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Abstract

Several crops have recently been identified as potential dedicated bioenergy feedstocks for the production

of power, fuels, and bioproducts. Despite being identified as early as the 1980s, no systematic work has

been undertaken to characterize the spatial distribution of their long-term production potentials in the Uni-
ted states. Such information is a starting point for planners and economic modelers, and there is a need

for this spatial information to be developed in a consistent manner for a variety of crops, so that their pro-

duction potentials can be intercompared to support crop selection decisions. As part of the Sun Grant

Regional Feedstock Partnership (RFP), an approach to mapping these potential biomass resources was

developed to take advantage of the informational synergy realized when bringing together coordinated field

trials, close interaction with expert agronomists, and spatial modeling into a single, collaborative effort. A

modeling and mapping system called PRISM-ELM was designed to answer a basic question: How do cli-

mate and soil characteristics affect the spatial distribution and long-term production patterns of a given
crop? This empirical/mechanistic/biogeographical hybrid model employs a limiting factor approach, where

productivity is determined by the most limiting of the factors addressed in submodels that simulate water

balance, winter low-temperature response, summer high-temperature response, and soil pH, salinity, and

drainage. Yield maps are developed through linear regressions relating soil and climate attributes to

reported yield data. The model was parameterized and validated using grain yield data for winter wheat

and maize, which served as benchmarks for parameterizing the model for upland and lowland switchgrass,

CRP grasses, Miscanthus, biomass sorghum, energycane, willow, and poplar. The resulting maps served as

potential production inputs to analyses comparing the viability of biomass crops under various economic
scenarios. The modeling and parameterization framework can be expanded to include other biomass crops.
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Introduction

In 2005, the US Department of Energy (USDOE)

released its Billion Ton Study (updated in 2011 and

2016), which envisioned an expansion of domestic

bioenergy production to one billion tons per year as a

way to increase and diversify the nation’s energy

resources (USDOE, 2005, 2011, 2016). Presently, the US

bioeconomy consumes roughly one million tons per day

for the generation of power, fuels, and chemicals from

agricultural, forestry, and waste resources (USDOE,

2016). To achieve a domestic billion-ton bioeconomy, an

additional 635 million tons per year of biomass must be

produced on an annual basis from US land resources.

The near-term potential can be generated from agricul-

tural and forestry residues and waste resources equal to

approximately 345 million tons per year. Traditional

agricultural crops such as wheat and maize provide

residues that can serve as sources of biomass; these

crops have long production histories and rich knowl-

edge bases with regard to physiology, production, and

spatial distribution. To fill the supply deficit, dedicated

bioenergy crops have become a subject of national

focus.
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Several crops have been identified as potential dedi-

cated bioenergy crops for the production of power,

fuels, and bioproducts. Despite many crops being iden-

tified as potential feedstocks as early as the 1980s, they

still have little commercial production history in the

United States, and hence, relatively little is known

about the spatial distribution of their long-term pro-

duction potential across the United States (Evans et al.,

2010). Such information is a starting point for planners

and economic modelers tasked with assessing land

requirements, management options, harvest and trans-

portation methods, processing needs, and infrastruc-

ture for biomass crops. Equally important is the need

for this spatial information to be developed in a consis-

tent manner for a variety of crops, so that their pro-

duction potential can be intercompared to support

crop selection decisions (Miguez et al., 2012; Castillo

et al., 2015).

Efforts to map the spatial distribution of biomass

resources in the United States have focused on one or

two biomass crops at a time, with several potential bio-

mass crops receiving little attention. Two approaches to

mapping biomass resources are empirical modeling and

mechanistic plant growth modeling. Commonly used

empirical approaches have involved statistical extrapo-

lation of plot or field-level yield data to larger regions

using climatic envelope methods (e.g., Jager et al., 2010;

Wullschleger et al., 2010; Tulbure et al., 2012). The main

drawback of empirical approaches has been a lack of

suitable yield data (Miguez et al., 2012), and a limited

ability to extrapolate beyond the range of the explana-

tory data (Jager et al., 2010). Relationships between yield

data and environmental conditions can be masked and

even misled by factors other than environment, such as

fertilization, cutting rotation, supplemental irrigation,

and other management practices and economic consid-

erations, making it difficult to quantify what the actual

environmental tolerances are (Jager et al., 2010). Infor-

mation needed to control for these factors is not always

available in the literature, and access to researchers who

conducted the trials is often limited. In addition, yield

histories can be as short as a single year and are thus

affected by year-to-year variability in weather condi-

tions, making it difficult to estimate long-term yield

potentials (Lobell et al., 2009). Finally, yield data are

typically collected from demonstration plots in areas

where the crop is likely to succeed, and thus provide lit-

tle guidance as to how environmental factors limit pro-

duction near the edges of a crop’s range or across steep

climatic gradients (Miguez et al., 2012). Despite these

shortcomings, empirical approaches provide important

assessment tools for planning activities and supply

guidance for more mechanistic modeling approaches

(Jager et al., 2010).

Mechanistic plant growth models attempt to simulate

the important physiological processes that affect

growth, development, and yield. Examples of simula-

tion models that have been used to model biomass

crops include ALMANAC (Kiniry et al., 2008), EPIC

(Williams et al., 1984; Brown et al., 2000; Thomson et al.,

2009; Balkovic et al., 2013), MISCANFOR (Hastings

et al., 2009; Miguez et al., 2012), and STICS (Brisson

et al., 2008; Strullu et al., 2015). These models have the

potential to provide detailed information on crop per-

formance and yield. However, they require significant

inputs of environmental data and detailed knowledge

of crop physiology (e.g., Brown et al., 2000). In addition,

calibration and validation of models require detailed

plot-level data, which is often scarce or poorly dis-

tributed for many new crops (Nair et al., 2012). Parame-

terization of some models to specific crop varieties and

locations can make it difficult to generalize results over

large areas (e.g., Miguez et al., 2012). As more informa-

tion on bioenergy crops becomes available, mechanistic

models will become increasingly useful in planning for

a biobased economy.

The resource mapping approach described here stems

from the need for many different biomass crops to be

compared within the same modeling framework to

avoid confounding model differences with biological

differences (Miguez et al., 2012). It stems from the recog-

nition that many biomass crops have insufficient yield

data from which to spatially extrapolate and estimate

long-term yields. In addition, little quantitative informa-

tion is available on the tolerances of these crops to envi-

ronmental conditions. Our approach, undertaken as

part of the Sun Grant RFP, was to take advantage of the

informational synergy realized when bringing together

field trials, close interaction with expert agronomists,

and spatial modeling into a single, collaborative effort.

The first component consisted of a coordinated set of

field trials of several of the most promising herbaceous

and woody biomass options conducted over a 3- to 7-

year period (Lee et al., 2017; Volk et al., 2017), plus other

relevant trials. The spatial representativeness of the

coordinated field trials was optimized whenever possi-

ble through adherence to consistent, best-practice man-

agement protocols, thus controlling for the effects of

management on the responses of crops to basic environ-

mental limitations created by climate and soils. The sec-

ond component was face-to-face interactions between

the modeling group and the agronomists conducting

the RFP and other field trials. During these meetings,

yield data from the field trials were evaluated for their

quality and representativeness, published literature was

examined, and qualitative information on a crop’s spa-

tial distribution based on personal experience was pro-

vided.
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The third component was a biogeographical model-

ing and mapping system called Parameter-elevation

Regressions on Independent Slopes Model Environ-

mental Limitation Model (PRISM-ELM). An early ver-

sion of PRISM-ELM was first developed to estimate

the potential suitability zones of US-grown perennial

grass exports to China (Hannaway et al., 2005). PRISM

is the name of the system used to generate high-qual-

ity, spatial climate datasets that drive the model (Daly

et al., 1994, 2008). PRISM-ELM was designed to answer

a basic question: How do climate and soil characteris-

tics affect the spatial suitability and long-term produc-

tion patterns of a given crop? It draws from both

empirical and mechanistic approaches and therefore

falls into a hybrid category that is becoming more

powerful as high-quality climate, remote sensing, land

use, and soils data become available (Song et al., 2015;

Wightman et al., 2015; Richter et al., 2016). It employs a

simple water balance model to simulate the correspon-

dence, or lack thereof, between water availability

(based on precipitation and soil moisture) and growing

season timing (based on a temperature response

curve). The model uses simplified metrics to represent

complex processes. January mean minimum tempera-

ture and July mean maximum temperature are used to

identify areas that have cold or warm-season tempera-

ture extremes that may limit meaningful crop produc-

tion. Soil pH, salinity, and drainage response curves

also serve as metrics for unsuitable soil conditions. The

focus is on a general approach to modeling climatic

and soil constraints on biomass production for any

crop, rather than a detailed accounting of the particular

phenology or other morpho-physiological features of a

given species or genotype. Suitability maps estimated

by PRISM-ELM are transformed into yield potential

maps through statistical regressions between the level

of environmental suitability and biomass yield data

from the field trials. These maps serve as potential pro-

duction inputs to analyses that compare the viability of

biomass crops under various economic scenarios

(USDOE, 2016).

The objective of this article was to present (1) a

description of our biomass resource mapping process,

including an overview of the work flow and interac-

tion with RFP agronomists; (2) PRISM-ELM model

underpinnings, structure and function; (3) model vali-

dation and parameterization; (4) environmental suit-

ability mapping; (5) and transformation of

environmental suitability to biomass yield potential.

Dedicated herbaceous biomass crops included in the

RFP evaluation, and in this article, were upland and

lowland switchgrass (Panicum virgatum L.), Giant Mis-

canthus (Miscanthus 9 giganteus), energycane (Saccha-

rum officinarum L. 9 Saccharum spontaneam L.), biomass

sorghum (Sorghum bicolor), and mixed Conservation

Reserve Program (CRP) grasses (Lee et al., 2017).

Woody biomass crops included willow (Salix spp.) and

poplar (Populus spp.) (Volk et al., 2017).

Materials and methods

Data and processing

Climate data. Climate inputs for PRISM-ELM were grids of

daily maximum, mean, and minimum temperature (Tmax, T,

and Tmin, respectively) and precipitation (P) from the PRISM

AN81d dataset (PRISM Climate Group, 2015). PRISM climate

datasets have been peer-reviewed and used in many agricul-

tural and natural resource applications (Daly et al., 1994,

2008). The daily data were summarized at a semi-monthly

time step for use in PRISM-ELM; temperature values were

averaged and precipitation values summed twice each

month for the period 1981–2010, resulting in 720 grids. Each

semi-monthly grid was then averaged across each of the

thirty grids representing that semi-monthly period (e.g., the

first half of January) to obtain 30-year averages. The result

was 24 semi-monthly averages representing a 1981–2010 cli-

matological ‘year’. Spatial resolution of the gridded data

was 30 arc-seconds, or approximately 800 m, across the con-

terminous United States.

PRISM-ELM required ET0 and bare soil evaporation as

inputs. Given that only temperature and precipitation were

available from the PRISM climate dataset at the time of access,

daily ET0 was estimated using methods outlined by Harg-

reaves & Samani (1985), which requires Tmax, T, Tmin, and esti-

mates of extraterrestrial radiation based on solar geometry.

Daily ET0 values were summed to semi-monthly totals. Soil

evaporation (Es) over each semi-monthly time step was esti-

mated as a proportion of ET0, which varies with rainfall fre-

quency (Allen et al., 1998). Once calculated on a semi-monthly

basis for each year, ET0 and Es were averaged over the 1981–

2010 climatological period in the same manner as temperature

and precipitation.

Soils data. Soil characteristics greatly influence the suitability

of plants for a particular location and their potential produc-

tion. Important factors include water holding capacity, pH,

salinity, and drainage. Soils data were obtained from the USDA

Natural Resources Conservation Service (NRCS) in the form of

the U.S. General Soil Map Coverage (http://www.nrcs.usda.

gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_

053629). The data were available as shapefile polygons and

related data tables. Using standard GIS tools to view and query

the data, the NRCS ‘representative’ data fields were selected that

contained the variables for available water holding capacity

(AWC), soil pH, salinity, and drainage class for each polygon.

The linked polygon data for each variable were cast to an 800-m

grid that was coincident with the 800-m PRISM climate data. The

smallest General Soil Map Coverage polygon is 1012 ha in size,

which is an area equal to about 4 9 4 800-m grid cells. NRCS

SSURGO data, while at a much higher spatial resolution, were

© 2017 The Authors. GCB Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12496
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not used in this study, because at the time of access, the data

were not yet complete and consistent over the entire modeling

domain.

Yield data. County-level grain yield data from winter wheat

and maize, commonly grown cool-season and warm-season

crops, respectively, were used to initially calibrate and validate

PRISM-ELM. These data are described in Supporting Informa-

tion, Data S6.

Yield data from biomass crop field trials were used in the

parameterization of PRISM-ELM and the transformation of

PRISM-ELM suitability estimates into potential annual bio-

mass production. The yield trials used are summarized in

Table S1. Details on the RFP yield trials for herbaceous and

woody crops are provided in Lee et al. (2017) and Volk et al.

(2017), respectively. RFP yield trials were conducted in a

coordinated fashion, which provided a unique opportunity to

control for management practices across sites by selecting tri-

als that were most internally consistent. Since management

practices greatly influence yields (e.g., Wullschleger et al.,

2010), controlling for these practices allowed the modeling

work to focus on how climate and soil constraints influence

potential production patterns. Management practices were

designed to approximate those used in farm-scale production.

Trials conducted outside the RFP were also evaluated in a

similar manner, although information on management prac-

tices and other details was sometimes not as readily available

as that from the RFP trials.

Each of the RFP yield trials was evaluated in face-to-face

meetings with the agronomists that were directly responsible

for the trial. This allowed insight into the data that was not

obvious when examining yield values alone; examples

included reports of damaging single day weather events,

unusual field conditions, residual pesticides, or other man-

agement issues. This additional information about the yield

data helped to determine if they met the inclusion criteria

for this study. These criteria were developed based on pro-

ducer needs for maps that represent long-term production

potential at field scale, assuming best management practices,

including minimal inputs of fertilizer and pesticides. It was

understood that the field trials lacked a long history and

consisted of only 3–7 years, thus reducing the strength of

the relationship to long-term average yields. To be most

useful, the field trials were selected to identify those that

represented:

• Dryland conditions (nonirrigated).

• Absence of significant damaging weather events and field

conditions.

• Yields from the best local cultivar available at the time of

the yield trials.

• Once-per-year harvest frequency.

• Estimated mean annual volume increment (MAI) at matu-

rity for woody perennials (defined as total increment

divided by age).

• Field-scale yields, as opposed to test plot-scale yields.

• Yields of fully established crops, if perennials; establish-

ment years not included.

• Best-practice fertilizer application using a combination of

pre-establishment soil test recommendations and mass bal-

ance approach to replace only what is removed by the crop.

• Best-practice pesticide application, typically minimal inputs.

Mapping process overview

The mapping process took advantage of the informational syn-

ergy realized when bringing together three components – field

trials, close interaction with expert agronomists, and spatial

modeling – into a single, collaborative effort. An overview of

the process is shown in Figure 1. PRISM-ELM was provided

with gridded climate and soils data, and a preliminary control

file with crop-specific parameters was developed. PRISM-ELM

produced an initial grid of the Environmental Suitability Index

(ESI) from 0 to 100%, where 100 represented no climate or soil

constraints on production and zero represented a full limita-

tion. For a given crop, yield data from field trials conducted by

RFP agronomists and others were examined at face-to-face

meetings with the modeling group. During this meeting, each

yield data point was evaluated for adherence to the inclusion

criteria presented previously. The initial PRISM-ELM ESI grid

was also used to provide a framework for evaluating the yield

data. The goal of each meeting was to come to an agreement

on which yield data points would be included in a national

regression function relating PRISM-ELM ESI to field trial yield.

This nationwide regression function allowed the PRISM-ELM

ESI grid to be transformed into a potential yield grid. The pro-

cess of adjusting PRISM-ELM crop parameters and comparing

the ESI map to the observed data was done iteratively during

and subsequent to the meeting until a final solution was

reached that was consistent with expert opinion, yield data,

and published literature. Attempts were made to achieve the

best agreement possible between PRISM-ELM and yield data,

but within the constraints of model parameter values that were

consistent with the type of crop being mapped (see Model

parameterization section).

Model rationale

PRISM-ELM is based on the well-understood biogeographical

tenant that long-term climate and soil conditions place limits

on average plant production across the United States. On an

annual average basis, precipitation, and hence dryland produc-

tion, becomes increasingly limited as one moves from east to

west across the Great Plains (Fig. 2a). The seasonality of precip-

itation determines the likelihood of successfully growing cool-

season crops vs. warm-season crops. Over much of the eastern

United States, average precipitation is sufficient for most crop

production during the warm season, but in the West, very little

precipitation falls during the warm season (Fig. 2b). Long-term

average annual temperature largely determines the north–

south and elevational range of crop species and varieties, and

the timing of their production cycles (Fig. S1a). In addition,

winter cold can limit the production of overwintering plants

(Fig. S1b) and summer heat can limit production during the

growing season (Fig. S1c).

© 2017 The Authors. GCB Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12496
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In addition to climatic constraints, plant production is limited

by soil characteristics, four of which are AWC, pH, salinity, and

drainage. Shallow, sandy, or rocky soils have a low AWC, which

limits their ability to store water, thus requiring greater precipi-

tation inputs to maintain a water balance suitable for plant

growth. Soil AWC is highly variable across the United States,

but is greatest in parts of the Great Plains and Midwest

(Fig. S2a). Very acid and alkaline soils decrease the solubility of

many major plant nutrients and may also release toxic amounts

of trace metals harmful to plant life. Soils are typically alkaline

in arid areas of the West, acidic in parts of the east coast, and

slightly acidic to neutral in the Midwest (Fig. S2b). Highly saline

soils reduce the osmotic potential of the soil solution and may

limit the uptake of some nutrients. High soil salinity is primarily

found along coastlines and in arid areas of the western United

States (Fig. S2c). Poorly drained soils can limit oxygen residing

in soil pore spaces, necessary for healthy root activity. In con-

trast, water may leach rapidly through well-drained sandy soils,

flushing nutrients in addition to storing little water. Soils are

typically well drained in the western United States, but much of

the eastern United States is poorly drained, especially in the

Midwest (Fig. S2d).

Model organization

PRISM-ELM is composed of series of algorithms and metrics

that evaluate the major climate and soil limiting factors to pro-

duction discussed above. The PRISM-ELM ESI is the lowest

suitability index resulting from the model response functions

as follows:

ESI ¼ minðSw; Sc;Sh; Sp; Ss;SdÞ;

where Sw, Sc, Sh, Sp, Ss, and Sd are the suitability indexes from

the water balance model, and response functions to winter low

temperature, summer high temperature, soil pH, soil salinity,

and soil drainage, respectively.

The water balance model contains generalized process-based

algorithms that account for soil water availability, use and defi-

cit, and works in concert with a temperature response curve.

The other functions consist of response curves that serve as

metrics for climate and soil processes that could limit plant

production. These include the potential for low-temperature

injury of overwintering crops, damage or growth reduction

due to heat during the growing season, and plant responses to

soil pH, salinity, and drainage. Each of these functions is sum-

marized briefly below; model equations and further details are

provided in Supporting Information, Data S3 and S4.

Water balance model. The PRISM-ELM water balance model

is an Food and Agriculture Organization (FAO)-style function

(Allen et al., 1998), operating on a semi-monthly time step,

using 30-year average climate data described previously. Grid-

ded inputs to the model are soil AWC, and semi-monthly aver-

age T, P, ET0, and Es. Crop-specific scalar inputs provided by

the user are parameters defining the optimum temperature

growth curve; average crop rooting depth (Droot); the crop coef-

ficient (Kc), which encompasses canopy characteristics (e.g.,

height, coverage), stomatal control, and other factors that affect

Fig. 1 Schematic of the Parameter-elevation Regressions on Independent Slopes Model Environmental Limitation Model (PRISM-

ELM) workflow for mapping bioenergy resources. Inputs to PRISM-ELM were gridded climate and soils data, and a preliminary

parameter file for the crop being modeled. An initial Environmental Suitability Index (ESI) grid was produced, and during a face-to-

face meeting with agronomists, the ESI grid was evaluated against observed yield data to help understand data outliers and adjust

model parameters. Once an agreement was reached on model parameters and yield data to be used, a final regression function was

developed and applied to the ESI grid to produce a potential biomass yield grid.

© 2017 The Authors. GCB Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12496
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crop evapotranspiration; and the stress response factor (p),

which is the fraction of soil water that a crop can extract from

the root zone without suffering water stress. Gridded internal

variables calculated by the model are the temperature response

(Tr), actual evapotranspiration (ETa), water stress coefficient

(Ks), total available water in the root zone (TAW), readily avail-

able water in the root zone, and root zone water depletion (Dr).

In concert with the water balance calculations, the temperature

response of the crop is evaluated at each semi-monthly time

step. User-defined parameters describe the mean daily temper-

ature at which production is optimal, and the maximum and

minimum temperatures at which production declines to zero.

At each time step t, a water balance suitability index, St, is cal-

culated as the product of the water stress coefficient and the

temperature response (S = KsTr). The semi-monthly values of

St are averaged to create monthly values (Sm). A Potential

Suitability Window, the period within which a crop is expected

to be in its most active production phase in an agricultural set-

ting, is set by the user. This window is necessary because

PRISM-ELM, being an environmental suitability model, does

not simulate the timing of the life cycle stages of a crop. Within

that window, the final water balance suitability Sw is calculated

by the model as the average suitability during the Maximum

Suitability Window, which is typically the three consecutive

months for which the monthly suitability is highest (the num-

ber of consecutive months can be changed by the user). Water

balance model equations are provided in Supporting Informa-

tion, Data S3, and examples of its operation in two contrasting

parts of the country are given in Supporting Information,

Data S4.

Heat and cold temperature responses. The winter low-tem-

perature response function is a metric for production limita-

tions in overwintering crops that may occur because of injury

or death caused by excessively low temperatures (Levitt, 1980;

Beck et al., 2004). Conversely, in some species, low winter tem-

peratures are required for induction of the plant’s flowering

response (vernalization) through accumulation of chilling

hours (Dennis, 1984). While low temperatures may be needed

to maximize flowering and grain production in crops such as

wheat, diversion of energy away from vegetative production

and into flowering may reduce biomass yields (Schwartz et al.,

2010). The summer high-temperature response function is a

metric for production limitations that may occur because of

stress caused by high temperatures during the growing season.

Excessively high temperatures can cause direct damage to

crops, and water stress in dryland crops, both of which can

lead to reductions in performance. Crop-specific parameters for

heat and cold injury are discussed in the Model parameteriza-

tion section.

Soil pH response. The soil pH response function accounts for

production limitations caused by excessively acidic (low pH)

or alkaline (high pH) soils. Most plants prosper in the pH

range from 5.6 to 7.3, classified as moderately acid to neutral

(NRCS, 2003). As soils become more acidic the solubility of

most major plant nutrients as well as some micronutrients,

such as molybdenum, decrease. Nutrients must be soluble in

water to be adsorbed by plant roots. Very acid soils may also

release toxic amounts of aluminum, iron, and manganese.

Alkaline soils can also decrease plant nutrient solubility, princi-

pally phosphorus, boron, copper, iron, manganese, and zinc.

Often the largest problem with alkaline soils is their high salt

content. Soil pH can be modified by addition of liming agents;

this is discussed in greater detail in the Model parameterization

section.

Soil salinity response. Highly saline soils increase the osmotic

potential of the soil solution, requiring plants to expend more

energy to absorb water from the soil. High soil salinity can also

limit the uptake of certain nutrients, such as nitrate, man-

ganese, and calcium, leading to nutrient imbalances in the

plant (Bano & Fatima, 2009). Very slightly saline soils

(2–4 mmhos cm�1) can restrict the performance of sensitive

plants. Slightly saline soils (4–8 mmhos cm�1) restrict the

performance of most plants except the most tolerant.

Moderately saline soils (8–16 mmhos cm�1) depress the perfor-

mance of even salt tolerant plants. Strongly saline soils

(>16 mmhos cm�1) will not produce acceptable results from

Fig. 2 Conterminous US 1981–2010 (a) mean annual precipita-

tion and (b) mean April–September precipitation. Data source:

PRISM Climate Group (http://prism.oregonstate/edu).

© 2017 The Authors. GCB Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12496
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any agronomic plant (Munns, 2002; NRCS, 2003). Crop-specific

parameters for soil salinity response are discussed in the Model

parameterization section.

Soil drainage response. Soil drainage deals with water supply

issues that affect crop production and management. Oxygen

residing in soil pore spaces, necessary for healthy root activity, is

limited in poorly drained soils. In addition, poorly drained soils

experience limited leaching and flushing of salts left from soil

evaporation, which may result in increased salinity. In contrast,

water may leach too rapidly through excessively drained soils,

leading to premature drought stress and excessive flushing of

soil nutrients (NRCS, 1993; Madramootoo et al., 1997; Scherer

et al., 2015). Soil drainage response is not a continuous function,

but instead is handled categorically, in keeping with NRCS soil

drainage categories. Each of seven drainage categories, ranging

from very poorly drained to excessively well drained, is assigned

a suitability value. Crop-specific parameters for soil drainage are

discussed in theModel parameterization section.

Model parameterization

County-level grain yield data from winter wheat and maize,

commonly grown cool-season and warm-season crops, respec-

tively, were used to initially calibrate and validate PRISM-ELM

(Fig. S9). This exercise served two purposes: (1) assess the abil-

ity of PRISM-ELM to provide reasonable environmental suit-

ability estimates for two well-known crops that have very

different biophysical characteristics; and (2) provide important

‘anchor’ model parameter settings to aid in ranking the settings

for biomass crops, which have poorly known environmental

tolerances. Data processing and validation details are given in

Supporting Information, Data S6.

PRISM-ELM input parameters are defined in Table S2 and

crop-specific values given in Tables S3 and S4. The process of

setting parameters drew on several sources of information in

an iterative fashion: (1) ranking of the species for optimum

temperature (Topt), using wheat and maize values as guides;

(2) the degree of adherence of resulting PRISM-ELM ESI maps

to known spatial patterns of biomass production based on

expert review and published literature; (3) and relationships

with biomass yield trial data. Taken together, these sources of

information allowed the model to be parameterized with

greater confidence than using any one source alone. No bio-

mass crop had sufficient data for a purely statistical validation

exercise to be performed; therefore, model results were evalu-

ated based on their level of consistency with accumulated

knowledge for each crop.

Since winter wheat is a cool-season crop and maize is a

warm-season crop, their relationships between temperature

and growth differ, especially at lower temperatures. The ranges

of air temperature for optimum growth has been reported to be

15–23 °C for wheat (e.g., Steduto et al., 2012), and 25–28 °C for

maize (e.g., Schlenker & Roberts, 2009). The PRISM-ELM

response curves providing the best fit to the reported spatial

patterns of production exhibited relatively low optimum tem-

perature values (OptT = 18 °C for wheat and 21.5 °C for

maize) (Table S3) (Fig. 3a, b). PRISM-ELM used 1981–2010

mean semi-monthly temperature to drive the response curves;

the photosynthetically active (daytime) temperature would be

several degrees higher than this mean. Research has also sug-

gested that diurnal mean temperature may be a better predictor

of plant response than daytime highs alone (Peet & Willits,

1998). The difference between the two temperature response

curves is primarily at lower temperatures, where maize growth

is severely limited at temperatures below 10 °C (Fig. 3b).

Temperature response curves for biomass crops were ranked

in comparison with those of wheat and maize, and with each

other. The ranking of the species’ temperature optimum, from

cool to warm, was: winter wheat, CRP grasses, Miscanthus,

upland switchgrass, maize, lowland switchgrass, biomass sor-

ghum, and energycane. CRP grasses, which are a mixture of C3

and C4 species, had the next coolest temperature optimum

after wheat. A relatively cool optimum temperature for

Fig. 3 Parameter-elevation Regressions on Independent

Slopes Model Environmental Limitation Model (PRISM-ELM)

growing season temperature response curves for (a, b) herba-

ceous and (c) woody biomass crops. Parameter values are

defined in Table S2 and given in Tables S3 and S4. Response

curve values exceeding 1.0 are set to 1.0.
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Miscanthus (a C4) consistently gave the best fit to the available

yield data, and best matched the expectations of the agrono-

mists conducting the field trials (Fig. 3a). Upland switchgrass

had a best-fit temperature response curve that is similar to that

of Miscanthus. Temperature response curves for lowland

switchgrass, energycane, and biomass sorghum were relatively

warm, which also provided reasonable fits to the yield data

and matched the expectations of the RFP agronomists (Fig. 3b).

Temperature response curves for willow and poplar had simi-

lar temperature optimums, but poplar was adapted to a wider

range of temperature conditions, based on the larger number of

available species and varieties tested (Volk et al., 2017).

The Potential Suitability Window, the period within which a

crop is expected to be in its most active production phase

within potential growing regions of the United States, was set

to March–July for winter wheat, a cool-season crop, and April–

September for maize, a warm-season crop. This window was

set to March–September for CRP, which contains a mixture of

cool- and warm-season grasses. Miscanthus, upland and low-

land switchgrass, and biomass sorghum, all warm-season

crops, were given the same April–September window as maize.

Poplar and willow were set to a March–September window.

Energycane, which is confined to the extreme southeastern

United States, was given a somewhat wider window (March–

November) to match that region’s longer growing season. The

floating averaging period for peak biomass production was set

to 3 months for all crops, which represents the approximate

period of time when biomass production is typically most

active during the growing season.

Kc, the crop coefficient, encompasses canopy characteristics

(e.g., height, coverage), stomatal control, and other factors that

affect crop evapotranspiration. Kc varies during the life cycle of a

crop and water stress situation, ranging from values <0.5 early

and late in the life cycle, to above 1.0 during mid-season (Allen

et al., 1998). Here we used a single Kc value for the entire grow-

ing season, which in most cases is a value bracketed by early,

mid, and late-season values. Mid-season Kc values have been

reported to be 1.0–1.2 for both wheat and maize (e.g., Allen et al.,

1998; Steduto & Hsiao, 1998). Single Kc values providing the best

fit to the RMA yield data were 1.0 for winter wheat and 0.9 for

maize. The few water consumption studies of biomass crops

reported large variations in Kc, depending on fertilization rate

and water stress. Triana et al. (2015) reported Miscanthus Kc val-

ues ranging from 0.6 early in the season to 1.6 mid-season. Kc

values reported by Guidi et al. (2008) for unfertilized willow and

poplar ranged from 0.6 to 1.2 during the growing season. Faced

with a lack of Kc estimates for biomass sorghum and switchgrass

in the literature, Yimam et al. (2015) approximated them using

FAO Kc values (Allen et al., 1998) for sweet sorghum (1.05 mid-

season, 1.2 late season) and sudan grass (0.5 early season, 1.15

mid-season, 1.1 late season), respectively, as surrogates. For bio-

mass crops, PRISM-ELM Kc was set to single values between 1.0

and 1.3, with refinements made which gave the best fit to the

yield data. The greatest Kc was 1.3 for energycane, which is

slightly lower than mid-season values reported for sugarcane

(Allen et al., 1998; Inman-Bamber & McGlinchey, 2003).

Average rooting depth (Droot), in a programmatic sense,

specifies the fraction of the soil’s available water capacity

(AWC) accessible by the crop (see Supporting Information, Eq.

1). Since the root density of most plants gradually decreases

with depth, the value of Droot is thought of as the depth to

which approximately half of the active root biomass extends.

This depth varies with crop type, crop development, soil struc-

ture and moisture conditions. Most water extraction typically

occurs in the upper meter for many crops, declining exponen-

tially with increasing soil depth to maximum rooting depths of

up to several meters (Nippert et al., 2011). In PRISM-ELM, Droot

was set to a single value per crop that ranges from 0.6 to 1.3 m,

with refinements made which gave the best fit to the yield

data. The stress response factor (p), which is the fraction of soil

water that a crop can extract from the root zone without suffer-

ing water stress, was set to 0.5 for all crops, which is a typical

value for most agricultural crops (Allen et al., 1998).

A winter low-temperature response curve was not applicable

to maize, which is an annual crop. For winter wheat, the curve

defined a two-tailed response: cold tolerance on one tail and

vernalization (chilling) requirements needed for grain produc-

tion on the other. There is a high degree of correlation between

winter survival and vernalization requirements. Those varieties

that have higher vernalization requirements also tolerate lower

winter temperatures with the lowest thresholds being �15 to

�23 °C, depending on exposure duration (Gusta et al., 1982;

Fowler et al., 1996). In the northern United States, the presence

of an insulating snowpack can protect wheat plants from dam-

age at ambient temperatures well below the normal range that

causes injury, but our modeling system does not have an expli-

cit snow cover component. Because there is typically some

snow cover present, the PRISM-ELM response curve does not

show significant relative yield reduction until the mean Jan-

uary minimum temperature reaches �15 to �20 °C (Fig. S5a).

Wheat varieties that have relatively low vernalization require-

ments are now available, reducing the need to lower the rela-

tive yield dramatically until the 1981–2010 mean January

minimum temperature reaches 10 °C or greater (Fig. S5a).

Areas having such warm winter temperatures are confined to

the extreme southern tier of states.

For biomass crops, Miscanthus was the only biomass species

evaluated that required a two-tailed winter temperature

response curve. It has been reported that the dependence of

Miscanthus on winter temperature and photoperiod for life

stage timing can cause early flowering in southern locations,

leading to reduced biomass yields (T. Voigt, personal commu-

nication) (Fig. S5a). Upland switchgrass, lowland switchgrass,

and energycane were considered to have decreasing levels of

cold tolerance, respectively (Fig. S5b). The northern distribu-

tion of energycane is confined to the southeastern United States

mainly by its susceptibility to freezing injury in winter. Low-

land switchgrass is more tolerant of winter cold, but yields are

significantly reduced in the northern half of the United States

due to cold injury (Casler et al., 2004). Upland switchgrass tol-

erates lower winter temperatures than lowland switchgrass

and thus performs better in northern latitudes (Casler & Vogel,

2014). The willow cultivars in this study, having been selected

from breeding programs in southern Ontario and central New

York, are also relatively tolerant to winter cold (Volk et al.,

2017). The several hybrid genotypes of poplar tested in this

© 2017 The Authors. GCB Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12496
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study span a wide range of environments (Volk et al., 2017),

some having a high tolerance to low winter temperatures.

While maize has a higher optimum growth temperature than

wheat, both suffer from heat-related yield reductions at tem-

peratures which rise above their optimum temperature devel-

opment thresholds (Wahid et al., 2007) (Fig. S6a, b). Both

transitory and constantly high temperatures can lead to heat

stress and loss of biomass or yield, and heat stress will affect

plant growth throughout its ontology (Abrol & Ingram, 1996;

Wahid et al., 2007; Hatfield et al., 2008; Luo, 2011). Although

much of the wheat crop matures or is harvested before the hot-

test part of the summer arrives, July mean maximum tempera-

ture is still used as a metric for areas that may be at risk of

incurring heat damage.

CRP grasses, being a mixture of cool- and warm-season vari-

eties, and Miscanthus, which is best adapted to the Midwest,

were assigned relatively similar heat tolerances to wheat. Since

the core production area for upland switchgrass extends some-

what further south than that of maize, upland switchgrass was

expected to be slightly more heat tolerant than maize. Summer

temperatures experienced in the conterminous United States

were not expected to be limiting for lowland switchgrass, ener-

gycane, and biomass sorghum. Willow was assigned a rela-

tively low heat tolerance, as the cultivars in this study were not

selected for lower latitudes in the southern United States (Volk

et al., 2017). The broad geographic range of hybrid poplar that

results from the mix of a variety of genotypes (Volk et al., 2017)

suggests that poplar is relatively tolerant to a wide range of

summer temperature conditions.

Response curves to soil pH, salinity, and drainage are shown

in Figure S7; parameter values are given in Tables S2 and S3.

The practice of liming soils to adjust pH has been well estab-

lished, and within the last 50 years the intensification of agri-

culture has driven this practice to the point that most

agricultural lands that tend toward natural acidity are being

amended to adjust the pH for specific crops (NRCS, 1999; Bee-

gle & Lingenfelter, 2001). The NRCS soil pH data used in this

study are representative values of pH for large areas of soil

(soil types) in an un-amended (natural/native) state. Given the

practice of annual lime applications, and based on the distribu-

tion of winter wheat yields, we found it necessary to broaden

the pH constraints in the model for all crops (Fig. S7a).

Wheat and maize are classified as moderately tolerant to soil

salinity (Ayers & Westcot, 1985; Maas, 1993). Relative crop

yield is only slightly affected at salinity levels below

5 mmhos cm�1, is reduced by about 50% at 10 mmhos cm�1,

and falls to zero at about 16 mmhos cm�1 (Maas, 1993; Steduto

et al., 2012). Tolerances of biomass crops to soil salinity have

begun to be studied only recently. Stavridou et al. (2017) found

a 50% reduction in biomass yield of Miscanthus 9 giganteus at

10.65 mmhos cm�1, which can be classified as moderate. How-

ever, salinity tolerance among Miscanthus genotypes has been

found to vary widely (Chen et al., 2017). Wide variations

among genotypes have also been reported for grain sorghum

(Hassanein & Azab, 1993), switchgrass (Hu et al., 2015), and

energycane (Fageria et al. (2013). Given that the PRISM-ELM

biomass resource maps are intended to reflect a combination of

what often are many ‘best local varieties’, the PRISM-ELM

salinity tolerance curves for biomass crops were set to moder-

ate values (Fig. S7b).

It has long been a practice to drain water from low lying

lands for agricultural purposes. In North America, this process

accelerated with the passage of the swamplands acts of 1849,

1850, and 1860. This practice of draining lands has evolved

greatly from the 1800s with added technology, plastic pipe,

and GIS planning systems contributing to modernize the prac-

tice today (Pavelis, 1987). The USDA provides estimates of

drained cropland by county with ranges from 0 to 100%, with

large portions of Ohio, Indiana, Illinois, and Iowa having >25%

of the land drained (Jaynes & James, 2007). The level of drai-

nage has affected the native soil productivity and increased

production, necessitating assigning relatively high soil drainage

suitability values to even poorly drained NRCS soil categories

(Fig. S7c). A comparison of maps of NRCS soil drainage cate-

gory and RMA county-level average yields of winter wheat in

Ohio illustrates the benefits of soil drainage in the Midwest,

where yields are much higher than would be predicted assum-

ing un-amended soil drainage conditions (Fig. S8).

Transforming ESI to yield potential

PRISM-ELM grids of ESI values for each biomass species were

transformed into yield potential grids through linear least-

squares regression functions between average reported yield

and ESI. Each function was forced through a zero y-intercept to

avoid cases where a positive yield is predicted when the ESI

value is zero, but in all cases, the unforced regression was very

close to a zero intercept.

Results

Environmental suitability mapping for biomass crops

ESI maps for each biomass crop are shown in Fig-

ure S12. An advantage to expressing suitability as a

dimensionless number is that crop-to-crop variations in

biomass yield are controlled for, leaving environmental

limitations as the dominant predictor of the spatial pat-

terns. Maps of the limiting factor, that is, the lowest

suitability index of the PRISM-ELM submodels, are

shown in Figure 4. All ESI maps show a more or less

consistent dividing line in the middle of the country,

representing the transition from wetter climates to the

east and drier climates to the west. In general, the cooler

the temperature optimum of a crop, the more likely it is

to have an ESI maximum on the West Coast, especially

in the Pacific Northwest, where precipitation during the

cooler spring months is sufficient to support crop pro-

duction before summer drought sets in. The importance

of a favorable water balance is illustrated in the limiting

factor maps, where the water balance suitability index

is the greatest limitation over large areas.

Summer heat limits the southern distribution of crops

adapted to cooler temperatures, such as CRP,
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Fig. 4 Parameter-elevation Regressions on Independent Slopes Model Environmental Limitation Model (PRISM-ELM) limiting factor

distributions for herbaceous and woody biomass crops.
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Miscanthus, and willow. Winter cold limits the north-

ward distribution of warmer adapted perennial crops,

most notably lowland switchgrass, and energycane,

which is restricted to the extreme southeastern United

States because of damage due to freezing temperatures.

Soil pH and drainage play relatively minor roles as lim-

iting factors in these simulations, because of our

assumption of widespread limed and drained soils. Soil

salinity is the limiting factor primarily along coastlines

and in parts of the arid West.

Potential biomass production mapping

Scatterplots and linear regression equations used to con-

vert PRISM-ELM ESI grids to potential biomass produc-

tion are shown in Figure 5. R2 values ranged from 0.55

for upland switchgrass to 0.88 for CRP and biomass sor-

ghum. Mean absolute errors (MAEs) ranged from

0.24 Mg ha�1 yr�1 for CRP to 2.96 Mg ha�1 yr�1 for

Miscanthus. On a percentage basis, MAEs ranged from

7.7% for willow to 27.5% for lowland switchgrass. In

Figure 5, open circles represent locations of RFP field

trials, and closed circles represent other trials. For most

crops, RFP trials supplied most, if not all, of the data

points used in the regressions. However, non-RFP trials

played a major role in the Miscanthus and upland

switchgrass regressions, and were the only source of

suitable yield data for lowland switchgrass. The range

of environmental conditions represented by the yield

data can be seen by viewing the distribution of data

points along the x-axis. A number of biomass crops,

including Miscanthus, upland switchgrass, sorghum,

and poplar, did not have yield trial data for areas with

ESI values of <40, suggesting that the full range of envi-

ronmental conditions was not well represented by the

field trials.

Estimated average annual biomass yield potential

maps, derived from regression functions relating

PRISM-ELM ESI to reported yield, are shown in

Figure 6. CRP grasses have estimated yields of up to

3–6 Mg ha�1 yr�1 in the eastern United States, with lower

values in the West. Maximum yields for Miscanthus

were estimated to exceed 22 Mg ha�1 yr�1 in the Mid-

west, decreasing to <10 Mg ha�1 yr�1 in the extreme

southern United States. Yields reach a secondary maxi-

mum of 14–18 Mg ha�1 yr�1 in the wetter areas of the

Pacific Northwest. Upland and lowland switchgrass

have very different yield distributions; upland switch-

grass yields reach a maximum of 10–14 Mg in the Mid-

west, and maintain a fairly wide north-to-south swath

of 6–10 Mg ha�1 yr�1 across the eastern United States,

and also in the wetter areas of the Pacific Northwest. In

contrast, lowland switchgrass yields exceed

18 Mg ha�1 yr�1 along the Gulf Coast and into the

lower Mississippi Valley and decrease northward to

<3 Mg ha�1 yr�1 along the northern tier of states. Low-

land switchgrass production in the West is generally

<6 Mg ha�1 yr�1. Biomass sorghum yields exceed

22 Mg ha�1 yr�1 across the southern and central

portions of the eastern United States decreasing to

10–14 Mg ha�1 yr�1 in the upper Midwest. Yields are

generally <10 Mg ha�1 yr�1 in the West. Energycane is

confined to the extreme southeastern United States, with

yields estimated to exceed 18 Mg ha�1 yr�1 in Florida

and along the Gulf Coast.

Yield estimates for willow show a maximum of 14–
20 Mg ha�1 yr�1 in the Midwest, and extending into

central New England and southward into the southern

Appalachians. Yields are estimated to be low in the

southern states and throughout most of the West.

Poplar yields also reach a maximum in the Midwest,

with an extensive area of >10 Mg ha�1 yr�1 across the

eastern United States and in wetter areas of the Pacific

Northwest.

Discussion

Most previous work to map the production potential of

biomass crops in the United States has focused on

switchgrass and to a lesser extent Miscanthus and wil-

low, both of which have been more extensively

researched in Europe (e.g., Hastings et al., 2009; Larsen

et al., 2016; Mola-Yudego et al., 2016). Looking at mod-

eled biomass yield maps from the literature for the

same crop, we find a wide variation in yield estimates

which appear to stem from differences among models.

This illustrates one of the inherent difficulties in com-

paring biomass estimates between crops that do not use

the same modeling approach. Thomson et al. (2009)

used the EPIC mechanistic simulation model to estimate

30-year average switchgrass yield on a large watershed

scale. They simulated lowland ecotypes south of 41°N
and upland ecotypes to the north and then combined

the two simulations into one map. The spatial patterns

of production are roughly similar to those of the

PRISM-ELM lowland and upland maps (if combined),

with maxima in the Midwest and South, but the water-

shed-scale simulation does not resolve topographic vari-

ations well. Using the ALMANAC mechanistic

simulation model, Behrman et al. (2013) estimated local

biomass potential in the eastern United States at 0.25°
resolution, with lowland and upland ecotypes com-

bined. The resulting map shows biomass maxima

(>18 Mg ha�1 yr�1) along the Gulf Coast, and high pro-

duction extending up into the Midwest. The simulation

shows a tongue of lower biomass potential in eastern

Oklahoma and Arkansas (6–10 Mg ha�1 yr�1), but the

PRISM-ELM lowland switchgrass map has higher
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Fig. 5 Relationships between Parameter-elevation Regressions on Independent Slopes Model Environmental Limitation Model

(PRISM-ELM) ESI and reported average biomass yields. Open circles are yields from Sun Grant Regional Feedstock Partnership (RFP)

trials, and solid circles are average yields from other trials. Linear regression functions were developed using all data shown and

forced through a zero y-intercept. See Table S1 for a listing of the yield data used.
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Fig. 6 Estimated average annual biomass yield potential maps, derived from regression functions relating PRISM-ELM ESI to

reported yield (see Fig. 5).
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estimated yields at 14–18 Mg ha�1 yr�1. In addition,

biomass potential in the extreme upper Midwest (e.g.,

northern Minnesota) decreases to 2–6 Mg ha�1 yr�1,

while PRISM-ELM maintains 6–10 Mg ha�1 yr�1, con-

tributed by upland switchgrass.

Using a statistical model, Jager et al. (2010) estimated

annual yield potential for upland and lowland switch-

grass at 4-km resolution. Areas not within the range of

the explanatory data used in the statistical model were

not simulated. Surprisingly high yields for both eco-

types extended into western Texas and southern New

Mexico and Arizona, which are unlikely locations for

favorable production. The issue of unusually high yields

extending into the Southwest is also seen in the switch-

grass map produced with a statistical model developed

by Wullschleger et al. (2010); relatively high yields were

estimated throughout much of Colorado, northwestern

Texas and New Mexico, where precipitation is generally

inadequate and moisture deficits are likely to restrict

production. Tulbure et al. (2012) used a statistical model

to map the yield potential for upland and lowland

switchgrass in the eastern United States at 1-km resolu-

tion. The general patterns of the upland map are similar

to those of PRISM-ELM, but the lowland switchgrass

map is very different than all others reviewed. Yield

maxima are located in the Midwest and Appalachians,

with anomalously high values along the edge of the sta-

tistical range of the data in the southeastern United

States.

Song et al. (2015) used the mechanistic Integrated

Science Assessment Model (ISAM) to estimate biomass

yield potential in the eastern United States for Miscant-

hus, as well as an upland switchgrass cultivar (Cave-in-

Rock) and a lowland switchgrass cultivar (Alamo) at

coarse (0.5°) resolution. Yield patterns are similar to

those of PRISM-ELM in the major crop production areas

of the United States, but production declines to zero

north of the boundaries of USDA plant hardiness zones:

zone 4 for Miscanthus, zone 3 for upland switchgrass,

and zone 5 for lowland switchgrass. The USDA plant

hardiness statistic is defined as the mean annual

extreme minimum temperature and thus is a measure

of the potential for winter cold (Daly et al., 2012).

PRISM-ELM shows yield reductions near these limits as

well, but the decreases are more gradual. Miguez et al.

(2012) used BioCro to estimate long-term biomass pro-

ductivity of Miscanthus and switchgrass at 32-km reso-

lution. BioCro is a process-based model for plant

growth which simulates plant biochemistry and bio-

physics. Estimated yields of Miscanthus have two main

maxima, one in the Midwest with values higher than

PRISM-ELM (30–35 vs. >22 Mg ha�1 yr�1), and another

in the far south, which is considerably higher than

PRISM-ELM (30–35 vs. 10–14 Mg ha�1 yr�1). A small

area of extremely high yield (40–45 Mg ha�1 yr�1) is

located along the southern Washington coast; this area

is also a maximum in PRISM-ELM, but yield values are

much lower (14–18 Mg ha�1 yr�1). The southern por-

tion of the switchgrass map is similar to PRISM-ELM

lowland switchgrass map, with maximum production

extending up the lower Mississippi Valley and along

the southeast Atlantic coastline. In the north, yields are

somewhat higher than those shown in the PRISM-ELM

upland switchgrass map, but the regional patterns are

similar.

The PRISM-ELM potential production map for willow

is roughly similar to that produced with BioCro by

Wang et al. (2015). Both maps exhibit production max-

ima in the Midwest and northeast, and a limited pro-

duction maximum in the Pacific Northwest. The

PRISM-ELM map is more conservative in estimating

less production along the Gulf Coast, which is likely on

the edge of the distributions of willow cultivars tested

in the RFP field trials.

While there are clearly large differences among the

potential yield maps reviewed, the PRISM-ELM maps

exhibit regional patterns that are more similar to those

produced with mechanistic models than with statistical

models. The reason for this may be PRISM-ELM’s treat-

ment of the water balance, which is the dominant con-

trol on modeled production potential over much of the

country (see Fig. 4). Statistical relationships between

precipitation and yield can be misleading unless the

timing of water demand, which is controlled largely by

temperature, is accounted for simultaneously. The 800-

m resolution PRISM-ELM maps show more detail in

complex terrain than those produced with mechanistic

models, mainly because PRISM-ELM is driven with

high-resolution, topographically sensitive PRISM cli-

mate data. Detailed input data needed to drive mecha-

nistic models are not always available at fine scales, and

the models themselves are computationally intensive.

Not surprisingly, the areas of greatest disagreement

among models are located along the edges of a crop’s

distribution, where field trials are largely absent. An

example of this is a lack of switchgrass field trials in the

relatively arid southwestern United States, where statis-

tical methods overpredicted yield potential. In fact,

nearly all other biomass crops lack yield data in areas

estimated by PRISM-ELM to have to low environmental

suitability. That said, it can be challenging to conduct

trials where a crop is likely to fail or do poorly, and

these trials may not be financially feasible to perform.

A significant source of uncertainty in our modeling

system is difficulties in characterizing on-farm soil con-

ditions using NRCS data. The NRCS soils data used in

this study are representative values for large areas of

soil (soil types) in an un-amended (natural/native)
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state. This makes an accurate accounting of amend-

ments such as drainage systems and liming applications

problematic. Tile drainage systems and other measures

to ameliorate poor soil drainage were not reflected in

the NRCS soils data, and detailed information on the

locations of drainage systems was unavailable. Our

remedy was to make the PRISM-ELM soil drainage

response function less restrictive during model valida-

tion with wheat and maize, and this parameterization

was carried over to simulations for all biomass crops.

As a result, yields may have been overpredicted in

poorly drained areas that do not have drainage systems

in place. Most agricultural lands that tend toward natu-

ral acidity have pH adjustments made through lime

applications. These adjustments were also not reflected

in the NRCS data, and the spatial distribution of liming

practices was poorly known. In response, pH con-

straints in PRISM-ELM were made less restrictive dur-

ing simulations for wheat and maize, and again carried

over into all biomass simulations. Unfortunately, the

key question of whether biomass crops will be

grown on amended fields or relegated to marginal,

un-amended lands requires economic considerations

that are outside the scope of this study. However, one

approach may be to bracket the range of possible out-

comes by producing several biomass potential maps

based on differing assumptions of soil improvements

such as drainage and liming.

PRISM-ELMmodeling has so far used soils data derived

from the NRCS U.S. General Soils Maps; representative

values were extracted from this map and averaged to an

800-m grid cell. Recently completed, higher resolution

soils data from the NRCS can be used to improve soil char-

acterizations, but the level of spatial detail may still be

insufficient to capture conditions at the field trials, which

are often conducted on small plots. Options to improve

the spatial accuracy of soil representations are to apply

PRISM-ELM to native NRCS soil polygons rather than

summarizing conditions over arbitrarily defined grid cells,

or re-cast the model to run in ‘field’ mode for specific trial

locations, and have soil characteristics specified based on

data collected by agronomists conducting the trials.

Including a metric in PRISM-ELM for characterizing soil

fertility and productivity should also be considered. Soil

organic matter, is a good choice, as it plays key roles in soil

health by increasing carbon content, acting as a buffer for

soil acidification, and contributing to soil structure and

water holding capacity.

The potential biomass yield maps produced by

PRISM-ELM represent estimates of annual average

yields based on a 30-year (1981–2010) average climate,

while the RFP field trials used here ran for 3–7 years

from the late 2000s to the early 2010s. It is likely that the

long-term climate data did not fully represent weather

conditions experienced during these relatively short tri-

als. For example, severe drought across the Midwest in

2012 reduced yields at several trial sites. The logical next

step is to apply the model on a year-by-year basis to

obtain a distribution of potential annual yields that can

be used to develop risk assessments. This type of analy-

sis would help answer questions about the long-term

stability of expected biomass yields over time, given the

historical variability in weather conditions, and poten-

tially improve relationships between suitability esti-

mates and observed yields. However, it may be difficult

to evaluate model performance because of the limited

duration of the biomass yield trials, and the confound-

ing, noneconomic factors that affect yield variability in

crops with longer histories such as wheat and maize.

The work described here represents a first, coordi-

nated look at the potential long-term yield distribution

of several important biomass crops in the United States.

Use of a consistent modeling framework avoids the

danger of confusing differences in model structure with

biological differences. The resulting maps are intercom-

parable, allowing crop selection decisions to be made

with increased confidence. These maps represent a

patchwork of the best local varieties that would have

been available to a producer at the time the field trials

were conducted. A list of the field trial locations used in

the modeling effort is provided in Table S1, and details

on all of the RFP field trials are available from compan-

ion articles in this issue (Lee et al., 2017; Volk et al.,

2017). As can be seen in Figure 6, the maps are based

on a very small number of yield trial data points. There-

fore, caution is advised when using these maps in

regions that are distant from trial locations.

Providing spatial yield estimates for such a wide

range of biomass crops required a simplified modeling

framework that was generalizable over many species

with different life cycles and environmental tolerances.

Therefore, the focus was on a modified biogeographical

approach to modeling climatic and soil constraints on

biomass production for any crop, rather than a detailed

accounting of the particular phenology and physiologi-

cal features of a given species or genotype. The poor

state of knowledge regarding the environmental toler-

ances of most biomass crops led to a model parameteri-

zation strategy that took advantage of the synergy

realized by combining information from crops with long

production histories, coordinated field trials, close inter-

action with expert agronomists, and spatial modeling.

As such, this modeling and parameterization frame-

work can be expanded and updated to include other

biomass crops and varieties.

The potential production maps presented in this arti-

cle are accessible via the USDOE Knowledge Discovery

Framework (KDF) (https://www.bioenergykdf.net).
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1. Basic Environmental Constraints on Production 

 

Figure S1.  Conterminous US 1981-2010 (a) mean annual temperature, (b) mean January 
minimum temperature, and (c) mean July maximum temperature.  Data source: PRISM Climate 
Group (http://prism.oregonstate/edu).    
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Figure S2.  Conterminous US soil (a) available water capacity (b) pH, (c) salinity, and (d) 
drainage.  Data source: USDA-NRCS.   
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2. Biomass Yield Trial Data 

Table S1.  Biomass yield field trials used in the parameterization of PRISM-ELM and the 
transformation of PRISM-ELM ESI into estimated annual biomass production.  Details on the 
herbaceous and woody field trial data are available from Lee et al. (2017) and Volk et al. (2017), 
respectively.  In the source column, RFP refers to the Sun Grant Regional Feedstock Partnership.  

Crop State Longitude Latitude Source 

CRP Grasses     

 GA -83.4482 33.78938 RFP 

 KS -99.4106 38.84192 RFP 

 MO -92.1863 38.97347 RFP 

 MT -110.011 47.08814 RFP 

 ND -99.2282 47.48365 RFP 

 OK -99.2998 34.73266 RFP 

Energycane   
 GA -83.54335 33.873133 RFP 

 TX -94.293861 30.067667 RFP 

 MS -88.792661 33.422828 RFP 

 MS -90.51865 32.222247 RFP 

 LA -91.105739 30.267056 RFP 

 GA -83.916372 31.866922 RFP 

Miscanthus      

 LA -91.1031 30.4111 Arundale (2012) 

 GA -83.591947 31.439648 T. Voigt (Pers. Comm.) 

 MS -88.7953 33.4245 Arundale (2012) 

 MS -88.79746 33.43798 B. Baldwin (Pers. Comm.) 

 MS -88.79716 33.43895 B. Baldwin (Pers. Comm.) 

 OK -97.046 35.9917 Arundale (2012) 
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 VA -79.395449 36.933481 RFP 

 IL -88.722914 37.453577 Arundale (2012) 

 KY -84.4971 38.12778 RFP 

 IL -88.389409 38.381002 Arundale (2012) 

 IL -90.819545 39.806104 Arundale (2012) 

 IL -88.190582 40.064943 RFP 

 NJ -74.2475 40.2245 RFP 

 IA -95.139 41.339 E. Heaton (Pers. Comm.) 

 IA -93.643 42.003 E. Heaton (Pers. Comm.) 

 MI -85.3765 42.3948 Arundale (2012) 

 IA -95.534 42.907 E. Heaton (Pers. Comm.) 

 NE -96.4656 41.1737 RFP 

Lowland 
Switchgrass 

  

 NY -76.1132 43.78954 R. Crawford (Pers. Comm.) 

 NY -76.95448 42.13432 R. Crawford (Pers. Comm.) 

 VA -80.4167 37.1833 Fike et al. (2006a, 2006b) 

 NY -73.47333 44.88524 R. Crawford (Pers. Comm.) 

 OK -97.91416 35.03166 Fuentes and Taliaferro (2002) 

 NC -78.4567 35.6506 Fike et al. (2006a, 2006b) 

 TX -96.3342 30.6278 Cassida et al. (2005) 

 TX -96.8039 32.7828 Cassida et al. (2005) 

 NY -78.05889 42.95017 R. Crawford (Pers. Comm.) 

 OK -95.6392 35.7425 Fuentes and Taliaferro (2002) 

 AR -93.5914 33.6669 Cassida et al. (2005) 

 NY -76.447 42.45 R. Crawford (Pers. Comm.) 
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 TN -83.95 35.8833 Fike et al. (2006a, 2006b) 

 NE -96.4173 41.2222 R. Crawford (Pers. Comm.) 

 WV -79.9167 39.6167 Fike et al. (2006a, 2006b) 

 VA -78.1167 38.2167 Fike et al. (2006a, 2006b) 

 KY -87.8167 37.1 Fike et al. (2006a, 2006b) 

 NC -78.6667 35.7167 Fike et al. (2006a, 2006b) 

 TX -98.2 32.2167 Cassida et al. (2005) 

 OK -97.0581 36.1156 Aravindhakshan et al. (2010) 

 IA -93.75222 41.918888 Wilson et al. (2014) 

 GA -83.5086 31.0543 Knoll et al. (2012) 

Upland 
Switchgrass 

  

 IA -93.742783 42.008967 RFP 

 SD -96.7731 44.2538 Hong et al. (2013) 

 IL -88.959 38.9537 Anderson et al. (2013) 

 TX -96.3342 30.6278 Cassida et al. (2005) 

 SD -96.848 44.0012 Zilverberg et al. (2014) 

 TX -96.8039 32.7828 Cassida et al. (2005) 

 SD -97.8358 45.269 RFP 

 IL -88.8527 41.8418 Anderson et al. (2013) 

 SD -99.75 43.717 Mulkey et al. (2006) 

 AR -93.5914 33.6669 Cassida et al. (2005) 

 NY -76.382 42.456 RFP 

 TN -88.8333 35.6167 Fike et al. (2006a, 2006b) 

 PA -79.2378 40.2431 Adler et al. (2006) 

 IL -90.7204 40.9364 Anderson et al. (2013) 

 OK -95.6392 35.7425 RFP 
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 IL -90.8221 39.8057 Anderson et al. (2013) 

 SD -100.34 44.3403 Hong et al. (2013) 

 KY -87.8167 37.1 Fike et al. (2006a, 2006b) 

 NC -78.6667 35.7167 Fike et al. (2006a, 2006b) 

 NC -78.6389 35.7719 Burns et al. (2002) 

 PA -76.1544 39.7276 Adler et al. (2006) 

 TX -98.2019 32.2206 Cassida et al. (2005) 

 NY -76.4606 42.4624
R. Crawford (Pers. Comm.) 

 

 IL -88.2239 40.0405 Anderson et al. (2013) 

Biomass 
Sorghum 

  

 IA -93.742783 42.008967 RFP 

 KS -96.597048 39.204116 RFP 

 KY -84.48827 38.129834 RFP 

 MS -90.521145 32.211111 RFP 

 NC -76.6597 35.85015 RFP 

 TX -96.445061 30.548953 RFP 

 TX -97.560149 27.777898 RFP 

Willow   

 WI -89.37 43.29 T. Volk (Pers. Comm.) 

 NY -76.11273 43.78984 RFP 

 NY -76.955931 42.135356 RFP 

 MI -84.46734 46.39951 RFP 

 VT -73.215637 44.497822 Liu (2013) 

 NY -75.772169 43.050882 Liu (2013) 

 NY -75.52596 43.55778 RFP 

 MI -87.19967 45.76824 RFP 
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 MI -84.38503 42.82359 Liu (2013) 

 VT -73.19583 44.00944 RFP 

 DE -75.730289 39.326517 Liu (2013) 

 MD -76.15439 38.91376 Liu (2013) 

 MI -87.24657 46.3619 RFP 

 CT -72.231239 41.797333 RFP 

 NY -76.1164 42.79416 RFP 

 NY -76.738778 43.244695 Liu (2013) 

Poplar   

 IL -89.163944 36.97675 RFP 

 GA -81.966627 32.138428 RFP 

 WA -122.3 47.2 RFP 

 SC -80.720733 33.864867 RFP 

 GA -81.902633 33.29955 RFP 

 MN -95.057799 46.129283 RFP 

 MN -95.119014 46.18593 RFP 

 KY -89.162889 36.796722 RFP 

 MN -95.760589 48.151061 RFP 

 MN -95.145939 46.272252 RFP 

 MN -93.490207 47.249223 RFP 

 TN -89.585472 36.212083 RFP 

 MN -94.861783 46.195214 RFP 

 MN -95.008075 46.616042 RFP 

 MO -89.154667 36.757361 RFP 

 MN -95.145169 46.264689 RFP 

 VA -77.5764 37.702088 RFP 
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3.  PRISM-ELM Model Formulation 

A summary of PRISM-ELM structure and function is included in the main paper.  Below 

are mathematical details on model formulation and operation.   

Water Balance 

At the start of the simulation, the total available water in the root zone is calculated, 

which is a product of the user-define rooting depth and the NRCS-defined available water 

capacity: 

TAW = Droot AWC         (1) 

Readily available water in the root zone is a product of TAW and the user-defined stress response 

factor, typically set to 0.5 (Allen et al., 1998): 

RAW = p TAW         (2) 

The simulation begins in the first half of January.  At each semi-monthly time step t, the water 

stress coefficient of the crop (Ks) is calculated as: 

Ks(t) = (TAW-Dr(t)) / (TAW-RAW)      (3) 

Dr(t), the root zone moisture depletion, is initialized to zero at the first time step (January).  At 

subsequent time steps, it is a function of the precipitation and actual evapotranspiration at the 

previous time step t-1: 
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Dr(t) = Dr(t-1) + (ETa(t-1)  – Pt-1)       (4) 

where ETa is a function of the reference evapotranspiration, water stress coefficient, and crop 

coefficient if the crop is present, and the water stress coefficient and soil evaporation if the crop 

is not present: 

ETa(t-1) = If crop on: ET0(t-1) KS(t-1) Kc;    

                    If crop off: KS(t-1) Es       (5) 

A crop is assumed to be present if the time-step falls within the potential growth period, 

discussed below.  A positive Dr indicates a moisture deficit, while a negative Dr indicates a 

moisture surplus.   

The water balance calculations are run for a complete “spin up” year to allow the soil 

water stores to equilibrate.  The year is then run again to obtain the final results, which are output 

at a monthly time step.  

In concert with the water balance calculations above, the temperature response of the 

crop is evaluated at each time-step.  The temperature response function is controlled by five user-

defined parameters, OptT, MaxT, Mag, F1, and F2,  based on controlled environment 

experimental data (e.g., Baker and Jung, 1968), crop simulation modeling (e.g., Brown et al., 

1986), and species experts’ knowledge [e.g., tall fescue growth response function 

(http://forages.oregonstate.edu/tallfescuemonograph/suitability/creating/growth)].  OptT and 

MaxT and are the mean daily temperatures at which crop growth is optimal and the maximum 

temperature at which crop growth declines to zero, respectively.  Mag controls the maximum 
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value the response curve can reach, and F1 and F2 define the shape of the curve.   The 

temperature response Tr of the modeled crop is calculated as a function of the mean daily 

temperature at time step t (Tt): 
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t t t
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      (6) 
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Once Ks and Tr are calculated for time step t, the suitability (St) for that time step is  

St = Ks(t) Tr(t)          (8) 

Once all time steps have been simulated in the year, the two semi-monthly St values in 

each month are averaged to obtain monthly values. (Sm).   Example Sm values for winter wheat 

in the Willamette Valley, Oregon are shown in Figure S1.  A Potential Suitability Window, 

established for the crop by the user, defines the beginning month (Mbeg) and ending month (Mend) 

of the period within which crop production is likely to be most active somewhere within the 

modeling region, accounting for varying planting and harvest dates and regional climatic 

differences.  In the Figure S3 example, the Potential Suitability Window is defined as March-

July (Mbeg = 3, Mend = 7).  The final water balance suitability (Sw) for the crop is then calculated 

as the average of the highest consecutive monthly Sm values within the Potential Suitability 

Window of Mavg months in length, termed the Maximum Suitability Window.  Experience with 

PRISM-ELM simulations has shown a Mavg of three months as being optimal for most biomass 
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crops.  In the Figure S1 example, the three greatest consecutive Sm values occurred during April-

June.  The average of these three values is 84, which is the final Sw.   

  

 

Figure S3.  Illustration of method used to obtain final suitability (Sw) of winter wheat in the 
Willamette Valley, Oregon from the PRISM-ELM water balance model.  In this example, 
monthly Sm values are shown in the black line.  The Potential Suitability Window (shaded in 
light blue) is set to start in March and end in July.  Sm values across the Maximum Suitability 
Window (shaded in dark blue), the highest yielding consecutive monthly span of three months, 
are then averaged to obtain the final Sw of 84.   

 

Winter Low Temperature Response 
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The winter low temperature response curve is a metric for suitability reductions in 

perennial crops that may occur because of injury or death caused by excessively low winter 

temperatures.  The two-tailed response curve relates the winter cold suitability index (Sc) to the 

1981-2010 mean minimum temperature for the month of January:  

 

(  x ) 0;  min max cif x Tmin or Tmin S else     

 

2[ ( ) ]
;0 100

opt
w1

w2

x Tmin
Tmin

Tmin
c mag cS Tmin e S



       (9) 

 

where x is the 1981-2010 January mean minimum temperature.  User-defined parameters for the 

curve are the lower Tmin at which Sc is zero (Tminmin); upper Tmin at which Sc is zero (Tminmax); 

Tmin at which Sc is at maximum (Tminopt); curve magnitude (Tminmag), which is the Sc value at 

Tminopt; and curve shape factors Tminw1 and Tminw2.   

 

Summer High Temperature Response  

The summer high temperature response curve is a metric for suitability reductions that 

may occur because of stress caused by high temperatures during the growing season.  The one-
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tailed response curve relates the summer high temperature suitability index (Sh) to the 1981-2010 

mean maximum temperature for the month of July:   

2 3
0 1 2 3hS c c x c x c x           (10) 

 

where x is mean July maximum temperature, and c0, c1, c2, and c3 are coefficients calculated by 

fitting a third-order polynomial to the user-defined x values that cause no yield reduction 

(Tmaxopt), 50% yield reduction (Tmaxmid) and 100% yield reduction (Tmaxmax).   

 

Soil pH Response 

The soil pH response curve within PRISM-ELM accounts for suitability reductions 

caused by excessively acidic (low pH) or alkaline (high pH) soils.  The two-tailed response curve 

relating the soil pH suitability index (Sp) to soil pH is of the same form as the winter low 

temperature response curve: 

( ) 0;  min max pif x pH or x pH S else     
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;0 100
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       (11) 

where x is the grid soil pH value.  User-defined parameters for the curve are the lower pH 

threshold at which Sp is zero (pHmin); the upper pH threshold at which Sp is zero (pHmax); the pH 
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value at which Sp is at maximum (pHopt); the curve magnitude (pHmag), which is the Sp value at 

pHopt; and curve shape factors pHw1 and pHw2.   

 

Soil Salinity Response  

The soil salinity response curve accounts for suitability reductions that may occur 

because of excessive soil salinity.  The one-tailed response curve for soil salinity is of the same 

form as the summer high temperature response, and relates the soil salinity suitability index (Ss) 

to soil salinity:   

2 3
0 1 2 3sS c c x c x c x            (12) 

 

where x is soil salinity, and c0, c1, c2, and c3 are coefficients calculated by fitting a third-order 

polynomial to the user-defined x values that result in an Ss of 100 (SSopt), an Ss of 50 (SSmid) and 

an Ss of 0 (SSmax).  

 

Soil Drainage Response  

Soil drainage deals with water supply issues that affect crop production and management. 

Soil drainage response is not a continuous function, but instead is handled categorically, in 

keeping with NRCS soil drainage categories.  Each of seven drainage categories is assigned an Sd 

value: very poorly drained (VPD), poorly drained (PD), somewhat poorly drained (SPD), 
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moderately well drained (MWD), well drained (WD), somewhat excessively drained (SED), and 

excessively drained (ED).  

 

PRISM-ELM Final Suitability 

Once all of the environmental suitability indexes described above have been evaluated for 

a grid cell, the PRISM-ELM final environmental suitability index (ESI) is:  

ESI = min (Sw, Sc, Sh, Sp, Ss, Sd)      (13) 

 

4.  Examples of PRISM-ELM Operation 

Contrasting examples of the operation of the PRISM-ELM water balance model for 

wheat and maize are illustrated for the Willamette Valley, Oregon (45N, 123W; mean annual 

precipitation = 1037 mm) and extreme southeastern Indiana (39N, 85W; mean annual 

precipitation = 1097 mm) in Figure S4.  While wheat and maize were not the focus of the 

biomass mapping effort, they were chosen as examples based on their contrasting, but relatively 

well-known, behaviors, and as aids to model parametrization for biomass crops (see Model 

Parameterization section in the main text).  Wheat is a cool-season crop which typically reaches 

maximum production in spring, while maize is a warm-season crop that reaches maximum 

production during the warmer, summer months.   

The climate regime in the Willamette Valley is Mediterranean, characterized by wet 

winters and dry summers (Figure S4a).   Wheat water usage increases in spring, as the 

temperature response and actual evapotranspiration rise (Figure S4b).  In response to reduced 
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moisture replenishment as the dry summer months approach, root zone moisture drops below 

zero (indicating moisture deficit), causing evapotranspiration to be restricted.  The Potential 

Suitability Window is set to March-July for wheat (shaded in light blue in Figure S4c).  Within 

that window, the final water balance suitability, Sw, is calculated as the average suitability during 

the three-month Maximum Suitability Window (shaded in dark blue).  In this example, the 

greatest suitability months are April-June, and Sw = 84, or 84% of optimum.  Sm increases again 

in the fall, as moisture conditions improve and the temperature response is still relatively high.  

This is the period when winter wheat varieties are planted, but is not included in the Potential 

Suitability Window because above-ground productivity is typically low (Figure S4c).   

In contrast to wheat, maize encounters greater environmental limitation in the Willamette 

Valley, because temperatures are lower than optimum, and precipitation is lowest during mid-

summer, the period of maximum moisture demand.  Maize begins to draw soil water in the 

spring, as temperature response and actual evapotranspiration rise (Figure S4d).  In response to 

increased water usage and reduced replenishment from precipitation, root zone water becomes 

quickly depleted.  Relatively cool temperatures limit the peak temperature response to mid-

summer, too late for suitable moisture conditions.  The Potential Suitability Window for maize is 

April-September (Figure S4e).  The Maximum Suitability Window for this location is May-July, 

and Sw = 25, or only 25% of optimum.  

 

  



21 
 

 

Figure S4.  Comparison of PRISM-ELM water balance operation for wheat (cool-season crop) 
and maize (warm-season crop) in western Oregon, characterized by dry, mild summers, and 
southeastern Indiana, where summers are warm and moist.  Shown are: (a) 1981-2010 mean 
monthly and temperature and precipitation; Oregon water balance model operation for wheat (b, 
c) and maize (d, e); and Indiana water balance model operation for wheat (f, g) and maize (h, i).  
In both locations, evapotranspiration of wheat and maize increases from spring into summer in 
response to increasing temperatures (b, d, f, h).  Available moisture during spring is suitable for 
the production of wheat in both locations.  Summer moisture is also suitable for maize 
production in Indiana, but summer drought limits its suitability in the Willamette Valley.  See 
text for details.   
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In Indiana, precipitation is relatively evenly distributed throughout the year, and summer 

temperatures are warmer than those in the Willamette Valley (Figure S4a).  The timing of 

optimal temperature response for wheat coincides with suitable moisture conditions in spring to 

allow relatively high evapotranspiration rates (Figure S4f).  As a result, the final Sw = 95, or 95% 

of optimum (Figure S4g). As seen in the Willamette Valley, wheat Sm increases again in the fall, 

as moisture conditions improve and temperature response is still relatively high.  Maize fares 

better in Indiana than in the Willamette Valley, due to ample precipitation in summer (Figure 

S4a).  Soil moisture does not reach a minimum until late summer, allowing a longer period of 

production when temperatures are closer to the optimum range (Figure S4h).  The result is a final 

Sw of 70, or 70% of optimum (Figure S4i). 

 

5.  PRISM-ELM Input Parameters 

PRISM-ELM was parameterized for six herbaceous and two woody biomass feedstocks.  

Parameter symbols and descriptions are given in Table S2.  Parameter values are listed for 

herbaceous biomass crops in Table S3 and woody biomass crop in Table S4.   Details on model 

parameterization are given in the main text.  
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Table S2.  PRISM-ELM input parameters and descriptions.  

 

Parameter 

 

Description 

Water Balance  

Mbeg First month in potential suitability window 

Mend Last month in potential suitability window 

Mavg Length of maximum suitability window (months) 

Kc Crop coefficient 

Droot Average rooting depth (m) 

p Water stress response factor 

MaxT Temperature response maximum (ºC) 

OptT Temperature response optimum (ºC) 

Mag Temperature response magnitude 

F1, F2 Temperature response shape factors 1, 2  

Winter 

Temperature 

 

January Tmin Response Function 

Tminopt Optimum (ºC) 

Tminmax Maximum (ºC) 

Tminmin Minimum (ºC) 

Tminmag Magnitude 

Tminw1, Tminw2 Shape factors 1, 2 

Summer 

Temperature 

  

July Tmax Response Function 

Tmaxopt Optimum (ºC) 

Tmaxmid Mid - 50% yield (ºC) 

Tmaxmax Max – 0% yield (ºC) 

Soil pH  Soil pH response Function 

pHopt Optimum 



24 
 

pHmax Maximum 

pHmin Minimum 

pHmag Magnitude 

pHw1, pHw2 Shape factors 1, 2 

Soil Salinity Soil Salinity Response Function 

SSopt Optimum (mmhos/cm) 

SSmid Mid - 50% yield (mmhos/cm)  

SSmax Max – 0% yield (mmhos/cm) 

Soil Drainage Soil Drainage Classes 

VPD Very poorly drained 

PD Poorly drained  

SPD Somewhat poorly drained  

MWD Moderately well drained 

WD Well drained  

SED Somewhat excessively drained 

ED Excessively drained  
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Table S3.  PRISM-ELM input parameters for herbaceous biomass crops, including winter wheat and maize, ordered left to right from 
low to high optimum temperature (OptT).  See Table S2 for parameter descriptions.  

Parameter 
 

CRP 
Winter 
Wheat* 

 
Miscanthus 

Upland 
Switchgrass 

 
Maize* 

Lowland 
Switchgrass 

Biomass 
Sorghum 

Energy- 
cane 

Water Balance         

Mbeg (month) 3 3 4 4 4 4 4 3

Mend (month) 9 7 9 9 9 9 9 11

Mavg (months) 3 3 3 3 3 3 3 3

Kc 1.0 1.0 1.1 1.05 0.9 1.1 1.0 1.2

Droot (m) 1.0 1.0 1.0 1 1.1 1.0 1.0 1

p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MaxT (°C) 34 30 32 30 30 38 38 38

OptT (°C) 17  18 20 21 21.5 24 26 27

Mag 1  1.4 1.5 1.25 1.05 1.2 1.25 1.3

F1, F2 3.4, 3.8 0.5, 2.7 1.4, 2.6 1.0, 2.2 1.2, 3.3 2.2,1.8 0.4, 3.8 1.5, 2.2

Winter 
Temperature 

        

Tminopt (°C) -6 -3.85 -9.6 -12 NA 2 NA 12 

Tminmax (°C) -8 25 14 -12 NA 2 NA 12

Tminmin (°C) -22 -30 -23 -25 NA -24 NA -3

Tminmag (°C) 100 100 100 100 NA 100 NA 140

Tminw1, Tminw2 -0.7, 9.0 -0.71, 16 -0.6, 12 -0.7, 10.0 NA -0.7, 10.0 NA -0.8,8.0

Summer 
Temperature 

          
 

      

Tmaxopt (°C) 28 27.5 30.5 31 31 N/A NA N/A

Tmaxmid (°C) 34 33.9 33.5 35.5 34 N/A NA N/A
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Tmaxmax (°C) 38 39 42 43 40 N/A NA N/A

Soil pH    

pHopt 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5

pHmax 11 11 11 11 11 11 11 11

pHmin 3 3 3 3 3 3 3 3

pHmag 150 150 150 150 150 150 150 150

pHw1, pHw2 -0.5, 1.6 -0.5, 1.6 -0.5, 1.6 -0.5, 1.6 -0.5, 1.6 -0.5, 1.6 -0.5, 1.6 -0.5, 1.6

Soil Salinity   

SSopt (mmhos/cm) 0 0 0 0 0 0 0 0

SSmid (mmhos/cm) 10 10 10 10 10 10 10 10

SSmax (mmhos/cm) 16 16 16 16 16 16 16 16

Soil Drainage   

VPD 90 90 90 90 90 90 90 90

PD 95 95 95 95 95 95 95 95

SPD 100 100 100 100 100 100 100 100

MWD 100 100 100 100 100 100 100 100

WD 100 100 100 100 100 100 100 100

SED 95 95 95 95 95 95 95 95

ED 90 90 90 90 90 90 90 90

 
*“Anchor” species used to guide model parameterization of biomass feedstock species.  
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Table S4.  PRISM-ELM input parameters for woody biomass crops, ordered from left to right by 
optimum temperature (OptT).   See Table 1 for parameter descriptions. 

 

Parameter Willow Poplar 

Water Balance   

Mbeg (month) 3 3 

Mend (month) 9 9

Mavg (months) 3 3

Kc 1.05 1.2

Droot (m) 0.9 1.1

p 0.5 0.5

MaxT (°C) 35 36

OptT (°C) 22 21

Mag 1.35 1.45

F1, F2  2.7, 3.6 3.0, 2.4

Winter 
Temperature 

  

Tminopt (°C) NA -1

Tminmax (°C)  NA -1

Tminmin (°C)  NA -30 

Tminmag (°C)  NA 120

Tminw1, Tminw2  NA -0.8, 20

Summer 
Temperature 

   

Tmaxopt (°C) 30 30

Tmaxmid (°C) 32 37 

Tmaxmax (°C) 36 45

Soil pH  

pHopt 6.5 6.5

pHmax 11 11

pHmin 3 3

pHmag 150 150

pHw1, pHw2 -0.5, 1.6 -0.5, 1.6

Soil Salinity 
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SSopt 

(mmhos/cm) 
0 0

SSmid 

(mmhos/cm) 
10 10

SSmax 

(mmhos/cm) 
16 16

Soil Drainage 

VPD 90 90

PD 95 95

SPD 100 100

MWD 100 100

WD 100 100

SED 95 95

ED 90 90
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Figure S5.  PRISM-ELM January minimum temperature response curves (a metric for winter 
cold injury) for (a, b) overwintering herbaceous and (b) woody biomass crops.  Winter wheat is 
shown for comparison. Parameter values are defined in Table S2 and listed in Tables S3 and S4.  
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Figure S6.  PRISM-ELM July maximum temperature response curves (a metric for heat injury) 
for (a, b) herbaceous and (c) woody biomass crops.  Lowland switchgrass, biomass sorghum, and 
energycane had no temperature limits for heat injury.  Parameter values are defined in Table S2 
and given in Tables S3 and S4. 
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Figure S7.  PRISM-ELM relative yield response curves to: (a) soil pH; (b) salinity; and (c) 
drainage, for all biomass crops.  The pH response curve was broadened to account for soil liming 
practices, which modified the soil pH from NRCS native soil values.  The drainage responses 
were also broadened to account for extensive field tiling to improve drainage, which are also not 
reflected in the NRCS native soil values.  Parameter values are defined in Table S2 and given in 
Tables S3 and S4.    
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Figure S8.  Comparison of (a) USDA NRCS soil drainage class and (b) RMA county-level 
winter wheat yields for northern Ohio.  Relatively high yields are obtained through drainage 
tiling in areas of otherwise poorly drained soils.   

 

6.  Winter Wheat and Maize Model Validation 

County-level grain yield data from winter wheat and maize, commonly-grown cool 

season and warm season crops, respectively, were used to initially calibrate and validate PRISM-

ELM (Figure S9).   Yield data were obtained from the Risk Management Agency (RMA) of the 

United States Department of Agriculture (USDA) as part of a cooperative agreement between 
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RMA and Oregon State University.  Producers participating in the federal crop insurance 

program are required to report acreage planted and harvested yield, and these data are aggregated 

by RMA to produce county-level statistics.   Winter wheat was chosen over spring wheat 

because of the relatively large amount of yield data available, and this choice also allowed the 

evaluation of PRISM-ELM’s winter temperature component.  The RMA winter wheat yield data 

were available in several broadly defined categories: Winter wheat (no practice specified), 

durum, irrigated, non-irrigated, summer fallow, continuous, and spring. We selected winter 

wheat (no practice specified) and continuous, which together comprised most of the yield 

records.  For maize (corn), irrigated and non-irrigated categories were available, and we selected 

the non-irrigated data.  Yield data were available for the period 2000-2014.  To avoid 

unrepresentative county-level data, only those counties that had at least thirty wheat yield records 

or ninety maize yield records per county in at least eight of the fifteen years were selected.     

The patterns of PRISM-ELM ESI match those of the USDA RMA reported yields 

reasonably well where there are data (Figures S9 and S10).  Both indicate maximum maize 

yields in the Iowa-Illinois-Indiana corridor, and relatively high yields in the northeast.  Modeled 

and reported yields decrease along the east-to-west precipitation gradient in the plains in a 

similar fashion.  Winter wheat data coverage is not as extensive, but maximum yields are also 

reproduced in the Midwest and east, as is a similar gradient in the plains.  PRISM-ELM’s 

relatively high ESI values in the Pacific Northwest are also corroborated by RMA data.  
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Figure S9.  USDA RMA county-level grain yield data for non-irrigated (a) winter wheat and (b) 
maize.  Counties shown had at least thirty reports for at least eight years during the period 2000-
2015 for wheat, and ninety reports for eight years during the same period for maize.   
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Figure S10.  PRISM-ELM ESI maps for (a) winter wheat and (b) maize.  
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PRISM-ELM ESI output was expressed as a grid with 800-m spatial resolution, while the 

yield data reported by RMA were expressed as county averages.  To allow a statistical 

comparison of obsevered and modeled values, the PRISM-ELM grid values were summarized at 

the county level.  Since only a portion of a county may have been in agricultural production, the 

2013 USDA NASS National Cultivated Layer 

(https://www.nass.usda.gov/Research_and_Science/Cropland/Release/) was used to identify 

areas under cultivation.  The National Cultivated Layer (NCL) identified areas that were 

cultivated during the most recent five years at the time of access (2008-2012).  The data layer 

was available as a grid at 30-m resolution.  A grid cell was considered cultivated if there was 

agricultural activity in at least two out of the five years.  The cultivated layer was resampled to 

an 800-m grid that was coincident with the PRISM-ELM climate and soils grids.  An 800-m grid 

cell that contained at least one 30-m cultivated grid cell was considered cultivated.  Only 

cultivated 800-m grid cells were included in the county averages. 

The RMA yield datasets were randomly divided into a training half and an evaluation 

half (fifty percent data withholding).  The training half was used in the initial parameterization of 

PRISM-ELM and model performance assessed.  Using the same parameter settings, PRISM-

ELM was then applied to the evaluation half of the data, and finally to the entire dataset, with 

model performance assessed at each step.  The statistical relationship between PRISM-ELM ESI 

and RMA average winter wheat and maize yields was fairly consistent for the training, 

evaluation, and full RMA datasets (Table S5) (Figure S11).  Winter wheat correlation 
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coefficients (for a least-squares regression forced through zero) declined from 0.75 for the 

training dataset to 0.71 for the evaluation dataset; the MAE changed little, averaging about 16 

percent.  Correlation coefficients for maize were lower, ranging from 0.59 for the training dataset 

to 0.57 for the evaluation dataset.  Percent MAEs were slightly lower than those of winter wheat, 

averaging 14.1 percent for the training dataset and 14.7 percent for the evaluation dataset.   

There are obvious drawbacks to using grain yield as validation datasets for PRISM-ELM.  

Reported grain yield from farms across the country represent a sampling of production outcomes 

that reflect a myriad of interrelated management decisions and economic forces that can partially 

or completely mask the basic environmental constraints simulated in PRISM-ELM.  Hence, the 

relationships between PRISM-ELM suitability estimates and observed yields were expected to 

have significant scatter.   
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Table S5.  PRISM-ELM performance statistics for RMA winter wheat and maize yield.  
Comparisons were made after the PRISM-ELM ESI was transformed into actual yield using 
national regression equations forced through zero.  The dataset was divided into training and 
evaluation halves, with performance statistics calculated for each, as well as for the entire 
dataset.  Model parameter settings were the same for both the training and evaluation datasets.  

 Regression 
Equation 

 

R2 

MAE  

(Mg ha-1yr-1 / %) 

Winter Wheat  

RMA Training 
Dataset (N=358) 

y=0.0501x 0.75 0.49 / 15.8

RMA Evaluation 
Dataset (N=358) 

y=0.0508x 0.71 0.49 / 15.9 

RMA Full Dataset 
(N=716) 

y=0.0505x 0.73 0.49 / 15.6

Maize 

RMA Training 
Dataset (N=495) 

y = 0.1057x 0.59 1.05 / 14.1

RMA Evaluation 
Dataset (N=495) 

y = 0.1039x 0.57 1.07 / 14.7

RMA Full Dataset 
(N=990) 

y = 0.1048x 0.58 1.06/ 14.4 
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Figure S11.  Scatterplots and least-squares linear regressions forced through zero between 
county-level PRISM-ELM ESI and the full RMA dataset of 2000-2015 average annual reported 
grain yields for (a) winter wheat and (b) maize.  

 

 

7.  Environmental Suitability Mapping for Biomass Crops 
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Figure S12.  PRISM-ELM ESI distributions for herbaceous and woody biomass crops.   
Locations of field trials used in the regression functions relating ESI to potential yield are shown 
as red dots.   
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