and Table 6 . 24 demonstrate this phenomenon.

6. 6

n
□
n
n
fl

J

J

j

j

u

7
n
n
n
f I

I I

11

11

11

11

d

j

u
u

X-Y=!-7 y _ _ /
1 2 x--Y2-1

T
Figure 6. 2. 5.

Present state Input

yl Y2 X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table 6 . 2.4.

y
1

Next
,,, ,,,

yl

0

0

1

0

0

1

1

1

r--- - - Y
1

state
,,, ,,,

Y2

0

1

1

1

0

0

1

0

x-- y
1

y _ ,
1

X-

Output

z

0

0

0

0

0

0

1

1

Assume that the device originates in the condition y 1 y 2 = 00, x = O. Follow-

ing this x = 1 is entered and the device assumes the state y 1y 2 = 01, x = 1 (a stable

condition) . Now X = 0 is entered. The resulting condition desired is y 1 y 2 = 11.

The transition between y y 2 = 01 and y y = 11 should not affect the state variable
1 1 2

Y 2 . An examination of the circuitry, however, shows the following. For y 1 y 2 =

01, the y 2 relay is energized through the contact path y 1y 2 . In the condition

y 1y 2 = 11, x = 0, relay y 2 is energized through the contact path y 1y 2 . If the y 1

relay changes in such a way that there is an instantaneous condition when neither

contacts y or y are closed, then relay y 2 will lose its excitation and the entire
1 1

device will eventually enter state y 1 y 2 = 00.

6. 7

7
The switching hazard is due to imperfect switching characteristics of n

asychronous devices. Hazards may be avoided by careful design in which the

excitation for a state variable is always continuous. This topic will be considered ~
again in the next section.

6.8

n
n
n
I

I

I
J

j

n
n
n
n
n

ll

I I

11

I
u
ii
J

J

6 . 3 Design of Asynchronous Sequential Circuits

Problems in the described previous section present some restrictions 1n

the design of Asynchronous Circuits . In particular the problem of critical races

and switching hazards must be avoided. The following restrictions will be applied

to all asynchronous design.

1.

2.

3 .

Only one input variable may change at a time.

In state transitions, only one state variable may change. This condition

eliminates the possibility of race conditions .

No swtiching hazards are allowed , This condition may be met by assur­

ing th e continuity of all excitation functions during state transitions .

Example 6 . 3 . 1

Design a counter which will count modulo 4 the number of ti.mes x is a logic 1.

Solution:

The state diagram for this device is shown in Figure 6. 3 . 1. Eight states

are required, one for each input x = 1 and for the subsequent input x = 0 . The

device is assume d to start in state a .

0/01

1/01 0/01 1/10

0/10

0/00 0/10

0/00

1/00

1/11

0/11
Figure 6 . 3 . 1.

6. 9

•

l
In assigning state variables condition 2 regarding races must be satisfied, n

Three state variables will be sufficient only if they can be selected in such a way

as to avoid races. n
A possible state variable assignm e nt is:

a 000 e 110 n
b 001 f 111

C 011 g 101 n
d 010 h 100

The state tran sition table for th is sta te ass ign ment is shown in Table 6. 3. 1. l
Pr ese nt state Input Next st ate Output

J
,,, ,,, ,,, ,,, ,,, ,,,

yl Yz Y3 yl y2 y3 z z2 X 1

0 0 0 0 0 0 0 0 0 l
0 0 0 1 0 0 1 0 1

0 0 1 0 0 1 1 0 1 I
0 0 1 1 0 0 1 0 1

I 0 1 0 0 1 1 0 1 0

0 1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0 1

0 1 1 1 0 1 0 1 0

1 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0

1 0 1 0 l 0 1 1 1

1 0 1 1 1 0 0 0 0

I 1 1 0 0 1 1 0 1 0

1 1 0 1 1 1 1 1 1

J 1 1 1 0 1 0 1 l 1

1 1 1 1 1 1 l 1 1

I Table 6. 3. 1. State transition table.

6. 10

l
n
n
n
n
fl

I
l

11

I J

I

u
J

For design of the individual networks the K map may be used.

XY 1

y 0-,
2 3

00 01 11

00 0

01 0

11

io

10

0

0

0

0

XY1

y2y3

00

01

11

10

XY1

y2y3

00 01 11 10 00 01 11 10

0 00 0 0 0 0

0 01 0

0 0 11 0

0 0 10

* - ~ --_ -- - --
y2 =Y1Y2Y3+XY3+XY2+ y3 =XYY 3 +XY 1 Y2

XY1

YY ~
2 3

00 01 11 10

X yl

3
0 01 11 10

+ XY1Y3 + XY 1Y2 +

Y2Y3

00 0 00 0 0 0 0

01 0 01 1 0 1 0

11 0 11 1 0 1 0

10 0 10 1 1 1 1

Z1=Y/2+Y?3

+XY 2 'i\
* Z = Y (by comparison

2 3 *
with Y3 map)

Figure 6. 3. 2.

Before selecting a minimum contact network, an assurance must be made

that no switching hazards exist. This can be done by assuring that allowable state

transition do not require a change in excitation paths for a state variable which

retains a value of 1 ,

In the transition from state 001 to 011, the contact network exciting Y 3

must not be interrupted . Similarly the transitions between states 011, 010, 110,

111 must not interrupt Y 2 .

One way to insure against hazards is to include all of the prime implicants of

6. 11

t

the function in the final logic realization, This assures that all adjacent entries

in the K maps for each state variable are covered by a common contact path.

The logic required for Example 6. 3. 1 is shown in Figure 6. 3. 3 .

X-Y ~ 1
y --y ----y1 __ y3 __ _ _
1 2
X - Y - Y

2 3

_ :1 ::=y3
X - y 2-- -1---,

X -y
1

Figure 6. 3. 3.

Example 6 . 3 . 2

-X -Y -Y
3

- - X -Y -Y-
1 2

-X - Y-Y
1 2

- Y2-Y3-

-Y -Y
2 3

Design a Sequential Circuit using (a) Relays and (b) NAND gates to agree

with the following state diagram.

Solution:

00/0

01/0

Figure 6. 3. 4.

10/d

01/d

00/1

10/1

The state transition table for the circuit is shown in Table 6. 3. 2.

6. 12

1

l
n
n
n
l

J

I
n
D
n
n
fl

I
l
j

I
I
I

d
I
J

J

y Xl xz

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table 6 . 3. 2 .

The K maps for Y and Z are shown in

~ 1x2
"" 00 01 11 10

0 0 0

0

Figure 6. 3. 5.

Case a : Relay Circuit

Figure 6 . 3.6.

6. 13

,
,,,

y z

0 0

0 0

1 d

d d

1 1

0 d

1 1

d d

Figure 6 . 3 . 5 .

Z=Y

Case b: NAND Gate Solution

or

Figure 6. 3. 7.

X =S
1

X =R
2

The solution to Example 6. 3. 2 is the common Set-Reset Flip Flop.

Example 6. 3. 3

z

Design an Asynchronous Sequential Circuit using (a) Relays, (b) NAND gates,

(c) Set Reset Flip Flops which will detect the sequence x 1x2 = 10, 11, 01 each

ti.me it occurs and produce an output Z = 1 at the completion of the sequence.

Solution:

The state diagram for this network is shown in Figure 6. 3. 8.

00/0

01/0

11/0

Figure 6. 3. 8.

A possible assignment of state variables is as follows:

a = 00 b = 01 C = 11 d = 10

6. 14

11/0

l
n
n
n
n

l

J

J

I
I In designing the network for the Set Reset Flip Flop, the following design

characteristics are used . This assumes a NAND gate realization of the Flip Flop.

n To avoid the unnecessary use of inverters on the input terminals the design

characteristics are expressed in terms of Sand R.

n Present State Next State ,,,

Q Q'' ' s R

n 0 0 1 X

f I
0 1 0 1

1 0 1 0

j 1 1 X 1

Table 6 . 3 . 3. Design characteristics of Set Re set

l
Flip Flop

Present State Input Next State Excitation Variables
,,, ,,, ,,, ,,,

I
y y2 X X yl Yz z s R s2 R

1 1 2 1 1 2

0 0 0 0 0 0 0 1 X 1 X

0 0 0 1 0 0 0 1 X 1 X

0 0 1 0 0 1 0 1 X 0 1

0 0 1 1 0 0 0 1 X 1 X

I
0 1 0 0 0 0 0 1 X 1 0

0 1 0 1 d d 0 X X X X

I
0 1 1 0 0 1 0 1 X X 1

0 1 1 1 1 1 0 0 1 X 1

1 0 0 0 0 0 0 1 0 1 X

1 0 0 1 1 0 1 X 1 1 X

J
1 0 1 0 d d 0 X X X X

1 0 1 1 0 0 0 1 0 1 X

j 1 1 0 0 d d 0 X X X X

1 1 0 1 1 1 1 X 1 X 1

1 1 1 0 0 1 0 1 0 X 1

1 1 1 1 1 1 0 X 1 X 1

Table 6 . 3. 4. Transition table for sequence detector.

6. 15

K maps may now be prepared for Y 1 Y 2 (for use in parts a , b) and

S 1, R 1, S 2 , R 2 (for use in part C).

yy
l 2 00 01 11 10

x1x2 ,--- ~--+-~--- -x1x2

00 0

01 0

11 0

10 0

0

0

-

d 0 00

01

11

0 d 10

' y1y2
00 01 11 10

'>--- ~-~ ---+---4- X 1x2
0 0 d 0 00

0 01

0 11

10

* -Y*=XXX +YX
1 1 1 2 2 2

Y2 = Y X + Y X + X X
2 2 2 1 1 2

Figure 6.3.9. Kmaps for sequence detector.

- - Y - X - X - - Z
1 1 2

00 01

0 0

0 0

0 0

0 0

Figure 6. 3. 10. Contact network for sequence detector.

y

y1
2

x2 - [>o- z x1

11

0

C:
0

0

-V7
x2

y2

[) 1 1) - Y2 y1 x1

=v~I y2 Xl
x2

x2 =[)-

Figure 6. 3. 11. NAND gate network for sequence detector.

6 . 16

10

0

I)

0

0

7

LJ

n
n
1

I

j

n
0
n
n
n

l
t I

1

l

j

u

00

01

11

y y2

x1x2~
11 10 00 01 11 _____,,_.,,.._...,,

1 I 00

01

11

10

I X X X

~x 1/x t "
X l\t l_/

X X 0

0 00 00 X 0

'T 01 01

0 11 11

X 10 0 X X X 10

R =x x +yx
1 1 2 2 2

$ =x + X
2 1 2 R2 = x2 + xl

Figure 6. 3. 12. K maps for excitation variables.

Y2 yl X -
1

X2 -
s1

X 2
s2

xl _J--- ,

~
" 2 y R

Rl xl
x2

Y2

y'=[r-v x --z
_1
x2

Figure 6. 3 . 13. Set reset flip flop network for
sequence det e ctor .

6. 17

11 10

'x X

y2

y
2

6. 4 Assignment of State Variables

The problem of assigning state variables is central to the design of

Asynchronous Sequential Circuits. The following example illustrates the difficulty

which may arise because of the possibility of race conditions.

Example 6 . 4. 1

Assign state variables and prepare a transition table for the following

asynchronous network.

01/0
00/1

00/1

Figure 6. 4 . 1.

11/0

00/0
11/0

Any assignment of state variables for example :

a = 00

b = 01

C :::: 11

01/0

10/1

will require a _change in more than one state variable and result in a race condi ­

tion. A possible solution is to introduce a new transitory state, d, as shown in

Figure 6. 4 . 1. The transition between states a and c may be "routed 11 through state

d to avoid races .

6. 18

l
n

n·

)

l

I

l
n
n
n
n
11

l

11

J

I
u
I J

u
u
U

11/0

01/0

00/1

00/1

Figure 6. 4. 2 .•

10/1

00/0

11/0
10/1

10/1

00/1

01/0
10/1

Figure 6. 4. 3 shows a state diagram with four states. Because of the transi­

tions allowed, there is no assignment of two state variables which will allow this

circuit to be constructed. There are no 'ls pare II states such as used in Example

6. 4. 1.

1/1

0/1
1/0

0/0
0/1

1 /1

0/0

Figure 6. 4. 3.

6. 19
r

For the situation in Figure 6. 4. 3, additional states must be created by the

use of additional state variables. One such possible assignment is shown in Figure

6 . 4. 4 in which additional states have been introduced.

1/1

8 \
0/0

I

1/0 e 0/1

Figure 6. 4. 4. Possible assignment of state variables and introduction
of transitory states .

The complexity of the final logic design is intimately connected with the

state variable assignment selected.

6.20

7
n
n
n
n

J

J

J

J
J

1

n
n
r I

I I

11

11

u
J

u

6. 5 Notes - References - Problems

Thorough treatments of the asynchronous design problem are presented in a

variety of texts. Caldwell (1) presents m o st of his material in the form of relay

design . Kri e ger (4) presents a design orient e d approach . D i etmeyer (2) and

Hill and Peterson (3) present extensive tr e atment of the problem of stat e assign ­

ment and minimization .

1. Caldw e ll , S . H ., (1958) , "Switch ing Circuits and Logical Des i gn",
Wi.l e y, New York .

2 . Dietm eye r , D . L. , (1971) , "Logic D e sign of Digital Systems" , Allyn
and Boran , Bo ·s ton .

3. Hill, F . J ., P e t ~ rson , G. R ., (19 6 8), "Introduction to Switching Theory
and Lo gi cal De si gn", Wiley, N e w York .

4 . Kriege r, M . , (1967), "Basic Switching Circuit Theory" , MacMillan,
N ew Yor k.

EXERCISES

1. Design an asynchronous sequential circuit using relays which will sequenti ­

ally turn on outputs z 1, z 2 , z 3 , z 4 e a~h time a push button is depressed

once. The sequence of outputs is to be:

2.

3 .

z z2 z3 z4 1

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

Assume th e switch is depressed long enough to complete the s e quence.

Include a state transition diagram with your design .

Develop a stat e diagram for a clock e d J - K Flip Flop . Consider the clock

pulse to be one of the possible inputs . How many state variabl e s ar e ne e ded ?

Assum e that you have been commis s ioned to design a gambling device for use

in Las Vegas . A 11Dealer 1J and fi v e oth e rs play. Each player and the dealer

have a light bulb in front of them . One player d e presses a push button and

the lights in front of each participant Sequential turn on and off rapidly . When

6. 21

the button is released a single light remains on, the winner. Specify the state n
4.

diagram and an acceptable set of state variables,

A rotating disc has two stationary wiper-type pickups which detect a logic 0

on one side of the disc and a logic one on the other.

Logic 0 Logic 1

X
2

Design an asynchronous circuit using (a) relays and (b) NAND gates which

will ha ve an output Z = 0, if the disc rotates counter clockwise and Z = 1 if

the disc rotates clockwise. Include a state diagram.

5. At time t 0 a toggle switch moves from A to B . It makes initial contact at B,

and then bounces several times (exact number not known) before settling

permanently at B. It does not bounce back to A. At t 1 the switch is moved

back to A with similar results. Design a bounce eliminator using only

NAND gates to produce a Z output as shown, following B but eliminating the

multiple transitions.

A
V

I :n n1 I
Ao- I

+v-V
Bounce

-0 B V I

Eliminator

I I tB 0- n r11
Switch z

V

I
t t
0 1

6. 22

n
n
l

J

j

J

J

J

I
J

n
n
n
n

11

7 Fault Tolerant Design

In the early days of digital computers a certain, often high, level of failu:re

and down time was tolerated. However, with digital technology being applied to

ultra reliable systems such as health care, space craft and guided missiles, the

study of fault tolerant digital design has received much attention.

A fault tolerant system can be defined as a system capable of some predefined

level of operation in the presence of faults. These faults can include momentary or

permanent hardware failures or software errors. The system can be designed to

handle its entire work load in the presence of faults (fail - safe) or the system

can be reconfigured or the performance allowed to degrade within bounds (fail-soft)

when the fault condition occurs.

All techniques for fault tolerant design at all levels make use of some form

of redundancy . At the system level, hardware and software means can be imple­

mented for detection of faults, location of the faulty unit and reconfiguration of the

system. Sparing is the most common system level form of hardware redundancy.

Diagnostic .routines are implemented at the programming level consisting of

a set of instructions which exercise all the hardware circuits in order to detect

I j fault conditions. Instructions in a higher level language can be complied into

redundant machine instructions as a validity check. For example, a multiply(':')

11 in FOR TRAM can be implemented with both a MULTIPLY machine instruction and a

series of ADD and SHIFT mach ine instructions.

11 At the hardware level, fault tolerance can be achieved through either hard-

ware or coding redundancy. Triple Modular Redundancy, Interwoven Logic and

U Quadded Logic are examples of hardware redundancy. Parity check codes,

Hamming codes, AN codes and Residue codes are common coding techniques for

j j error detection and correction.

Redundancy can be of the fault masking variety or consist of diagnosis -

LJ recovery procedures. In the former, a level of fault tolerance is usually obtained

through a voting scheme where the behavior of a faulty unit is masked from the

LJ system operation as long as a majority of the redundant units are operating

properly.

u
7. 1

l
In the latter case, detection and location of a fault condition iniates corrective 7

action which may consist of repeating the operation or switching a spare unit,

Regardless of the amount of redundancy used, the system cannot last forever n
unless faulty units are located and replaced. A set of tests for hardware must be

derived through analysis or simulation, These tests are then translated into

diagnostic routines at the machine language or micro programming level. Test

points in the system are identified and monitored while the diagnostic is run .

Results can lead to detection, location and replacement of the faulty unit.

7.2

n
n
l
I

I
J

Ji

l
n
n
n
fl

1

II

I J

J

u
u

7. 1 Hardware Redundancy

Redundant hardware means extra cost. Consideration of the cost versus

reli.abi.li.ty tradeoff i.s essential. Suppose a non - redundant (simplex) system has

reli.abi.li.ty, R and failure probability, F = 1 - R . Using an exponential model
0 0 0

with a fa i.lure rate A. , the system reali.bi.li.ty i.s
0 - A, t

0
R =R =e Eq.7 . 1

sys o
1

T ime

Figure 7. 1. Reli.abi.li.ty of a simplex system .

An important parameter of reli.abi.li.ty, the mean ti.me to fai.ture (MTF) can be

defined
1

MTF = -
A.

Eq . 7. 2

Consider a redundant system (Figure 7 . 2) with n identical acti v e parallel

uni.ts each with r e li.abi.li.ty

R
0

= e
- A, t

0

7 . 3

- Unit 1 - Failure
~

r r

detector

Input

-~7 Unit 2 Failure . Switch ,

detector
- - Output

- Unit n '· Failure ' r r
detector

Figure 7. 2. Redundant system.

The failure probability for the redundant system of Figure 7. 2 is

F =ITF .= F
n

sys 1 o

where F is the failure probability of each individual unit. The system
0

reliability is

R = 1 F
sys sys

= 1 Fn
0

n
-1-(1-R)

0

- }._ t
(o)n = 1 - 1 - e

The MTF for a single unit is}..
0

For the system,

For a

MTF
sys

1
A.

0

n
1

~ k
k=l

system with one active spare unit,

-}._ t 2
- 0

R = 1 - [1 - e]
sys

= 1 - 1 + 2e

-}._ t
0

- }._ t
0

- e

- 2}.. t
0

= 2e - e

7.4

-2}.. t
0

Eq. 7. 3

Eq . 7. 4

Eq. 7 . 5

l
l
n
n
n
l

j

J

j

J

l
7
n

and

MTF =
.sys

1
A.

0

1. 5 MTF
0

Hence, a 50 percent increase in Mean Time to Failure is achieved at a 100+ per -n cent increase in hardware (2 units + detectors + switch) and a 100 percent increase

in power. The resulting reliability is given in Figure 7. 3 .

fl
fl

I

l

1

I J

J

1 single spare (standby)

single spare (active)

simple x

Time

Figure 7. 3. Reliability curves .

An alternative approach is to use inactive standby units which are powered

up only when a failure is detected in the operating unit . The reliability of a system

can be calculated as (n identical units)

- >-. t n- 1
R

sys
= e

MTF -
n

sys , >-.

0 ~

r=O

0

(>-. t)
0

1
r

Solving 7 . 6 for n = 2 (1 active , 1 standby}

- >-. t
R

0
(1 +>-. t) = e

sys 0

MTF
2

2M - =
sys A. 0

0

r

Eq. 7 . 6

Eq . 7. 7

Eq . 7. 8

Hence, using standby redundancy a 100 percent m MTF can be obtained with

still 100 percent increase in hardware, but no increase in power. A plot of Eq. 7 . 7

j is given in Figure 7 . 3.

An example of a successful implementation of standby sparing is in the

7 . 5

JPL STAR (Self Test and Repair) computer (2) . The STAR uses a highly modular

system with each arithmetic unit having 2 spar e s. Diagnosis and switching is done

l

by a Test and Repair Processor (TARP) . The TARP its e lf is highly redundant us- n
ing a Hybrid TMR design discuss e d lat e r in thi s section. The actual switching is

performed by powering up one unit and turnin g off another . All units are con­

nected to a common bus , also spared , with dot - OR ed log i c so that a powered down

unit does not effect the input nor the output of the active units.

The most well known technique for hardware r e dundancy is Triple Modular

Redundancy (TMR) . TMR is a fault ma s king technique . Consider the TMR s ystem

shown in Figure 7 . 4 .

Unit 1

Input ~ Unit2 1-,
G__J

Output

Figure 7. 4. Tripl e M odular Redundant Syst e m .

Assuming identical units with indep end ent failure rates, and a perfect voter,

the realiability of the TMR system can b e calculated by

3 2
RT MR = Ro + 3 Ro (1 - Ro)

Assumin g an ·e x pon ential model

, - }I. t 3 (e -}.. ot) 2 .
R T MR = (e o) + 3 ~

= 3 e
- 2}.. t

0
- 2 e

- 3}.. t
0

MTFTMR s RTMR dt

- 5/6}..
0

7 . 6

Eq . 7. 9

(1 -
e - }.. o t)

Eq.7.10

Eq . 7. 11

n
n

t

j

j

J

I
J

J

l
n
n
n
n
fl

' f

11

I

j

j

. 7 MTF
0

Time

Figure 7 . 5. A comparison of TMR and Simplex Reliability .

Hence for a 200+ percent increase in components and power, TMR achieves

a 17 percent decrease in MTF ! The short term reliability of a TMR system, how -

ever, is better than the simplex system.

What are the advantages of TMR? Make the following assumptions (to be

examined and weakened later):

1. System is divided into m identical modeuls.

2. Voter logic is failure free.

3 . Modules are equally reliable and statistically independent.

4 . System fails if any module fails ;

If the module reliability could be determined as

then

R
0

= R
sys

1/m

MTF = s R dt
sys sys

Se
- m A.

0 =
1 = =

mA.
0

t

1
MTF

m

Eq. 7 . 12

0
Eq.7.13

The more the system is modularized, the lower failure rate for each module . No

7 . 7

gain is obtained unless the modul es can be cho se n such that

MTF > m MTF
o sys

In other words, the amount of modularity must be chosen such that the Mean Time

to Failure for each module is greater than m ti.mes the MTF
sys

are so chosen and triplicated , th e reliability of the syst e m i.s :

R
sysTMR

M
= RTMR =

(3 R2/M _ z R3/M) M
sys sys

If the modules

Eq.7.14

Using an ex ponential mod e l R == e
0

- }._ t
0 1

and}._ < M }._ , the reliability
o sys

curves obtained are given i.n Fi gur e 7. 6.

R

I

TMR (M =60)

I

TM~ (M=S)
I

Simple x

____ _ ,_I _ _ _:_ _ ___ _:=::======~====----
. 7 MTF MTF Time

sys sys

Figure 7. 6. R elia bi.lity curves for modular TMR system.

Reconsider the assumptions. The first assumption relates to the choice of

M identical modules . These modules n ee d not b e identical, but the system will

depend on the least reliable module, On e fault tolerant technique called bit slicing

attempts to package all c i rcu its which op e rate on one b it po si tion of a data word

together as a single unit . This has two ad vantages . Errors in a single bit of a

data can be readily detected , but location of the faulty unit i.s much more di.Hi.cult.

With bit slicing all circuits for that one b i.t can be replaced. Secondly modulariza ­

tion of this form does pro vi de uniformity.

7 . 8

1

n
n

l

I
j

J

j

J

1

n It is the second assumption dealing with "perfect" or failure free voters

which is subject to criticism. Voter logic is usually a simple majority gate and n can be made highly reliable, but not perfect. Consider the scheme shown in Figure

7. 7.

n
n
f I

I
ll
j

j

J
u

Unit

1A

Unit

2A

Unit

3A

Unit I-2B

Unit

2B

Figure 7. 7. TMR with triplicated "imperfect' 1 votes.

For this case, a voter failure is equivalent to a single unit failure in the next

stage. If the voter reliability is R and assumed to be constant relative to the unit
V

reliability R , then the TMR unit reliability with non perfect voters is given by
0

RTMR = 3(R R)2 - 2(R R)3
V O V 0

Eq, 7.15

The system reliability is

R = [3(R R)2 - 2(R R ?]M
sysTMR v o v o

-}-_ t
0

A sketch of system reliability with R = e and R = 0. 999 as a function
0 V

of the modularity is given in Figure 7. 8. The point of maximum reli.a bility is

M = lnR
o sys/lnR

A.
= s /

A.
V

V

Eq.7.16

the ratio of the simplex (non redundant) system reliability to the voter reliability.

•

7.9

m
0

Perfect voters

Imperfect voters

m

Figure 7. 8. TMR system reliability as a function of
modularity.

s
Note that H Eq . 7 . 16 is solved for }-. = - - , m can be thought of as the

V m 0
0

number of modules which must be chosen to cause the module failure rate to equal

that of the voter .

Of course, TMR techniques can be extended to higher redundancy . N modular

redundancy for N = 2 n + 1, n = 1, 2, can be employed. TMR is just NMR with N = 1 ,

A sketch of NMR reliability is given in Figure 7. 9.

R

. 7 MTF
sys

Time

Figure 7. 9. Reliability curves for NMR systems.

Using a redundancy of N > 3 increases the short term reliability

(t < O. 7 MTF), but decreases the long term reliability .
sys

7. 10

In summary, NMR is •

7
q

n
n
n
l

l

j

J

j

advantageous if the redundancy is employed in a modular system where

MTF >> MTF and MTF ~ MTF . NMR is best imple-
module system module voter

mented in systems such as guided missile control where ultra high short term

reliability is essential. The cost of NMR is high and since i.t is a fault masking n technique, diagnosis is difficult and often impossible, Furthermore, a redundant

n
11

I J

j

11

11

l J

u
u

unit will fail when nearly half the units are still operating properly ,

Various attempts have been made to design adaptive NMR systems where

each unit has a variable percentage of the vote. An improvement in reliability is

gained, but at the cost of increased hardware,

Recently (10), a technique combining NMR and standby sparing has been

suggested. It is called Hybrid NMR and represented by H(N, S) where N is the

degree of active redundancy and S is the number of spares, An example of a

Hybrid NMR system is given in Figure 7 . 10.

Disagreement

detector

Unit 1

Active Unit 2

Switch

Unit 3

Unit 4

Spares

Unit S

Figure 7. 10 . A hybrid NMR, H(3, 2), system.

In the system of Figure 7. 10, the operation is essentially TMR until a unit

fails . If the Disagreement Detector detects a difference in output of the voter and

one of the TMR units, it switches out the faulty unit and switches in a spare unit.

7. 11

Hybrid TMR is costly and requires the extra overhead of a switching unit

and a disagreement detector. The switch can be distributed and along the voter

logic made part of the ne xt stage. The di s agreement detector must be designed

with high reliability. The long term reliability of hybrid NMR is appreciably

better than NMR . Hybrid TMR has the ad v antage that the system will fail only if

all but one unit has failed. Reliability curves are sketched in Figure 7 . 11.

A
R

.9 5

Time

• 7 MTF MTF 1.6 MTF
sys sys

Figure 7. 11. Hybrid NMR reliability curves.

TMR or Hybrid NMR techniques can be used for logic design, however,

the cost of triplicating each gate and adding a majority gate is prohibitive. Most

often TMR is used at a functional unit level.

Redundancy techniques ex ist for the logic level which make use of the fault

masking properties of certain gates, Consider the AND gate i.n Figure 7. 12(a) and

the AND gate with redundant inputs i.n Figure 7. l 2(b)

Figure 7. 12 , AND gates.

7. 12

1

n
n
n
n

I

I

I
I
J

□

l
n
D
n
n

A "stuck at 1 11 at any sing l e input to the AND gate in Figure 7. l Z(b) will not

change the operation of the gate.

C == aabb == ab
2

If one of the a inputs is "stuck at l ",

C == labb == ab
2

Hence if independent redundant inputs are provided to an AND gate, the

gate will mask sing l e "stuck at l" faults. The same is not true for "stuck at O" n faults . However, an OR gate ma s ks 11stuck at 0 11 but not 11stuck at 1 11• Quadded

logic (19) makes use of the fault masking properties of AND and OR gates. Con ­

sider the non redundant network in Figure 7. 13,

I l

I I
I J

11

11

u

u
u
u

g

Figure 7 . 13. Logic network.

A quadded logic de sign for the network of Figure 7. 13 is given in F igure

7. 14. Note that each gate has been quadded and each input to a gate has been

doubled.

If the redundant inputs to the AND gates in Figure 7. 14 can be made inde­

pendent, then the first level gates will mask all 11stuck at l 11 faults . For examp le,

if a 1 is faulty and 11stuck at 1 11 but a 2, a 3 , a 4 are not faulty then the outputs of all

4 AND gates realizing ab will be correct. The assumption that multiple faults

will not occur is necessary to insure proper operation. Some double faults are

masked.

however a

b e faulty.

A 11stuck at 1 11 fault on both a and b or a and a 2 will be masked,
1 1 1

fault on both a 1 and a 3 will cause the outputs at gates All and Al3 to

A 11stuck at 0 11 fault on a 2 will cause both Al 1 and A13 gate outputs to be

11stuck at 0 11• If these gate outputs were inputs to the same OR gate input, that

gate would operate improperly. Hence, the interconnection pattern is very

7. 13

a
1

b2 ,·-
a2

b2

a3

b - -
3

a
4

b
4

C2--- --- ----

d2

d -- - ---+-+-+--+---<--- -•---1

3 --

c4

d4 ---~---r----- ---1

A11

A12 01

g1

~~/ A13

.....
I

A14
g2

A21

03

A22

Figure 7.14. A quadded logic design for the network of Figure 7 . 13 .

7 . 14

l

rl

n
n
n
fl

J

J
u

7 important . Single faults on the network inputs must not be allowed to cause double

n
n
n
r 1

I
f I

. I
[I

u

u
u

faults on inputs to gates i.n later stages. The i.nterconnecti.on pattern for the first

level of Figure 7 . 14 can be represented as (13, 24). Inputs wi.th subscripts

1 and 3 are fed to gates wi.th subscripts Anl and An3, e.g . , a 1 and a 3 are inputs

to All and A 13, c 2 and c 4 are inputs to A22 and A24. All single "stuck at 1 11 faults

are masked. Double "stuck at 1 11 faults on i.nput li.nes not fed to the same gates are

masked. Double "stuck at 1 11 faults on i.nput li.nes fed to the same gates and all

single 'I-stuck at O ' '-. faults cause two AND gate outputs to be faulty.

Care must be taken to insure that pai.rs of AND gate outputs whi.ch may both

be faulty due to single "stuck at 0 11 or double "stuck at l!,,l i.nput faults are not

inputs to the same OR gate. The interconnection pattern for the OR gate inputs

i.n Figure 7. 14 can · be represented as (12, 34) . For example Al3, Al4 , A23 and

A24 outputs are fed to gates 03 and 04 , A double "stuck at l" or a single '"stuck

at O'J i.nput fault can cause faults only on gates Anl and An3 or An2 and An4 . Si.nee

these gate inputs are never input to the same OR gate, all single "stuck at 0 11 and

double "stuck at 1 11 i.nput faults are masked from the gate outputs. Exami.nati.on

of Figure 7 . 14 wi.ll also show that all single "stuck at 0 11 AND gate output faults

are also masked .

Quadded logi.c can be used for OR-AND networks i.n a si.mi.lar manner .

Appli.cati.on of Quadded logi.c design to AND-AND or OR - OR networks wi.ll mask

only "stuck at l '1 or "stuck at 0' 1 faults respectively.

A NAND gate wi.th redundant inputs wi.ll mask "stuck at l 'I faults i.n the same

manner as an AND gate . Furthermore, a "stuck at 0 11 i.nput fault on a NAND gate

causes a "stuck at l" output fault. If Quadded logi.c techniques are used i.n NAND

logi.c design, all faults wi.ll be masked except "stuck at 0 11 inputs to the last stage

NAND gate . "Stuck at O II input faults to a NAND, si.nce they become "stuck at 1 11

output faults, wi.ll be masked by the next stage NAND gate. A si.mi.li.ar result

can be obtained by usi.ng Quadded logi.c NOR gate design.

The problem of supplying independent redundant network inputs i.s partially

solved by the fact that each Quadded logi.c network provides four independent outputs

for each output i.n the non-redundant network , Hence, i.f there are several stages

of logi.c networks to be designed, each stage wi.11 supply the next state wi.th the

appropriate independent inputs .
7 . 15

7
Quadded logic design can be used for se guential networks as well as combina - n

tional logic. For example, a R - S flip flop can be constructed with Quadded logic

as shown in F1gure 7. 15 .

R
1

_R2

iR3

R4

==i~ ······--··

·+-·

- ·
f----- -- --- ~

~
J

-~JG
'

·-

_ ~J

~ u

s1
s2
s3
s4

Figure 7. 15. Quadded R - S flip flop.

~
I -u

__ ·-u
I_

~ u
.-

_

=U

i

Q 1

2
Q

Q 3

4
Q

-
~

Quadded logic is a special case of a ge neral class of r e dundant logic called

Interwo ve n Logic (12) . In the general case, each k input gate is replaced with

n 2 gates, each with nk inputs. It can be shown that all n - 1 order faults can be

corrected (ma ske d) using interwoven logic . For guadded logic n = 2 and each k

input gate was replaced with 2 2 = 4 gates with 2k inputs and all 2 - 1 = 1 (single)

faults were masked.

Se ve ral other technigues for hardwar e redundancy have been suggested

(5 , 9, 20). However, standby sparing, TMR and Quadd e d Logic are typical

7. 16

n
n
n

J

J

j

LI

fl e x amples . Some applications where hardware redundancy has been extensively

n
n
n
f I
l

I
11

l1
l I
. I
11

l

u

used are discussed in section 7. 4 .

7. 17

7. 2 Coding Redundancy

Error correcting codes have been used extensively in communication, parti­

cularly digital communication. Shannon's (15) very well known work in noisy

channels is the outstanding example. In a digital system the channel becomes the

collection of data paths and storage devices such as registers, the memories and

the various input/ output links.

The approach to the design of error correcting codes for digital systems is

much different than that for communication channels . The measures of efficiency

are not the same, the nature of errors is different and the cost considerations

more comple x.

Although coding techniques have been the subject of much research , only

very simple codes have actually been implemented. Coding techniques can be used

to introduce redundancy into the logic or to information being processed . Signal

redundancy will be the subject of this section, with emphasis on those codes which

use combinational logic encoders and decoders.

Non - error correcting codes such as BCD, ASCII and EBCDIC are quite

heavily used in digital systems. Simple error detecting codes such as parity

codes and 2 out of 5 codes are fairly common . Other linear codes such as the

Hamming codes and complex parity codes are not unknown. Cyclic codes, poly­

nomial codes, etc ., account for a great amount of research, but very little

implementation.

The most important concept in designing error correcting codes is that of

distance. In digital systems where binary codes are most common, distance

depends on the length of the coded data in bits and the numb er of data encoded.

Definition: The Hamming distance between two encoded binary data vectors

(words) is defined as the number of bits in which they differ.

For example,

a= 10010001

b = 01011101

the Hamming distance d (~, b) between~ and£ is

7. 18

l
n
n
n
n
n
l
l

I I

I

J

j

J

I
n
n
n
n

I

l I

u
J

If two data words are separated by only a single bit (d(a, b) = 1) then an

error in that bit cannot be detected ,

Definition: The minimum distance of an encoding of a set of N data words is

the minimum Hamming distance between any two words in the set,

Theorem: A minimum distance k coding for a set of N data words will detect
k - 1

D < k - 1 bit errors and concept C~ - 2- bit errors,

k - l>C+D

A code,where the Hamming distance between any two words is two, is cap­

able of causing single bit errors to be detected , A parity code is such a code

where an extra bit is added to keep the number of 11 s in each data word odd (or

even), For example, let four items A, B, C , and D be coded with 2 bits as 00,

01, 10, and 11 respectively. An odd parity code would be

A==00l B= 010 C == 100 D= 111

The right most bit is the parity bit, Note that the minimum distance for this code

is 2. If a data word 000 appeared it would obviously be in error, since it corres­

ponds to none of the allowed data, However, location of the bit in error is impos­

sible, since 000 could be A, B or C with a single bit error , Another minimum

distance two code is the 2 out of 5 code, Decimal numbers are encoded as follows:

BCD Code Parity {add) 2 of 5

0 0000 00001 00011

1 0001 00010 00101

2 0010 00100 00110

3 0011 00111 01001

4 0100 01000 01010

5 0101 01011 01100

6 0110 01101 10001

7 0111 01110 10010

8 1000 10000 10100

9 1001 10010 11000

Figure 7. 16, Minimum distance two codes for decimal
numbers ,

7. 19

l
Clearly to be an error detecting code, the minimum distance ? 2 . To obtain n

error correction, the distance between code words must be such that not only is it

disernable that an error ha s occured but what the nature of the error is.

Consider the code where only 000 and 111 are allowed code words. A single

error in the first word will cause it to be 001, 010 or 100 . If double errors are

unlikely, then reception of 010 would indicate that a single error had occurred in

the second bit of 000 . . H e nc e, single error correction requires a minimum

distance ?- 3.

The most well known single error correcting code is the Hamming code.

The basic idea is to tak e a n bit uncoded data work and add p check bits so that the

minimum di s tance is 3. Furthermore each bit position is given a decimal number ,

The p check bits are each parity bits over different subsets of the m data bit s .

When a coded data word is received, the check bits are recalculated and com ­

pared with the check bits in the code word. A binary number is developed from

these comparisons which specifies the decimal number of the bit in error.

There are n . data bits and p check bits, hence n + p possible single errors.

The binary number indicating the error bit position is calculated from the check

bits and is p bits long. The following inequality must be satisfied .

Eq . 7.17

The p bit binary number can indicate 2P error conditions. There are n + p

single bit errors plus the no error case .

For example, let n = 4

2P .?:, 4 + p + 1

hence p > 3 .

The information bits are x 3 , xS, x 6 , x 7 and the parity check bits are calcu­

lated as follows.

pl = x 3 (E) XS (E) x 7

P2 = x3 (E) x6@ x7

P4 = XS (E) X · (E) X
6 7

7. 20

n
n
n
l

I

J

LJ

I

J I

l

f I
l
I
I I

l I
l J

ll
l I

J
u

Let x x x 6x = 1001
3 S 7

the coded data word is

pl =

p =
2

P4 =

1 EE)

1 EE)

0 EE)

0 EE) 1 = 0

O© 1 = 0

0 EE) 1 = 1

At the receiving end a binary word c 1c 2c 3 is calculated as follows

c 1 = p 1 EE) x3 @ xS EE) x7

CZ = Pz EE) x3 EE) x6 EE) x7

c 3 = p 4 EE) xS @ x6 EE) x7

The errors indicated are tabulated in Figure 7 . 17.

Figure7.17.

C C C
1 2 3

000

001

010

011

100

101

110

111

error

no error

error 1n p 1

error 1n Pz
error in x 3

error in p 4

error in xS

error in x 6

error in x 7

Hamming code error correction.

Let the received word be the correct word

and calculate

p p X p X x 6 X = 0 0 11 0 0 1
1 2 3 4 3 7

C =
1

0 EE) 1 EE) 0 EE) 1 = 0

C = 0 EE) 1 EE) 0 EE) 1 = 0
2

c3 = 1 EE) 0@ 0 @ 1 = 0

7 . 21

From the table c c c . = 000 implies no error . Let the received word be
1 2 3

0011101

c =0EE>lEE>lEE>l=l
1

=0EE> lEE>0EE> l=0

c =lEE>lEE>0EE>l=l
3

From the table c 1c 2c 3 = 101 implies an error in x 5 .

In applications where data is stored in blocks, parity code and Hamming

code check bits can be computed for bit slices as well as word slices.

11010 1

10001 0

data 10110 1
Parity on rows
(word slice)

10000 1

11111 1

01001 0

:Parity over cols 11011 0
{ Bit slice)

Figure 7 . 18.

In Figure 7. 18 a simple parity code can be used for error correction by

generating parity bits over both columns and rows of stored data . A Hamming

code used in same manner could detect triple errors and correct double errors.

There are many other codes, however these examples are the most common.

References to other codes can be found at the end of the chapter.

Another class of codes which are useful in digital systems design are

arithmetic codes . Arithmetic codes fall into two categories, separate and non­

separate. Parity and Hamming codes are separate codes in that the data is

present in the coded word in its original form.

The AN or product code is an example of a non-separate code. The coded

word is computed by taking the product of a constant A and the data N . For

example, A= 3, x = 0101, the AN coded word is .

7 . 22

7
n
n
n
l

I

I

J

l
n
n
n
n
II
I

ll
I
I

j

lJ

II
j

Ax = 001111

Obviously the choice of A as an odd number makes all binary AN codes have

minimum distance ~ 2.. The problem is to determine an A which yields a code

with minimum distance > 2. The distance obtained with AN codes depends on the

range of data N.

Theorem: For any A and radix r such that A and r are relatively prime, if

N is restricted to range

0 ~ N < M (A, d)
r

Where M (A , d) is the smallest number whose product with A has weight
r

less than din radix r, then minimum distance~ d,

The unit M (A, d) must be found by an exhaustive procedure. For example,
r

N = O AN = 0 = 000000 2

N = 1 AN = 11 = 001011 2

N = 2 AN = 22 = 010110 2

N=3 AN=33= 100001 2

Note that the weight of 22 in base 2 is 3, but the weight of 33 in base 2 is 2.

Hence M 2(11, 3) = 3, since 3 is smallest number having weight less than 3 in radix

2. This means that A = 11 can be used for an error correcting AN code only for

numbers in the range O < N < 3. The table in Figure 7. 19 lists M {A ,,3) for
2

several A.

M 2 (A, 3)
Approximate

A redundancy

11 3 4

13 5 4

23 89 5

29 565 5

Figure 7. 19. M 2 (A 3) for several AN codes.

Note that all eight bit binary numbers are in the range O ~ N < 256 and

from Figure 7. 19, A = 29 will yield an AN code with minimum distance ~ 3 for

7. 23

numbers in range 0~ N < 565 . Th e redundancy for AN codes is approximately

log 2 A. For A = 29, the resulting AN code will have 5 redundant bits. A Hamming

code for 8 bit data would require at least 4 redundant bits .

A common separate arithmetic code is the residue code. A code word con­

sists of an ordered pa i r (N , RN0 where

RN = N mod A Eq . 7 . 18

For example, N = 5, A = 3

RN - N mod A= 2

The residue code is (N , RN) = 10110. Again it is obvious that if A is odd,

residue codes have minimum di s tance> 2. A residue code behaves much like an

AN code. It follows that if RN = N mod A, then RN = (2m · N) mod A .

Hence

2m · N - qA + RN

= (q + 1)A - (A - RN)

= (q +~)A RN

RN = (q + l)A Eq . 7. 19

If the value of m in Eq. 7. 19 is chosen to be the smallest integer greater

than log 2 A, the term 2mN + RN is actually a residue code using the complement

of the residue, (N 1RN) , Calculations for the range of N for which a given A yields

a minimum distance 3, error connecting residue code is similar to the calculation

for AN codes .

The next question to be answered deals with the impact of the various codes

on the hardware, Separat e codes can employ separate check ing circuitry. For

example, a parity check on iinterregister data transfers might look like Figure

7 . 20.

7. 24

l
7
n
.n
n

l

j

J

I

D
n
n

1

I I

I

d

l J

I

u
I:

Register A Data Bus

/ -,; -·
, I

8

! I f--/ /-----
:::ity I If---:=! v- ----i--------+ --j

~- - I
I

I
Data out

control

Figure 7 . 20. Parity checked data transfer .

Regi ster B

Parity check

Parity codes can also be implemented in arithmetic logic. Recall that a full

adder can be represent ~d by the expressions

S. = a. @ b . @ c,
l l l 1- l

Eq. 7. 20

c = a.b. + a,c , + b.c .
i l l l 1 - 1 l 1 - l

Eq . 7 . 21

Where a., b. are the bits of the n bit words a and b being added, c . i s the
l l 1 - 1

carry in, s. is sum bit and c . is the carry out. If a and b have a parity check bit,
1 l

the parity bit on the sum is

7 . 25

l

=(al@ bl@ co)@ (a2@ b2@ cl) EB ... ©(an@ bn@ cn - 1) n
= (a @ a 2 @ · · · @ a) @ (b @ b @ · .. @ b) @ (c ® c

1 n 1 2 n O 1

@· •· @c) n
n - 1

a b O 1 n - 1
= p @ p @ (c @ C @ .. • @ C) n

A parity checked adder design is shown in Figure 7 , 21.

Parity

check

a b :
n n

FA

s
n

C
n- .1

C
3

Figure 7. 21. A parity checked parallel adder '.

In the case of AN codes, note that

FA

Eg . 7 . 22

Hence the sum (or difference) of two AN coded data should ,be AN coded .

An AN coded adder with check circuitry is shown in Figure 7 . 22.

AN
1 z

Mod A
check

circuit

Figure 7. 22 . AN coded adder .

7. 26

r l

I
LJ

I
I
u

l
n

n
n
n

11

I I

I I
J

j

u

For AN coded multiplication , two divisions by A are necessary . A product

should be A 2N N 2 and must be divided by A to obtain the proper result AN N .
1 1 2

Furthermore, the output must be divided again by A to check for zero residue ,

Since residue codes are separate codes, the check circuit must perform the

same operation modulo A as the arithmetic unit for the data.

z

Mod A circuit

::; __ ---'): ... 1 * Mod Al,_ -- -- ,..___c_o:M_-_P_A_-_R~E~~--- - - ...;,::>-
2

mod A

Figure 7. 23. Residue coded arithmetic unit.

Figure 7. 23 shows a separate modulo A arithmetic unit for the residues

RN and RN , since
1 2

(N ,:< N) mod A = (R
1 2 N

1

,:< R) mod A
N '

2

the check circuit merely compares the residue of the arithmetic unit output with

that calculated by the modulo A arithmetic unit on the residues .

7 . 27

7. 3 Fault Diagnosis

Fault diagnosis techniques can be divided into two categories, algebraic

methods and path sensitization. Examples of the former are the Boolean Difference

(16), Poages method (13), Armstrong's ENF (1) and the SPOOF (7). The most

well known path sensitization procedure is the Roth D Algorithm (14).

The Boolean difference of a function, representing some logic network, with

respect to a variable yields a Boolean expression which defines the input required

to make the output sensitive to a fault on the variable.

Definition : The Boolean Difference of a function f(x , · · ·, x) with respect
1 n

to variable x . is
·1

df(x)· · • , x)
D f = 1 n = f(x • • • x O x · • • x) @

i dx . i' i - 1 ' ' i + 1 ' n
l

f(x • • • X - :fl X , . • • X)
l' ' i - 1' · ' i - 11

' n

Theorem: Let f(x , , • •, x) represent the logic network .N.
1 n

Boolean Difference of f(x , • • •, x) w'ith respect to variable x .
1 n l

1. If D .f = 0, a change in x. will never cause a change in f.
l l

Eq. 7. 23

Let D .f be the
l

2. If D .f = 1, a change in x. will always cause a change inf.
l l .

3. If D f = g(x · · · x x · · · x) then a change in x . w i 11 cause a
i 1' i - = l' i + l' ' n 1

change in f if£ g(x ' · • x x · · · x) = 1.
l' i~l' i+l' 'n

This theorem can be used to determine the set of inputs for which a fault on

x. is testable . If there exists an input for wh i ch a change it1 x. : will cause a change
l · . l

inf, then for example a stuck at 1 fault on x . can be tested by applying a O to x.
l l

and determining if the output changes from the expected value.

Consider the gate network in Figure 7. 24 below.
A4

Figure 7 . 24. A gate network .

7 . 28

n
n
n
n
n

J

J

l
n
n
n
n
f I

1

f I

II
11

l J

j

u

The Bo o lean Diff ere nces are

D/ = (0X 2 + 1X 3) E0 (1X 2 + 0X 3) = X 2 E0 X 3

D/= (X 1· o +x 1x 3) E0 (X 1·i +X 1X 3) = X 1

D/= (XlX2 +xl · 0) E0 (XlX2 +x1·1) = xl

Eq . 7. 24

Eq. 7. 25

Eq . 7. 26

The network output f is sensitive to changes in x 1 if x 2 E0 x 3 = 1. For example,

the input 001 tests for a 11stuck at 1 11 on X 1. The network output should be

f(00l) = 1, howe ve r, if X 1 is 11stuckat 1 11, the output is f(l0l) = 0. The wrong

output

on X.,
1

indicat es X may be 11stuck at 1 11• The inputs 001 and 010 test 11stuck at 1 11

1
th e input s 101 and 110 test for 11stuck at 0 11 on X .

1
Th e network of Figure 7 . 24 is sensitive to changes m X 2 if X 1 = 1. Hence

100 and 101 t es t Nstuck at 1 11 on x 2 . Note that 101 also tested ' 1stuck at 0 11 on x 1.

Th e input 101 detects a fault but cannot distinguish whether it is a 11stuck at 0 11 on

X 1 or a 11stuck at l 11 on x 2 .

In a non redundant network the presence of any single fault can be detected

by applying all possible inputs and checking the output . The Boolean differences

can be us e d to find a minimal set of inputs which detect all faults.

A fault tabl e for the network of Figure 7 . 24 is given in Figure 7 . 25 . A 111 11

in column X indicates the input 001 detects a 11stuck at l 11 on the variable X .
1 1

Not e that entries for each gate output are also given. The Boolean differences

are

f= A4 +xlx3 = xlx2 +AS= 06

D f = X + x3 4 1

D f = X + x 2 5 · 1

D f = 1
6

Hence , a 11stuck at 0' q on the output of Al will be tested if Al =

x 1 +X 3 = 1. The inputs 110 and 111 satisfy these constraints.

7. 29

X X = 1 and
1 2

Variable
Input gate X x2 x3 A4 A5 06

1

000 1 1 1 1

001 1 1 0 0

010 1 0 1 1 1

011 0 0 0

100 1 1 1 1

101 0 0 1 1 1

110 0 1 0 0

111 0 0 0

Figure 7. 25. Fault table for the network of Figure 7. 24.

Using a fault table, as shown above, determination of a mini.mum set of inputs

which detect a 11 single faults is an example of the covering problem. All the

techniques for finding a minimum sum of prime implicants can be used . For the

example in Figure 7. 25, three minimal sequences, (001, 010, 101, 110), (001,

011, 101, 110) and (001, 010, 110, 111) will detect all single faults in the network

in Figure 7.

The problem of determining an input sequence which will locate or 'disfinguish a

particular fault is much more difficult. For example, a "stuck at 1 11 fault on the

output of either A4 or A5 is indistiµguisha ble from a "stuck at l" fault on the OR

gate output. The sequence 000, 001, 011, 100, 101, 111 will distinguish all input

faults, but not internal faults. An incorrect output for inputs 000, 001 and cor-

rect outputs for all other inputs indicates x 1 is "stuck at 1 11•

As the complexity of the network grows, algebraic techniques like the

Boolean Difference become more and more unwieldy . Algebraic techniques are

not easily programmed and for .complex networks, the computer isa very neces­

sary tool.

The Roth D Algorithm is a commonly used procedure for deriving fault

diagnosis tests for logic network . As an introduction tmthe algorithm, consider

the network in Fig,ure 7. 26.

7.30

l
n
n
n
n
1

J

j

j

J
J

l
7
J
n
11

[I
l
J

I I

I
11

J

ii
11

j

u

A4

xl -

. x2
N7

AB

z
x3 1

09

z
A6 2

X
4

Figure 7 . 26. Combinational logic network.

An input which will test a particular fault on a network input or gate output

can be determined by path sensitization. For example, suppose X is "stuck at
1

1 11• First a path from the fault to an output must be determined which is the path

via gates A4, N7 and AS. The next step is to sensitize the path to the particular

fault. The output of A4 is sensitive to a fault on x 1 if x 2 = 1. The output of

N7 is sensitive to the output of A4 and thus the fault on X if the output of NS is 0.
1

Finally, AS is sensitive to the output of NS if the output of A6 = 1. Onc e having

identified the gate inputs necessary to sensitize the path, the technique proceeds

backwards making the appropriate assignments.

Beginning at gate AS, gate A6 was required to have an 1 output, hence

x 3x 4 = 1. At gate N7, NS = 0 requiring that X 2 + x3 = x 2x3 = O. The input

combination X x 2x X = 0111 satisfies all requirements and sensitizes the path
1 3 4

x 1,A4, N7, AS to a "stuck at l" fault on Y 1.

Of course, due to the network configuration, it is not always possible to

sensitize a .given path. For example, assume a "stuck at O'\ fault on the output of

gate NS. There are two paths to an output, NS, N7, AS and N6, 09. To make the

latter path sensitive, requires that the A6 gate output be O. This implies that

d x 3x 4 = O. The inputs to gate NS must be assigned x 2x 3 = 1 to test a "stuck at O"

7. 31

on NS . Any input with x_
2

= x
3

= 0 will sensitize this path. Attempts to sensitize

path NS, N7, AS re~mlt in a contradiction. Proceeding forward along the path

requires that A4 = 0 and A6 = 1. Retracing we find that A6 = 1 requires x
3
x

4
= 1

and A4 = 0 implies X
1
x

2
= 0. Fina 11 y to test "stuck at O II on NS, X

2
X

3
= 1 . No

input combination will satisfy these constraints, because x
3

must be 1 as input to

gate A6 and Oas input to gate NS . Hence a ''stuck at 0 11 on NS cannot be tested

via NS, N7 , AS.

Manually implementing path sensitizing techniques is laborious. The Roth

D Algorithm is a formalization of these techniques which lends itself well to

programming.

The D algorithm uses a Boolean n - cube representation for the gates and the

network . Three important types of n - cubes are called singular -covers, primitive

D cubes and propagation D cubes.

The singular cover is derived by expanding the network function f(:x , · · • , x)
1 n

to include the outputs as well as the inputs .

created, where Z is the network output .

g(n • • • X
1' ' n'

For a two input NAND gate

A new function g(x , · · · , x , Z) is
1 n

f(x
1

,x
2

)'= x
1

x
2

= x
1

+x
2

The singular cover represents the possible "states" of tre network in term s

of inputs and outputs and is represented using the Quine - McCluskey notation for

the prime implicants of g(x , • • •, x , Z) . For the example above,
1 n

0 - 1
- 01
110

is the singular cover. All gate input/output assignments must satisfy the singular

cover. For instance 111 is an impossible assignment of the inputs and output of a

NAND gate.

A primitive D cube r~presents the necessary inputs to cause the output of a

gate to be sensitive to a particular fault . The term OlD represents a primitive D

7.32

I

n
n
n
-l

I
j

J

J

I
n
n
n
n
f l

I
d
11

u

cube for a "stuck at 1 11 fault on the x input to the NAND gate above. The D
1

represents that the output will change due to a fault on x , x x = 01 is the input
1 1 2

required to make Z sensitive to the fault.

A propagation D cube represents the sensitivity of outputs to changes in

inputs. The propagation D cubes for a NAND gate are DlD and lDD, indicating

that if either input is set to 1, the output will propagate (the inverse) of any change

on the other input.

The D algorithm starts by calculating the singular cover for each gate. The

primitive D cube for a particular fault is derived from the singular cover for the

faulty gate. The propagation D cubes are obtained from the singular covers of all

remaining gates. The next step is called "D drive" and consists of intersecting

the primitive D cube and successive propagation D cubes along the path. This is

just the forward path sensitizing procedure. If a D drive to an output is successful,

a consistency check is made using the singular covers in the same fashion as

manual path sensitization.

As an example consider the simple network of Figure 7. 24. The singular

covers are

XlX2A4

A4: 111

0-0

-00

AS: 06:

· A4AS06

1-1

- 11

000

Assume a "stuck at 1 11 on x 2 input to A4, the primitive D cube is

indicating a "stuck at 1 11 on x 2 will cause incorrect output for A4. The propagation

D cubes for AS and 06 are

x 1x 3As

AS: ODD

DlD

06:

A4AS06

ODD

DOD

The primitive D cube for the fault can be intersected with a propagation

D cube for 06

7.33

(X X A = !OD)
1 2 4

(A4AS06 = DOD)

Recall that the singular covers represent the only possible input/output

assignments. The -consistency procedure, ·in -.effec.t, examines the singular

covers to determine if a consistent assignment can be made on the inputs which

will propagate the fault to output. For this example, the singular cover for

AS (X
1

X
3

AS = 1 - 0) is -consistent with the D drive above and results in the follow­

ing assignment to test for 'lstuckat 1 11 on x
2

input to A4:

X
1

X
2

X
3

A4 AS 06 = 10 - DOD

This can be interpreted to mean that an input assignment 101 or 100 will

cause the fault on x
2

to be propaged via path A4, 06.

During the logic design phase of any digital system, a simulation of the

design can be performed to derive a set of diagnostics to test the system when

operable. Simulation can be classified as manual, physical or digital.

In manual simulation, the digital system is partioned into functional blocks.

Test sets for ea .ch block are derived using algebraic or path sensitizing techniques.

Using the test sets, a diagnostic program can be written which exercises as fully

as possible all the logic circuits in the functional blocks. In complex systems, a

major problem is the location of suitable test points so meaningful data on the

response of the system to the diagnostic routines can be obtained. Manual simula­

tion is slow, subject to human error and not responsive to design changes.

An alternative approach is to partition the system into units as before, but

working with the a .ctual system or .a prototype, faults can be physically inserted.

A unit is replaced with a faulty unit or more often another system which can

simulate the unit under all fault conditions. The system under test is then allowed

to run its normal work load. Data is taken at test points and is used to construct

d ia gnostic routines.

The entire logic for the system can be simulated on a digital computer. This

has the drawback that only logic faults can be simulated, but has the advantage of

speed and high response to design changes. Digital simulation is very useful in

predicting timing problems in the logic which may .cause transient faults.

7.34

n
n
n
n
1

1

1

J

J

J

l

n

n
n
n

I
j

I

u
u

7. 4 Comments - Problems - References

A good test on fault detection is Friedman and Menon (8). Another book by

Chang, Manning and Metze (6) has excellent discussion on simulation, The major

reference on the Boolean Difference is the paper by Sellers, Hsaio and Bearnson

(16). The original IBM report by Roth (14) on the D algorithm contains a complete

APL description of the algorithm. Peterson (11) has written a well known text on

coding . Severa 1 papers by Avizienis (2, 4) detail arithmetic code implementations

and include a study of the cost effectiveness of codes.

The initial paper which led to TMR was written by Von Neuman (20). An

excellent book edited by Wilcox and Mann (21) includes most of the early work on

hardwar e redundancy .

Interested readers might examine the two special issues of the IEEE Trans­

action on Computers concerning fault tolerant computing (22, 23). Short has

published two very complete literature surveys (18, 19) on progress in fault

tolerance.

REFERENCES

1. Armstrong, D . , "On Finding a Nearly Minimal Set of Fault Detection
Tests for Combinational Logic Sets, 11 IEEETC, Vol. EC-15, No. 1,
pp. 66 - 73, February, 1966.

2 . Avizienis, A., G. Gilley, F. Mathur, D. Rennels, J . Rohr, D. Rubin,
"The STAR (Self Testing and Repair) Computer, An Investigation of the
Theory and Practice of Fault Tolerant Computer Design, 11 IEEETC,
Vol. C - 20, No. 11, pp. 1312 - 1321, Nov. 1971.

3. Avizi.enis, A., "-Design of Fault Tolerant Computers, "~FJCC 1967,
AFIPS Conference Record Vol. 31, pp. 733 - 743.

4 . _________ "Arithmetic Error Codes: Cost and Effectiveness
Studies for Applications in Digital System Design," IEEETC, Vol.
C-20, No. 11, p. 1322-1331, November 1971.

5 . Ball, M . and F. Hardie, "Majority Voter Design Considerations for a
TMR Computer 11, Computer De sign, pp. 100- 104, April 19 69.

6. Chang, H., E. Manning, G. Metze, Fault Diagnosis of Digital Systems,
Wiley - Interscience, New York, 1970 .

7. Clegg, F., "The SPOOF-A New Technique for Analyzing the Effects of
Faults on Logic Networks, 11 Digital Sys . Lab Tech. Report 11,
SU - SE L- 70- 07 3, 1970.

7.35

8. Fri.edman, A . , P. Menon , Fault Detection i.n Di.gital Ci.rcui.ts,
Prentice - Hall . 1971.

9. Klashka, "Two Contri.buti.ons to Redundancy Theory", 5th Symposi.um
on Swi.tchi.ng and Automata Theory, October 1967 .

10 . Mathur, F. P., "On Reli.abi.li.ty Modeli.ng and Analysi.s of Ultra-Reliable
Fault - Tolerant Digital Systems", IEEETC Vol. C - 20, P . 1376 - 1382,
November 1971.

11. Peterson, W . , Error Correcting Codes, Wi.ley, New York, 1961.

12. Pierce, W . , Fa i.lure Tolerant Computer Design, Academi.c Press,
New York, 1 9 6 5 .

13. Poage, J . and E . McCluskey , "Deri.vati.on of Opti.mum Test Sequences
for Sequenti.al Machines , 11 5th Symposi.um on Swi.tchi.ng and Automata
Theory , p. 1 21 - 15 2, 1964 .

14 . Roth, J. P . , "Di.agnosi.s of Automata Fai.lures : a Calculus and a
Method,'' IBMJRD , pp. 278 - 291, July 1966 .

15. Shannon, C . and W . Weaver , The Mathematical Theory of Communica­
tion, Uni.v. of Illi.nois Press, Urbana, Ill. 1949. _,.

16 . Sellers, F . , M. Hsai.o, L . Bearnson , "Analyzing Errors with the
Boolean Difference, ' '--..IEEETC Vol. C - 17, No . 7, pp . 676 - 683, July
19 68 .

17 . Short, R . , "The Attai.nment of Reli.able Di.gi.tal Systems Through the
Use of Redundancy - A Survey, 11 IEEE Computer Group News, Vol. 2,
p . 2 - 17, March 19 68 .

18. Short, R . , and J . Goldberg , "So v i.et Progress i.n the Desi.gn of Fault­
Tolerant Di.gital Machi.nes , " IEEETC, Vol. C - 20, p . 1337 - 1353,
November 1971.

19. Tyron, J., "Quadded Logi.c", i.n R e dundancy Techniques for Computing
Systems, Spartan Books , Wash i.ngton, D . C ., 1962 .

20. Von Neuman , J ., "Probali.sti.c Logi.cs and the Synthesi.s of Reli.able
Organi.sms for Unreli.able Components , 11 Automata Studi.es, Pri.nceton
Universi.ty Press, Pri.nceton, N . . J., 1956.

21. . · Wi.lcox arid Mann, Redundancy Techniques for Computi.ng Systems ,
Spartan Books, Washi.ngton, D. C., 1962.

22. "Speci.al Issue on Fault Tolerant Computi.ng", IEEETC , Vol. C-20,
No. 11, November 1971.

23. "Speci.al Issue on Fault - Tolerant Computing, 11 IEEETC, Vol. C-22,
No. 3 , March 1973.

7 . 36

l

n
n
n
11

11

I I

I

J

l
n PROBLEMS

n
n
n

l I

ll

u
u

1. Define or describe :

2.

Fault tolerant
Fail Safe
Fa i.l Soft
Roll back
MTF

"Stuck - at II Faults
Fault Detection
Fault Diagnosis
Redundancy

Active Spares
Standby Spares
TMR
Rad ia 1 Logic
Quadded Logic

Assuming exponential reliability R = e 9A.t for a single unit with failure rate
0

-,._:, MTF = 1/\ sketch the reliability curves for:

a. One operating unit + 1 active standby

b . On e operating unit + 1 passive standby

c. TMR w /perfect voter

d. Hybrid NMR-TMR + 2 spares

e. TMR w /triplicated voter (non-perfect)

3 . Quadded, Radical and Interwoven logic make use of a fault masking capability

inherent in certain gates. Explain.

4. A full adder can be described by

5 .

6.

s. = a. @ b . 0 c . l
l l l 1-

C. = a.b . + a.c. + b.c.
l l l l 1 - 1 l 1 - l

Design a full adder with Quadded logic .

Repeat 4 using TMR.

What does "minimum distance" imply about the error correction/detection

capability of a linear code.

7. Defin e AN, and Residue codes. Show how each can be implemented for an

8.

adder unit.

What is the maximum N for which a AN code using A = 11 is a mini.mum

di.stance 3 code? What is the redundancy?

9. Contrast the algebraic type techniques (Boolean Di.ff.) and the path sensi.ti.z-

10.

i.ng methods (Roth D) for fault diagnosis in terms of their ease of applica­

tion, generality and range of application.

D erive the Boolean Differences D c., Db c ., D c . for the carry logic of a
a. l . l C, l

l l 1 - 1
full adder.

7 .3 7

11.

12.

Derive a fault table and a minimum seguenc~ for detecting all faults in 2 two

stage AND-OR realizations of the carry logic of a full adder.

N2

N6

NS

N3

N7

Figure P7. 1.

Use path sensitizing to determine the input required to test a sal on the

input x 1 to N 2 in Figure P7. 1.

7.38

7
n
n
n
n

J

J

J

LI I

n
n
n
n

11

11

11

II
lJ

j

u
u

8 The Impact of New Technology on Logic Design

The subject of this chapter will be an abreviated look at how advances m

semiconductor technology have effected the job of the logic designer. Particular

emphasis will be placed on Read Only Memory design and the promise of large

scale integration.

Many of the classical techniques for logic minimization are based on relay

or transistor logic. The emphasis today and tomorrow will not be on minimizing

the logic element as much as reducing fan in/out and simplifying the interconnec­

tion patterns . More attention will be given to increasing the system modularity

through the use of standardized functional units .

8. 1

8 . 1 Read Only Memory Design

Obviously any n variable Boolean function can be synthesized by a table

lookup procedure . A Boolean function can be represented by a truth table. If the

minterms of a function are used to represent memory addresses and the memory

contents are the value of the minterm in a given function, the function can be

realized by having the input cause a readout of the corresponding memory location.

For example, a BCD to 7 segment decoder driver can be synthesized by the

network block diagrammed in Figure 8. 1.

Push Buttons -
16

~

7 bit word

memory ~/ ~

Memory
4 bit BCD code -

address ,Buffer

Figure 8. 1. A BCD - 7 segment decoder.

This concept is not new, but became practical only with the advent of

I

B .

7 segment

readout

7
n
n
n
n
l

inexpensive Read-Only Memories (ROM's). Beyond the obvious application above, J

ROM' s can also be used to realize trigonometric logrithmic and other functions

which are complex to synthesize with digital logic. This can be done with table

look up and interpolation or through ROM storage of routines to be implemented

on a companion arithmetic unit. The well known Hewlett-Packard HP35 hand

calculator uses 3 ROM' s of 256, 10 bit instructions each and performs an iterative

psuedo division/multiplication algorithm with an arithmetic logic chip for the

calculation of transcendental functions .

ROM' s can implement the control function of a digital system as in HP - 35.

The concept used is that of microprogramming . A microprogram consists of a

series of micro instructions. The bits of micro instructions correspond to control

points within the system and can be used to transfer data, initiate arithmetic

operations and test conditions . Rather than design a sequential network to

8.2

J

J

l

n
n
n
fl

I
l

11

r I
J

II
ti
1

J
u

sequence a ser i es of arithmetic operations, the necessary micro instructions can

be stored in a ROM and the read out cycled to provide the necessary timing.

b

Register Rl Register R2

y

h Parallel Adder

Sign FF

-y ----- A_d_d_e_r _O~u~tp_u_t_B_uf_f_e_r _ _

J

110 11 FF

-0 Zero Detector

Figure 8. 3. Arithmetic unit.

There are 10 control points in the simple arithmetic unit of Figure 8 . 3.

Some control data transfers, e . g., control point f controls the transfer of R2 to

the adder, som e control operations, e . g . , control point g can complement the

left side input to the adder and some test conditions, e.g., point j activates the

sign test flip flop. A 10 bit micro instruction word can be used to set the control

points .

I a I b I c I d I e I f I g I' h I i I k I next m-instruction

Figure 8 . 4. Micro instruction format .

8. 3

Address

control

logic

condition

flip - flops

Figure

Set ROMAR
Pulse

Transfer
[Reg] Adder

Pulse

Set AOB
Pulse

Transfer
[AOB] Reg

Pulse

Set
ROMAR

Pulse

Figure

R

0

M
A

R

8. 5.

8, 6.

The five major cycles of the

ROM
R } /o . o control
~ ~points

A

R }- - address field

of u-instruction

ROM organization.
1 machine cycle

□

Timing for microprogrammed control
for Figure 8.5.

ROM control for the arithmetic unit of Figure

8 . 3 are shown in Figure 8 . 6. The first pulse causes a micro instruction (format

given in Figure 8. 4) to be read into the ROM Data Register . The 10 control bits

activate the control points, the remaining bits (next micro instruction address)

are fed to the address control logic. On the second pulse data from the registers

are transferred to the adder . The next pulse causes the adder output to be

8. 4

l
n
n
n
n
n
I
J

l

J

J

n
n
n
n
ti
l
I

.1

1

[I

II
I I

J

j

j

stroked into the output buffer (AOB). The forth pulse transfers data back to the

registers and the final pulse initiates a read of the next micro instruction.

For example, the micro instruction 1001101100XXX causes the contents of

R 1 minus R 2 to be stored back in R 1. Subtraction is by two's complement arith­

metic.

Multiplication can be performed using this simple ROM controlled arithmetic

unit if a few assumptions are made and one register R3 is added. Assume multi­

plier is in R2 and the multiplicand in R3. Assume both are positive and that the

product will not overflow R 1. Let 1 be the control point for a data transfer from

the R3 to the right hand OR gate adder input .

The algorithm is the simple multiplication by successive addition . The

microprogram is given in Figure 8 . 7. A flow chart is gi.ven in Figure 8. 8 .

000

001

010

011

100

101

I
I

a

1

0

0

1

0

X

---- - - - ROM Storage

b C d e f g h J k 1

0 1 1 0 0 1 1 0 0 0

1 0 0 1 0 1 0 lo 0 0

1 0 0 0 1 0 1 0 1 0

0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

X X X X X X X X X X

branch
condition address

0 0

0 0

0 1

0 0

1 1

X X

~
00

01

10

11

- -
- -

101

- -
010

- -

no branch

O~Rl

R2 ~ R2

R2 + 1 ~ R2 R2 = O?

Rl +R3~Rl

JUMP

HALT

branch on AOB = 0

branch on AO B ~ 0

unconditional branch,

Figure 8. 7. Microprogrammed multiplication.

8. 5

0 - Rl

R2 - -R2

y

I R2 + 1 ➔ R2 I

HALT

Figure 8. 8. Flow chart for multiplication .

The next micro instruction is in the next memory location unless the branch

condition is met. Of course, alternate schemes exist for micro instruction for­

mats. More storage efficiency is gained through coded micro instruction formats,

but the hardware complexity increases by addition of decoders. Micro insturctions

may not be located in consecutive ROM locations, as in this example and other

branching techniques must be used.

Any sequential network can be realized using a ROM as shown m Figure 8. 9.

This technique is a generalization of the one discussed above .

Input

- -

} state I Output \ State
R R

Address 0 0
,

logic
;-- M

--,a,, ~ M
A A } R R

Output

~ -

ROM

Figure 8. 9. ROM realization of sequential network.

8.6

I l

0
n
n
l

l

J

l
n
n
n
n
I
I
. I

11

l
I
l

j

J

J

One can assume that the cost of hardware is linearly proportional to the com­

plexity of machine cycle and the number of machines cycles required. The cost of

a ROM realization has a fixed cost, the hardware associated with the control points

and above that, the cost of additional memory, address registers, etc., which

grows linearly with the complexity but at a slower rate. The cost versus complexity

for each is roughly graphed in Figure 8. 10.

Cost

Conventional

ROM

Complexity

Figure 8. 10. Cost considerations.

'Obviously below the crossover point, conventional logic is better, above

it ROM "stored logic" control is better. Some economic models [2] for micro­

programmed control have shown the crossover point to be a surprisingly low level

of complexity.

Some advantages of "ROM driven" control are:

1. flexibility and ta ilora bility

2. changea bili.ty

3. ease of design

4 . ease of maintainence, checking

5. uniformity

6 . economy

Some of the disadvantages of microprogramming are:

1. loss of operational efficiency

2. performance loss

3 . economy
8,7

8, 2 Cellular Arrays

• With the advent of Large Scale Integration (LSI), logic designers and

theorists have been investigating new forms of logic. Most logic design techniques,

prior to LSI, have tried to minimize the number of gates (AND-OR, NAND) in a

network realization or the number of contacts in relay circuits. Modern technology

finds cost savings manifested in uniformity and minimization of functional blocks

and interconnections. With LSI capability, there is no need to restrict functional

blocks to single gates or gate packages. One of the first attempts to use LSI

technology to an advantage was the study of cellular cascades and cellular arrays.

A cellular cascade is a collection of logic cells with uni.form connections as

shown in Figure 8 . 11.

Initial{
cond.

---;-i

} Output

Figure 8 . 11. Generali.zed cellular cascade,

The simplest example of a cellular cascade is single rail cascade, with each

cell realizing some 2 variable function f(x . , y.).
l l

Figure 8 . 12 .. Single rail cellular cascade.

f(x ,Y) ---i>- f(x , .. . , x)
n n 1 n

X
n

It can be easily demonstrated that a two cell single rail cellular cascade

can realize all 2 variable functions, with the cells realizing only x.y., x. + y . ,
l l l l

y., x. 1 + y,; x.'y., x . E0 y ..
l l l ll l l

Some n-vari.able functions which can be realized with single rail cascade

are: Any parity function, Any product term, Any sum term ,

8. 8

7
D
n
fl

1

j

j

j

J

j

l
n
D
n
r I
n

1
II

Let us consider cascades whose inputs are not necessarily in fixed order.

Any switching function can be decomposed

f(x, ... ,x) = x.g. 1(x 1, ... ,x. 1,x.+ 1., ... ,x) +
1 n 1 1 l- 1 n

x . g . o(x., ... ,x . 1'x·+1'''''x)
l l l l- l n

and the following statements can be made:

1. f is cascade realizable if gil = 0 or 1 and giO is

2. f is cascade realizable if giO = 0 or 1 and gil is

3. f is c.ascade realizable if giO = gil or giO = gil ·

Example

f(a, b, c, d) = a'bcd' + a'bcd + a'b'cd

= a'(bcd' +bed+ b'cd)

= a' gao (b, c, d)

hence f is realizable if gaO is realizable.

gaO (b, c, d) = c(bd' + bd'b'd) = c(b + d)

= cgel (b, d)

cascade

cascade

realizable.

r ea liza ble.

Hence ga 09b, c, d) is realizable if gel is realizable, but since gel is a 2 vari-

j able function and all two variable functions are realizable then f(a, b, c, d) is realiza­

ble. The cascade of Figure 8. 13 realizes f(a, b, c, d)

11

lJ

u
u

b

1 xy X +y xy x'y f(a,b,c,d)

b d C a

Figure 8. 13. Cellular cascade realizing f(a, b, c, d) = a'bcd' +
a I bed + a r b I Cd .

Note that the inputs are not in alphabetical order. Since not all functions are

cascade realizable, the cellular array must be introduced.

8.9

X
n

t-----t_J_~

Figure 8. 14 . Cellular array.

each x is fed to
i

each cell in row i

- "collector row''

Since any product term can be realized by a cascade and the product terms

"collected u by the horizontal "OR" cascade, then any function can be realized by a

cellular array . The size of the array need be no bigger than (n=l)2n , cells. The

"collector" row of cells is set to x. + y. or y . depending on whether a given min-
1 l l

term is included . For example, a universal 3 variable array is given below :

X
2

X
3

1 1 1 1 1 1 1

I

Figure 8 . 15 . Universal cellular array.

8 . 10

1 11 collector row"

for each function

desired

l
7
n
n
n
11

J

J

j

l
l Of course this array is costly. The array is not restricted to having a

single collector cascade and the savings accrued from realizing multiple functions n using such a cascade may make its use feasible.

There is no good algorithm for finding a minimum cellular array realization n for any arbitrary switching function. A heuristic (11seat of the pants 11) procedure

n
n

1

makes use of the minimum sum of prime implicants representation of a function.

Each column (vertical cascade) of the array realizes a prime implicant and the

horizontal 1tcollector 11 cascade can be used to form the sum of prime implicants.

The procedure extends to multiple output functions.

For example,let

f 1 (a, b, c, d) = a 1b 1 c' + cd

f 2(a, b, c, d) = bd + a'bd

A cellular realization is shown in Figure 8. 16.

I I Again, the advantage of cellular arrays is in the uniformity of interconnec-

tion. On an LSI chip, there is no problem laying out the circuit due to overlapping

·1 signal paths. A disadvantage is in the necessity to custom make a new chip for each

· 1ogic function. This problem can be avoided by using programmable cellular

U arrays. One of the earliest papers (4) on cellular arrays gives a design for a

general cell, whose output function can be controlled by burning interconnections

f j within a cell using a laser. Many people have tried to determine a minimum set

of control inputs which can be used to set the cells to the desired function. Most

1 I of this work is outside of the scope of these notes. The idea of programmable

logic will be discussed in the section on Universal logic.

l I

u
l

u
u

8. 11

a

b '
'

C -

d

d) ~

!

d) --<::

11 11 I i

x'y - y - x'y
r /

'
x'y xy - xy

r

x'v y '
y

y xy xy - -

I

x~ y
~

x+y y

y x+ 'I X +y
' -

Figure 8. 16. A cellular array example,

81 12

<;-- 0

k-- 0

l
n
n
n
n
rl
I

. I
I
J

I
J

LI

u

7
n

n
n
11

l

11

11

f I
11

II
I J

lJ
Li

8. 3 Programmable Logic Arrays

Recently National Semiconductor introduced the Programmable Logic

Array (6). A logic diagram for a PLA is given in Figure 8. 17 .

I

I y
28 by 96 interconnection array

I

- ~l
I P2 pl p96 I

~
~ - ·7>-i

96 X 8 .
,,,.......,

·--f>l interconnec -
02 -

tion array

-

~ = V7 -

Figure 8. 17 . National Programmable Logic Array .

The PLA can creat e 9 6 products of up to fourteen variables or their

complements and then collect eight sums of up to the 96 products. The outputs of

the OR gates can be complemented. The interconnection arrays are specified by

the purchaser.

PLA' s hav e immense potential for logic design . Although not univ e rsal,

8. 13

they are obvioulsy powerful enough for many logic design applications. PLA' s

are often a better design tool than ROM' s.

National supplies an "off-the- shelf" PLA programmed to convert from 12

bit Hollerith graphic code to 8 bit ASCII code. Calculations will show that the

same decoder requires twelve 256, 4 bit word ROM's (a common available size)

or three 1028, 8 bit word ROM' s (a more expensive version). ROM propagation

time is less than that for PLA, approximately 60ns versus 90ns for PLA. ,

PLA' s can be used in the micro instruction address logic for a ROM control

unit and for creating specialized arithmetic logic.

8 . 14

n
n
n
n
l
I

J

J

l
n
n
n
n
11

l
11

I I

11

11

d
I J

1

8. 4 Uni ve rsal Logic

As we ha ve seen with the National FLA' s alternate forms of logic (versus

the traditional AND-OR, NAND networks) can use LSI technology to an advantage.

We saw how a "universal" function chip could be constructed with cellular arrays

in a previous section. In this section a general approach to the design of a uni ­

versal logic block (ULB), with the hope of introducing techniques which one day

may lead to th e "computer on a chip" LSI seems to promise.

Definition . A switching function U(z , z , ... , z) is said to be universal
· 1 2 m

inn variables x , ... , x for a set of available input functions S , if for any n
1 n

v ariable switching function f(x , ... , x) there is a way of assigning all the z.
1 n l

inputs to functi .ons in S s uch that U(z , ... , z) = f(x , ... , x) .
1 m 1 n

This definition can be clarified through use of the following example:

Let S = (x , x 2 , ... , x , 0, 1)
1 n

the following function is universal

n
U(z , ... ,z ,z +l, ... ,z +2)=

1 n n n
z + ·m , 1(z , ... , z)

n 1 1 - 1 n

Where m.(z , . .. , z) is the ith n-variable minterm function .
l 1 n

How is this function universal? Any n variable function f(x , .. . , x) can be
1 n

written as a sum of minterms (standard sum of products) . By assigning z . = x.
l l

for all l<i<n and z ., j>n such that z.=l if£ the corresponding minterm (m . .) is
-- J J J - n - 1

included in the canonical expansion off, the result is U(z , ... , z , z , ... , z n)
1 n n+l n+Z

= f(x , ... , x) . The variables z + , . .. , z 2n are control or selector variables
1 n n 1 n+

selecting the appropriate minterms .

For n=Z

z 4 = 0, z 5 = 1 , z 6 = 1. Prove this for yourself by substituting in U .

The idea of building a LSI universal logic block (ULB) is a good one,

provided th e number of control inputs does not becom e too large. Th e minimum

8 . 15

number (not necessarily obtainable) of control inputs can be calculated as follows:

1. There are m inputs to the ULB (assumed).

2. Suppose x 1, x 1 1 , x 2 , x 2 1 , • • • , xn' xn', 0, 1 are allowed inputs to the ULB

(tota 1 2n + 2)

3. The maximum number of functions realizable by the ULB is equal to the

number of ways the allowed 2n + 2 input functions can be assigned to

the m input terminals = (2n + 2)
m

4. This must exceed or equal the number of n variable switching functions
n

(22) .

m 2n
Hence, (2n + 2) ,::: 2

The table of Figure 8. 18 compares for several values of n, the "lower bound" m,
n

the ULB shown above which uses n + 2 inputs, and the "best known" solution to

date.

n

3

4

5

6

10

-~

22
n

256

65536

4· 10 9

2· 10 19

. . 314
-10

m :

5

6

9

17

231

'''used equivalence classes.

n
''best" 2 +n

11 5

20 7

37 5

70 24

1034

Figure 8 . 18. Comparison of ULB input requirements .

Through 6 variables, the ULB approach seems reasonable since a ULB for

6 variable functions can now be constructed on a 32 pin chip.

The next question to be answered deals with finding a design procedure for

8. 16

n
0
n
fl

l

1

I
j

J

J

l minimum ULB' s. The following ULB has been proposed as a general model:

D
n
n
tl
I

l I
. I

I J

U(z , ... , z , z +l' ... , z) = z +lR l +z +ZR 2 + ... +z R 1 n n m n n m m - n

Where each R . is a disjoint (R.· R .= 0, i/j) sum of n variable minterms . The first
l l J

n z . are assigned so that z .=x . . The allowed inputs are x.,x . ',x ,x ', ... ,x ,x ',
1 l l l l 2 2 nn

0, 1. The remaining z .(n<i<m) are assigned from a subset of the allowed inputs
l - -

called an I block. First, we shall give an example.

I block= (x 3 , x 3 ', 0, 1)

Rl = xlx2x3 + xlx2x3

R =xx 'x +xx'x'
2 123 123

R 3 = x I x X + x I x X 1

1 2 3 1 2 3

R 4 = X I X I X + X I X I X 1
1 2 3 1 2 3

Note, since

(x · R) = (x x I x) (x 1 • R) = (x x I x 1) (0· R) = 0 (l' R) = (x x I x + x x I x 1)
3 X 1 2 3' 3 2 1 2 3' 2 ' 2 1 2 3 1 2 3

elements of the I block can be used to select the complete sum R ., ~ sub-sum of
l

minterms contained in R . or 0 by AN Ding R . with the appropriate I block element.
l l

Hence,

U(x 1, x 2 , x 3 , z 4 , z 5 , z 6 , z 7) = z 4R 1 + z 5R 2 + z 6R 4 is a ULB for 3 variable

functions.

For example, f(x 1, x 2 , x 3) = x x + x 'x
1 2 1 3

If z 4 = 1, z 5 = 0, z 6 = x 3 ,

then

=xxx +xxx'+x'x'x +x'xx
123 123 123 123

Z = X
7 3'

n-1
This example can be extended ton-variable ULB' s which require n + 2 input

lines. Prove this to yourself by finding an-variable ULB with I block (x , x 1 , 0, 1) .
n n

Note that a 6-variable ULB would require 38 inputs, greater than the known

minimum. A sum of minter ms R is I block selectable if for any desired sub-sum

of minterms included in R that sub- sum can be obtained by ANDing R and some

element of the I block .

8. 17

Theorem . Let R be a s x n binary matrix describing an I block selectable

sim of minterms, let the I block be complete (if a is an element of I than a' is an

element of I) and let H be a n x k binary matrix.

If the rows of RH are distinct, then for all binary vectors v . in the null
-J

s pace V of H , the matrices

V ,

R(v .) = R + -;~
-J - J

V,
J

describ e disjoint sums of mint e rms which are selectable by the I block described

by R.

E x ample : I block= (x 3 , x 3 1 , 0 , 1)
000

R =
001

0
H = 0

RH =

1

000
001

0

0 =

1

0

1

V = ((000), (010),

since (000) · 0

the rows are distinct

(100), (110))

0 = (0) ; (000) is in the null space of H

1

R(000)
000

x ' x ' x ' + x ' x ' x = =
001 1 2 3 1 2 3

R(0l0)
000 010 010

X 1X X 1
+ xl 'x2x3 = + = =

001 010 011 1 2 3

R(100)
100

X X 1X + XX 1X = =
101 1 2 3 1 2 3

R(ll0) =
110

x x x 1
+ x l x2 x 3 =

111 1 2 3

What the theorem above allows us to do is to find, given an I- block , a set of

l

n
n
l
l

j

j
disjoing sums of minterms which are selectable using the elements of the I block. LJ

For up to 7 variables , the most g eneral design procedure uses an I block of

8. 18

n
n
n
n

l
11

I I

the form (x , x ', 0, 1), partitioning the minterms into 2n- l disjoint I block
n n

selectable sums.

The following guide lines will lead to another general design for an ULB .

Suppose the I block is (x ,x 1 ,x 2 ,x 2 1 , ••• ,x ,x ', 0, 1). In other words, all avail-
1 1 n n

able inputs are used as control variables. Recall that R, the matrix describing the

I block selectable sum of minterms has dimension s x n. Ifs is a power of two
r

(for some r, s = 2) construct R as follows :

1. E very s bit binary vector or its complement is a column of R (except

000 0 and 111. .. 1).

2. The first r columns of R form a submatrix whos e rows are all r bit

binary vec tors. Note that the number of columns of R is identical to

the number of variables for which the ULB is universal and since there

are 2s - 2 s bit binary vectors other than 000 ... 0 and 111 ... 1 and each

vector or its complement must be present as a column, then there are
s-1

at least 2 -1 columns i.n R. The di.mensi.on s is the number of min -

terms in block.

Example x = 4 n = 8

R =
00

01

10

11

000010 (

001100

010100

100000

H=
10

01

00

00

\

00

00

00
6

For this example there are 2 = 64 vectors i.n the null space of H, hence 64 blocks

11 of 4 minterms . The block described above is

1

j

R = x 'x 'x 'x 'x 'x 'x 'x 1 + x 'x x 'x 'x xx 'x ' +xx 'x 'x x 'x x 'x 1

12345678 12345678 12345678

R +xx xx 'x 'x 'x 'x '
·12345678

Note the first term can be selected by x 7 · R, the second by x 5 • Rand so

forth.

8 . 19

Universal Logic Blocks have been found which use fewer inputs than the ones

which can be designed by these general procedures. For instance,

U(z1,···,zs)=zs+z z z 1 +z 'z 'z 1 +z z z ' z +z 'z 'z z
124 134 1234 1234

is universal in 3 variables where all z i are assigned from the set (x 1, x 11 , x 2 ,

x 3 , x 3 1 , 0, 1). This requires a table look up for the assignment.

1

l
n
n
n

I
I

J

J

J

l
n
D
n
f I

I
l

l I
I I
ll
lI
j

8. 5 Notes - Problems - References

An interesting approach to ROM design is given by Clare (1) and the best

text on microprogramming is by Husson (2).

Cellular Array research is summarized in a pa per by Minnick (4) and

programmable arrays are discussed by Kautz (3).

A brief introduction to Universal logic and a good list of references can be

found in Preparata (5). A note on design using FLA appeared recently in (1).

REFERENCES

1. Clare, C. R . , Designing Logic Systems Using State Machines, McGraw ­
H-111, New York, 1973.

2. Husson, S., Microprogramming : Principles and Practices, Prentice­
Hall , Englewood Cliffs, N. J., 1970.

3. Kautz , W., "Programmable Cellular Logic 11, in Recent Developments
in Swtiching Theory, A. Mukhopadhyay, Ed., Academic Press, New
York, 1971.

4 . Minnick, R. C., 11A Survey of Microcellular Research", JACM, Vol.
14, pp . 203 - 241, April 1967.

5 . Preparata, F., 11Universal Logic 11, Proc . of 1st Texas Symposium on
Computer Systems, August 197 2.

6 . Friel , V. and P. Holland, 11Application of a High Speed Programmable
Logic Array, 11 Computer Design, Vol. 12, No. 12, December 1973.

PROBLEMS

1. a
1

The network above is a two bit full adder with inputs ~ = (a 1 a 0) and

b = (b b 0), the output is s = a + b = (s 2 s s 0). Example: a = (10),
- 1 - - - 1

.£ = (11), ~ = (101).

a. Design the adder using a 12 input Universal Logic Block with allowable

control inputs (a 0 , a 0 1 , 0, 1). (Define the ULB, but do not design the

network) .

8. 21

2.

b.

c.

Design the adder using a Cellular Array. (Solution requires a

11 columns and 7 rows).

Design the adder using Read Only Memory with 16 memory locations,

each containing a 3 bit word.

Using the Arithmetic Unit of Figure 8. 3 and assuming that the OR gates per ­

form a bit wise OR function on the parallel data transfer, find micro

instructions for

a. R +R ~Rl
1 2

b.

c. Can the e x clusive-OR function be realized?

3. Write a flow chart and a microroutine for a division algorithm (by successive

subtraction). Assume the divisor is in R2 , the dividend in R3, leave the

quotient in Rl and the remainder in R3. Another control point m for a data

transfer AOB ~ R3 is needed .

4. Find a two variable universal logic Block (ULB) that has 4 inputs.

5. Prove that a logic block realizing U(z 1, z 2 , z 3) = z 1z 2 @ z 3 is universal in

2 variables x, yon the set (x, x', y, y', 0, 1). Realize all 16 functions of

x , y as a proof.

Example : f(x, y) = X t y

U(z 1, z 2 , z 3) = x'y@ x = x'yx' + (x'y)'x

=x'y+(x+Y')x

= x' y + x + xy = x + y

8.22

7
n
n
n
. l

j

J

J

j

J
Ll

	Adrion_Herzog_Short_Principles_Logic_Design_A
	Adrion_Herzog_Short_Principles_Logic_Design_B
	Adrion_Herzog_Short_Principles_Logic_Design_C
	Adrion_Herzog_Short_Principles_Logic_Design_D
	Adrion_Herzog_Short_Principles_Logic_Design_E

