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ABSTRACT

Selecting an appropriate and efficient sampling strategy in biological surveys is a
major concern in ecological research, particularly when the population

abundance and individual traits of the sampled population are highly structured over
space. Multi-stage sampling designs typically present sampling sites as primary units.
However, to collect trait data, such as age or maturity, only a sub-sample of
individuals collected in the sampling site is retained. Therefore, not only the sampling
design, but also the sub-sampling strategy can have a major impact on important
population estimates, commonly used as reference points for management

and conservation. We developed a simulation framework to evaluate sub-sampling
strategies from multi-stage biological surveys. Specifically, we compare quantitatively
precision and bias of the population estimates obtained using two common but
contrasting sub-sampling strategies: the random and the stratified designs.

The sub-sampling strategy evaluation was applied to age data collection of a virtual
fish population that has the same statistical and biological characteristics of the
Eastern Bering Sea population of Pacific cod. The simulation scheme allowed

us to incorporate contributions of several sources of error and to analyze the
sensitivity of the different strategies in the population estimates. We found that, on
average across all scenarios tested, the main differences between sub-sampling
designs arise from the inability of the stratified design to reproduce spatial patterns of
the individual traits. However, differences between the sub-sampling strategies in
other population estimates may be small, particularly when large sub-sample sizes
are used. On isolated scenarios (representative of specific environmental or
demographic conditions), the random sub-sampling provided better precision in
all population estimates analyzed. The sensitivity analysis revealed the

important contribution of spatial autocorrelation in the error of population trait
estimates, regardless of the sub-sampling design. This framework will be a useful tool
for monitoring and assessment of natural populations with spatially structured
traits in multi-stage sampling designs.
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INTRODUCTION

Comparisons of different sampling strategies used to collect biological data have been
performed in multiple fields such as forestry (Kulow, 1966; Gove, Ducey ¢ Valentine, 2002;
Broich et al., 2009; Bhatta, Chaudhary ¢» Vetaas, 2012); grasslands and crops

(Colbach, Dessaint & Forcella, 2000; Stafford et al., 2006); land-use (Nusser et al., 2013);
terrestrial mammals (Parmenter et al., 2003; Harris et al., 2013; Wright, Newson ¢ Noble,
2014; Calmanti et al., 2015); birds (Johnson et al., 2009; Pavlacky et al., 2017);

marine invertebrates (Miller ¢~ Ambrose, 2000; Cole et al., 2001; Li et al., 2015); and fish
(Kimura, 1977; Lai, 1993; Goodyear, 1995; Liu, Chen & Cheng, 2009). These comparisons
identify an optimal design that balances sampling effort and data quality to produce
accurate estimates of the studied population parameters. Usually, the main objective

of the sampling design is obtaining unbiased and precise estimates of some population
parameters such as total abundance, which is one of the critical reference values for
management and conservation. However, many marine, terrestrial and freshwater
populations vary across space and time not only on abundance values, but also on traits of
the composing individuals, such as length, maturity, survival. These traits affect important
assessment products, such as the age composition and structure of a population and
ultimately estimates of population abundance (Le Page & Cury, 1995; Childs et al., 2003;
Metcalf et al., 2009; Betti, Wahl & Zamir, 2016).

In many cases, the necessary technical procedures to determine trait values from
individuals collected are costly and time consuming and thus, not all individuals in the
sampled population can be analyzed (Kimura, 1977; Castro ¢ Lawing, 1995; Matsumura,
Arlinghaus & Dieckmann, 2012; Hof ¢» Bright, 2016). As a consequence, ecologists
frequently need to apply a multi-stage design to collect data of a particular trait and thus,
monitor a biological population. Sampling sites are the primary units in the multi-stage
design, while the trait data are collected as a sub-sample in each site. For instance, multi-stage
design is very common in the monitoring of fish populations, whereby fish are caught
at different sampling sites, all or a high proportion of the fish in that catch are measured for
length, but only a sub-sample of the measured fish are aged. Comparisons of different
sub-sampling designs for collecting and studying the distribution of a particular trait, such as
age composition of a populations (Kimura, 1977; Pennington, Burmeister ¢ Hjellvik, 2002;
Chih, 2009; Hulson, Hanselman ¢ Shotwell, 2016), have been more thoroughly studied
in fisheries science than in other ecology fields (Kosmelj, Cedilnik ¢ Kalan, 2001; Stafford
et al., 2006; Smith et al., 2011; Brown et al., 2013). Thus, the sampling design to gather data
on population abundance (stage 1) is paramount in ecological research, but also the
sub-sampling design to gather data on traits-structure in the population (stage 2 or 3) can
have a major impact on the population estimates, which will be used as reference points for
assessment and management. The potential bias and precision of the estimates derived
from different sub-sampling designs in multi-stage samplings have rarely been evaluated to
date (Bassett & Edwards, 2003; Rhodes ¢ Jonzén, 2011). This is particularly problematic
when the individual traits within a population are structured across space and time, calling
into question the statistical representativeness of the subsample.
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Computer simulations are an essential approach in ecological research for comparing
and evaluating different sampling methods (Legendre et al., 2002; Harrison et al., 2013;
Cao et al., 2014; Parker et al., 2016). First, in contrast to empirical studies of natural
populations, simulation studies have the advantage that the true parameter values
are known. Second, virtual populations can mimic a variety of scenarios, each differing in
terms of biological (abundance, age structure, etc.) and statistical (spatial distribution,
autocorrelation, trends, etc.) attributes, making any conclusion reasonably applicable to a
variety of natural conditions. Third, alternative sub-sampling designs can be compared
quantitatively with respect to the accuracy, precision and bias of the population
estimates obtained (Legendre et al., 2002; Anderson et al., 2014; Parker et al., 2016).

Here, we developed a simulation framework for a sub-sampling strategy evaluation in
specific trait data collections obtained from multi-stage biological surveys. For this
purpose, we compared two commonly used but contrasting sub-sampling strategies in the
collection of trait data in fish populations: the random and the stratified designs.

Using the stratified strategy, the sampler collects a specific number of individuals at
every pre-defined stratum, interval or group (for example depth strata or length interval)
to assess the population trait patterns. By contrast, using the random strategy (RS),

the sampler simply obtains a particular number of individuals randomly regardless of any
other conditions. We applied our simulation framework to the Pacific cod (Gadus
macrocephalus) population of the Eastern Bering Sea (EBS) (Thompson, 2017).

The simulation presented here is reproducible and broadly applicable to compare

and evaluate sub-sampling strategies in any biological data collection under a multi-stage
design and is particularly applicable when the population presents spatially or temporally
structured traits. This framework might help to select appropriate and efficient

(sub-) sampling designs to improve data quality in ecological research and assessment.

MATERIALS AND METHODS

To develop a simulation framework for a sub-sampling strategy evaluation in spatially
structured populations the following steps are required: (1) create a virtual population
where all the parameters and features of interest are known; (2) simulate a multi-stage field
sampling for each (sub-) sampling design targeted; (3) account for further sample and
data processing for the trait estimates by addressing and adding potential bias and errors
resulting from those proceedings; (4) compare and evaluate the estimates obtained

from each (sub-) sampling strategy and finally; (5) perform a sensitivity test to quantify
errors in the population estimates and disentangle error sources from the (sub-) sampling
design or other processes such as those included in step 3. We provide below a

detailed description of each of the five steps within the biological context of our case of
study: evaluation of random and length-stratified sub-sampling strategies for the
collection of age data in the EBS Pacific cod population.

CASE STUDY: EASTERN BERING SEA PACIFIC COD

Pacific cod (Gadus macrocephalus) is distributed across the entire continental shelf of the
EBS and is thought to be a single population. The EBS continental shelf extends over
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more than 500 km with a steep shelf break in the western boundary. The shelf is divided
into inner (<50 m depth), middle (50-100 m) and outer (100-200 m) regions
considering bathymetry and oceanographic characteristics (Coachman, 1986; Stabeno

et al., 2001). Pacific cod typically move from inner to outer shelf as they age, displaying a
progressive increase in mean length across space. Additionally, spatial variation in size
at age was observed with a difference up to five cm between fish of the same age
inhabiting inner and outer shelf (Puerta et al., 2018). Females tend to be a few cm larger
than males, particularly in old individuals. EBS Pacific cod reproduces once a year,
which typically gives rise to a multimodal length distribution, where each mode
corresponds to a young age-group. The inter-annual variability in spatial distribution of
the Pacific cod across the EBS shelf is particularly influenced by the extension of the
“cold pool.” This is a water layer <2 °C formed from winter sea ice, which induces cooling
and increase salinity and density of the surface water and the subsequent spring melt,
thus inducing thermal stratification of the middle shelf (Stabeno et al., 2001). It may act as
a cross-shelf migration barrier for subarctic fish species, forcing part of the population
to remain on the outer shelf (Ciannelli & Bailey, 2005; Kotwicki et al., 2005).

The assessment and management of the EBS Pacific cod stock relies to a considerable
extent on data from scientific bottom trawl surveys pertaining to the relative abundance
and age and length structure of the population (Thompson, 2017). Relative abundance
and length composition data have been collected annually since 1982, and survey
age composition data are available from 1994 to 2016 (Conner ¢ Lauth, 2017), following a
multi-stage sampling design to record abundance, length and age data. The survey
follows a square grid pattern sampling 375 sites and performs a similar cruise route every
year that starts in the SE inner-middle shelf, then moves toward the NW region. At any
given sampling site (stage 1), all or a high percentage of the fish caught is measured
for length (stage 2). However, only a fraction of the measured fish is collected for ageing
due to the process being costly and time-consuming (stage 3). Through 2016, this
final sub-sample for age data followed a length-stratified design; that is three fish at
each given length interval (one cm), sex and area (NW and SE) were collected.

This sub-sampling strategy ensures a wide coverage of age composition, but might
misrepresent spatial patterns in size and age since once the number of fish for a given
length interval is covered, no more fish at that length interval are collected in the
survey (Puerta et al., 2018).

Virtual population

We simulated a virtual population by resampling the observed data from surveys to
preserve the spatio-temporal and statistical features of the natural population.

Since natural populations are dynamic and change over time and space in response to the
variations in their environment, the virtual population encompasses biological data under
different demographic and physical conditions. Thus, we generated six scenarios,

which when compiled represent the average physical and demographic conditions of the
virtual population. The six scenarios conforming the average virtual population included
(1) warm and (2) cold scenarios, based on the average bottom temperature of the
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middle shelf, since the spatial distribution is highly influenced by water temperature
(Stabeno et al., 2001; Ciannelli & Bailey, 2005; Barbeaux, 2017). To assess the studied trait
structure, we generated two more scenarios corresponding to (3) high and (4) low age
structure diversity. Diversity with respect to age structure was measured using the
Simpsons diversity index in the vegan (Oksanen et al., 2018) library of R software (R Core
Team, 2017). The population abundance (stage 1) and number of fish measured (stage 2)
in the high and low age diversity scenarios were set to the same values to avoid
confounding this effect with those of abundance variability. Finally, we incorporated

(5) high and (6) low total abundance scenarios into the virtual population. In order to
prevent similar confounding effects as aforementioned, the age structures of these

two scenarios were constrained to be as similar as possible by keeping less than a 3%
difference in the number of individuals at any given age-group.

To create every particular scenario (for instance, high total abundance), the resampling
was limited to the observed data that meet the condition of that particular scenario
(for instance, data on the 5 years with the highest total abundance). For each scenario, we
calculated total abundance (stage 1) and percentage of individuals sub-sampled for
trait analysis (stages 2-3) at any given sampling location. Further, we determined a value of
the trait of interest for every individual in the virtual population using a function to
estimate this trait. The parameters of the trait function can be tuned to the observed data to
represent the realized spatial variability of individual traits. Populations spatially
structured in abundance or traits display some degree of spatial autocorrelation across
locations, which was also included in the virtual population.

The virtual population included, by site, as many fish as those historically measured on
average over the years corresponding to a particular scenario (except for the high and
low age diversity scenarios, which share the same values as aforementioned). Since
the sex of some fish was undetermined in the observed data, we assigned sex to each fish
based on the sex ratio calculated for each length interval (one cm) and site. When the
sample size was lower than 10 fish, the sex ratio was calculated by a higher level of
aggregation such as length interval and stratum, only length interval and finally, overall sex
ratio. Further, we determined the age of every fish based on its length and the geographic
location where it was caught (i.e., sampling site), using the following Eq. (1):

Age; = a+ B Sizef+ ByrAi+e; (1)

where i corresponds to every sampled fish, o is the intercept, p; is the size

coefficient, which varies between male (1.05 ¢ ) and females (1 ¢>) and B, is the
geographic coefficient (—0.031) that accounts for size at age variability in rotated latitude
(r\) across the shelf. Due to the NW—SE orientation of the EBS inner-outer shelf axis,
geographical coordinates were rotated to accommodate and simplify this orientation

to a N—S axis. We added a site-specific spatial auto-correlated error (e;) to the age values
obtained in Eq. (1). Spatial auto-correlation among sampling sites was calculated from a
covariogram based on sampling site coordinates and average age residuals from
observed data using gstat (Pebesma, 2004) and fields (Nychka et al., 2017) libraries in

R software (R Core Team, 2017).
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Sampling simulation

We simulated a multi-stage field sampling in every scenario of the virtual population and
for each of the (sub-) sampling designs under evaluation. This was equivalent to
conducting a field survey in the study area for as many times as the number of scenarios.
Sampling of the virtual population (stage 1) occurred in all of the sampling sites

for each of the six scenarios, resembling the same protocol used in the scientific surveys
(Conner ¢ Lauth, 2017; Puerta et al., 2018). At half of the sampling sites (randomly
selected), two different sub-sampling strategies for age data collection (stage 3) were
simulated to be compared: the length-stratified strategy (LSS), that collects three

fish per length interval (one cm), sex and area (NW or SE of the EBS); and the RS, which
randomly collects four fish at each site, regardless of the length, sex or area. Thus, the total
sample size of the RS is larger than LSS. These sample sizes represent the minimum
effort and were chosen to closely mimic the current sampling protocols in the Pacific cod
case study. We also assessed results in which the stage 3 sample size was equal to all
fish caught (i.e., no subsampling) and results where LSS and RS ended up in the same
sample size. For the latter, and for each scenario, several records in the RS were randomly
removed to match the total sample size obtained with the LSS.

Simulation of trait sub-sample processing
Characterization of some important individual traits such as age or maturity relies on
statistical estimations from technical proceedings and/or depends on subjective
interpretations of the biological conditions since the true value of the trait is usually
unknown. Thus, the process of extracting trait information from the collected biological
sub-samples introduces a new component of variability that includes bias and error from
the trait’s true value.

Ageing processes in fish mainly relies on the interpretation of annual marks (annuli) in
the otoliths. Despite otolith readers being expertly trained, some degree of subjectivity
is involved (Matta ¢» Kimura, 2012). Kastelle et al. (2017) defined age-specific bias
in EBS Pacific cod ageing by comparing ages derived from counting otolith marks and
those (considered true ages) derived from stable oxygen isotopes (3'*0) analysis.
Overall, the probability of assigning an age equal to the true age was approximately 61%
(Kastelle et al., 2017). In contrast, the error in otolith reading refers to the degree to
which an age estimate is reproducible by the same or a different reader (Matta ¢ Kimura,
2012). Usually a second reader tests 20% of all specimens to calculate the age-specific
inter-reader coefficient of variation (Kimura ¢ Anderl, 2005; Matta ¢ Kimura, 2012).
Thus, in our case study simulation, we differentiate the “true age” of an individual
(calculated from Eq. (1) in the virtual population) from the “otolith age,” which is recorded
in the age sub-sample and derived from the true age plus the age-specific reading bias
and error (Kastelle et al., 2017).

Evaluation of the (sub-) sampling strategy
We followed a (sub-) sampling strategy evaluation based on the comparison of:
(i) prediction errors for the trait values derived from a statistical model, with the same
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covariate as those included in Eq. (1), parameterized on each of the trait sub-samples,
respectively; (ii) the trait frequency distribution of the virtual population estimated
from each sub-sample; (iii) the mean and modal estimated values of the trait and; (iv) the
average spatial patterns of the trait recovered from each sub-sample. This approach
ensures a quantitatively valid comparison of the estimates derived from each (sub-)
sampling strategy.

(i) We used generalized additive models (GAM; Wood, 2006) to fit “otolith age” (as
described above) in relation to fish length, sex and geographical location (Puerta et al.,
2018), using mgcv library (Wood, 2006) in R software (R Core Team, 2017). Model
Eq. (2) was defined as follows,

Age; = a + s1(Size;) x Sex; + s2(dj, Ai) + & (2)

where i corresponds to every sampled fish. o is an intercept, and s represents the
smooth functions for the Length and the geographic location (longitude ¢, latitude ).
To reduce circularity, the model Eq. (2) is purposely different from Eq. (1)
(used to predict the true age of individuals in the virtual population). Sex is included as a
factor, and so, different smooth functions are fitted for males and females; and € is a
normally distributed error term. Since the RS and LSS age sub-samples are by
definition not proportional to the catch, these data were weighted by the size-specific
abundance value within each site in the model. This ensures that age data from a
particular length interval with a higher representation in the catch (as number of fish)
have larger weights in the model. Additionally, these weights correct variance structure
in multistage data, removing any bias in the precision of model estimates
(Zuur et al., 2009). The mean predicted errors of the models (as model “otolith age”
prediction minus virtual population “true age”) parameterized on the LSS and RS sub-
samples were compared as an indicator of goodness of fit and predictability skills. The
mean predicted error was calculated on 300 iterations by removing 30% of the data at a
time and predicting age of the deleted cases with a model fitted on the remaining data.
(ii) Then, we used “otolith age” predictions of the Eq. (2) model parameterized on each
age (sub-) sampling strategy sample to estimate the age frequency distribution of the
virtual population.

(iii) Mean and modal size at age obtained from the LSS and RS age sub-samples,
respectively, were compared for age-groups 1 to 3. Finally, (iv) spatial patterns in
average size and age over the EBS shelf derived from the LSS and RS age sub-samples
were compared with those of the virtual population.

Sensitivity test

We performed a sensitivity test to disentangle and quantify (i) the contribution of the
spatial term included in the model used in the sub-sampling strategy evaluation (Eq. (2)),
(ii) source and magnitude of the errors in the population estimates derived from

the inclusion of spatial autocorrelation in the virtual population and (iii) bias and error
derived from trait sub-sample processing. The aforementioned evaluation was repeated for
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Figure 1 Spatial patterns of the virtual population. Spatial distribution of (A) abundance, (B) size and (C) age of the virtual population, showing
average patterns combining the six scenarios. Full-size K] DOI: 10.7717/peerj.6471/fig-1
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Figure 2 Length frequency distributions. Average length frequency distribution obtained with (A) the
random and (B) the length-stratified sub-sampling designs, respectively, including all scenarios. Red line
denotes population density. Full-size K&l DOT: 10.7717/peerj.6471/fig-2

a Pacific cod virtual population without spatial autocorrelation and RS and LSS age
sub-samples where the “otolith age” equals the “true age,” and every other combination of
these errors to compare and quantify error contribution in the population estimates.

RESULTS

Virtual population

The combined Pacific cod virtual population included approximately 83,000 individuals
across the six simulated scenarios, with an average of 13,833 individuals simulated

per sampling event (i.e., survey year). The spatial distribution (Fig. 1) in abundance
averaged across the six scenarios highlights northern and southern regions in the

inner shelf as the hotspot in the study area, although the central middle shelf also presented
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Table 1 Comparisons of models with and without spatial term.

Model % Variance Error sd

Random 89 0.65 0.11

Stratified 92.2 0.66 0.11

Random (no spatial) 87.5 0.68 0.12

Stratified (no spatial) 91.3 0.69 0.11
Note:

Model comparisons including percentage of explained variance, mean prediction error and its standard deviation.
Random and Stratified models were formulated as in Eq. (2), while the no spatial models used this formulation but
removing the spatial term.

remarkable abundance. Size and age exhibited similar average spatial patterns, increasing
progressively from the inner to the outer continental shelf. Larger and older

individuals were particularly concentrated in the northwest region of the outer shelf.
However, the distributional patterns in abundance, size and age varied considerably across
the six individual scenarios (Fig. S1). For example, in warm years cod abundance is
higher in the inner and middle shelf of the Bering Sea, and average age and size is less
structured over space than in cold years.

Evaluation of the (sub-) sampling strategies

Age data sub-samples obtained by the RS and LSS strategies differed in the number of
records collected (stage 3) as a result of their respective intrinsic designs. While the
random sub-sampling strategy accounted for ~1,000 records per scenario including all the
preselected sampling sites (stage 1), the LSS collected only ~800, dismissing ~5% (13-22)
sampling sites per scenario as a result of the targeted number of otoliths having

already been reached. As expected due to the differences in the designs, the random
sub-sample showed a normal distribution for the length measurements (stage 2), where the
most common lengths are more representative (Fig. 2). Naturally, the length-stratified
sub-sample led to a uniform distribution where all length intervals are equally represented,
with the exception of the extremes that are not commonly found in nature (Fig. 2).

(i) Generalized additive models parameterized on the RS and LSS age sub-samples
showed minimal differences in terms of explained variability, prediction errors
(Table 1) and functional shape in size at age (Fig. 3). These negligible differences were
also observed at each individual scenario, but we observed greater standard deviation
in predicted errors from the LSS strategy due to the lower sample size used. Model
residuals were inspected for normality, homoscedasticity and independence.

None of these model residuals exhibited strong spatial autocorrelation, indicating that
the model formulation was sufficient to address the spatial autocorrelation
incorporated in the virtual population (Fig. S3).

(ii) Similar age frequency distributions were predicted from the two age sub-samples
(Fig. 4). This was expected considering the negligible differences in size-at-age
relationships. However, both sub-sampling strategies misrepresent the number of
fish at the most representative age groups (ages 2, 3 and 4) and, particularly the age 2

Puerta et al. (2019), PeerdJ, DOI 10.7717/peerj.6471 9/20


http://dx.doi.org/10.7717/peerj.6471/supp-4
http://dx.doi.org/10.7717/peerj.6471/supp-6
http://dx.doi.org/10.7717/peerj.6471
https://peerj.com/

Peer/

group. This age accounted for ~26% of the individuals misplaced in an age group
regardless of the sub-sampling strategy used. Although shape and prediction of the
age frequency distribution varied notably across the different individual scenarios
(Fig. S2), the underestimation of the age 2 group was observed in all cases. The
number of miss-aged individuals increased by 2% approximately in the individual
scenarios comparing with the average.

(iii) The average point estimates of mean and modal size at age derived from the RS and
LSS age sub-samples were both almost identical to the values observed in the virtual
population for age-groups 1-3 (Fig. 5A). However, a mismatch between population
and sub-sample point estimates was frequent and sometimes remarkable in the
individual scenarios, with the RS tending to provide more accurate and precise
estimates (Fig. 5). The most diverging differences occurred in cold conditions and
high diversity of age structure. Spatial distribution of cod in simulated scenarios also
notably diverged between warm and cold years (Fig. S1).

(iv) The largest and most remarkable differences between the RS and LSS sub-sampling
strategies were observed in the recovery of the average spatial patterns in size
and age (Fig. 6). The length-stratified sample was not able to capture the spatial
patterns in the virtual population and largely overestimated these patterns in shape
and particularly, in magnitude. Larger and older fish estimated by the LSS were
disproportionally widely distributed in the northwest region of the outer
shelf, presenting an average age of 3 years older than the age observed in the virtual
population. By contrast, the RS strategy recovered very similar patterns as those
in the virtual population. Despite the fact that the population distributional patterns
considerably varied between the different individual scenarios, the
misrepresentation described for the LSS was observed in all cases (Fig. 54).

Sensitivity test
We analyzed models parameterized in the RS and LSS, respectively, as in Eq. (2) but
removing the spatial term. Results indicated that spatial location had a small contribution
in the variance explained and modestly reduced the predictability skills (Table 1).
However, this small reduction turned into large differences when comparing the predicted
age distribution (number of fish per age group) with and without including the spatial
term in the model (Eq. (2)). The effects of incorporating different errors, such as
autocorrelation and reading bias and error were mainly detected in the predicted age
distribution. Autocorrelation errors in the virtual population did not affect the
predictive ability of the models, since as mentioned, it was properly addressed by the
spatial term in the model formulation. However, the autocorrelation error contributed to
~13% of the fish being mis-aged (Fig. 7). Removing the reading bias and error resulted
in the mis-aged number of fish to approximately be 5% (with a larger reduction in
RS than in LSS, Fig. 7).

Unexpectedly, this variation in the predicted number of fish at a given age did not have a
notable effect on the point estimates for mean and modal size at age (Fig. 8). Nevertheless,
a mismatch in the point estimates between population and age sub-sample values can

Puerta et al. (2019), PeerdJ, DOI 10.7717/peerj.6471 10/20


http://dx.doi.org/10.7717/peerj.6471/supp-5
http://dx.doi.org/10.7717/peerj.6471/supp-4
http://dx.doi.org/10.7717/peerj.6471/supp-7
http://dx.doi.org/10.7717/peerj.6471
https://peerj.com/

Peer/

A)

3 Males
e Random sample
o
s |
o
-
® g
[0}
-
. /
8
T T T T T T
0 2 4 6 8 10
B)
° Females
o
=}
o
s
[°e)
e
5 8-
Q
)
. /
8
T T T T I T
0 2 4 6 8 10
Age

Figure 3 Trait distribution from sub-samples. Average age at size function extracted from the models
parameterized in (A) the random and (B) the length-stratified sub-sampling strategy, respectively,
including all scenarios. Only partial effect of size and sex are shown.
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be an issue associated with small sample size in the RS and LSS sub-samples. Indeed, when
we increased the sub-sample size to all fish caught (stage 3, i.e., not random or
length-stratified sub-sampling either), the points estimates match perfectly between the
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line highlights virtual population values.

population and the age sub-sample data (results not shown). The sampling strategy

evaluation provide the same results when considering LSS and RS subsamples with the

same total sample size (results not shown).

Puerta et al. (2019), PeerJ, DOI 10.7717/peer|.6471

12/20


http://dx.doi.org/10.7717/peerj.6471/fig-5
http://dx.doi.org/10.7717/peerj.6471
https://peerj.com/

Peer

62
l

C
o
= ]
5
=]
Q.
o
o

-
©
o
©
(o]
o}
[oo]
0
~
Tel
©
Yol
0
0
N
©

Random

62 55 56 57 58 59 60 61

Length-stratified
55 56 57 58 59 60 61

-175 -170 -165 -160 -175 -170 -165 -160

Figure 6 Spatial patterns of the trait obtained from sub-samples. Average spatial distribution of size
(A-C) and age (D-F) for the virtual population, the random and length-stratified sub-sample, respec-
tively. Gray contour lines define the bathymetry at 50, 100 and 200 m depths that divides the inner,
middle and outer shelf. Red contour lines contours delimit spatial distribution for the corresponding
values in the color scale. Full-size K&l DOT: 10.7717/peerj.6471/fig-6

DISCUSSION

This study provides a useful framework to simulate varying populations with spatially
structured traits and assess the precision and performance of different sub-sampling
strategies for monitoring biological populations in a multistage design. The sub-sampling
strategy evaluation showed that the population parameters estimated with the random
and the stratified sub-sample, (e.g., prediction error, mean and modal trait values)

were almost negligible between the two sub-sampling strategies when multiple scenarios
(i.e., increasing sample size and variability in the population) were considered as

input data. However, noticeable differences were found between the average spatial
distribution of individual traits of the virtual population and those reconstructed from the
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LSS sub-sampling (Fig. 6). This design resulted in a spatially uneven collection of the
sub-samples that prevent the recovery of the geographical patterns of the population.
Similar results were observed in the field (Puerta et al., 2018), where differences between
the sub-sampling strategies were reduced when considering survey data from

multiple years.

In the particular case of the EBS Pacific cod monitoring program, the LSS is used in the
surveys, which start in the SE inner-middle shelf, then move toward the NW region of the
EBS until the target sub-sample size (i.e., three fish per sex and length) is reached
(Conner & Lauth, 2017). Thus, the LSS sub-sample (stage 3) is collected predominantly the
SE area. In contrast, the NW area is less represented in the sub-sample size, despite
the attempt to evenly spread sampling sites (stage 1) between the two regions. Considering
three sampling sites located from SE to NW and pre-selected for age data sub-sampling,
the simulation showed that the RS collected four individuals in each site, while LSS
collected 28, one and zero in these same sites. In addition, meaningful improvements
were detected in favor of the random design when analyzing individual scenarios,
that is, corresponding to an isolated survey of a particular population. In this situation, the
random sub-sampling strategy provided not only an accurate representation of the
average spatial patterns of the studied trait, but also achieved higher precision in the
population estimates. These conditions were particularly acute during scenarios
characterized by cold years and low age diversity. We demonstrated that the accuracy in
the estimates derived from the RS are not related with the larger sample size obtained with
this design, but with its inherent characteristics, such as the even spatial coverage.
Achieving precise population estimates across all conditions is particularly important for
the management of natural populations, as occurred for instance in fisheries,
where the assessment and thus, management decisions, are conducted on a yearly basis.
The random design is a more practical and time-saving option to implement in the field
studies and provides wider and more even coverage of data to be used as input for

Puerta et al. (2019), PeerdJ, DOI 10.7717/peerj.6471 14/20


http://dx.doi.org/10.7717/peerj.6471/fig-7
http://dx.doi.org/10.7717/peerj.6471
https://peerj.com/

Peer/

Random
Length

Length-stratified

Length

500
!

400
I

300
1

200
L

100
L

500
L

400
L

300
I

200
L

100
!

A) Mean size at age c) Modal size at age
Population -
Reading errors b . \ i :
: - i '
Autocorrelation ‘.", [ :: '
n :", 33 E 3 ! n e . °© . '
; Pl h i :
' i & e ! .
' L Ve ' Ve
' i o Ve ' v
' v o e ' e
A I " A i
3 FifT)E: . i i
b  ° '] 2 v
M) .o ¢ o) ¢ o ,e @
Pl [} ’
. [ [}
> :I“ i :
=) o o ve,
H H
AGE 1 AGE 2 AGE 3 AGE 1 AGE 2 AGE 3
B) D)
\ N .
" ‘e “
n " ¥ EXH I . n i o Tliel
; sl s 4 ; ] E
H [ ' H ' v
H " ) v : . e
¥ [ o N L a0 e
o i ok o H i
SOTIHERT g x : i
- 'z
= (=) _' o leltes :
“' ‘e I'." e
AGE 1 AGE 2 AGE 3 AGE 1 AGE 2 AGE 3
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geostatistical mapping and analysis. That might be particularly relevant advantage for

marine studies, where pre-survey information is very challenging to achieve. In terrestrial

research, technology tools such as remote sensing provide pre-survey information on

habitats, population patchiness or other characteristics that permit reliable stratification of

the study area and the population to improve survey precision (McGarvey, Burch ¢

Matthews, 2016), while only surface layer information can be obtained in marine systems,

thus challenging an efficient and biologically meaningful stratification.

Sensitivity analysis allowed us to disentangle error sources and their contributions that

should not be confounded with the intrinsic differences in the design of the sub-sampling

strategies. As expected, part of the predictive error arose from the technical procedure

used to extract information on the sub-sample trait (i.e., the otolith reading process in the

study case). However, a much larger contribution to the error estimates derived from

the spatial autocorrelation in the virtual population. Spatial autocorrelation is rarely

considered in the analysis of individual traits in natural population studies (Goslee, 2006;
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McGarvey, Burch & Matthews, 2016). However, we demonstrated the important
contribution of spatial autocorrelation in the misclassification of individual ages due to an
amplification of the error in a particular group. In our study case, the abundance of
Pacific cod age 2 group was underestimated in all scenarios (except in the simulation
with no errors), despite the fact that the reading bias and reading error are among

the lowest for this age-group. The quadratic size at age function (Eq. (1)) used to create the
virtual population trait structure, makes the age 2 group the most sensitive to errors.
Therefore, when autocorrelation errors are added, the effect is widely amplified in this
age group resulting in large underestimation of this age group by both of the
sub-sampling designs.

CONCLUSIONS

We have developed a modeling framework that will be a useful tool for monitoring and
assessment of natural populations since the simulations and the sampling strategy
evaluation can potentially address multiple methodological issues in a simple, fast and
low-cost way under a completely controlled environment. Sampling designs are of
paramount importance in scientific surveys and an inappropriate selection of the sampling
and sub-sampling methods might lead to biased and inaccurate results that do not support
reliable management advice (Anderson, 2001; Legg ¢ Nagy, 2006). Beyond our study
case in size at age estimates in fisheries, there are potentially more applications in other
fields, environments and ecological estimates that depend on spatial patterns of
populations such as maturity in terrestrial animals, CO, fluxes in forest, prey consumed
by predators.
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