PRELIMINARY SAFETY STUDY FOR AN EQUINE (EQUUS CABALLUS) VACCINE AGAINST SPERM ACROSOME ASSOCIATED 3 PROTEIN

^aCozzi, B. C., ^bZielke, R., ^bSikora, A., ^cCox, G., ^aSherwood, D., ^aKutzler, M. A. ^aCollege of Agricultural Sciences Oregon State University (OSU), Corvallis, OR, USA; ^bCollege of Pharmacy OSU, Corvallis, OR, USA; ^cVeterinary Vaccine Services, Inc., Omaha, NE, USA

INTRODUCTION

- In the United States, the wild horse population exceeds the recommended carrying capacity by about 60,000 horses.¹
- Current contraceptive methods include: surgical (removal of ovaries), hormonal (progesterone, GnRH), and immunologic (porcine zona pellucida, GnRH).²
- SPACA3 is a sperm surface membrane protein involved in sperm-egg plasma membrane adhesion and fusion during fertilization, and has been identified in men, cattle, sheep, and deer.^{3,4}
- SPACA3 has also been identified in the granulosa cells and ooplasm in dogs and cats.⁴

OBJECTIVES & HYPOTHESES

- The objectives were:
 - To determine the expression of SPACA3 in equine ovarian tissue;
- To determine if a SPACA3 vaccine would be safe to use in mares.
- It was hypothesized that :
 - SPACA3 would be immunoexpressed in the granulosa cells of primordial, primary, secondary, and tertiary equine follicles;
 - SPACA3 vaccine would be safe to use in horses and induce anti-SPACA3 antibodies.

METHODS

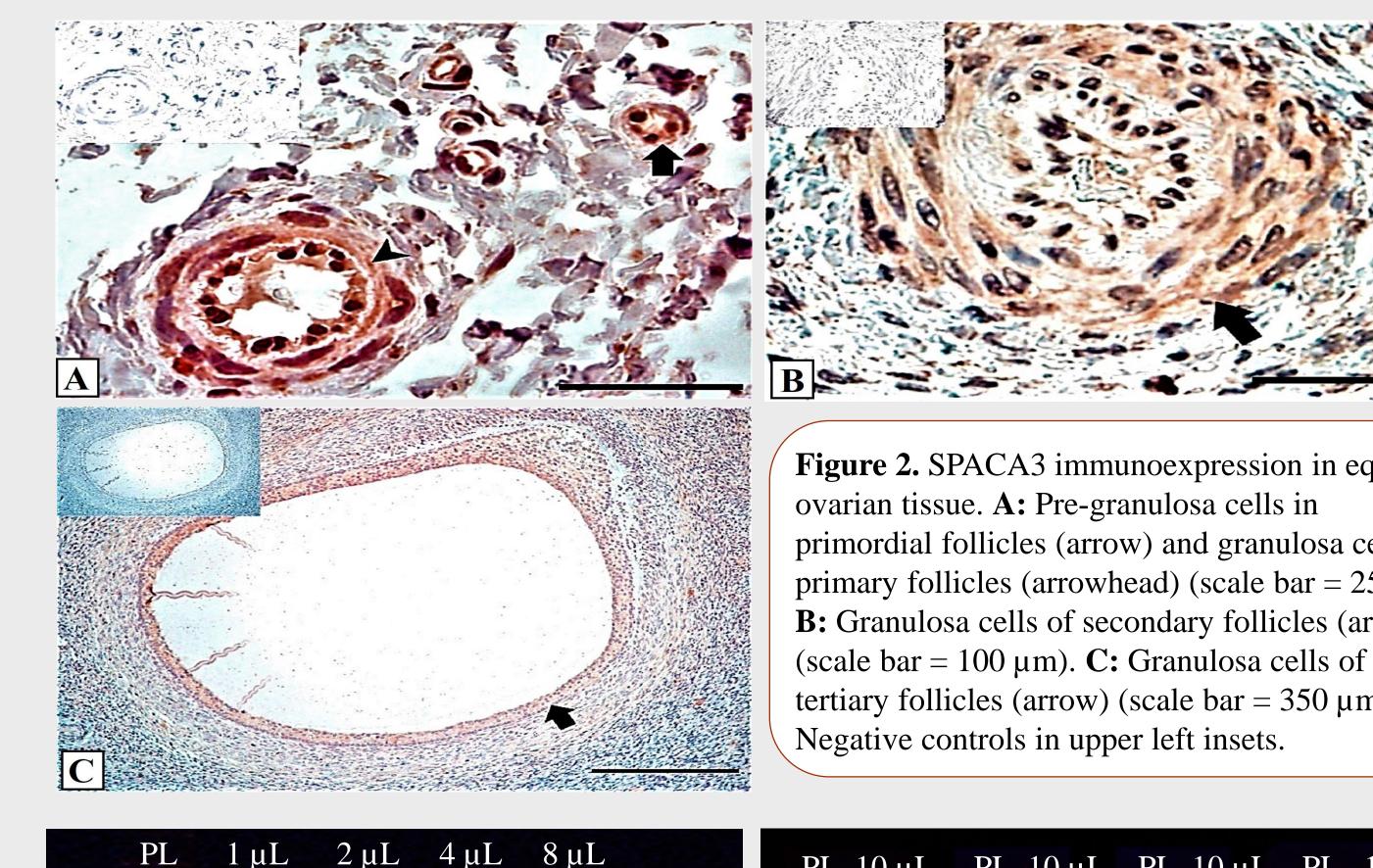
Ovarian Immunoexpression of SPACA3

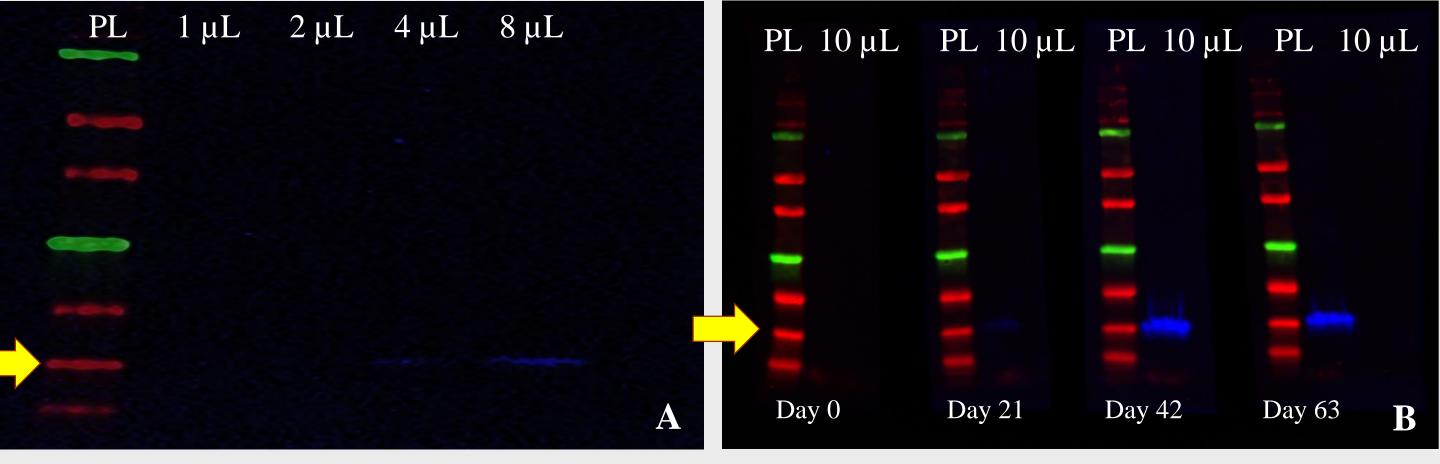
- Routine immunohistochemistry was performed on formalin-fixed paraffinembedded ovarian sections.
- Slides were deparaffinized, rehydrated, blocked, incubated with a SPACA3 primary antibody (1:200), incubated with a secondary antibody, counterstained, dehydrated, and cover slipped.

Equine SPACA3 Vaccine Development

- A short SPACA3 sequence (Figure 1) was synthesized from a mammalian expression system (Genscript, Piscataway, NJ).
- The peptide was mixed 1:1 with an adjuvant selected for safety in horses (GERBU, V-Biognostics, San Diego, CA).

Equine SPACA3 Vaccine Trial


- Research was approved by the OSU IACUC (ACUP #2020-0103).
- Horses were housed at the OSU Horse Center where they were monitored twice daily for changes in appetite, attitude, temperature, heart rate, and respiration rate.
- Each vaccine contained 0.5 mg of SPACA3 peptide and was administered into both caudal thighs (3 mL on each side) three weeks apart (for a total of three vaccinations).
- Blood samples were taken before each vaccine was administered and 3 weeks after the last vaccination.


Immunoblotting with SPACA3

• The unconjugated and conjugated SPACA3 peptide and the horse sera samples were transferred, blocked, incubated with a primary SPACA3 antibody and then a secondary antibody, and subjected to protein detection via Western blotting.

MGWSCIILFLVATATGVHSKIYSRCELTRTLRNFGLEGYRGYSLADWVCLAYYTSGFNTAAVDH EADGSTNNGIFQVNSRKWCQNLDPEAPNLCQMYCSDLLNPNLKNAVICAMKITQEPRGMGS WEAWRHHCQGKDLRDWVDGCDFHHHHHH

Figure 1. Peptide abbreviations for the SPACA3 sequence used in this vaccine.

Figure 3. Western blotting results for the SPACA3 peptide (A) and horse sera samples following immunization against SPACA3 (**B**). PL: protein ladder; yellow arrow: 15 kDa

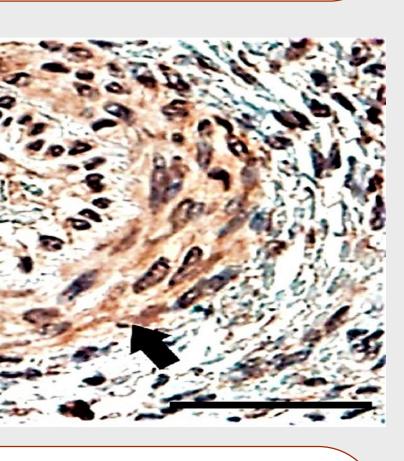


Figure 2. SPACA3 immunoexpression in equine primordial follicles (arrow) and granulosa cells in primary follicles (arrowhead) (scale bar = $25 \mu m$). **B:** Granulosa cells of secondary follicles (arrow) tertiary follicles (arrow) (scale bar = $350 \,\mu$ m).

RESULTS

Ovarian Immunoexpression of SPACA3

- SPACA3 was localized to the pre-granulosa cells of primordial follicles (Figure 2A) and the granulosa cells of primary (Figure 2A), secondary (Figure 2B), and tertiary follicles (Figure 2C) of all equine ovaries examined.
- SPACA3 was weakly localized to theca cells in tertiary follicles.
- There was no staining in the negative controls (Figure 2).

Equine SPACA3 Vaccine Development

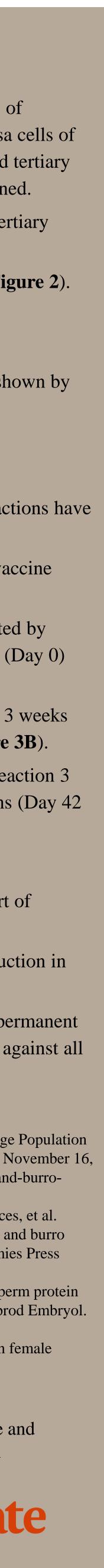
The SPACA3 peptide was 15 kDa (Figure 3A), shown by the yellow arrow.

Equine SPACA3 Vaccine Trial & Immunoblotting

- No long-term negative side effects or vaccine reactions have occurred
- Antibodies were successfully raised against the vaccine (Figure 3B).
- There were no antibodies against SPACA3 detected by Western blot at the time of the initial vaccination (Day 0) (Figure 3B).
- There was a small amount of antibodies detected 3 weeks following the initial vaccination (Day 21) (Figure 3B).
- The SPACA3 vaccine elicited a strong immune reaction 3 weeks following the second and third vaccinations (Day 42 and 63) (**Figure 3B**).

CONCLUSION

- To the best of our knowledge, this is the first report of SPACA3 immunoexpression in horses.
- Mice immunized against SPACA3 saw a 70% reduction in female mice fertility.⁴
- Immunizing horses against SPACA3 may induce permanent sterilization because antibodies would be directed against all stages of follicles, including primordial follicles.


LITERATURE CITED

- 1. Bureau of Land Management. Wild Horse and Burro On-Range Population Estimates. Bureau of Land Management. 2019. (Accessed on November 16, 2020 from https://www.blm.gov/basic/programs-wild-horse-and-burroabout-data-public-lands-statistics)
- 2. National Research Council, Division on Earth and Life Sciences, et al. 2013. Methods using science to improve the BLM wild horse and burro program: a way forward. Washington, D.D.: National Academies Press 1:93-142.
- 3. Chiu WWC, Erikson EK, Sole CA, et al. SPRASA, a novel sperm protein involved in immune-mediated infertility. Eur Soc Human Reprod Embryol. 2004;9(2):243-249.
- 4. Wagner A, Holland OJ, Tong M, et al. The role of SPRASA in female fertility. Reprod Sci. 2015;22(4):452-461.

ACKNOWLEDGEMENTS

We thank The United States Department of Agriculture and Agricultural Research Foundation funded this research

