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3 Abstract
4 The Bering Sea Shelf transitions from ice-free to mostly ice-covered and back again over each winter.  

5 Sea ice coverage and the timing of ice melt play a critical role in determining shelf structure and 

6 consequently ecosystem response during the spring transition and summer.  In this study, a 2-km 

7 resolution ocean model, which is based on the Regional Ocean Modeling System (ROMS) and was 

8 initially run and verified against a variety of observational data sources for summer 2009, is augmented 

9 with an ice model to study the coupled ice/ocean dynamics of the Bering Sea shelf from fall 2009 to 

10 summer 2010.  Here we demonstrate that a single-category ice model is appropriate to describe 

11 seasonal evolution of the ice. Enhancements are made to the ice thermodynamic module and air/ice 

12 stress formulations to improve the match between the model and satellite microwave estimates of ice 

13 distribution and extent.   The refined model accurately represents the timing and spatial extent of the 

14 spread of sea ice over the winter season as well as the ice retreat as it melts in spring and summer.   

15 Comparison with satellite products also suggests that the model captures the sea ice response on 

16 shorter temporal (~O(days)) and spatial scales (~O(20km)).  The modification to the drag formulation for 

17 example, can improve the modeled sea ice distribution in response to wind events overall and in 

18 particular in polynya regions along the coastlines of the Seward and Chukotka peninsulas and St. 

19 Lawrence Island.   

20 1 Introduction
21 Each fall and winter, sea ice spreads across the greater than 500-km wide Eastern Bering Sea shelf until 

22 spring melting returns the shelf to ice-free by summer.  There is significant interannual variability in the 

23 timing of the advance and retreat and in the peak extent of the ice (Niebauer, 1983).  Sea ice is 

24 produced locally, particularly in the shallower and more northern portions of the shelf and is 

25 transported southward and westward with prevailing winds to cover a large fraction of the shelf area in 

26 some years.  Because most of the Bering Sea ice is in free drift (Reynolds et al., 1985), rather than land 

27 locked, unlike most Arctic ice in winter, throughout the season changes in winds cause considerable 

28 repositioning of the mass of sea ice causing the appearance and disappearance of polynyas on the 

29 various bordering coastlines and island shores.  The timing of the melt-off relative to the annual solar 

30 cycle and the distribution of where melt occurs in part determines the ecological characteristics of the 

31 Bering Sea shelf in spring and summer (Ladd & Stabeno, 2012).   Given its size and the significant spatial 
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1 and temporal variability, developing a detailed understanding of shelf winter characteristics and 

2 dynamics is challenging.  

3 In situ observations of ice and water characteristics on the Bering Sea shelf are limited.  Visible satellite 

4 imagery provides details of ice distributions, but only intermittently as much of the shelf tends to be 

5 occluded by clouds for much of the winter.   Even in the absence of clouds, satellite estimates of sea 

6 surface temperature, which are readily available for much of the global ocean, cannot be accurately 

7 estimated in the vicinity of sea ice.  Microwave satellite imagery, which is much less impeded by clouds, 

8 provides a relatively accurate measure of the areal extent of sea ice with resolution as high as 5 km 

9 (Spreen et al., 2008).  However, the instruments are limited in ability to quantify ice stresses, ice drift 

10 and thermodynamic fluxes between the ice, atmosphere and ocean.   Recently techniques have been 

11 developed to measure sea surface height in ice-covered seas using satellite altimetry but so far these 

12 techniques apply to very coarse temporal and spatial resolution (Armitage et al., 2016).  Information 

13 about the ocean beneath the ice mostly consists of point-data from long-term moorings that have been 

14 placed in Bering Strait (Woodgate et al., 2015) and at several locations on the shelf (Danielson et al., 

15 2012; Stabeno et al., 2011b, 2011a) which necessarily leave much of the Eastern Bering Sea shelf 

16 undersampled.  These factors point to the need for numerical models that can accurately represent the 

17 dynamics of the coupled sea-ice ocean system of the Eastern Bering Sea to provide a more complete 

18 picture than what is currently available.  

19 Coupled ice-ocean models for the Bering Sea have been developed and utilized in a number of previous 

20 studies with some success.  Single-category ice models distinguish only one ice thickness per model grid 

21 cell as opposed to more computationally expensive multiple-category ice models that find a distribution 

22 of ice properties in each grid cell based on ice thickness classes.  Single category models have been 

23 incorporated into studies by Pritchard et al. (1990) for 5-7 day prediction of ice movement, by Clement 

24 et al.(2005) to study fluxes through the Bering Strait and by Clement-Kinney et al. (2009) who examined 
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1 shelf-slope exchange processes.  More recently, the model that is the predecessor to the one used in 

2 this study, namely the Regional Ocean Modeling System (ROMS) with the Budgell (2005) ice model 

3 implementation, was used to study interannual modes of variability in the Bering Sea by Danielson et al. 

4 (2011), and multidecadal biophysical variability by Hermann et al. (2016). More advanced multi-category 

5 ice models have also been applied to the Bering Sea by Wang et al. (2009) to study differences in winter 

6 and summer shelf circulation, by Hu and Wang (2010) to study the evolution of the “cold pool” and 

7 influence of tidal and wind/wave mixing, by Zhang et al. (2010) to study sea ice response to atmospheric 

8 and oceanic forcing in the Bering Sea, and by Zhang et al. (2012) to look at interannual variability in the 

9 ice dynamics and thermodynamics.   Cheng et al. (2014) evaluated winter dynamics in the Bering Sea in 

10 the National Center for Atmospheric Research Community Earth Systems Model with comparison to 

11 satellite and in situ observations as well.      

12 The studies mentioned above often present evidence that the incorporated ice models  reproduce the 

13 ice coverage well enough to draw conclusions about interannual variability and/or average seasonal 

14 patterns, but detailed comparisons with observations within any particular winter season are omitted.  

15 Wang  et al. (2009) display the seasonal cycle of sea ice area compared to satellite estimates averaged 

16 over 11 years, while Danielson et al. (2011) show a 40-year time series comparison of the same field, but 

17 without discussion of individual years.  Cheng et al. (2014) compare ice concentrations at shelf mooring 

18 locations averaged over 19 years.  Such average calculations are reasonable given the focus of such 

19 studies but leave many questions regarding intraseasonal variability in Bering Sea ice unanswered. 

20 An argument can be made that incorporating ice thickness distribution within a grid cell and even floe 

21 size distribution is important in the marginal ice zone to accurately represent thermal exchanges and 

22 lateral melt rates (Zhang et al., 2015). At the same time, no study showed that transition from a single-

23 category ice model to more computationally demanding multiple-category models is advantageous for 

24 the Bering Sea, e.g., providing improvement in the timing of the ice melt or ice concentration 
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1 distribution as compared to the available satellite data. The present study demonstrates that with 

2 careful refinements, a single-category sea ice model coupled to a high-resolution ocean circulation 

3 model exhibits satisfactory performance when compared to the best available satellite estimates of sea 

4 ice concentration.   As this work follows on an application of this same ocean model in a study of 

5 circulation in the Bering Sea in the ice-free season of June through October 2009 (Durski et al., 2016), 

6 Mauch et al., 2019), the coupled model performance is evaluated in the Eastern Bering Sea for the 

7 winter of 2009-2010.  A single winter season is evaluated in detail with attention focused on the timing 

8 and the rate of seasonal freezing and melting as well as ice variability on intra-seasonal, weather-related 

9 temporal scales.  As a starting point we choose the ice model that has been previously incorporated into 

10 a version of ROMS.  It is the single-category ice model (Budgell, 2005) with elastic-viscous-plastic (EVP) 

11 rheology (Hunke & Dukowicz, 1997; Hunke, 2001) and ice thermodynamics based on the 

12 parameterization of Mellor and Kantha (1989).  Earlier versions of this model have been used in 

13 Danielson et al. (2011) and Hermann et al. (2013).  Despite some shortcomings, these earlier versions of 

14 the model formulation we start with, presented important steps in the development of the coupled ice-

15 circulation modeling. The main goal of this manuscript is not to report computer code bug fixes, but to 

16 emphasize details of the atmosphere-ice-ocean material and heat exchange that are critical to the 

17 successful implementation of this, single category ice model.

18 The approach here was to carefully refine and optimize the code by progressively eliminating points of 

19 discrepancy between the model estimates of ice concentration and those obtained from satellite 

20 microwave radiometry.   Danielson et al. (2011) noted a tendency in the precursor model for late fall 

21 freeze-up in the Bering Sea and notably delayed ice melt in the Spring. Our initial efforts to simulate the 

22 winter of 2009-2010 in the Bering Sea with the ice model component unaltered, exhibited similar 

23 inconsistencies. E.g., melting was delayed by about a month. So efforts for model refinement focused on 
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1 matching the satellite-derived seasonal cycle in ice coverage, along with the spatial distributions of ice 

2 concentration, and the redistribution of ice concentration with wind events. 

3  As is often the case in the implementation of complex algorithms, errors in coding and ambiguities in 

4 intention often only emerge as new scenarios are tested and different metrics are utilized.  

5 Consequently, model improvements discussed here fall into several categories including corrections to 

6 the code, additions to account for previously unconsidered model settings, and refinements to the 

7 physics and/or numerics.  Ultimately two sets of changes to the parameterizations were settled on.    

8 One set involved only changes to the ice thermodynamics, while the other included additional 

9 modifications to the ice dynamics.  While neither model solution is clearly superior by all metrics, the 

10 comparison of the two provides insight into the dynamics that drive the differences between the two.   

11 The ocean model is described in section 2.1, the base ice model in section 2.2 and   ice model 

12 refinements in Section 2.3.  Section 3 presents comparisons of the improved ice model with satellite 

13 estimates of ice concentration on both seasonal and event time scales.  A summary is presented in  

14 Section 4.  

15   

16 2 Model configuration and observational datasets

17 2.1 Ocean model
18 The ocean model setup utilized here follows directly from Durski et al. (2016) except where noted 

19 below.  Simulations are performed using ROMS (http://www.myroms.org), a three-dimensional 

20 hydrostatic ocean model using terrain-following vertical coordinates.  The model domain spans the 

21 region zonally from 178°E to 157°W and meridionally from roughly 50°N to 66.4°N [See Figure 1 in 

22 (Durski et al., 2016)].  The model grid is identical to that used in the Durski et al. (2016) study, with 

23 horizontal resolution of 2 km and 45 vertical levels. 
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1 The model is initialized on June 1st, 2009 using outputs from the global 1/12th° resolution Navy Hybrid 

2 Coordinate Ocean Model (HYCOM GLB[au]0.08 (Chassignet et al., 2007), http://www.hycom.org)  

3 melded with a Bering Ecosystem STudy ice-ocean Modeling and Assimilation System (BESTMAS) regional 

4 simulation solution (Zhang et al., 2010, 2012) for the Bering Sea shelf.  The data-assimilative HYCOM 

5 model ensured accurate initialization of the large scale flow in the Bering Sea basin and North Pacific but 

6 did not provide accurate representation of the shelf stratification at the end of the melt-season.  

7 Melding with the BESTMAS shelf solution, which presumably captured the sea ice dynamics of the prior 

8 season more accurately, provided an initialization that allowed the model to more accurately capture 

9 the evolution of shelf stratification over the summer and fall of 2009. The melding was achieved by 

10 using the HYCOM fields in the deep basin, BESTMAS over the shelf and their weighted average in a 

11 buffer zone over the shelf slope providing smooth transition from one product to another. 

12 Open boundary conditions for horizontal velocity, potential temperature, and salinity are specified as a 

13 combination of Orlanski radiation and nudging (on a 3 day time scale for inflow) to the 5-day time-

14 filtered HYCOM global model solution.  Different from in the original Durski et al. (2016) summer 

15 experiment, the model solution is also nudged towards HYCOM temperature and salinity in an 

16 approximately 75 km wide strip along the eastern, western and southern boundaries.  This was found to 

17 be helpful in diminishing erroneous currents and ocean temperatures along the open boundaries over 

18 the longer integration time of this study.  Over this same region increased horizontal viscosity and 

19 diffusivity are applied to damp erroneous boundary effects.   Tidal forcing is applied at the model 

20 boundaries using four tidal constituents (K1, O1, M2, S2).  

21 Our initial simulations exhibited an artificially intense Anadyr current flowing northward along the 

22 Chukotka Coast (Figure 1) during the late winter and spring months, resulting in transports through the 

23 Bering Strait that tended to be larger than those measured at moorings (Woodgate et al., 2015) (Figure 

24 2; mooring positions shown in Figure 1).  Considering the flow out of the northern boundary into the 
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1 Chukchi Sea to be proportional to that through the strait, the northern boundary conditions on SSH and 

2 northward depth-averaged velocity were  “error-corrected”.  A time varying transport error was 

3 determined using the difference between a low-pass filtered Bering Strait section-averaged transport 

4 estimate from the moorings and from an uncorrected model simulation.  This transport was converted 

5 into an equivalent geostrophic flow at the open boundary, where the boundary conditions for sea 

6 surface height and barotropic velocity were adjusted accordingly. These corrected values were applied 

7 in ROMS using Flather(1976)  boundary conditions. This significantly reduced the error in the model 

8 estimate of the velocity at the mooring locations over the winter months and resulted in the slower 

9 Anadyr winter current.

10 Surface fluxes are parameterized using the COARE algorithm (Fairall et al., 2003) as implemented in the 

11 ROMS.  Atmospheric near-surface temperature, humidity, pressure, downward longwave radiation, 

12 incident short-wave radiation and 10m wind speeds are provided in 3 hour intervals for the model from 

13 the North American Regional Reanalysis at a 32.5km resolution (Mesinger et al., 2006).  Sea surface 

14 albedo is parameterized as a function of solar zenith angle following Briegleb et al. (1986). Solar 

15 radiation is attenuated differently as a function of the bathymetry ranging from Jerlov Type 1 (open 

16 ocean water) in the basin, to Jerlov Type 7 (dark coastal water) for waters shoreward of the 25m isobath 

17 (Paulson & Simpson, 1977).

18 Freshwater inflow is also supplied to the model from the three largest rivers in the domain, the Yukon, 

19 Kuskokwim and Anadyr. Climatological monthly river flow rates are obtained from the USGS 

20 (http://waterdata.usgs.gov/) for the Yukon and Kuskokwim and from the NCAR Earth Observation 

21 Laboratory Data Center (http://data.eol.ucar.edu/datafile/nph-get/106.ARCSS021/RUSRIVER.txt) for the 

22 Anadyr river (following Zhang et al.(2012)).   The freshwater volume input of each is specified as 

23 distributed point sources along each coastal region representative of their respective deltas.  The 
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1 temperature of the inflow is set to nearby coastal ocean surface water temperature estimated from 

2 earlier model runs that did not include riverine input or 0°C, whichever is larger.    

3 2.2 Ice model
4 As mentioned previously the ice model used in this study originated in a branch version of ROMS as an 

5 implementation by P. Budgell (2005).  It has been used previously in models of the Bering Sea by 

6 Danielson et al. (2011), Danielson et al. (2014), Hermann et al (2013) and Hermann et al. (2016) albeit in 

7 a different code version, and likely with different parameters and settings.  

8 The thermodynamics in this model are based on the parameterization of Mellor and Kantha (1989).  Ice 

9 thickness is represented as a single category within each grid cell with a potential layer of snow and/or 

10 meltwater resting above. The equations for the grid-cell averaged thickness of the ice, hi, and the 

11 percent areal coverage of the ice, or ice concentration, c, as implemented in ROMS, are:

𝐷ℎ𝑖
𝐷𝑡

=
𝜌𝑜
𝜌𝑖

[𝑐(𝑤𝑖𝑜 ‒ 𝑤𝑎𝑖) + (1 ‒ 𝑐)𝑤𝑎𝑜 +𝑤𝑓𝑟] (1)

𝐷𝑐
𝐷𝑡

=
𝜌𝑜
𝜌𝑖

(1 ‒ 𝑐)[Φ𝑤𝑎𝑜 +𝑤𝑓𝑟] (2)

12 where the total derivative on the left hand side of the equation includes advection, ρo is the seawater 

13 density, ρi the sea ice density, wio the ice production term at the ice-ocean interface, wai the negative of 

14 the ice production term at the atmosphere-ocean interface, wao the lateral ice production at the ice 

15 edges,  wfr the frazil ice production term, and   a lateral growth parameter.  hi is the thickness the ice Φ

16 would have if it were spread uniformly over the grid cell.    It can vary due to advection, atmosphere-ice 

17 heat exchange, ice-ocean heat fluxes, or frazil ice accretion. It is representative of the volume of ice in 

18 the cell, rather than the physical ice thickness when c is less than one.  Here we label the physical ice 

19 thickness HI =hi/c.  Ice concentration c at a given location can change due to advection, atmosphere-

20 ocean heat exchange, or frazil ice formation.   It is important to note that Equation 2 is an empirical 
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1 relationship and the variable φ is a tunable parameter as discussed in the original Mellor and Kantha 

2 article (1989).  Here we set the value of φ to 3 when wao is positive, and 0.5 when wao is negative.

3 The cell averaged snow and surface melt water thickness are labelled hsnow and hsfw respectively. 

4 Exchanges at the interface with the atmosphere affect any present snow or meltwater before affecting 

5 the ice.  Surface meltwater is allowed to reach a maximum of 10 cm thickness (as in Hakkinen and 

6 Mellor (1992)).  Excess is represented as a low salinity flux to the ocean.   The salinity of the meltwater is 

7 not tracked in the model but rather is assumed to have a value of 3.2.  For the determination of ice 

8 conductivity and salt fluxes the salinity of the sea ice is set to min(Ssurf,3.2), where Ssurf is the surface 

9 water salinity.  Although this can be a sensitive parameter, it is left unchanged in the modifications 

10 discussed below. 

11 In the original ice model implementation, the ice temperature at the interface with the atmosphere is 

12 updated with a quasi-implicit scheme that utilizes information about the ice internal temperature from 

13 the previous time step along with atmospheric fields and parameterizations for sensible, latent, 

14 longwave and shortwave radiation.  The longwave radiation is approximated with a Taylor expansion in 

15 Mellor and Kantha (1989) such that both the surface temperature from the previous and present time-

16 steps are used.  In our implementation, a consistent approximation was provided making use of the 

17 downward longwave radiation ( ) from the atmospheric forcing files, such that the net longwave 𝑄𝑑𝑛𝐿𝑊

18 radiation ( ) at time-step [n] is approximated as:  𝑄𝑛𝑒𝑡𝐿𝑊

,𝑄𝑛𝑒𝑡𝐿𝑊[𝑛] =   𝑄𝑑𝑛𝐿𝑊[𝑛] + 3𝜀𝜎(𝑇𝑠[𝑛 ‒ 1])4 ‒ 4𝜀𝜎(𝑇𝑠[𝑛 ‒ 1])3𝑇𝑠[𝑛] (3)

19 where  is the surface emissivity,  is the Stefan-Boltzmann constant, and  is the surface temperature.  𝜀 𝜎  𝑇𝑠

20 The ice model includes a fully explicit implementation of the EVP rheology of Hunke and Dukowicz 

21 (1997).  The ice momentum equations are 
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1                                                           (4)
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2 where u and v are components of the ice velocity, f is the Coriolis parameter, ζw is the sea surface 

3 elevation, τa is the atmosphere-sea ice drag,  τw is the ocean-sea ice drag and σ is the internal ice stress 

4 tensor.  Nonlinear advection terms and curvilinear terms are not considered.  A constitutive law 

5 describes the relationship between the stress tensor and rates of strain, εij , which after adding the 

6 elastic term suggested in Hunke and Dukowicz (1997), can be written (using Einstein notation) as, 

7                                                                                                 (5)
1 1

2 4 4
ij

ij kk ij ij ij

P

E t

      
  

 
   



8 where E is Young’s modulus, ζ is the bulk viscosity, η the shear viscocity and P is a pressure term that is a 

9 measure of the ice strength.  It is parameterized as linear in hi and exponential in c 

 N m-2𝑃= 𝑃 ∗ ℎ𝑖𝑒
‒ 𝐶𝑃(1 ‒ 𝑐) = 5 × 103 ℎ𝑖𝑒 ‒ 20(1 ‒ 𝑐) (6)

10

11  The bulk and shear viscosities, are specified to increase as pressure increases and/or strain rate 

12 decreases,

13                                                                                                                                                                      (7)
2

P 


14                                                                                                                                                                   (8)
22

P

e
 



15                                                                               (9)      1/2
2 2 2 2 2 2
11 22 12 11 221 4 2 1                 

16 where μ is the ratio of the major to minor axes of the elliptical yield curve, proposed by Hibler (1979) to 

17 equal 2

18 The wind and ocean drag on the ice are both parameterized as functions of ice thickness such that the 

19 drag on thinner ice is less. The albedo of the ice/snow/meltwater surface is estimated following Ebert 
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1 and Curry (1993) with the slight adjustment that if meltwater and ice are present without snow, the 

2 albedo is estimated as the average of their estimates for bare ice and meltwater (0.42).

3 Northern boundary conditions for c are obtained by interpolation of satellite radar-derived daily 

4 estimates at the northern domain edge grid points.   The estimate used for this is from the ARTIST Sea 

5 Ice (ASI) Algorithm, using measurements from the Advanced Microwave Scanning Radiometer - Earth 

6 Observing System (AMSR-E) for sea ice concentration [Kaleschke et al., 2001; Spreen et al., 2008] from 

7 the Integrated Climate Data Center (ICDC, icdc.cen.uni-hamburg.de/), University of Hamburg, Hamburg, 

8 Germany.  For all other ice-related variables, boundary conditions are established by first running the 

9 model with no-gradient conditions at the northern and western boundaries and then using the ice 

10 properties obtained at the boundaries from that simulation in a new simulation in which the ice 

11 boundary conditions are set to clamped for inflow and no-gradient for outflow.  This helps approximate 

12 the characteristics of arctic ice entering the domain as no observational data for these variables is 

13 available.    

14 This ice model is tightly coupled into ROMS as an internal subroutine such that integration of the sea ice 

15 thermodynamic state is a step in the procedure of updating the ocean state.  Sea ice related variables 

16 are available to the ocean model at the timescale of the baroclinic time step (60s in this case) and vice-

17 versa.  The spatial resolution and the c-grid arrangement of the variables in the ice model is identical to 

18 that of the ocean model.  For the EVP dynamics 60 elastic time steps (1s) are used per viscous time step.

19 2.3 Modifications to the ice model 
20 The algorithms for the ice model component are described as stated previously in several publications 

21 [Budgell, 2005; Hunke & Dukowicz, 1997; Mellor & Kantha, 1989].   But often ambiguities in such natural 

22 language descriptions only emerge upon numerical implementation.  The foundation for this work was a 

23 ROMS implementation provided by Kate Hedstrom in 2014 [Hedstrom, 2014].   At that point the code 

24 was under development.   In order to achieve satisfactory model performance in our Bering Sea model 



13

1 setup, we had to fix several coding “bugs”, make small numerical adjustments, and introduce physical 

2 modifications to the sea ice model component, inspired by a careful reevaluation of the ice model 

3 thermodynamics and dynamics.   In this section modifications to the ice model implementation are 

4 presented.  The development cycle, which was repeated numerous times, involved running a simulation 

5 of the eastern Bering Sea from initial freeze-up through the spring/summer melt (approximately 9 

6 months), comparing the temporal and spatial patterns of ice concentration with satellite products, and 

7 then looking for shortcomings in the implementation that could account for the largest model 

8 discrepancies.  Over a sequence of simulations, a physical parameterization might be refined, then a bug 

9 in the original code is found, then an adjustment to the numerics is deemed necessary.  It becomes 

10 time-prohibitive to backtrack to do a full sensitivity study to quantify the improvement provided by each 

11 modification. So here two simulations are presented that represent the most promising solutions we 

12 have obtained to date.  Each reproduced the observed ice variability remarkably well, in particular in 

13 terms of the area integrated ice concentration.  The first of the two simulations , labeled STherm, includes 

14 a set of modifications to the ice thermodynamics (model modifications 1-5 described below), while the 

15 second, labeled SDyn, additionally includes more speculative dynamic adjustments to the drag 

16 formulation and ice strength (modifications 6-7 described below).          

17 2.3.1 Thermodynamic adjustments
18 1. Adjustments to the surface albedo.  The original model has been augmented to more accurately 

19 represent the surface albedo.   The effect of albedo on penetrating shortwave radiation can be 

20 incorporated into the input forcing files in a typical, ice-free, ROMS implementation, by providing 

21 the net shortwave heat flux.  However, with the potential for the presence of sea ice, such 

22 preprocessing of the downward irradiance presumes the ice albedo to match that of ocean 

23 surface water.   To allow for both a zenith-angle dependent ocean albedo and a distinct albedo 

24 for bare sea ice, snow covered sea ice, or sea ice with snow and/or melt pond coverage,  ROMS 
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1 forcing files supply the total downward shortwave irradiance at the surface.  The seawater albedo 

2 is calculated as a function of zenith angle following Briegleb et al. (1986).  Albedo for snow, ice, 

3 and melt ponds is calculated following an implementation included in the original code that 

4 varies albedo as a function of snow and ice thickness but with modification.  The original model 

5 offered the following parameterization, for bare ice:

  

  0.082log max ,0.01 0.48 0 1

0.076 0.41 1 2

0.56 2

i i

ice i i

i

H H

Alb H H

H

   
   
 

(10)

6 and if snow and potentially meltwater overlay the ice, 

0.83 0, 0

10(0.70 ) 0.1, 0

0.70 0.1, 0

snow sfw

snow ice ice snow snow sfw

snow sfw

H H

Alb Alb Alb H H H

H H

  
    
  

(11)

7 where   Hsnow is the physical snow thickness (hsnow/c) and Hsfw is the physical melt pool (surface 

8 water) thickness (hsfw/c).  With this formulation the surface albedo is set to Albsnow whenever 

9 snow is present, and set to Albice otherwise.  But it neglects the case in which there are melt 

10 ponds alone over bare sea ice, which the model produced frequently in the Bering Sea in the late 

11 spring. Melt ponds generally have a lower albedo than either snow or bare ice but are unlikely to 

12 cover the entire ice surface.  So as a simple amendment to the parameterization above, the 

13 albedo is reduced in the presence of greater than 0.02 m of surface meltwater to a constant 

14 value:









02.042.0

02.00
/

sfw

sfwice
sfwice H

HAlb
Alb (12)

15 This value is midway between the high-end albedo approximation for melt ponds (0.26) and the 

16 low-end estimate for bare ice (0.58) provided in Ebert and Curry (1993).  
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1 2. Inclusion of the latent heat fluxes associated with precipitation.  The NARR atmospheric model 

2 used here includes information on the phase of precipitation, distinguishing four classes (rain, 

3 freezing rain, snow and ice pellets).  Snow and ice pellet categories are considered frozen 

4 precipitation that melt on contact with the sea surface or on ice if melt ponds are present.  Rain 

5 and freezing rain are assumed to freeze when contacting snow or bare ice.  In each case the 

6 latent heat flux associated with the phase transformation is added.   As an example of the 

7 magnitude of this latent heat contribution, in order for sea ice to freeze rain falling at a rate of 

8 0.01m day-1, the ice draws away approximately 39 W m-2 of heat from the falling water.  

9 The sensible heat contribution of the precipitation is already considered in the model using the 

10 aforementioned bulk flux algorithm  (Fairall et al., 2003) which assumes that the precipitation 

11 temperature is related to the air temperature.  We assumed that this formulation remains 

12 reasonably valid for solid phase precipitation.  At times, rain or frozen rain can fall at surface air 

13 temperatures below freezing or snow can fall when the near-surface air temperatures is above 

14 freezing. The early versions of this model determined the phase of the precipitation based on the 

15 air temperature.  In the simulations presented here, the phase is used as predicted by the 

16 atmospheric model and correction to the atmosphere-ice or atmosphere-ocean heat flux is 

17 made, to account for the phase transitions. 

18 3. Improved representations of snow and melt pond evolution.   In the original formulation, as the 

19 ice concentration in a grid cell decreased, the associated melt pond and/or snow volume did not 

20 change.  In our modification, hsnow and/or hsfw diminish proportionally as the fractional area (c) of 

21 ice coverage decreases due to thermodynamic processes.  The associated low-salinity or fresh 

22 water (in the case of snow) flux is added to the ocean.  As c increases due to thermodynamic 

23 processes in the absence of precipitation, the pre-existing volume of snow or melt water is 

24 assumed to remain unchanged.  Consequently, Hsnow and/or Hsfw are reduced (hsnow and hsfw are 
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1 held constant).   In these simulations, a maximum limit of 0.1 meters was set for hsfw, but as the 

2 ice becomes thinner than this, this maximum limit is reduced such that hsfw  is always less than or 

3 equal to hi.  The excess meltwater contributes a low salinity flux to ocean.

4 4. An expanded decision tree for determining ice surface state.  As we mentioned previously, the 

5 surface of the ice-covered portion of each model grid cell could be bare ice, snow, snow with 

6 melt ponds, or bare ice with melt ponds.  Whether freezing or melting occurs at this surface 

7 depends on the net heat flux to the ice surface (Qsurf), the ice surface temperature (Tis) and the 

8 phase (ice, snow and/or meltwater) that is present at the interface.   When Tis is at the freezing 

9 point and the heat flux is into the ice, ice/snow should melt to produce meltwater. But situations 

10 also arise where the estimated ice surface temperature is at the freezing point but the heat flux is 

11 out of the ice, and meltwater would freeze and thus increase hi, whereas in the absence of 

12 meltwater the only effect would be to cool the ice or snow.  The determination of the effect of 

13 the surface flux on hi, hsnow, and hsfw depends on the presence or absence of snow, the presence 

14 or absence of meltwater, the estimated surface temperature and the sign of the surface flux.  

15 Each of these dependencies is binary except for Tis in which case it is sometimes necessary to 

16 distinguish temperatures above the freezing point of sea ice (Tfrz=-0.17°C) from those that reach 

17 the freezing point of snow (0°C) .  To properly account for all combinations of possible results, a 

18 decision tree is implemented in the modified model as shown in Figure 3. Green leaf nodes 

19 indicate cases which were handled correctly in the ROMS implementation we started with, red 

20 leaf nodes indicate cases that either were handled wrong or were not considered. As one 

21 example, freezing of meltwater would not occur in the original model when  Tis< Tfrz, Qsurf is 

22 negative, and no snow is present.  In our version, there are a number of cases where ice, snow 

23 and meltwater layer thickness do not change because Qsurf at the estimated surface temperature 

24 would act to cool or warm the phase present at the surface towards freezing point rather than 
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1 melt or freeze ice directly. Despite the potential for the snow melting, in all cases, the meltwater 

2 ponds are considered to have a salinity of 3.2 (as specified in the original formulation), as if 

3 produced by the melting of sea ice since meltwater salinity is not tracked in the model.      

4 5. Numerical bounds on the internal ice temperature.   The Mellor and Kantha thermodynamics 

5 (1989) evolve the internal ice temperature, Ti, based on the ice (and potentially snow) thickness 

6 along with estimates of the ice surface temperature, Tis , and the molecular sublayer temperature 

7 at the ice-ocean interface, To.  In simulations using the earlier code it was found that the estimate 

8 of internal temperature could unreasonably exceed both Tis and To for extended periods of time 

9 or that it could remain fixed at the freezing point of freshwater (the model initial value) well into 

10 the winter season despite significant ice growth.  These errors were deemed to be numerical in 

11 nature and a simple fix of limiting Ti to fall between Tis  and To and never exceed Tfrz allowed TI to 

12 evolve in a realistic manner.   

13 2.3.2 Dynamics adjustments 
14 6. Ice-ocean, and air-ice drag coefficients.  In model tests that included all of the modifications 

15 above, comparison with satellite estimates of spatial distribution of ice concentration still showed 

16 poor agreement in response to wind events throughout the winter season, particularly in island 

17 polynyas, at the ice edge, and along the Alaskan coast.  For example, where satellite imagery 

18 showed sea ice becoming separated from the western coast of Alaska under the influence of 

19 easterly winds, the model showed mostly stationary nearshore sea ice.  Farther offshore the 

20 model response was more consistent with the ice movement implied by the satellite imagery.  

21 The ice-ocean quadratic drag formulation in the model calculates the drag coefficient  at time 𝐶𝑖𝑤𝐷

22 step n as

23                                                                                                           (13)                    
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1 where κ=0.4,

𝑢 ∗𝑖𝑤 =𝑚𝑎𝑥[{𝐶𝑖𝑤𝐷 [𝑛 ‒ 1]((𝑢𝑤 ‒ 𝑢𝑖)2 + (𝑣𝑤 ‒ 𝑣𝑖)2)}
1
2,0.0001 𝑚/𝑠] (14)

2

3  is the top model layer thickness and .   In the default 𝑧 𝑧𝑜 =𝑚𝑖𝑛(𝑚𝑎𝑥(𝑎2𝐻𝑖,0.01 𝑚),0.1 𝑚)

4 parameterization a1 =3 and a2 = 0.02.   Visual comparison of the movement of sea ice in the 

5 model with satellite microwave estimates (by comparison of sequences of daily snapshots) 

6 suggested that in shallow coastal regions with thick ice, the value of    was too large.  This 𝐶𝑖𝑤𝐷

7 unrealistically limited the sea ice movement in response to wind events.  In order to decrease the 

8 excessive drag in the thick ice along the Alaskan west coast, we set a1 = 6 and a2 = 0.01.  With this 

9 modification the model performance improved along the Alaskan west coast, however the island 

10 polynya regions (St. Lawrence, and St. Matthew) still exhibited higher ice concentrations in 

11 response to wind events than was observed in the satellite imagery.  

12 The default setting for the atmosphere-ice drag coefficient varied depending on the choice of 

13 bulk flux (atmosphere-ocean exchange) algorithm in the ROMS model.  For the option of using 

14 the Fairall et al. formulation (2003) that is packaged with the standard ROMS,   is specified as 𝐶𝑎𝑖𝐷

15 spatially uniform and constant (    by default).  In order to allow the wind-ice drag to 𝐶𝑎𝑖𝐷 = 0.003

16 increase as a function of ice thickness, the coupled model was modified to calculate this drag as 

𝐶𝑎𝑖𝐷 = 0.003[1 ‒ cos (𝜋min (𝐻𝑖 + 0.05,1.0))] (15)

17

18 This is consistent, but with different coefficient values, to the implementation of the ice-ocean 

19 drag coefficient in the Fairall algorithm in the Bergen Climate Model (Furevik et al., 2003).   

20
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1 7. Ice Strength, P*.  The effect of modification 6 was to allow thicker ice to be transported more 

2 effectively by wind stress and less effectively by ocean currents.  While this alone improved ice 

3 concentration distributions, the gradient of ice concentration at the ice edge remained much 

4 lower than in satellite estimates, and at times appeared exacerbated by the increased wind-

5 transport of thicker ice.  This was notably improved by adjusting parameters in the ice strength 

6 formulation.   Ice strength is calculated using the formulation in Eq. 4 where parameter P* is 

7 increased from 5x103
 N m-2  in the original formulation to 25x103 N m-2 and CP from 20 to 27.  

8 These adjustments are consistent with the usage in a similar model by Olason and Harms (2010) 

9 when modeling polynyas.  The primary impact is to make the ice strength higher at high ice 

10 concentration.  Simulations were also performed using a quadratic ice strength (Overland & 

11 Pease, 1988) but these are not discussed here because they failed to reproduce observations of 

12 sea ice concentration well.

13 An example of the improvement to the ice concentration distribution along the northern Bering 

14 Sea coastlines due to dynamical modifications 6 and 7 is presented in Figure 4.  In response to 

15 sustained southward winds prior to this date, open water areas develop along the Chukotka, 

16 Seward and St. Lawrence island coastlines, e.g., as is seen in the ASI imagery (Fig. 4, bottom). The 

17 SDyn simulation captures this but STherm does not. Additional time-series comparisons of the 

18 integrated c in the polynya area south of St. Lawrence island will be shown below.  Note that the 

19 combined effect of the two modifications to the drag at the top and bottom of the ice layer 

20 increase the sea ice response to wind stress relative to ocean current stress.  The open water 

21 area that is visible between the Chukotka peninsula and St. Lawrence Island in STherm likely results 

22 from the ice being advected too strongly with the northeastward flowing Anadyr current. This 

23 feature is not found in the ASI image or SDyn.  
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1 3 Model-observation comparison

2 Ice concentration is the most accessible variable for comparisons between the model and observations.  

3 The simulation results are compared with two satellite products to assess performance.   One is a 

4 component of the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) (Donlon et al., 

5 2012) product.  It offers daily composite ice concentration estimates at approximately 12.5 km 

6 resolution, using data from several Special Sensor Microwave Imager (SSM/I) satellites, processed for 

7 EUMETSAT (Andersen et al., 2007). The second is a higher resolution product based on the Arctic 

8 Radiation and Turbulence Interaction STudy Sea Ice algorithm (ASI)  (Spreen et al., 2008), that uses the 

9 higher frequency channel of the Advanced Microwave Scanning Radiometer.  This product obtains ice 

10 concentration estimates at approximately 5 km resolution.   Each product has shortcomings.  OSTIA 

11 often over-smooths the concentration fields failing to resolve polynyas or the sharp gradients which 

12 develop at the ice edge with on-ice winds.  ASI represents polynyas better but can exhibit rapid 

13 fluctuations in ice concentration due to signal interference from clouds.  Based on visual comparisons 

14 for each day in the winter of 2009-10, both products exhibited an ice edge in the Bering Sea (indicated 

15 by the 1% ice concentration contour) that, in general, is very similar to the ice edge estimate from the 

16 Multisensor Analyzed Sea Ice Extent produced by the United States National Ice Center/National Snow 

17 and Ice Data Center (National Ice Center (NIC) And NSIDC, 2010). 

18 The model prediction of sea ice advance and retreat can be quantified by calculating the fraction of the 

19 Bering Sea shelf covered in ice as a function of time:

𝐹𝑖 =  
1
𝐴𝑠

𝑁𝑠

∑
𝑗= 1

𝑐𝑗(𝑡)∆𝑥∆𝑦 (16)

20 where As is the shelf area between the coast and the 200m isobath as measured in the model, the sum 

21 is over the Ns grid cells on the shelf, refers to the ice concentration in the j-th grid cell and ΔxΔy is the 𝑐𝑗
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1 surface area of the grid cell. For the purpose of this calculation and those that follow, both the OSTIA 

2 and ASI satellite estimate are interpolated onto the model grid (2 km x 2 km).     

3 The two model solutions, STherm and SDyn, compare well with the satellite estimates after implementing 

4 the modifications outlined in section 2 (Figure 5a), capturing the timing of ice advance, peak areal 

5 coverage and ice retreat.  The result from one of our original simulations with the unmodified ice model 

6 is also shown in Figure 5a (dashed line).   It exhibited a late onset of freezing, a diminished seasonal 

7 maximum in Fi, and delayed melting.

8 The improved model results also capture the weather scale variability, showing a decrease in Fi  for each 

9 event in which the wind shifts to having a northward component (red arrows in Figure 5b) and warming 

10 air temperature (Figure 5c).  Coherence between Fi and the modeled northward wind component 

11 (using Welch’s method) are greater than 0.7 for both experiments for frequencies associated with 7 to 

12 14 day variability, with the values for SDyn slightly higher than for STherm. However often the magnitude of 

13 the weather-related modulation in Fi is less in the model than the satellite estimates.  The ASI estimate 

14 in particular can exhibit changes in Fi as large as -10% presumably in response to brief wind reversals (as 

15 in late-December 2009).   But as mentioned previously this satellite estimate is susceptible to 

16 interference from clouds which may also be correlated with such weather events.   The differences 

17 between the simulations indicate the effect of the adjustments to the ice dynamics.  Having a thickness 

18 dependent air-ice drag helps reproduce the seasonal peak areal coverage in mid-March, but at the cost 

19 of a slightly early ice retreat in April and May.   The model underestimates the initial ice advance from 

20 mid-November to early December.  Careful comparison of sequences of the ASI and model ice 

21 concentration fields suggests that this underestimate results primarily from a weaker ice inflow through 

22 the Bering Strait from the Arctic and is also affected by slower ice formation in Norton Sound. The ice 

23 inflow from the Chukchi to the Bering Sea can possibly be improved with a better choice of the ice 
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1 boundary conditions in the north. Examining sequences of maps during the ice retreat period shows that 

2 the early melt occurs primarily in the region of the Anadyr current south of the Chukotka peninsula, 

3 similarly in the model and observations.              

4  Another metric for comparing the model with the satellite observations is the average ice concentration 

5 per grid cell (Figure 6 a):  

𝑐𝑆 =  
1

𝑁𝑖𝑆(𝑡)

𝑁𝑖𝑆(𝑡)

∑
𝑘= 1

𝑐𝑘(𝑡) (17)

6 where   is the number of grid cells on the Bering Sea shelf that have greater than 0.1% ice coverage 𝑁𝑖𝑆

7 and k is an index that runs over those cells.  This is a measure of how densely packed the sea ice is.  Over 

8 the course of the winter the average concentration per cell increases rapidly in November, then much 

9 more gradually between December and late March, before beginning to decrease in the spring.  The two 

10 improved model solutions generally fall between the ASI and OSTIA estimates of .  ASI tends to exhibit 𝑐𝑆

11 the most compact arrangement of the ice, while not surprisingly the OSTIA estimate, being lower 

12 resolution, estimates the lowest average concentration per grid cell.  

13  Ice extent is defined here as the fraction of the shelf grid cells containing greater than 0.1% ice coverage 

14 (Figure 6b): 

.𝐹𝑒𝑥𝑡 =  
𝑁𝑖𝑆(𝑡)

𝑁𝑆
(18)

15 Both improved simulations produce larger than observed Fext between December 2009 and March 2010, 

16 but fall roughly between those estimates later in the season.    

17 Despite similar characteristics throughout most of the season, the two model simulations differ 

18 noticeably in terms of the thickness of the ice produced and hence the total volume (Figure 6c).  At the 

19 seasonal peak the average value of Hi is approximately 0.4 m thicker in STherm than in SDyn and the total ice 
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1 volume is about 25% greater.   Sea ice that is thicker than 0.45m is more effectively accelerated by wind 

2 forcing in the SDyn simulation (while ice thinner than this threshold is less effectively transported).  This 

3 leads to thick ice being transported southward with the predominant winter winds more in SDyn .  Fext is 

4 larger in SDyn because the ice spreads over a larger number of shelf grid cells (see Figure 5b).  In the 

5 same simulation, hi is smaller on average because the thick ice is transported away from the strong 

6 generation regions more rapidly.    The shelf average ocean temperature at the end of March is 

7 approximately 0.2 degrees warmer in SDyn than STherm. This suggests that the higher Fi in SDyn reduces the 

8 loss of heat to the atmosphere which may further inhibit thick ice growth.   

9 Over the course of the winter season the distribution of ice concentration varies.   Based on satellites, 

10 sea ice is more likely to be found at lower concentration early and late in the season (Figure 7), and not 

11 surprisingly at higher concentration in the months of maximum ice extent.   Based on the ASI and two 

12 model estimates a majority of the 2km x 2km shelf grid cells that contain ice in February and March have 

13 c over 90%.  The lower resolution OSTIA product places highest probability in the 80 to 90% range.   The 

14 models tend to place a higher likelihood of grid cells with very low concentration of ice early in the 

15 season compared to the satellite estimates,  but this may be more a result of inaccuracy of the satellite 

16 measurements at low concentrations (Meier et al., 2015) rather than model error.   

17 Very little of the sea ice in the Bering Sea is landfast.  Floe trajectories estimated from satellite imagery  

18 suggest that sea ice may drift tens of kilometers a day in response to winds and currents (Sullivan et al., 

19 2014).  This at times causes the exposure of wide bands of open water along the various coastlines.   As 

20 a method for quantifying the overall ice position and movement along with the general southward 

21 expansion of the sea ice, a two-dimensional ‘center of mass’ is calculated with ice concentration taking 

22 on the role of “density”(Figure 8).  Ice thickness is neglected here, to make direct comparison with the 

23 satellite estimates of c.  The center-of-mass coordinates are calculated as:
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𝜑𝐶𝑂𝑀(𝑡) =  
1

𝑁𝑖𝑆(𝑡)

𝑁𝑖𝑆(𝑡)

∑
𝑘= 1

𝑐𝑘(𝑡)𝜑𝑘 (19)

𝜃𝐶𝑂𝑀(𝑡) =  
1

𝑁𝑖𝑆(𝑡)

𝑁𝑖𝑆(𝑡)

∑
𝑘= 1

𝑐𝑘(𝑡)𝜃𝑘 (20)

1 Where and indicate the longitude and latitude of the center of mass and  and  𝜑𝐶𝑂𝑀 𝜃𝐶𝑂𝑀(𝑡) 𝜑𝑘 𝜃𝑘

2 indicate the longitude and latitude of a grid cell which contains greater than 0.1% ice coverage.  The 

3 velocity of the center-of-mass can then be approximated by calculating the geodesic distance between 

4 sequential daily center-of-mass positions (Figure 8c).   

5 In the winter of 2009-2010,   advanced southward at a rate as high as 1.5° per month (in January 𝜃𝐶𝑂𝑀

6 2010) reaching its southernmost latitude by mid-March.  STherm more closely matches with the satellite 

7 estimates of this position, as SDyn tends to place the center-of-mass farther southward.  Conversely, SDyn 

8 more closely matches the fluctuations in  over the course of the season as compared to the 𝜑𝐶𝑂𝑀

9 satellite estimates (ASI in particular).   This difference can be related to the mechanisms that are likely 

10 causing the fluctuations in the two directions.  The latitudinal position of the center-of-mass depends 

11 more on the total area of ice produced, pushing southward as more sea ice is produced in the northern 

12 portion of the domain.  The east-west movement of the ice center-of-mass is more directly related to 

13 the wind forcing.  The SDyn experiment tends to overestimate the ice area (Figure 5a), but allows the sea 

14 ice to be more responsive to wind drag.   Comparison of the center-of-mass velocity vectors in Figure 8c 

15 shows that the direction of movement of the center of mass for both simulations correlate well with the 

16 satellite product estimates, but both tend to underestimate the magnitude .  SDyn in general does better 

17 though with an average center-of-mass speed for December 2009 through April 2010 of 6.7 km day-1 

18 compared to 3.8 km day-1 for STherm where the ASI and OSTIA estimates are 10.5 and 8.6 km day-1 

19 respectively.



25

1 The better response of SDyn with respect to ice movement is also apparent in polynya regions.  A 

2 comparison of the open-water area in the polynya region south of St. Lawrence Island as a function of 

3 time is displayed in Figure 9.  Here the open water area, Ow, is displayed as a fraction of the total surface 

4 water area in the region delineated in Figure 1,

5                                                                                        (21)  𝑂𝑤 =  
1
𝐴𝑠𝑙𝑏
∑𝑁𝑠𝑙𝑏
𝑗= 1(1 ‒ 𝑐𝑗(𝑡))∆𝑥∆𝑦

6 where Aslb is the total area of coastal ocean within the box and the sum is over the total number of 

7 oceanic grid cells (Nslb in the box).   Over the winter season, as winds shift direction, the polynya 

8 experiences multiple openings and closings.   This appears to be best captured by the ASI satellite 

9 product which shows ice repeatedly vacating and filling the coastal region south of St. Lawrence Island.  

10 The lower resolution and higher level of temporal and spatial smoothing of OSTIA produces very little 

11 variability.  STherm, which shows significant improvement compared to SOrig based on other metrics, does 

12 a worse job of estimating the overall ice cover in this polynya region.  Both STherm and SOrig also exhibit 

13 less extreme fluctuations in open water area on the weather-event time scale than is suggested by ASI.    

14 SDyn,while still not exhibiting quite the magnitude of fluctuations in Ow that ASI does, replicates the 

15 overall pattern of repeated polynya development and disappearance rather well.  As will be presented 

16 in more detail in Part 2, although Ow for SDyn and SOrig look rather similar in Figure 9, SDyn does a 

17 significantly better job of reproducing the distribution of ice among the grid cells within this region.  For 

18 example during a period of strong polynya-favorable winds (January 28th-February 7th 2010), it produced 

19 completely ice-free grid cells along the southern coast of St. Lawrence Island, where SOrig  produced a 

20 larger area of partially covered grid cells.   

21

22 The spatial distribution of seasonally averaged ice concentration is calculated from the ASI observations 

23 over the period with significant sea ice coverage (November 15th, 2009 – May 31st, 2010)  (Figure 10a).   
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1 The highest averaged ice concentrations are found along the eastward facing portion of the Chukotka 

2 coast, the westward facing portion of the Alaska coast and in the Bering Strait region. The SDyn simulation 

3 (Figure 10b) does well in capturing these regions of highest concentration, albeit with slightly lower peak 

4 average concentrations.  The SDyn simulation also captures the reduced ice concentration in polynya 

5 regions along the southward-facing Chukotka Peninsula coast, the westward-facing Seward Peninsula 

6 coast and on the south sides of both St. Lawrence and St. Matthew islands.   The SDyn simulation 

7 overestimates ice concentration (relative to ASI) in the shallowest portion of Norton Sound, in the 

8 region of the Koyuk river estuary (Northeast corner of Norton Sound, 161.2oW and 64.9oN).  It is possible 

9 that riverine outflow from this source (particularly late in the season), which is neglected in the model, 

10 transports sea ice away from this region.  Sdyn also exhibits higher ice concentrations than ASI in the 

11 vicinity of the shelf break (between the 100m and 150m isobaths) (Figure 10c).  This is likely the result of 

12 adjustment to the wind drag formulation, causing ice to be transported more strongly in the direction of 

13 the prevailing winds.  Adjusting the parameters of the wind drag formulation to attain better agreement 

14 at the ice edge is of course an option, however, comparison in the polynya regions argues for an 

15 adjustment in the opposite direction, as concentrations remain too high in the model in these regions.  

16 As was expected, the standard deviation in the ice concentration (Figure 10d) tends to be highest on the 

17 outer Bering Sea shelf where ice is only found at the peak of the winter season, and is lowest in regions 

18 that have the highest average seasonal concentration.   The spatial distribution of the standard 

19 deviation in c for SDyn matches well with the satellite estimate over much of the shelf (Figure 10e) and it 

20 shows mismatches in most of the same locations where the seasonal average concentration estimate is 

21 off (Figure 10f).   

22 Similar analyses were done for solution  STherm and the difference plots are  shown in Figure 11.  In STherm, 

23 the seasonal average ice concentration not only has too little ice on the outer shelf, but also far too 

24 much ice on average along the coasts where polynyas frequently develop (Figure 11a).  The STherm 
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1 simulation underestimates the ice concentration variance in general (Figure 11b).  This is likely due to 

2 the more limited movement of the ice in response to winds in this simulation.  

3 The model-observation comparisons presented above do not single out either the SDyn or the STherm as 

4 being clearly favorable.  By some measures, such as the fractional ice coverage in Figure 5a, STherm 

5 matches more closely with the satellite estimates, but by other measures, such as the mean and 

6 variance of the spatial distribution (Figure 10 and Figure 11), SDyn may be judged preferable.  Certainly 

7 further exploration of parameter space may yield a compromise between the two that is superior to 

8 both.  Alternately, improvement of some other portion of the parameterized ice physics might produce 

9 a substantial improvement.   However the performance in these two simulations is encouraging in how 

10 much of the weather-scale to seasonal variability in the sea ice is being captured.

11 For the last of the model-data comparisons (Figure 12), results from SDyn are utilized (although these are 

12 mostly consistent with the STherm solution).  Here, the daily average spatial maps of sea ice concentration 

13 and sea surface temperature (SST) are presented for 5 selected days over the course of the winter 

14 season. The OSTIA and ASI products are shown alongside the model estimates (in the middle column). 

15 Note the ASI does not come with its own SST estimate. In general, there is good agreement between the 

16 model and observations with a few exceptions.  As mentioned above, at the start of the winter season, 

17 ice formation in the model lags the satellite estimates particularly in Norton Sound (Figure 12 a, b, c).  In 

18 general, during this period, modeled temperatures on the Bering Sea shelf are 1-2oC higher than satellite 

19 estimates.   Similarly, comparison with the OSTIA estimate suggests that the modeled surface waters 

20 warm too quickly in the spring (Figure 12 m, n, o), which may contribute to the premature ice melt in 

21 the model.  The OSTIA SST estimation in regions partially covered by sea ice is a relaxation to climatology 

22 or the freezing temperature of sea water depending on ice concentration (Donlon et al., 2012) and 
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1 therefore may be inaccurate on the Bering Sea shelf over much of the winter season.   Nonetheless the 

2 discrepancy between model and satellite estimate extends into the Bering Sea Basin.

3 Another region where the model exhibits differences from the satellites is at the seaward ice edge.  At 

4 times during the ice advance, the modeled ice distribution exhibits strong meanders and filamentous 

5 structures on the mid-to-outer Bering Sea shelf (Figure 12e).  As these features develop, they coincide 

6 with comparable patterns in the shelf salinity, suggesting that they result from the coupling between the 

7 ice and ocean surface currents.  The fact that similar patterns are not found, even in the higher 

8 resolution satellite imagery, suggests that either the applicability of the ice rheology at these reolutions 

9 is limiting or that the model does not have enough resolution to allow small-scale eddy variability along 

10 the ice edge frontal region that could potentially change the frontal dynamics and smear out these 

11 strong corrugations in the ice edge geometry. It remains to be shown, using models of higher resolution, 

12 whether these large scale ice edge corrugations can be dispersed by submesoscale processes (Capet et 

13 al., 2008) that our model does not resolve.   

14 4 Summary

15 This study documents efforts to improve the performance of a single-category sea ice model in the 

16 Eastern Bering Sea.  Extensive critical evaluation of the algorithm and experimentation with refinements 

17 to the ice thermodynamics and dynamics resulted in a set of modifications that exhibited much 

18 improved sea ice concentrations for the winter of 2009-10.  This suggests that this relatively 

19 computationally economical class of models can produce accurate representations of sea ice in the 

20 Bering Sea in other winters as well, and is likely applicable to other marginal seas where the sea ice is 

21 only seasonal. 

22 The thermodynamic modifications amounted to a more accurate accounting of the surface heat fluxes 

23 than was previously incorporated into the scheme.  These adjustments led to the model more accurately 
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1 estimating the timing of freeze-up and melt in the Bering Sea, as well as the areal ice coverage over the 

2 full seasonal cycle.  The dynamic modifications primarily were to increase the wind drag on the ice as a 

3 function of ice thickness, and reduce the ocean drag on the ice (relative to the original formulation) in 

4 regions of thick ice along the Alaskan coast.   These adjustments led to better representation of the 

5 opening and closing of polynyas and an improved gradient in ice concentration at the outer-shelf ice 

6 edge.  

7 Satellite-derived ice concentration is the primary observational dataset available for evaluation of the 

8 modeled sea ice.  Despite this data being limited in spatial resolution and subject to a variety of 

9 uncertainties associated with the processing of the reflected microwave signal, it can provide a wealth 

10 of information beyond simple comparison of instantaneous ice concentration maps.    In this study, we 

11 define a set of metrics using these datasets to evaluate the relative performance of the different ice 

12 model modifications.  These metrics provide information about the overall ice areal coverage, the ice 

13 distribution, the seasonal evolution of the ice coverage and the ice movement in response to 

14 atmospheric forcing at the weather event scale.  Application of this set of metrics not only allowed for 

15 evaluation of the ice model, but also provided a means to discern aspects of the ice model formulation 

16 that required further refinement.   

17  The modifications described here do not represent an endpoint in the development of this model 

18 parameterization, but rather indicate two steps forward in the process of improving the representation 

19 it produces.  Further improvements may come as more observational information is gathered on the 

20 winter vertical structure under the ice and the ice thickness distribution.  Further model verification will 

21 be accomplished by evaluating other winter seasons and by applying this model setup to other marginal 

22 sea areas with seasonal ice.   We think that successful implementation of more complex models, such as 

23 multicategory EVP types or discrete element method models, will require the same level of attention to 

24 the treatment of interaction between all the fluid phases at the atmosphere-ocean interface.



30

1  Additionally, it cannot be ignored that any ice-ocean model that is not fully coupled with an 

2 atmospheric model can be biased by the forcing that the atmospheric model provides.   The 

3 atmospheric model has been run with the sea surface state specification that presupposes a sea ice 

4 concentration, which in turn affects atmospheric temperature, humidity and winds, all of which are 

5 input to the ocean model.  An atmospheric model such as NARR, with a 32 km horizontal resolution, will 

6 undoubtedly under-resolve variability along coastlines and may cause inaccuracies in the representation 

7 of polynya regions.  Higher resolution atmospheric model forcing from recently available products such 

8 as the 15 km resolution Arctic System Reanalysis (“Arctic System Reanalysis version 2,” 2017) may 

9 improve the performance of this model in polynya regions, or it may lead to the necessity of re-tuning 

10 model parameters.  Under-resolving the open water areas of polynyas likely leads to underestimates of 

11 air temperature and humidity along with inaccurate surface wind patterns in proximity to these regions.  

12 Further model development will benefit from consideration of the sensitivity to the choice of 

13 atmospheric forcing.
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1

2 Figure 1.  A map of the northern portion of model domain with mooring locations.  Pink shaded area 
3 indicates region used for model-observation comparison of St. Lawrence polynya. The full model domain 
4 is displayed in Figure 1 of Durski et al.(2016)
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1

2 Figure 2.  2-day-filtered northward velocity at mid-depth in the Bering Strait at four mooring locations.  Blue lines indicate the 
3 mooring measurements between November 2009 and August 2010, red line the model simulation before modifying the northern 
4 boundary condition and green lines indicate model results after modification.  The longitudes of the mooring locations, depicted 
5 in Fig. 1, are (A1W, 169.28°W), (A1E, 169.62°W), (A2, 168.56°W) and (A4, 168.26°W).
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1

2 Figure 3.  Decision tree for determination of the affected change in snow melt (hsnow=snow), meltwater ponds (hsfw =sfw) and ice 
3 volume (hi=ice) as a function of surface conditions.  In the leaf nodes, text in red indicates a tendency to increase the variable, 
4 blue indicates a decrease, and black indicates no change.  Red leaf node boxes indicate cases that were added or modified in our 
5 ice model formulation.
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1

2 Figure 4.  Comparison of ice concentration in the northern Bering Sea area centered on St. Lawrence Island on February 2nd 
3 2010, from two simulations and a satellite derived product (ASI).   SDyn includes modifications to the atmosphere-ice and ice-
4 ocean drag coefficients and the ice strength relative to STherm.   
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1

2 Figure 5. a  Fraction of Eastern Bering Sea shelf covered in ice, (16), as a function of time for 
3 two model simulations with ice model modification, the two satellite estimates and for a 
4 simulation using the ice model in its original form. b Shelf-averaged wind velocity vectors from 
5 NARR (red arrows indicate a northward wind component). c Shelf-averaged surface(2m) air 
6 temperature from NARR (red line segments indicate times when the air temperature was above 
7 0°C). 
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1

2 Figure 6.  Comparison between simulations and satellite observations for a Average ice concentration 
3 per grid cell, (17), as a function of time,  b the fraction of shelf grid cells that contain  ice, (18), as a 
4 function of time and c the total ice volume (solid lines) and average ice thickness (dashed lines) for the 
5 two simulations.  The average ice thickness is only plotted for times where the ice volume exceeds 
6 1x104km3.
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1

2

3

4

5 Figure 7.  Monthly histograms of the ice concentration probability distribution from two satellite 
6 estimates and from the two simulations. Ice concentration is binned in 10% intervals.
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1

2 Figure 8. Comparison of the position of the two-dimensional center of mass of the ice concentration 

3 between the two ROMS simulations and the satellite estimates.  Center of mass position has been 

4 filtered with a 3-day low-pass filter.   Top two panels (a and b) show the longitude and latitude of the 

5 two-dimensional center of mass as a function of time.  Bottom panel shows the magnitude and direction 

6 of movement of the time-filtered center of mass position as a function of time.  Estimates from different 

7 products are offset vertically from each other by 30 m/s.  .      
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1

2 Figure 9.  Comparison of the open water area south of St. Lawrence Island (pink shaded region in Figure 
3 1) as a function of time from satellite estimates and simulations.    Time series are filtered with a 3-day 
4 low-pass filter.
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1

2 Figure 10.  Comparison of ice concentration statistics between SDyn and the ASI satellite estimate.  Panels 
3 a and b show the seasonal average ice concentration between December 2009 and May 2010, for ASI 
4 and SDyn.  Panel c displays the difference between the two.   Panels d and e show the standard deviation 
5 in ice concentration over the same period.  Panel f shows the difference in the standard deviation 
6 between the model and satellite estimate.  In each panel the -150m, -100m and -50m isobaths are 
7 contoured.
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1

2 Figure 11.  Comparison of ice concentration statistics between STherm and the ASI satellite estimate.   
3 Panel a displays the difference between the seasonal mean in the STherm simulation and the ASI estimate.
4 Panel b displays the difference in the seasonal standard deviation between the simulation and satellite 
5 estimate.  In each panel the -150m, -100m and -50m isobaths are contoured.
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1

2 Figure 12.  Comparison of ice coverage and SST for 5 different days over the winter season, for OSTIA 
3 (left column) and  SDyn (middle column).  SST is displayed in color, while the ice coverage is indicated with 
4 a transparency mask (white indicating 100% ice coverage and no masking, indicating 0% ice coverage).  
5 The right column shows the ASI estimate of ice concentration (this product does not produce an 
6 estimate for SST, so the background color is specified as blue).  In each panel the -150m, -100m and -
7 50m isobaths are contoured.


