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Abstract

In biomedical applications, it is often of interest to test the alternative hypothesis that the means of

three or more groups follow a strictly monotonic trend such as µ1 > µ2 > µ3 against the null hypothesis

that the group means are either equal or unequal but are not monotonic. This is useful, for example,

for detecting biomarkers whose level in healthy, low-risk cancer and aggressive cancer subjects increases

or decreases throughout the three groups. Various trend tests are available for testing monotonic alter-

natives. However, existing methods are designed for a highly restrictive null hypothesis where all group

means are equal, which represents a special case of the null space in our problem. We demonstrate that

these methods fail to control type I error when the group means may be unequal under the null. To

test this broader null hypothesis, develop a greedy testing method which has an intuitive interpretation

related to two-sample t tests. We show both theoretically and through simulations that the proposed

method effectively controls type 1 error throughout the entire null space and achieves higher power than

a naive implementation of multiple t-tests. We illustrate the greedy trend test method in real data to

study microbial associations with parasite-related pathology in zebrafish.

1 Introduction

Statistical testing of equality of population means among three or more groups has been studied for decades.

Familiar techniques including analysis of variance and non-parametric methods such as the Kruskal-Wallis

test are widely used. In many applications [1, 2], it is of interest to focus on a more specific alternative
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hypothesis where the group means follow a monotonic order. Various approaches are available to test for

monotonic trends among the group means. For binary data, the Cochran-Armitage test[3, 4] is a modification

of the Pearson Chi-square test to detect association among multiple groups. For continuous data, under some

assumptions, linear regression may be performed by including the group label i as an explanatory variable

in order to detect a linear trend between the group means. There are also nonparametric methods such

as rank-based tests for the monotonic ordering problem. Examples include the Jonckheere-Terpstra test

(JT)[5, 6], in which the test statistic is constructed based on pairwise comparisons between groups, the

Cuzick test (CU) [7], which extends the Mann Whitney test (MW) to compare more than two groups, the

Terpstra-Magel test [8], which simultaneously compares one observation from each group, and a method

more recently proposed by Shan et al. [9], which incorporates the pairwise differences in ranks between

observations into the test statistic to capture extra information from the data.

However, existing trend testing methods including rank-based tests are designed to test the null hypothesis

that all group means are equal. They do not account for the situation that the group means are unequal

but do not follow a monotonic trend. To illustrate, suppose we have data collected on independent samples

from three populations. Let the data from the ith population be denoted by xi = (xi1, · · · , ximi), where

mi is the sample size for group i. Let µ1, µ2 and µ3 denote the population means of the three groups.

The null hypothesis tested by existing methods is H0 : µ1 = µ2 = µ3, which we refer to as “the narrow

null” in which all groups must have the same mean. The alternative hypothesis can be 1-sided such as

Ha : µ1 ≤ µ2 ≤ µ3, µ1 < µ3 or its 2-sided analogy. Neither the null nor the alternative hypothesis covers

what we refer to as a trendless pattern, in which the means are unequal but do not follow a monotonic

order, for example, µ3 < µ1 < µ2. As a result, while the rejection of the null hypothesis by existing methods

indicates that the three-group means are unlikely to be equal, it does not necessarily differentiate a monotonic

trend from the trendless pattern. In practice, a trendless pattern is often plausible, in which case it can be

useful and important to disentangle a trendless pattern from the truly interesting scenario where the group

means do follow a monotonic trend. For example, when a biomarker whose levels in healthy, low-risk cancer

and aggressive cancer subjects increase or decrease throughout the three groups, one can use the biomarker

to study the prognosis of cancer. However, we argue that existing methods designed for the narrow null

are not suited to study such signals because the rejection of the null hypothesis by such methods cannot be

interpreted as the presence of a monotonic trend. To the best of our knowledge, no trend testing methods

have been published that target the detection and delineation of a monotonic trend from a trendless pattern.

To address this challenge, we propose to formulate the problem using a framework with a less restrictive
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null hypothesis. We first demonstrate how the application of existing trend testing methods to this problem

result in inadequate type 1 error control. We then propose a greedy testing method tailored for the less

restrictive null. The greedy test motivated by the likelihood ratio test. Unlike rank-based methods, it does

not rely on the assumptions that the shapes and variances of the distributions are identical across groups.

The greedy test incurs minimal computational cost and has a simple interpretation related to two-sample

t-tests. In Section 4, we use simulation studies to validate the type 1 error control of the method and to

evaluate its power, and describe a real data application to illustrate the use of the greedy test. In Section 5,

we discuss a more general problem beyond trend testing, in which the proposed test can be used.

2 The narrow null versus the broad null

In this paper, we are interested in disentangling a monotonic trend among population means from a trend-

less pattern where the population means may or may not be equal. Because existing methods ignore the

possibility of a trendless pattern in the parameter space, when the µi’s are unequal but do not follow a

monotonic trend, these methods are not guaranteed (and as we will show in the simulation studies in Section

4.1, they often fail) to adequately control type 1 error. To solve this problem, we propose to expand the

narrow null hypothesis by adding the trendless pattern to it, thus yielding what we refer to as the broad null.

In this paper, we consider the case when there are three groups, for which the alternative and the broad null

hypotheses can be expressed as:

Ha : µ1 > µ2 > µ2 or µ1 < µ2 < µ3 (1)

H0 : Otherwise (2)

Under this framework, we aim to develop a method that effectively controls type 1 error in the entire

null space including the trendless pattern. We denote the parameter space by Θ = {(µ1, µ2, µ3) : µi ∈ R, i =

1, 2, 3}, and the subspace in Θ corresponding to the alternative hypothesis Ha by Θa = {µ : µ1 < µ2 <

µ3 or µ1 > µ2 > µ3} and the subspace corresponding to the broad null H0 by Θ0 = Θ \Θa . Figure 1 shows

the contrasts between the narrow and broad null hypotheses and between their corresponding alternative

hypotheses.

Although few studies have identified this crucial problem and defined a suitable method to solve it, some

naive procedures based two-sample t-tests (TSTTs) may be attempted to tackle it. We will describe one
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Figure 1: The narrow (Panel a) and broad (Panel b) null hypotheses and the corresponding alternative
hypotheses. In each panel, the red region (including areas dotted in red and red solid lines when applicable)
represents the null space, and the blue region (including blue solid lines) represents the alternative space.

such procedure using 2-sided TSTTs before introducing the greedy test in Section 3.

To utilize TSTTs to test for a strictly monotonic trend in Equation (1), one can first test the hypothesis

that µ1 6= µ2 and µ2 6= µ3 and then verify that the sample means follow a monotonic trend. For the former,

2-sided TSTTs can be performed comparing groups 1 and 2 and comparing groups 2 and 3. We denote the

p1 and p2 as the p-values of two TSTTs respectively. Because two TSTTs are conducted, the significance

level for each test needs to be adjusted. Using Bonferronni correction, for example, one can conduct each

TSTT at level α/2 for a desired overall type 1 error rate controlled below α. If both tests yield significant

results at level α/2, then both of the two pairs of means are considered significantly different. To conclude

that the µi’s follow a monotonic trend, one can then examine if the x̄i’s are monotonic. Namely, if the

p-value of this test procedure p = 2 ∗max(p1, p2) is less than α and x̄i’s follow a monotonic trend, we can

reject the null hypothesis. In table 1, we detail the specific steps in this procedure, which we will refer to as

the naive procedure based on 2-sided TSTTs.

Two other naive procedures are described in Section 5. We additionally note that the Delta method is not

applicable for this problem. To attempt the Delta method, one would consider η = λ1 ·λ2 to be the parameter

of interest, where λ1 = µ1 − µ2 and λ2 = µ2 − µ3, and construct a test based on η̂ = (x̄1 − x̄2)(x̄2 − x̄3).

However, the conditions for the multivariate Delta method do not hold because the gradient of η̂ is zero

when λ1 = λ2 = 0[10].
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Testing Steps Test hypothesis

Step 1.
Compare µ1 and µ2

Test 1 (level α/2):
H01 : µ1 = µ2

Ha1 : µ1 6= µ2

Step 2.
Compare µ2 and µ3

Test 2 (level α/2):
H02 : µ2 = µ3

Ha2 : µ2 6= µ3

Step 3.
Check the order of the sample means

x̄1 > x̄2 > x̄3

or
x̄1 < x̄2 < x̄3

Reject the overall H0 if both of the following hold:
(i) both tests 1 and 2 yield a rejection, and (ii)the sample means have a monotonic order

Table 1: Naive testing procedure based on 2-sided TSTTs.

3 A trend test for the broad null

We focus on the problem of testing the hypothesis in Equation (1). We allow the sample sizes and the

population variances to be different between the three groups. We assume a reasonably large sample size for

all three groups so that the sample mean of each group is well approximated by a normal distribution based

on the central limit theorem. The asymptotic distributions of the sample means are given by x̄i ∼ N(µi, σ
2
i ),

where µi is the population mean of group i and σ2
i = Var (x̄i) is the variance of the ith sample mean for

i = 1, 2, 3.

3.1 A test statistic motivated by the likelihood-ratio test

We will first tackle the case if σi’s are known, and the general case with unknown σi’s will be discussed later

(Section 3.2). Ignoring constants that do not depend on the parameters µi’s, the log-likelihood function

can be written as ` (µ1, µ2, µ3) = − 1
2

(
(x̄1−µ1)2

σ2
1

+ (x̄2−µ2)2

σ2
2

+ (x̄3−µ3)2

σ2
3

)
. To derive the likelihood ratio test,

we start by finding the restricted and unrestricted maximum likelihood estimators (MLEs) for the unknown

parameters µ1, µ2 and µ3. It is easily seen that the unrestricted MLE is given by the sample means x̄1, x̄2

and x̄3. The restricted MLE which maximizes the likelihood function in the null space, we need to consider

two situations, depending on whether (x̄1, x̄2, x̄3) is consistent with Θ0. We therefore divide the “data space”

Θx := {(x̄1, x̄2, x̄3) : x̄i ∈ R, i = 1, 2, 3} into two parts (Figure 2), one consistent with Θa and one with Θ0:

Θx
a = {(x̄1, x̄2, x̄3)|x̄1 < x̄2 < x̄3 or x̄1 > x̄2 > x̄3} (3)

Θx
0 = Θx \Θx

a
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The following lemma concerns the restricted MLE.

Lemma 1. 1. When (µ̂1, µ̂2, µ̂3) ∈ Θx
0 , the restricted MLE which maximizes the log-likelihood function

over Θ0 is (µ̂1, µ̂2, µ̂3) = (x̄1, x̄2, x̄3).

2. When (x̄1, x̄2, x̄3) ∈ Θx
a, the restricted MLE which maximizes the log-likelihood function over Θ0 is

(µ̂1, µ̂2, µ̂3) =


(µ̃1, µ̃2, µ̃3) , if |x̄1−x̄2|√

σ2
1+σ2

2

≥ |x̄2−x̄3|√
σ2
2+σ2

3(
˜̃µ1, ˜̃µ2, ˜̃µ3

)
, if |x̄1−x̄2|√

σ2
1+σ2

2

< |x̄2−x̄3|√
σ2
2+σ2

3

,

where (µ̃1, µ̃2, µ̃3) =
(
x̄1,

x̄2σ
2
3+x̄3σ

2
2

σ2
3+σ2

2
,
x̄2σ

2
3+x̄3σ

2
2

σ2
3+σ2

2

)
,
(

˜̃µ1, ˜̃µ2, ˜̃µ3

)
=
(
x̄1σ

2
2+x̄2σ

2
1

σ2
1+σ2

2
,
x̄1σ

2
2+x̄2σ

2
1

σ2
1+σ2

2
, x̄3

)
.
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Figure 2: Partitions of the data space Θx and the parameter space Θ.

To intuitively explain the Lemma, when (x̄1, x̄2, x̄3) ∈ Θx
0 , the data are consistent with the pattern in

the null hypothesis and therefore the restricted MLE coincides with the unrestricted MLE.

When (x̄1, x̄2, x̄3) ∈ Θx
a, under the null, the MLEs are attained when two populations share the same

mean. In other words, the MLEs are taken on one of the two boundaries of Θ0, which is not surprising given

that the trend in the data does not align with the ordering of the population means. The smaller of the two

standardized distances (i.e. |x̄1−x̄2|√
σ2
1+σ2

2

and |x̄2−x̄3|√
σ2
2+σ2

3

) reveals which of the two boundaries of Θ0 yields a greater

log likelihood.

Given the restricted and unrestricted MLEs, we can derive the maximum value of the log-likelihood

function under restricted and unrestricted cases and hence the likelihood ratio. First, we derive the maximum

of the log-likelihood under Θ0. When(x̄1, x̄2, x̄3) ∈ Θx
a, plugging in the MLEs for (µ1, µ2, µ3) given in Lemma

1 into `(µ1, µ2, µ3) yields a log-likelihood value that depends on the standardizes distances. When the sample

means do not follow a monotonic trend, the restricted MLEs coincide with the unrestricted MLEs, and thus

the likelihood ratio statistic is zero. These results are summarized in Theorems 2 and 3.

Theorem 2. When (x̄1, x̄2, x̄3) ∈ Θx
a, sup
µ∈Θ0

`(µ1, µ2, µ3) = − 1
2 min( |x̄1−x̄2|√

σ2
1+σ2

2

, |x̄2−x̄3|√
σ2
2+σ2

3

)

Theorem 3. The likelihood ratio statistics is given by,

λ =


−2 min

(
|x̄1−x̄2|√
σ2
1+σ2

2

, |x̄2−x̄3|√
σ2
2+σ2

3

)
, if x̄1 < x̄2 < x̄3 or x̄1 > x̄2 > x̄3

0, Otherwise

7



This statistic makes intuitive sense as a way of measuring how inconsistent the data is with H0, because

when sample means have a monotonic trend and the minimal of the distances between sample means is large,

the population means are likely to have a strictly monotonic trend.

Motivated by the form of the likelihood ratio test, we define our test statistic as follows

T (x) =


min

(
|x̄1−x̄2|√
σ2
1+σ2

2

, |x̄2−x̄3|√
σ2
2+σ2

3

)
, if x̄1 ≤ x̄2 ≤ x̄3 or x̄1 ≥ x̄2 ≥ x̄3

0, Otherwise

(4)

3.2 Assessing Statistical Significance

Let t be the realized value of the test statistic defined in Equation (2). For fixed µ, Pµ(T (x) > t) is a

measure of compatibility of the observed data with null hypothesis. To effectively control type 1 error in the

entire null space, we obtain the p-value as p = sup
µ∈Θ0

g(µ). With some reparameterization, we will show that

the p-value has a simple and intuitive analytical form.

Recall that λ1 = µ1 − µ2 and λ2 = µ2 − µ3. Note that H0 can be equivalently expressed in terms of λ1

and λ2 as λ1λ2 > 0. It is not hard to show that Pµ(T (x) > t) depends on µ only through λ1 and λ2. We

hence let g (λ1, λ2) = Pλ1,λ2
(T (x) > t), and it follows that the p-value is given by p = sup

µ∈Θ0

g(λ1, λ2). Under

the null, the population means have higher chance to yield strictly monotonically ordered sample means

when two of the sample means are equal. Therefore, the measure of compatibility is higher when one of the

λs is zero and lower when otherwise. In fact, the measure of compatibility is maximized when one of the λ’s

is zero and the other approaches infinity. This is formalized in the following Lemma.

Lemma 4. sup
µ∈Θ0

g(λ1, λ2) = max(g(0,∞), g(∞, 0), g(0,−∞), g(−∞, 0))

By evaluating the right hand side of the equation above, the following Theorem for the p-value follows.

Theorem 5. The p-value is given by 1−Φ(t), where Φ(·) is the cumulative distribution function of N(0, 1)

and t is the observed value of the test statistic T .

With the great simplicity of the form for the p-value, the greedy test can be implemented using a two-

step procedure: 1) find the test statistic by taking the minimum of the two standardized distances. 2)

derive the p-value by obtaining the upper tail cumulative probability for the standard normal distribution.

It is noteworthy that the test only depends on the standardized distances between the group means and is

unaffected by the amount of correlation between the standardized distances.
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In practice, when σ2
i ’s are unknown, we replace them with a consistent estimator such as the sample

variance estimator given by σ̂2
i =

1

mi − 1

∑mi
j=1(xij − x̄i)2 in the test statistic defined in Equation (4). The

test statistic hence becomes

T (x) =


min

(
|x̄1−x̄2|√
σ̂2
1+σ̂2

2

, |x̄2−x̄3|√
σ̂2
2+σ̂2

3

)
, if x̄1 ≤ x̄2 ≤ x̄3 or x̄1 ≥ x̄2 ≥ x̄3

0, Otherwise

(5)

3.3 Rejection region and connection with two-sample t-tests

Given a desired significance level α, it is easily seen that the rejection region of the greedy test is given

by {x : p < α} = {x : T1(x) · T2(x) > 0, |T1(x)| > z1−α, |T2(x)| > z1−α}, where T1(x) = |x̄1−x̄2|√
σ̂2
1+σ̂2

2

and T2(x) = |x̄2−x̄3|√
σ̂2
2+σ̂2

3

are 2-sided TSTT statistics, and z1−α is the 1 − α quantile of the standard normal

distribution. This brings about a natural interpretation of the greedy test method based on TSTTs. It can

be equivalently implemented using the following simple procedure:

1. Are the sample means located in Θx
a (i.e. do the sample means follow a monotonic trend)? If so, go to

Step 2; If not, fail to reject the null (p-value > 0.5).

2. Conduct 2-sided TSTTs at level 2α between groups 1 and 2 and between groups 2 and 3.

3. Follow either one of the follow two procedures, which are equivalent:

• Reject the null if both TSTTs reject their corresponding nulls at level 2α.

• Equivalently, let the p-values of the TSTT’s be p1 and p2. The final p-value of the greedy test

can be obtained by taking p = max(p1, p2)/2. Reject the null if p < α.

It is worth noting that the procedure described above is closely connected to the naive procedure based

on 2-sided TSTTs (see Section 2 and Table 1). The key difference between the two is that the greedy test

requires both 2-sided TSTTs to be performed at level 2α, whereas the naive procedure performs both TSTTs

at level α/2.

In other words, the p-values for 2-sided TSTT is a linear transformation from the greedy test. Recall

the p-value for 2-sided TSTT is p2−sidedTSTT = 2 max(p1, p2), so p2−sidedTSTT = 4pgreedy. Therefore, the

greedy test is expected to achieve substantial power gain over the 2-sided TSTT procedure and the listed

naive procedures in Appendix C.
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4 Results

4.1 Simulation studies

First, we verify the effective type 1 error control of the greedy test and three naive procedures: one based on

2-sided TSTTs as described in Section 2, one based on 1-sided TSTTs and one based on confidence intervals

(see Appendix C). In addition, we show that existing methods proposed for the narrow null do not control

type 1 error effectively. As examples of rank-based methods, we focus on JT and CU, which, like other

rank-based tests, are proposed to test the narrow null and further assume that the populations follow the

same distribution under the null.

We consider the following simulation settings from the broad null.

I. Boundary of the null: Two of the groups have the same mean, which differs from the mean of the third

group. The three groups are assumed to follow N(0,1), N(0,1), and N(µ3, 1), respectively, where µ3 is

varied from 0 to 1.

II. Interior of the null: All three group means are different but do not follow a monotonic trend. The

three groups are assumed to follow N(0,1), N(1,1), and N(µ3, 1), respectively, where µ3 is varied from

0 to 1.

III. Unequal variances and different distribution families: The three groups do not come from the same

distribution family and do not have the same variance. The three groups are assumed to follow N(1,10),

N(1,1), and Poisson(µ3), respectively, where µ3 is varied from 1 to 2.

For each simulation setting, we simulate mi = 30 samples independently from each of the three populations.

Then, the type error 1 rate of a method is estimated based on 10,000 replicates as the frequency at which

the p-value is below a nominal level of α = 0.05.

Across the simulation settings, the greedy test as well as the naive methods effectively control type 1

error at level 0.05. However, both CU and JT suffer from severely inflated type 1 error for a vast majority

of the settings. Settings I and II assume normally distributed data with equal variances across groups. In

setting I (Figure 1a), the first two groups have the same mean and hence the parameters are located on the

boundary of the broad null which we aim to test. In this setting, the parameters are consistent with the

narrow null if and only if µ3 = 0, in which case type 1 error is also well controlled by the rank-based tests.

However, when µ3 > 0, the parameters are treated as being part of the alternative space by rank-based

methods. As such, the rejection probability tends to fall well above the nominal level 0.05 for JT and CU.
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Figure 3: Empirical type 1 error results. The three panels compare the empirical type 1 error rates of the
greedy test, CU, JT and three naive procedures under settings I) boundary of null, II) interior of null and
III) unequal variances and different distribution families, respectively. Each curve shows the empirical type
1 error rate (vertical axis) as a function of mu3 (horizontal axis). The curves are color coded to represent
the methods in comparison. The horizontal dashed line display the nominal level at 0.05. The greedy test
and the naive procedures consistently controls type 1 error effectively, whereas both CU (grey curve) and
JT (light purple curve) fail to control type 1 error in the majority of the settings.

In setting II, µ1 ≤ µ3 ≤ µ2. When µ3 is strictly between µ1 and µ2, the group means are all unequal but not

monotonic. This setting is in fact treated by rank-based methods as implausible because it belongs neither

to the narrow null nor to the alternative hypothesis targeted by rank-based methods. In this case, it is

not surprising that rank-based methods do not guarantee adequate control of type 1 error. In fact, JT and

CU can result in excessive false positives with a rate of up to 100%. In summary, rank-based methods are

severely mis-calibrated both on the boundary and in the interior of the broad null hypothesis, whereas the

greedy test and the naive procedures effectively control type 1 error globally.

For setting III, the three populations have distributions from different families. When µ3 > 1, CU and

JT result in excessive type 1 error for the same reason that they do in Setting I. In contrast to Setting II,
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Figure 4: Empirical power results of the greedy test and three naive procedures for settings IV and V. Each
curve shows the empirical power (vertical axis) of a method as a function of µ3 (horizontal axis). The curves
are color coded to represent the four methods. Across the settings, the greedy test (purple curve) is the
most powerful, followed by the naive procedure based on 1-sided TSTTs (Brown curve), the naive procedure
based on 2-sided TSTTs (dark yellow curve), and the naive procedured based on confidence intervals (light
yellow curve).

the three groups follow distributions from different families and have unequal variances, which is a violation

of the assumption of rank-based methods that the groups have identical distributions under the null. This

explains why CU and JT have inflated type 1 error rate even when µ1 = µ2 = µ3 = 1. Effective type 1

error control by the greedy test and the naive procedures, however, do not rely on the identical distribution

assumption.

We then evaluate the power of our approach and compare it with the naive methods. Rank-based methods

are not included in the power simulations, because they do not control type 1 error adequately. To this end,

we consider two settings under the alternative hypothesis.

IV. Increasing trend: The three groups follow normal distributions with monotonically increasing means

and the same variance. The three groups are assumed to follow N(0, 1), N( 1
2µ3, 1), and N(µ3, 1),

respectively, where µ3 is varied from 0 to 1.

V. Unequal variances and different distributions families: The three groups do not come from the same

distribution family and do have the same variance. The group means follow an increasing trend. The

three groups are assumed to follow N(1, 10), N(1 + 1
2µ3, 1), and Poisson(1 + µ3), respectively, where

µ3 is varied from 0 to 10.

In both settings, power grows for all methods as µ3 increases. Throughout the simulations, the greedy
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test achieves the highest power. This demonstrates the power advantage of our method over the naive

procedures.

4.2 Real data application

We illustrate the proposed test by applying it to the gut microbiome data produced during a prior investiga-

tion of the zebrafish gut microbiome Gaulke et al. 2019 [11]. This prior study aimed to investigate the link

between the gut microbiome and gastrointestinal parasite infection and pathology. As part of the study, 105

zebrafish were exposed to Pseudocapillaria tomentosa or controls, a helminthic parasite that infects the ze-

brafish gut to induce pathological changes including intestinal inflammation, tissue damage, and hyperplasia

Kent. The study profiled the composition of the gut microbiome through 16S rRNA gene sequence analy-

sis, quantified total worm burden through cytology, and measured the extent of histopathological damage

induced by the infection.

Specifically, the gut microbiome of the fish was measured over 12 weeks of infection via cross-sectional 16S

sequencing, which generated the relative abundances of 565 genera for each fish. Two types of pathological

changes on the parasite-exposed fish, inflammation and hyperplasia, were assessed by a pathologist based

on examination of intestine tissues. For either type of changes, severity was scored between 0 and 3 for each

fish. In the prior work, the investigators modeled how the variation in the relative abundance of specific taxa

explained the variation in histopathological outcomes, but did not resolve monotonic relationships between

these features per se.

We use these data in conjunction with our application to resolve microbiota that specifically monotonically

associate with histopathological outcomes, which are useful to detect because such associations point to

intimate relationships between pathology and the taxon in question. Such taxa are consequently strong

candidates for being functionally intertwined with the pathological phenotype. To detect such taxa, we

group the samples into three categories based on the inflammation score: no inflammation (score = 0, n =

47), mild to moderate inflammation (score = 1 or 2, n = 45), and severe inflammation (score = 3, n = 10).

We also group the samples based on the hyperplasia score: no hyperplasia (score =0, n = 32), mild and

moderate hyperplasia (score = 1 or 2, n = 53), and severe hyperplasia (score = 3, n = 17).

We first aim to detect overall patterns of the gut microbiome that associate with inflammation severity.

To this end, we perform non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity

and principal component analysis (PCA), on the microbiome data. For either NMDS or PCA, we retain

the top three components, which are then tested individually for monotonic trends with inflammation sever-
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ity. Bonferroni-corrected p-values are reported in Table 2 based on the proposed greedy test, the näıve

procedure based on 1-sided TSTT, and the näıve procedure based on 2-sided TSTT. The greedy test finds

strong evidence that the second NMDS component varies strictly monotonically across the severity groups

of inflammation (MDS2, Bonferroni corrected p = 0.0030). The monotonic trend is also identified by the

two näıve procedures, although with less significant p-values (Bonferroni-corrected p = 0.0059 and 0.012,

respectively). Based upon the PCA results, the greedy test identifies a statistically significant monotonic

trend associated with the second principal component (PC2, Bonferroni-corrected p = 0.037). The näıve

procedures (Bonferroni-corrected p = 0.074 and 0.15 respectively), however, fail to capture this signal at

level 0.05 due to their lower power compared with the greedy test. These results indicate that there exist

overall features of the gut microbiome that vary monotonically with increasing severity level of inflammation

in the intestine among parasite-exposed zebrafish.

Building upon these results, we next apply our procedure to resolve specific taxa that monotonically

associate with inflammation severity. We focus the analysis on the common genera which are present in at

least 20% of the samples. A total of 49 such genera are identified in the data. The relative abundance of each

genus is tested for monotonic trends across inflammation severity groups using the greedy test and two naive

procedures (Table 2). Based on the greedy test, there is suggestive evidence that Cetobacterium decreases

monotonically as inflammation severity elevates from no inflammation to severe inflammation (Bonferroni-

corrected p = 0.11, x̄ = (0.3287, 0.2092,0.0385)). This finding reinforces the discovery of a negative (and

not necessarily monotonic) association between Cetobracterium and parasite burden in Gaulke et al, 2019.

We note that, using the näıve trend testing procedures, the monotonic trend associated with Cetabacterium

would yield substantially greater p-values (Bonferroni-corrected p = 0.22 and 0.44, respectively).

Similar analyses are performed for the groups defined based on hyperplasia scores, and no significant

signals are found. Overall, our results indicate that while both the greedy test and the näıve procedures do

well in capturing highly significant monotonic trends, the power gain achieved by the greedy test has the

potential of enabling the discoveries of mild to moderate signals that would be missed by the use of the näıve

tests.

5 Discussion

We have proposed a greedy testing method for a strictly monotonic trend among the means of three inde-

pendent groups against a composite null hypothesis that the group means are equal or unequal but are not
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NMDS
Greedy test Naive 1-sided Naive 2-sided

MDS2 0.0030 0.0059 0.012
PCA

Greedy test Naive 1-sided Naive 2-sided
PC2 0.037 0.074 0.15

Genus-level Tests
Greedy test Naive 1-sided Naive 2-sided

Cetobacterium 0.11 0.22 0.44

Table 2: Bonferroni-corrected p-values in zebrafish gut microbiome analysis, based on the greedy test, the
naive procedure based on 1-sided TSTT (Naive 1-sided) and the naive procedure based on 2-sided TSTT
(Naive 2-sided). P-values below 0.05 are in bold type, and p-values between 0.05 and 0.2 are italicized.
Microbial features for which none of the methods yields a raw p-value below 0.05 are omitted.

strictly monotonic. We demonstrate both theoretically and empirically that existing testing methods are not

valid for this problem because they target a narrow null in which the group mean are all equal. To address

this issue, we have developed a greedy testing method that achieves global type 1 error control in the entire

null space. Moreover, unlike most nonparametric methods based on rank, the proposed method does not

require the groups to have the same distribution under the null or the same variance and therefore is more

flexible. The greedy test is computationally simple and the test statistic has a simple expression because of

its connection with TSTTs. However, compared to a naive procedure based on pairwise TSTTs, the greedy

test improves power substantially because we have shown that, for each pairwise comparison, it only requires

a significance level that is four times the significance level entailed by the naive procedure to achieve global

type 1 error control.

We have shown in simulation studies that methods intended for testing the narrow null result in excessive

false positives when used to test the broad null, whereas the greedy test effectively controls the type 1 error

rate in a wide range of settings including those in which the groups have distributions from different families

and different variances. In addition, we have demonstrated that the proposed test outperforms three naive

procedures that we have described in power. Finally, we have applied the method to the data from GSEP,

which is a case-control study on prostate cancer. We have found suggestive evidence that Gleason score

increases consistently across the three age groups defined as (age < 60, 60 ≤ age ≤ 70,age > 70) and that

PSA level increases consistently as the minor allele count for rs851023 goes from 0 to 2.

Although the development of the method has been primarily motivated by the trend test problem with

a broad null, the method can be used to solve a more general class of problems beyond trend tests. To see
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this, we first write the hypotheses in (1) and (2) in the following form

H0 : λ1 · λ2 > 0

Ha : λ1 · λ2 ≤ 0.

and write the test statistic in Equation (4) as

T := min{|T1|, |T2|} · I{T1 · T2 > 0} (6)

In the context of a trend test between three groups, λ1 and λ2 represent the pairwise differences in means

and T1 and T2 are the corresponding 1-sided test statistics. However, the proof of Lemma 4 does not rely on

these specific definitions of λ1 and λ2. In a more general framework, λ1 and λ2 can be any parameters for

which it is of interest to test whether they are both nonzero and have the same sign. For this general setup,

the test statistic defined in Equation (6) can be used and its p-value can be assessed using the expression

given in Theorem 5. The proof of Lemma 4 in the Appendix is still valid to show that Theorem 5 holds in

the more general setup, so long as the following conditions hold: a) T1 and T2 are valid 2-sided statistics

for λ1 = 0 and λ2 = 0, respectively; b) (T1, T2) has an (asymptotic) bivariate normal distribution, E(Ti)

has the same sign as λi, var(Ti) = 1, and cov(T1, T2) ≤ 0. In particular, this includes the setting in which

T1 and T2 are independent z-test statistics. This is potentially relevant to many medical applications. For

example, when two separate studies both evaluate the association between a genetic factor and a disease,

the test statistics are independent provided that the studies are conducted on separate cohorts. In this case,

the greedy test has the potential to take advantage of combining the summary statistics of the two studies

to boost power by enabling the detection of a significant association at level α so long as the p-values from

both studies are below 2α.
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Appendix A

In this Appendix, we show the results in Section 3.1

A1. Proof of Lemma 1

Proof. We start by introducing some notation that we will use to partition the parameter space Θ and

the data space Θx := {(x̄1, x̄2, x̄3) : x̄i ∈ R, i = 1, 2, 3}. First, we define the four disjoint regions of the

parameter space illustrated in Figure 1b as follows (see Figure 5a)

A = {(µ1, µ2, µ3) : µ3 ≤ µ2, µ1 ≤ µ2} ⊂ Θ0

B = {(µ1, µ2, µ3) = µ3 ≥ µ2, µ1 ≥ µ2} ⊂ Θ0

C = {(µ1, µ2, µ3) = µ1 > µ2 > µ3} ⊂ Θc
0

D = {(µ1, µ2, µ3) = µ1 < µ2 < µ3} ⊂ Θc
0

Analogous regions in the data space can also be defined (see Figure 5b):

Ax = {(x̄1, x̄2, x̄3) : x̄3 ≤ x̄2, x̄1 ≤ x̄2} ⊂ Θx
0

Bx = {(x̄1, x̄2, x̄3) : x̄3 ≥ x̄2, x̄1 ≥ x̄2} ⊂ Θx
0

Cx = {(x̄1, x̄2, x̄3) : x̄1 > x̄2 > x̄3 } ⊂ Θx
a

Dx = {(x̄1, x̄2, x̄3) : x̄1 < x̄2 < x̄3} ⊂ Θx
a

We will present the proof of Lemma 1 for the case when x̄ ∈ Dx. For x̄ ∈ Cx, the results can be shown

using a similar argument. Assuming x̄ ∈ Dx, we first prove the following lemma on the maximization of the

log-likelihood function l (µ1, µ2, µ3) for µ ∈ A.

Lemma 6. Assuming x̄ ∈ Dx, we have

(µ̃1, µ̃2, µ̃3) = argmin
µ∈A

l (µ1, µ2, µ3) (7)

(
˜̃µ1, ˜̃µ2, ˜̃µ3

)
= argmin

µ∈B
l (µ1, µ2, µ3) (8)

where (µ̃1, µ̃2, µ̃3) and
(

˜̃µ1, ˜̃µ2, ˜̃µ3

)
are as defined in Lemma 1.
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Figure 5: Further partitions of the data space Θx and the parameter space Θ.

Proof. We first note that µ̃2 = µ̃3 and µ̃2 =
x̄2σ

2
3+x̄3σ

2
2

σ2
3+σ2

2
≥ x̄1σ

2
3+x̄1σ

2
2

σ2
3+σ2

2
= x̄1 = µ̃1, where the last inequality

holds because x̄ ∈ Dx. This implies that (µ̃1, µ̃2, µ̃3) ∈ A. To show equation (7), it remains to show that

l (µ̃1, µ̃2, µ̃3) ≥ l (µ1, µ2, µ3) , (9)

for any (µ1, µ2, µ3) ∈ A. To this end, we note that for such (µ1, µ2, µ3) ∈ A,

l (µ̃1, µ̃2, µ̃3)− l (µ1, µ2, µ3) =
(x̄2 − µ2)

2

2σ2
2

−

(
x̄2 − x̄2σ

2
3+x̄3σ

2
2

σ2
3+σ2

2

)2

2σ2
2

+
(x̄3 − µ3)

2

2σ2
3

+

(
x̄3 − x̄2σ

2
3+x̄3σ

2
2

σ2
3+σ2

2

2
)2

2σ2
3

(10)

=
1

σ2
2 + σ2

3

(x̄3 − x̄2) (µ2 − µ3) +
1

σ2
2

(px̄2 + qx̄3 − µ2)
2

+
1

σ2
3

(px̄2 + qx̄3 − µ3)
2

(11)

≥ 1

σ2
2 + σ2

3

(x̄3 − x̄2) (µ2 − µ3) ≥ 0,

where p =
σ2
3

σ2
2+σ2

3
, q =

σ2
2

σ2
2+σ2

3
, and the last inequality follows from µ2 ≥ µ3 and x̄2 ≤ x̄3. Equation (7) is

thereby proved. Equation (8) can be shown using a similar argument.

The following lemma evaluates the log likelihood function at the optima given in Lemma 6.
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Lemma 7.

l (µ̃1, µ̃2, µ̃3) = − (x̄2 − x̄3)
2

σ2
2 + σ2

3

l
(

˜̃µ1, ˜̃µ2, ˜̃µ3

)
= − (x̄1 − x̄2)

2

σ2
1 + σ2

2

The proof of Lemma 7 is a straightforward substitution into the log likelihood function and is omitted

here.

Combing Lemma 6, Lemma 7, and Θ0 = A ∪B,

(µ̂1, µ̂2, µ̂3) =


(µ̃1, µ̃2, µ̃3) , if l (µ̃1, µ̃2, µ̃3) ≥ l

(
˜̃µ1, ˜̃µ2, ˜̃µ3

)
(

˜̃µ1, ˜̃µ2, ˜̃µ3

)
, if l (µ̃1, µ̃2, µ̃3) < l

(
˜̃µ1, ˜̃µ2, ˜̃µ3

) (12)

=


(µ̃1, µ̃2, µ̃3) , if |x̄1−x̄2|√

σ2
1+σ2

2

≥ |x̄2−x̄3|√
σ2
2+σ2

3(
˜̃µ1, ˜̃µ2, ˜̃µ3

)
, if |x̄1−x̄2|√

σ2
1+σ2

2

< |x̄2−x̄3|√
σ2
2+σ2

3

. (13)

Lemma 1 is thereby proved.

A2. Proof of Theorem 2

Proof. Combining Lemma 1, Lemma 6, and Lemma 7 yields

l (µ̂1, µ̂2, µ̂3) =


− (x̄2−x̄3)2

σ2
2+σ2

3
, if |x̄1−x̄2|√

σ2
1+σ2

2

≥ |x̄2−x̄3|√
σ2
2+σ2

3

− (x̄1−x̄2)2

σ2
1+σ2

2
, if |x̄1−x̄2|√

σ2
1+σ2

2

< |x̄2−x̄3|√
σ2
2+σ2

3

=−min

(
|x̄1 − x̄2|√
σ2

1 + σ2
2

,
|x̄2 − x̄3|√
σ2

2 + σ2
3

)

Appendix B

In this appendix, we prove the results in Section 3.2.
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B1. Proof of Lemma 4 and Theorem 5

Proof. To show Lemma 4 and Theorem 5, we first show that g(0,∞) = g(∞, 0) = g(0,−∞) = g(−∞, 0) =

1 − Φ(t). Recall that T1 = x̄1−x̄2√
σ2
1+σ2

2

and T2 = x̄2−x̄3√
σ2
2+σ2

3

. Notice that T1 and T2 have a bivariate normal

distribution:

T1

T2

 ∼ N

 λ1√

σ2
1+σ2

2

λ2√
σ2
2+σ2

3

,


1 − σ2
2√

σ2
1+σ2

2

√
σ2
2+σ2

3

− σ2
2√

σ2
1+σ2

2

√
σ2
2+σ2

3

1




Without loss of generality (WLOG), we focus on the case when σ2

1 + σ2
2 = 1 and σ2

2 + σ2
3 = 1 for this

proof, so

T1

T2

 ∼ N

λ1

λ2

,


1 −ρ

−ρ 1




where ρ = −corr(T1, T2) and ρ > 0.

We shift the center of the bivariate normal distribution to (0, 0), and let Z1 = T1−λ1 and Z2 = T2−λ2.

Then Z1 and Z2 have a bivariate normal distribution

Z1

Z2

 ∼ N

0

0

,
 1 −ρ

−ρ 1




We can now express g(λ1, λ2) in terms of Z1 and Z2 as

g (λ1, λ2) =P (T1T2 > 0, min (|T1|, |T2|) > t)

=P (T1 > t, T2 > t) + P (T1 < −t, T2 < −t)

=P (Z1 > t− λ1, Z2 > t− λ2) + P (Z1 < −t− λ1, Z2 < −t− λ2) (14)

Hence, g(0,∞) = limλ2→∞ P (Z1 > t, Z2 > t− λ2) + limλ2→∞ P (Z1 < −t, Z2 < −t− λ2) = P (Z1 > t) =

1− Φ(t). Likewise, it can be shown that g(∞, 0) = g(0,−∞) = g(−∞, 0) = 1− Φ(t).

To show Lemma 4 and Theorem 5, it remains to show that g(λ1, λ2) ≤ P (Z > t) for λ1, λ2 ∈ Θ0, where

Z is a standard normal random variable. In equation (14), it is apparent that the magnitudes of λ1 and λ2
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directly affect the value of g(λ1, λ2). In fact, ρ also plays a role in g(λ1, λ2) as it influences the distribution of

(Z1, Z2). To highlight the dependence on ρ, for rest of the proof, we write gρ(λ1, λ2). We introduce Lemma

8 which states that for all λ1, λ2 ∈ Θ0 and when corr(T1, T2) ≤ 0 (i.e. ρ < 0), gρ(λ1, λ2) is maximized when

ρ = 0. With this lemma, it suffices to show that Lemma 4 holds when ρ = 0.

Lemma 8. gρ(λ1, λ2) ≤ gρ=0(λ1, λ2).

The proof of Lemma 8 will be provided in Appendix B2.

With this lemma, it suffices to show that Lemma 4 holds when ρ = 0. WLOG, we focus on the case

when (λ1, λ2) ∈ B and |λ1| > |λ2|. Let a = −λ2. Then, 0 < a < λ1, and g(λ1, λ2) = P (Z1 > t − λ1, Z2 >

t+a)+P (Z1 > t+λ1, Z2 < −t+a). When ρ = 0, Z1 and Z2 are independent. Thus, gρ=0(λ1, λ2) = P (Z1 >

t− λ1)P (Z2 > t+ a) + P (Z1 < −t− λ1)P (Z2 < −t+ a). To show gρ=0(λ1, λ2) ≤ 1− Φ(t) = P (Z > t), we

will discuss three cases depending on the magnitude of t: Case A. 0 ≤ a ≤ a+λ1

2 < t, Case B. 0 ≤ t ≤ a ≤ λ1,

and Case C. 0 ≤ a ≤ t ≤ a+λ1

2 ≤ λ1.

Case A When 0 ≤ a ≤ a+λ1

2 < t, we know that t − λ1 > −t + a. Therefore, P (Z1 > t − λ1) + P (Z1 <

−t+ a) ≤ 1, and hence

gρ=0(λ1, λ2) ≤P (Z1 > t− λ1)P (Z2 > t) + P (Z1 < −t)P (Z2 < −t+ a)

=P (Z1 > t− λ1)P (Z > t) + P (Z > t)P (Z2 < −t+ a)

=P (Z > t) [P (Z1 > t− λ1)P (Z > t) + P (Z > t)P (Z2 < −t+ a)] ≤ P (Z > t)

Case B When 0 ≤ t ≤ a ≤ λ1, we will show gρ=0(λ1, λ2) − [1 − Φ(t)] = gρ=0(λ1, λ2) − P (Z > t) ≤ 0. We

first note that

gρ=0(λ1, λ2)− P (Z > t) =P (Z1 > t− λ1)P (Z2 > t+ a) + P (Z1 < −t− λ1)P (Z2 < −t+ a)− P (Z > t) ≤ 0

⇐⇒ P (Z1 > t− λ1)P (Z2 > t)− P (Z1 > t− λ1)P (t < Z2 < t+ a)

− P (Z > t)P (Z1 < t+ λ1) + P (Z1 > t+ λ1)P (t− a < Z2 < t) ≤ 0
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We write the left hand side of the last inequality as I + II, where

I =P (Z1 > t− λ1)P (Z2 > t)− P (Z > t)P (Z1 < t+ λ1)

=P (Z > t) [P (Z1 > t− λ1)− P (Z1 < t+ λ1)] ,

II =P (Z1 > t+ λ1)P (t− a < Z2 < t))− P (Z1 > t− λ1)P (t < Z2 < t+ a)

To show I + II ≤ 0, it suffices to show I ≤ 0 and II ≤ 0. Since t > 0, it is obvious that I ≤ 0. To show

II ≤ 0, it is equivalent to show that P (t<Z2<t+a)
P (t−a<Z2<t)

P (Z1>t−λ1)
P (Z1>t+λ1) ≥ 1. We let III = P (t<Z2<t+a)

P (t−a<Z2<t)
= P (t<Z<t+a)

P (t−a<Z<t)

and IV = P (Z1>t−λ1)
P (Z1>t+λ1) = P (Z>t−λ1)

P (Z>t+λ1) . It suffices to show that III · IV ≥ 1. IV obtains its minimum when λ1

is minimized. Because a ≤ λ1, IV ≥ IV
∣∣∣
λ1=a

= P (Z>t−a)
P (Z>t+a) . Therefore,

P (t < Z2 < t+ a)

P (t− a < Z2 < t)

P (Z1 > t− λ1)

P (Z1 > t+ λ1)
≥P (t < Z2 < t+ a)

P (t− a < Z2 < t)

P (Z > t− a)

P (Z > t+ a)

Let III = P (t<Z<t+a)
P (t−a<Z<t) and V = P (Z>t−a)

P (Z>t+a) . To show that III ·V ≥ 1, we introduce Lemma 9 and Lemma

10.

Lemma 9 (Abramowitz, 1965[12]).
√

π
2 e

t2

2 P (Z > t) ≤ 1

t+
√
t2+ 8

π

for t ≥ 0.

Lemma 10. f(x+a)
f(x) ≥ e

− 3a2

2 for t− a < x < t < a.

The proof of Lemma 10 will be provided in Appendix B3.

Let III = P (t<Z<t+a)
P (t−a<Z<t) =

∫ t+a
t

f(z)dz

P (t−a<z<t) . With change of variable x = z − a in the numerator, III =∫ t
t−a f(x+a)dx

P (t−a<z<t) . By Lemma 10, III ≥
∫ t
t−a e

− 3a2

2
f(x)dx

P (t−a<z<t) = e−
3a2

2 .

We know that V = P (Z>t−a)
P (Z>t+a) ≥

P (Z>0)
P (Z>2a) = 1

2P (Z>2a) . By Lemma 9, V ≥ 1√
2
π e
−2a2 2

2a+
√

4a2+ 8
π

=

√
π
2 e

2a2
(
a+

√
a2 + 2

π

)
.

Therefore, III · V ≥ e− 3a2

2

√
π
2 e

2a2
(
a+

√
a2 + 2

π

)
= e

a2

2

(
a+

√
a2 + 2

π

)√
π
2 ≥ 1, when a > 0.

Case C When 0 ≤ a ≤ t ≤ a+λ1

2 ≤ λ1, we will show I + II ≤ 0. To show I + II ≤ 0, it’s suffice to show that

III · IV ≥ 1. Recall that III = P (t<Z<t+a)
P (t−a<Z<t) and IV = P (Z1>t−λ1)

P (Z1>t+λ1) . For fixed t, III obtains its minimum

when a is maximized. Given that a ≤ t, III ≥ III
∣∣∣
a=t

= P (t<Z<2t)
P (0<Z<t) . For fixed a and t, IV obtains its

minimum when λ1 is minimized. Given that the a+λ
2 > t, IV ≥ IV

∣∣∣
λ1=2t−a

= P (Z>a−t)
P (Z>3t−a) . For fixed t, this

ratio obtains its minimum when a is maximized. Given that a ≤ t, IV ≥ IV
∣∣∣
λ1=2t−a,a=t

= P (Z>0)
P (Z>2t) .

23



To show III · IV ≥ P (t<Z<2t)
P (0<Z<t)

P (Z>0)
P (Z>2t) ≥ 1, note that P (t<Z<2t)

P (0<Z<t)
P (Z>0)
P (Z>2t) = V · III

∣∣∣
t=a

from the Case B.

Hence, it follows that P (t<Z<2t)
P (0<Z<t)

P (Z>0)
P (Z>2t) ≥ 1.

To summarize, we have shown that for any t > 0 and λ1, λ2 ∈ Θ0, we have g(λ1, λ2) < P (Z > t). This

completes the proof of Lemma 4 and Theorem 5.

B2. Proof of Lemma 8

Proof. To show g(λ1, λ2, ρ) ≤ g(λ1, λ2, 0), we will utilize Claims 1 and 2.

Claim 1. Suppose W1 and W2 are such that

W1

W2

 ∼ N

0

0

,
 1 −ρ

−ρ 1


 ,

where ρ > 0. If c > 0, d > 0, then P (W2 > d|W1 > c) ≤ P (W2 > d).

Proof of Claim 1. Given the joint distribution of W1 and W2 given above, we konw W2|W1 ∼ N(−ρW1, 1−

ρ2). Thus, for d > 0, P (W2 > d) ≥ P (W2 > d|W1 = w1) if w1 > 0. It follows that

P (W2 > d|W1 > c) =

∫∞
c
P (W2 > d|W1 = w1)fW1

(w1)dw1

P (W1 > c)

≤
∫∞
c
P (W2 > d)fw1

(w1)dw1

P (W1 > c)

=
P (W2 > d)P (W1 > c)

P (W1 > c)

=P (W2 > d)

Claim 2. For W1 and W2 defined above, if c > 0 and d > 0, then P (W2 > d|W1 < −c) ≥ P (W2 > d).

Proof of Claim 2.

P (W2 > d|W1 < −c) =

∫ −c
−∞ P (W2 > d|W1 = w1)fW1(w1)dw1

P (W1 < −c)

=

∫ −c
−∞ P (

√
1− ρ2Z − ρw1 > d)fW1(w1)dw1

P (W1 < −c)
, where Z ∼ N(0, 1) is independent of W1

=

∫ −c
−∞ P (Z > d+ρw1√

1−ρ2
)fW1

(w1)dw1

P (W1 < −c)

24



We first show the result for c ≥ d. In this case, W1 ≤ −c =⇒ W1 ≤
√

1−ρ2−1

ρ d =⇒ d+ρW1√
1−ρ2

≤ d =⇒

P

(
Z > d+ρW1√

1−ρ2

)
≥ P (Z ≥ d)). So,

P (W2 > d|W1 < −c) ≥
∫ −c
−∞ P (Z > d)fW1

(w1)dw1

P (W1 < −c)

=
P (Z ≥ d)P (W1 ≤ −c)

P (W1 < −c)

=P (Z ≥ d)

=P (W2 ≥ d)

For c < d, it suffices to show,

P (W2 > d,W1 < −c)
P (W1 < −c)

≥ P (W2 > d)

⇐⇒ P (W2 > d,W1 < −c) ≥ P (W1 < −c)P (W2 > d)

⇐⇒ P (W2 > d,W1 < −c)
P (W2 > d)

≥ P (W1 < −c)

⇐⇒ P (W1 < −c|W2 > d) ≥ P (W1 < −c)

This is equivalent to the result with c > d.

Now we go back to the proof of Lemma 8. We discuss three cases based on the magnitude of t relative

to a and λ1.

Case 1 Assume 0 ≤ a ≤ λ1 ≤ t.

By Claim 1, we can show that P (Z1 > t − λ1, Z2 > t + a) ≤ P (Z1 > t − λ1)P (Z2 > t + a), and P (Z1 <

t−λ1, Z2 < −t+a) ≤ P (Z1 > t+λ1)P (Z2 > t−a). Thus, g(λ1, λ2, ρ) = Pρ(Z1 > t−λ1, Z2 > t+a)+Pρ(Z1 <

t− λ1, Z2 < −t+ a) ≤ P (Z1 > t− λ1)P (Z2 > t+ a) + P (Z1 > t+ λ1)P (Z2 > t− a) ≤ g(λ1, λ2, 0).

Case 2 Assume 0 ≤ a ≤ t < λ1.

Since P (Z1 > t − λ1, Z2 > t + a) = P (Z2 > t + a) − P (Z2 > t + a, Z1 < t − λ1). By Claim 2, P (Z1 >

t− λ1, Z2 > t+ a) ≤ P (Z2 > t+ a)− P (Z1 > t+ a)P (Z1 < t− λ1) = P (Z2 > t+ a)P (Z1 > t− λ1). Thus,

P (Z1 > t− λ1, Z2 > t+ a) ≤ P (Z2 > t+ a)−P (Z2 > t+ a)P (Z1 > t− λ1)P (Z1 < t− λ1) = P (Z2 > t+ a).

By Claim 1, P (Z1 > t+ λ1, Z2 > t− a) ≤ P (Z1 > t+ λ1)P (Z2 > t− a). By an argument similar to Case 1,

g(λ1, λ2, ρ) ≤ g(λ1, λ2, 0).

Case 3 Assume 0 ≤ t < a ≤ λ1.

25



Similar to Case 2, it can be shown that P (Z1 > t− λ1, Z2 > t+ a) ≤ P (Z2 > t+ a)P (Z1 > t− λ1). Using

Claim 2, P (Z1 > t + λ1, Z2 > t − a) = P (Z1 < −t − λ1) − P (Z1 < −t − λ1, Z2 > −t + a) ≤ P (Z1 <

−t− λ1)− P (Z2 > −t+ a)P (Z1 < −t− λ1) = P (Z1 < −t− λ1)P (Z1 > t− a).

Overall, for any t > 0, we have shown that g(λ1, λ2, ρ) ≤ g(λ1, λ2, 0) holds for all t > 0. This completes

the proof of Lemma 8. By an argument similar to Case 1, g(λ1, λ2, ρ) ≤ g(λ1, λ2, 0).

B3. Proof of Lemma 10

Proof. f(x+a)
f(x) =

1√
2π
e−

(x+a)2

2

1√
2π
e−

x2
2

= e−
(a2+2ax)

2 ≥ e−
(a2+2ax)

2

∣∣∣
x=t

= e−
(a2+2at)

2 ≥ e−
(a2+2a2)

2 = e−
3a2

2 for t − a <

x < t < a.

Appendix C

In this appendix, we describe two naive procedures in addition to the naive procedure based on 2-sided

TSTTs described in Section 2.

C1. Naive procedure based on 1-sided TSTTs

To test for a strictly monotonic trend against the broad null, the two possible directions of the trend can

be tested separately: the strictly increasing trend and the strictly decreasing trend. Each direction can be

tested via a 1-sided TSTT between groups 1 and 2, and another such test between groups 2 and 3. For the

increasing trend for example, we first test whether µ1 is significantly smaller than µ2, and likewise for µ2 and

µ3. For the decreasing trend, a similar process can be followed. After four 1-sided TSTTs are conducted,

we reject the null hypothesis in Equation (1) if for either direction both 1-sided TSTTs result in rejections

of their corresponding nulls. Because we have multiple tests, the significance level for each test needs to be

adjusted. Using Bonferroni correction, it can be shown that if we conduct each 1-sided TSTT at level α2 , then

the overall type 1 error rate is controlled at α. Similar with 2-sided TSTTs procedure, the p-value is a linear

transform from the greedy test. The p-value for 1-sided TSTTs procedure is P1−sidedTSTT = max(p1, p2).

This procedure is also laid out in Table 2.

C2. Naive procedure based on confidence intervals

The test can be conducted using simultaneous 2-sided confidence intervals for the group means. The con-

fidence interval for each of the sample means can be obtained based on the t-distribution with degrees of
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Step 1. Compare µ1 and µ2

Test 1 (level α/2):
H01 : µ1 ≥ µ2

Ha1 : µ1 < µ2

Step 2. Compare µ2 and µ3

Test 2 (level α/2):
H02 : µ2 ≥ µ3

Ha2 : µ2 < µ3

Step 3. Compare µ1 and µ2

Test 3 (level α/2):
H03 : µ1 ≤ µ2

Ha3 : µ1 > µ2

Step 4. Compare µ1 and µ2

Test 4 (level α/2):
H04 : µ2 ≤ µ3

Ha4 : µ2 > µ3

Reject the overall H0 if one of the following happens:
(i) both tests 1 and 2 yield a rejection, or
(ii) both tests 3 and 4 yield a rejection

Table 3: Naive procedure based on 1-sided TSTTs

freedom equal to the associated sample size minus 1. The broad null hypothesis is then rejected if and only

if none of the confidence intervals overlap and the sample means have a monotonic trend. To yield an overall

confidence level of 1− α, the Bonferroni method can be used to form the confidence interval for each mean

at level 1− α
3 . It can be shown that this testing procedure guarantees an overall type 1 error control at α.
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