
Fair Packet Enqueueing and Marking in
Multi-Queue Datacenter Networks

Sultan Alanazi and Bechir Hamdaoui

School of EECS, Oregon State University, Corvallis, Oregon, USA
{alanazsu,hamdaoui}@oregonstate.edu

Abstract—Recently, Explicit Congestion Notification (ECN)
has been leveraged by most Datacenter Network (DCN) protocols
for congestion control to achieve high throughput and low
latency. However, the majority of these approaches assume that
each switch port has one queue while current industry trends
towards having multiple queues per switch port. To this end,
we propose ML-ECN, a fairness-aware packet enqueueing and
multi-level probabilistic ECN marking scheme for DCNs enabled
with multiple-service, multiple-queue switch ports. The main
design of ML-ECN relies on the separation between small,
medium, and large flows by dedicating multiple queues for each
flow class to ensure fair enqueueing. ML-ECN employs one
ECN marking threshold for the small queue class and multiple
thresholds with a probabilistic marking for the medium and
large queue classes to achieve low latency for mice (small) and
high throughput for elephant (large) flows. In addition, ML-
ECN performs fairness-aware ECN marking that ensures that
packets of short flows are not getting marked due to buffer
buildups caused by longer flows. Large-scale ns-2 simulations
show that ML-ECN outperforms existing approaches at different
performance metrics.

Index Terms—Datacenter networks, congestion control, queue
management, explicit congestion notification, fairness.

I. INTRODUCTION

Improving datacenter network (DCN) performance has re-
cently been the focus of great deal of research in both
academia and industry [1–5]. Cloud datacenters host a variety
of applications and services with stringent performance needs
and conflicting requirements. For instance, MapReduce [6]
and Hadoop [7] require high throughput, whereas group video
calls [8] and web services require low latency. Moreover, some
services such as online data-intensive applications [9] require
both high throughput and low latency. Thus, it is important to
have datacenter transport-layer protocols that can deliver both
low latency and high throughput simultaneously. However,
the Internet’s dominant transport layer protocol, TCP, cannot
satisfy DCN’s requirements [10].

To meet these requirements, many DCN transport-layer
proposals such as those proposed in [11–14] have employed
ECN (explicit congestion notification) marking [15] and show
that such a marking can deliver both low latency and high
throughput simultaneously with a proper tuning of the ECN
marking threshold [13]. ECN-based transport mechanisms

This work was supported in part by US National Science Foundation (NSF)
under awards No. 1923884 and No. 2003273.

such as DCTCP [10] and DCQCN [14] have been broadly
used in industry because of their simplicity. Although DCTCP
and other transport schemes can deliver low latency and high
throughput, their ECN marking schemes are designed for
switches with only one single queue per switch port. However,
current industry trends towards manufacturing switches with
up to 8 classes of service queues per port [16–18].

Multi-Service Multi-Queue ECN (MQ-ECN) [19] has been
proposed to optimize the ECN marking scheme of DCTCP in
multi-queue scenarios. MQ-ECN periodically adjusts the ECN
marking threshold for each queue independently based on the
queue weight and the round-trip time. However, imprecise
measurement is considerable in MQ-ECN since data traffic
in DCN is bursty in nature. Moreover, setting the threshold
dynamically requires periodic round-trip time measurement
which incurs non-negligible overhead for switches [19]. De-
mePro [20], on the other hand, decides to measure the total
queue length in the port buffer instead of measuring the
round-trip time of each queue periodically. DemePro marks
the head packet in the most congested queue when the total
queue length becomes greater than per-port threshold. A-
ECN [21] designs an adaptive ECN marking scheme that
does not consider time interval, as in MQ-ECN, to update
the marking threshold. Instead, A-ECN uses the number
of enqueue packets as the interval to update the marking
threshold. MM-ECN [22] designs a mix marking scheme that
combines front-end ECN marking and random ECN marking
to provide best burst tolerance and short-flow friendliness
simultaneously.

Although the ECN marking schemes mentioned above can
deliver low latency and high throughput, none of them con-
sider fairness among flows when performing ECN marking.
Therefore, in this paper, we propose ML-ECN, a multi-level
ECN marking mechanism that provides fair ECN marking
among flows while delivering high throughput and low latency
simultaneously. We employ multiple thresholds to perform
probabilistic ECN marking. The minimum threshold triggers
ECN marking, with low probability, on the largest flow sizes
indicated by the stage value tagged in the packet header of
each flow. This ensures no queue underflow in the presence of
micro-burst, thereby resulting in a good network performance.
Then, as the threshold level increases, ML-ECN triggers
ECN marking, with low probability, on smaller flow sizes



compared to previous threshold levels. Furthermore, ML-ECN
increases the marking probability on the larger flows marked
on previous threshold levels. The idea behind these marking
decisions is to reduce queues buildups without negatively
impacting the performance of smaller flows. The maximum
threshold triggers ECN marking on all incoming packets with
maximum probability, except that flows with the smallest stage
value receive lower marking probability. The aggressive ECN
marking performed on the maximum threshold level mitigates
packets drop at the tail of the queue. To this end, the key
features of ML-ECN are as follows.

1) It prevents excessive queueing delays of short flows when
sharing the same queue with larger flows. ML-ECN does
so by classifying incoming flows into small, medium, and
large service queues based on the flows’ sizes.

2) It employs a single marking threshold on small service
queues to ensure low latency for mice flows.

3) It employs both per-port and per-queue packet marking
on medium and large service queues to avoid frequent
packet drops when multiple queues are concurrently
active and to maintain weighted fair sharing among same-
class queues.

4) It ensures fairness-aware ECN marking that only marks
large flows at lower threshold levels. This guarantees
fairness among flows as marking is applied on the flows
that contribute the most to the queue buildup.

We conduct extensive experiments using ns-2 simulator to
show the performance of ML-ECN. We run five different
workloads, a web search workload [10], a cache workload [7],
a data mining workload [23], a Hadoop workload [7] and a
mixture of these four workloads on Leaf-Spine topology. The
results show that ML-ECN can significantly reduce the Flow
Completion Time (FCT) for short flows while maintaining
high throughput performance for large flows as compared
with existing schemes. For example, the FCT performance
reduction of ML-ECN, compared to the other schemes, ex-
ceeds 39%, 55%, 60%, 40% and 44% when running mix,
web search, cache, data mining, and Hadoop workloads re-
spectively. The experiments also show that ML-ECN ensures
fairness marking for short flows and can further reduce the
packet drop rates compared to the other schemes.

The paper is organized as follows. Sections II and III
motivates and presents ML-ECN, repectively. Section IV eval-
uates ML-ECN on a large-scale network simulator. Section V
outlines related work. Finally, Section VI concludes this work.

II. MOTIVATION

A. Why Multi-Level ECN-Marking Thresholding?

The widely used ECN-based active queue management
protocols like DCTCP [10] and DCQCN [14], designed specif-
ically for switches with single-queue ports, fall short when
applied to today’s commodity switches enabled with multi-
queue ports. To the best of our knowledge, MQ-ECN [19] is
the first to explore the unsuitability of single, fixed threshold-
ing in multi-queue scenarios and does so as follows.

Fig. 1: Hosts 1,2 send large
flows; Host 3 sends small
flow; all sent to same receiver.

Fig. 2: Impact of ECN
marking mechanism on
short flows and large flows.

• Per-queue ECN with standard threshold, which sets the
standard threshold for each queue independently. An
arrival packet gets ECN marked if the per-queue buffer
occupancy exceeds the per-queue standard threshold.
This ensures high throughput (benefiting large flows) but
can lead to poor latency (for small flows) when multiple
queues are concurrently active. The standard threshold
K can be calculated as[24, 25]

K = C ×RTT × λ (1)

where C is link capacity, RTT is average round-trip
time, and λ is a variable parameter related to the con-
gestion control algorithms. For example, DCTCP sets
λ = 0.17 while the approach in [13] sets λ = 1.

• Per-queue ECN with minimum thresholds, which divides
the standard threshold among all the queues statically
according to their weights. Although low latency is
guaranteed, the achievable throughput could be degraded
when only a few queues are active.

• Per-port ECN with standard thresholds, which uses the
same standard threshold defined for the per-queue on
each port buffer (instead of individual queues). An arrival
packet gets ECN marked if the per-port buffer occupancy
exceeds the per-port standard threshold. Per-port ECN
can maintain both high throughput and low latency, but
can’t guarantee weighted fair sharing across different
queues.

From these above scenarios as well as other findings using
single thresholding approaches [20], we conclude that it is
hard to fine-tune a single, fixed threshold values that can
achieve both high throughput and low latency in the presence
of network flows with varying sizes.

Motivated by the above observations, this paper proposes
a multi-threshold-per-queue marking scheme that strives to
deliver low latency for small flows while achieving high
throughput for large flows.

B. Why Fairness-Aware ECN Marking?

Existing ECN marking schemes leverage instantaneous
queue length and a single ECN marking threshold to achieve
high throughput and low latency. They mark all packets when
the instantaneous queue length exceeds the single threshold.
However, these schemes perform poorly in fairness, since



their ECN marking neglects the size of the flows. In current
marking schemes, a short flow can be penalized due to queue
pressure caused by multiple large flows. So packet marking
should also consider flow sizes in order to maintain fairness
among multiple flows. Figure 1 shows a scenario where
fairness is not achieved among multiple flows. In this scenario,
there are 3 flows between 3 different hosts and one receiver.
Hosts 1 and 2 are sending large flows F1 and F2 (Red and
Blue) with 10 MB sizes while Host 3 is sending a short flow
F3 (Green) with 20 KB in size. We can observe that flows F1
(Red) and F2 (Blue) are sending more packets (putting more
pressure on the queue), as they are large flows, causing the
queue to build up quickly and reach the marking threshold.
Upon their arrivals, flow F3 (Green) packets get ECN marked.
As a result, Host 3 reacts to the packet marking by reducing
the sending rate of the flow, leading to poor performance.

To quantify this impact, we conduct three experiments by
running web search workload [10] on one of the widely
deployed topologies in datacenter networks, Leaf-Spine topol-
ogy. We generate 50K flows on each simulation. In the first
experiment, we perform ECN marking on all packets when a
queue length exceeds the marking threshold. For the second
experiment, we only mark packets that belong to large flows.
In the last experiment, we only mark packets that belong to
short flows. Figure 2 shows the performance impact of ECN
marking on short and large flows. Observe that the average
FCT of short flows, when only large flow packets are marked,
has decreased by about 25% compared to their performance
when all packets get ECN marked. On the other hand, there is
no performance degradation for large flows. Therefore, flow
size information needs to be carefully accounted for to achieve
fairness. That is said, flow size information may not always
be available beforehand. For example, database systems (e.g.,
Microsoft SQL Servers [26]) do not necessarily wait until
the end of the query execution to publish the query outcome.
Instead, they send partial query results as they are created. For
this scenario, the total flow size will not be available before
the flow starts. Another example is HTTP content transfer,
where content is divided into chunks and the chunks are
dynamically transferred as they are created in real time. For
DC networks, multiple DC applications use chunked transfer
to dump database content into OpenStack Object Storage [27],
and for such applications, flow sizes again are not available
beforehand.

III. ML-ECN: THE PROPOSED MULTI-QUEUE FAIR
PACKET MARKING SCHEME

A. Design Decision & Goals
ML-ECN is proposed to further enhance the performance

of the ECN marking scheme of DCTCP in datacenters with
multiple queues per switch port. In designing ML-ECN, we
targeted a solution with three key design goals:

• Low latency: Ensure low queueing delay for small,
latency-sensitive flows.

• High throughput: Ensure full utilization of the network
bandwidth for large, throughput-sensitive flows.

Fig. 3: ML-ECN Overview

• Fairness: Differentiate between flows during the en-
queueing and ECN marking process. Smaller flows
should not get penalized by ECN marking due to a high
buffer pressure caused by larger flows.

B. ML-ECN Design Details

We now present ML-ECN, our proposed fairness-aware
Multi-Level probabilistic ECN marking scheme for datacenter
networks with multi-queue switch ports. At its core, ML-ECN
has two components: packet tagging and switch design.

1) Packet Tagging: Maintaining per-flow state at switches
requires counting and storing the number of bytes sent for
each flow, which is not supported in existing commodity
switches. Therefore, ML-ECN follows the work in [28] and
distributes packet tagging (indicating a flowâĂŹs sent size) to
end hosts as it is easy for TCP senders to count the number
of bytes sent when packets are delivered. Thus, switches
can leverage the tagged information to perform fairness-
aware packet enqueueing and ECN marking. ML-ECN utilizes
Weighted Round Robin (WRR) for scheduling among differ-
ent queues. However, it is difficult to carry the accurate flow
size information in the packet header, for switches to utilize.
Storing accurate values of flow size information requires many
reserved bits in the packet header, which is not practical.

To minimize the overhead (i.e., assigned packet header bits)
associated with carrying exact flow sizes, ML-ECN divides
flows into several stages, each representing a flow size range,
and tags each packet with its associated stage. Embedding
the stage ID instead of the exact flow size requires a lesser
number of header bits. Therefore, a flow in ML-ECN can go
through K stages Si, 1 ≤ i ≤ K, during its lifetime. Thus,
there are K − 1 elevation thresholds αj , 1 ≤ j ≤ K − 1, and
we assume that S1 < S2 . . . < Sk and α1 < α2 . . . < αK−1.

At end hosts, when a new flow is initialized, its packets
gets tagged with the first stage, S1, and as more bytes are sent,
packets are tagged with increasing stages Sj (2 ≤ j ≤ K) and
are buffered in a lower weighted queue based on the queueing
mechanism used by the network switches. A threshold αj−1

elevates a flow from stage Sj−1 to Sj .
2) Switch Design: As shown in Figure 3, ML-ECN switch

design consists of three main components: a classifier, an
ECN marker, and a scheduler. First, the classifier enqueues
arriving packets into one of the three queues, small, medium
or large, based on the stage value tagged in the IP DSCP



packet header field. Then, the ECN marker decision is made
based on the ECN-marking mechanism applied for each queue
class. Finally, the scheduler dequeues packets using Weighted
Round Robin (WRR) scheduling.

Algorithm 1 Classifier

1: Processing received packet p
2: flowsize ← p.dscp
3: flowid ← p.flowid
4: Qs total number of small queues
5: Qm total number of medium queues
6: Ql total number of large queues
7: Tsmall threshold for small flows
8: Tlarge threshold for large flows
9: if flowsize ≤ Tsmall then

10: qnumber ← flowid mod Qs

11: qnumber.enque(p)
12: else if flowsize ≥ Tlarge then
13: qnumber ← flowid mod Ql

14: qnumber.enque(p)
15: else
16: qnumber ← flowid mod Qm

17: qnumber.enque(p)
18: end if

Algorithm 2 ECN Marking in Medium Queues

1: Classify packet p into (Psmall, Pmedium, Plarge)
2: Pr1 ← TL1 / K
3: Pr2 ← TL2 / K
4: Pr3 ← TL3 / K
5: if Portlength > K then
6: if Qlength ≤ TL1 then
7: Don’t mark packet
8: else
9: Mark packet

10: end if
11: else
12: if TL1 ≥ Qlength < TL2 then
13: Mark Pmedium packet with probability Pr1
14: Mark Plarge packet with probability Pr2
15: else if TL2 ≥ Qlength < TL3 then
16: Mark Psmall packet with probability Pr1
17: Mark Pmedium packet with probability Pr2
18: Mark Plarge packet with probability Pr3
19: else
20: Mark Psmall packet with probability Pr2
21: Mark Pmedium packet with probability Pr3
22: Mark Plarge packet with probability 1
23: end if
24: end if

a) Classifier: Current commodity datacenter switches
support up to 8 queues per port. ML-ECN arranges these
queues, based on the type of flows they serve, into small,

medium, and large service queues. Upon receiving an in-
coming packet, the classifier puts the packet into one of the
queues by comparing the stage value tagged in the IP DSCP
header field to a set of thresholds determined by the datacenter
provider as shown in Algorithm 1. That is, if the stage value is
smaller than or equal to Tsmall, an arriving packet is enqueued
to one of the small service queues, and if it is greater than
Tsmall but smaller than or equal to Tmedium, the packet is
enqueued to one of the medium service queues. Otherwise,
the packet is enqueued to one of the large service queues.

Separating flows into small, medium and large flows allows
ML-ECN to minimize the average Flow Completion Time
(FCT) among flows. Furthermore, the separation helps ML-
ECN in maintaining fairness for smaller flows by allowing
the scheduler to easily prioritize them over larger flows, to
emulate the shortest job first scheduling, which results in
lower latency for small flows. It also prevents short flows from
experiencing large queueing delays when sharing the same
queue with larger flows. The reason is that large flows have
many more packets arriving at the queue that perform First
In First Out (FIFO) scheduling, compared to small flows. The
scheduler also prevents penalizing short flows by traditional
ECN marking due to high pressure on queue caused by
large flows. For large flows, instead of putting them in lower
weighted queues at the beginning of their transmission, ML-
ECN allows them to start at the highest weighted queues (in
small service queues) and demotes them to lower weighted
queues as they grow in size. This ensures high throughput for
large flows.

b) ECN Marker: As discussed in Section II, ECN-
marking based on a single threshold value cannot always
guarantee high throughput, low latency, and fairness in the
presence of flows with various sizes. To overcome the limi-
tations of a single ECN marking threshold, we leverage the
classification of queues into different classes and design a
specific ECN-marking scheme for each queue class as follows:

• Small service queues: We employ per-queue standard
threshold K for each queue in this class. Packets are
marked only when their corresponding queue exceeds
the standard threshold. We design these queues to be
the starting point of all flows until they grow in size
and get migrated to medium service queues. Therefore,
employing the standard threshold ensures that short flows
are not marked at early queue buildup. It also ensures that
the queues can absorb traffic burst.

• Medium service queues: In contrast to the ECN marking
in small service queues, where the marking is based
on the length of each queue independently, the marking
design in medium service queues is based on both the
current queue length and the total length of all queues
in the port buffer as shown in Algorithm 2. We first
classify packets based on the current sent size of their
flows into small, medium, and large (line 1). Then we
generate different marking probabilities to trigger packet
marking on each threshold level (line 2 to line 4). The
algorithm triggers packet marking if the total length of



all queues exceeds the standard threshold K (line 5).
However, instead of marking all enqueued packets and
violating the weighted fair sharing among the queues in
this class, we impose a condition on each queue that
prevents marking packets if the queue length is less than
the minimum threshold (line 6 to line 9). Therefore,
performing ECN marking based on the total length of all
queues mitigates frequent packet drops when multiple
queues are concurrently active. On the other hand, if
the total length is is less than K then we apply ECN
marking on each queue independently based on multi-
level thresholds as follows.

TLi = i× K

L
, i ∈ [1, L] (2)

where TLi, K, and L are respectively the i-th, stan-
dard thresholds and the total number of thresholds.
Furthermore, for each threshold level employed on the
service queues, we perform fairness-aware probabilistic
ECN marking on a selective range of flows to ensure
that smaller flows are not marked (penalized) at the
early stages of queue build-up. Therefore, at the first
(minimum) threshold (line 12 to line 14), ML-ECN only
performs ECN marking, with lower probabilities, on
medium and large flows. As the threshold level increases,
ECN marking is also performed, with low probability, on
small flows while increasing the marking probability on
the medium and large flows (line 15 to line 22). Thus,
packet marking in ML-ECN is proportional to the queue
length.

• Large service queues: We employ similar ECN-marking
as in the medium service-queue but with the following
change. Instead of applying selective marking, based on
flow sizes, when queue length reaches each threshold
level, the scheme in large service queues marks all
packets at each threshold level with increasing marking
probability.
c) Scheduler: In today’s datacenters, each port of com-

modity switches has up to 8 queues. To dequeue packets from
these queues, the following packet schedulers supported in
most commodity switches are used:

• Weighted Round Robin (WRR): This scheduler assigns a
weight for each queue. The number of packets dequeued
from a queue is proportional to the weight of the queue.
Thus, WRR can provide guaranteed bandwidth.

• Deficit Weighted Round Robin (DWRR): This type of
scheduler uses a deficit counter to provide more desired
bandwidth allocation than WRR.

• Strict Priority: Packets are dequeued strictly based on
their priorities, so packets from lower priority queues
are dequeued only after the highest priority queues have
dequeued all their packets.

With packets enqueued into different queues according to
their current stage level, ML-ECN’s switches perform WRR
scheduling, which is a built-in function on existing commodity
switches. ML-ECN leverages the classification of queues into

small, medium, and large service queues and assigns weights
to the queues with one objective in mind, achieving low
latency for small flows without negatively impacting the
throughput of large flows. Therefore, ML-ECN assigns higher
weights to the queues in the small service queue category with
all the queues in this category being assigned the same weight.
On the other hand, all queues in the medium service queue
category are assigned lower weight compared to the ones in
the small service queues. Moreover, queues in the large service
category are assigned the lowest weight compared to other
queues in the other categories.

In ML-ECN, we choose the round robin scheduler over
strict priority scheduling to avoid the starvation problem
associated with strict priority queueing. For example, if the
number of flows in high-priority queues becomes excessive,
flows in lower-priority queues may starve and trigger TCP
timeouts, which result in performance degradation.

C. Features of ML-ECN

We now explain how ML-ECN achieves the targeted design
goals described in Section III-A.

1) Low latency for small flows:
• ML-ECN migrates flows from small service queues as

the queues increase in size to prevent short flows from
experiencing large queueing delays when sharing the
same queue with larger flows.

• ML-ECN assigns high weights to small service queues
to help maintain shallow buffers and ensure short FCTs
for short flows.

• ML-ECN avoids marking small flows at low buffer
occupancy to ensure high sending rates for small flows.
End-hosts react to marked packets by slowing down the
sending rate of flows.

2) High throughput for large flows:
• ML-ECN allows large flows to begin at small service

queues, so they can leverage the high weight assigned
to small service queues. As they grow in size, they will
be demoted to medium service queues and leverage their
weights before being placed at lower weighted queues.

• ML-ECN employs WRR scheduling, which ensures
bandwidth allocation for large flows without experiencing
resource starvation.

• ML-ECN performs no marking on large service queues
if the queue length is less than the minimum threshold
even if the total length of all queues exceeds the standard
threshold.

3) Fairness: To maintain fairness for short flows, ML-
ECN only marks packets in small service queues if the queue
length exceeds the standard threshold K. For medium service
queues, ML-ECN performs packet marking on shorter flows
with lower probability compared to longer flows.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ML-ECN
in large-scale datacenter networks using ns-2 simulation. We



(a) WRR:Mix (b) WRR:Web search (c) WRR:Data mining (d) WRR:Hadoop (e) WRR:Cache

(f) DWRR:Mix (g) DWRR:Web search (h) DWRR:Data mining (i) DWRR:Hadoop (j) DWRR:Cache

Fig. 4: Overall FCT statistics across different workload

compare the performance of ML-ECN with MQ-ECN [19],
MM-ECN [22], A-ECN [21], and the ECN marking scheme
of DCTCP [10]. To ensure fair comparison between ML-ECN,
MQ-ECN and other schemes, we use the exact code and the
same settings as those in the MQ-ECN [19].

Topology: We conduct the performance evaluation based
on 144-host Leaf-Spine topology. The network has 12 leaf
(Top-of-Rack (ToR)) switches, and 12 spine (Core) switches.
Each Leaf switch is connected to 12 hosts through 10Gbps
downlink ports and 12 Spine switches through 10Gbps uplink
ports, forming a non-blocking network. The end-to-end RTT
latency across spines (4 hops) is 85.2µsec. We employ the
widely used ECMP [29] for network load balancing.

Transport: We use DCTCP as a transport protocol with
initial window size set to 16 packets and both initial and
minimum values of TCP RTO set to 5ms.

Switch: Current commodity switches support up to 8
queues per port, so we set 8 queues for each switch port
and we map these queues into small, medium, and large
categories. We utilize Weighted Round Robin (WRR) and
Deficit Weighted Round Robin (DWRR) for scheduling flows
among different queues in each switch port. We set the number
of threshold levels on each queue to 4 and set the weight ratio
of small, medium, and large queues to 4:2:1 respectively and
the quantum for each queue to 1.5KB.

Workloads: In our previous work [30], we evaluate the
performance of the proposed scheme using only one workload
which is a mix of four different flow distributions (mix
workload). In this paper, we extend the evaluation and run
all the schemes under 4 different workloads, a web search
[10], a data mining [23], a cache [7], and a Hadoop [7]
with 914 KB, 1671 KB, 4149 KB, and 7495 KB of mean
flow size, respectively. We use FCT, throughput, number of
ECN marking, and packet drop rate as performance metrics
in our simulation. We divide all flows based on their size

into three classes including short flows (0, 100KB], medium
flows (100KB, 10MB], and large flows (10MB,∞). We
consider the results of overall flows and the break down across
different flow sizes independently (short, medium, and long).
All simulations last for 50K flows.

A. Flow Completion Time
FCT is the time from when the SYN packet of a flow is sent

until when the last packet is received by the destination. Figure
4 shows the average FCTs (averaged over all flows) achieved
under ML-ECN (proposed), MQ-ECN, A-ECN, MM-ECN,
and DCTCP when running the schemes across different work-
loads. Observe that ML-ECN outperforms all other schemes
for all workloads when using both WRR and DWRR packet
schedulers. Running the mix workload in Figures 4a and
4f, we can see that the proposed ML-ECN reduces the
overall FCT by 20% Compared to A-ECN , MM-ECN and
DCTCP respectively. Moreover, ML-ECN outperforms MQ-
ECN by up to 15%. For individual workloads, observe that
the improvement of ML-ECN differs based on the type of
workload. It is higher for Web search and cache workloads
compared to Data mining and Hadoop workloads. The reason
is that Web search and cache have smaller mean flow size
compared to Data mining and Hadoop workloads, and ML-
ECN is more beneficial for short flows as shown in Figures
(5a ,5d). Therefore, the improvement is more significant for
workloads with smaller mean flow size. Next, we present
the breakdown of FCT across different flow sizes for each
individual workload.

1) Mix Workload:
a) Short flows: In this section, we take a deep dive into

small (0, 100KB] flows and compare the average FCT of ML-
ECN to other schemes. Compared to the ECN marking scheme
of DCTCP shown in Figures 5a and 5d, ML-ECN has about
54% reduction in average FCT of small flows. DCTCP suffers
in this scenario because, at high load with standard threshold,



(a) WRR-Short (b) WRR-Medium (c) WRR-Long (d) DWRR-Short (e) DWRR-Medium (f) DWRR-Long

Fig. 5: FCT statistics across different flow sizes for mix workload

(a) WRR-Short (b) WRR-Medium (c) WRR-Long (d) DWRR-Short (e) DWRR-Medium (f) DWRR-Long

(g) WRR-Short (h) WRR-Medium (i) WRR-Long (j) DWRR-Short (k) DWRR-Medium (l) DWRR-Long

Fig. 6: FCT statistics across different flow sizes for Web search and Cache workloads

(a) WRR-Short (b) WRR-Medium (c) WRR-Long (d) DWRR-Short (e) DWRR-Medium (f) DWRR-Long

(g) WRR-Short (h) WRR-Medium (i) WRR-Long (j) DWRR-Short (k) DWRR-Medium (l) DWRR-Long

Fig. 7: FCT statistics across different flow sizes for Data mining and Hadoop workloads



multiple queues are concurrently active, causing congestion
at the switch port, which in turn results in a high queueing
delay for small flows. Compared to A-ECN, MM-ECN and
MQ-ECN, ML-ECN reduces its average FCT by up to 51% ,
51% and 39% respectively. We attribute the improvement of
ML-ECN to its enqueueing and dequeueing mechanism that
isolates small flows from other flows and assigns more weight
to small service-queues.

b) Medium flows: For medium (100KB, 10MB] flows,
ML-ECN achieves notable reduction in FCT compared to all
other schemes as shown in Figures 5b and 5e. Two factors
contribute to the superior performance of ML-ECN. First,
demoting large flows, as they grow in size, from medium
service-queues to large service-queues and assigning medium
service-queues with more weight compared to large service-
queues. Second, employing multiple thresholds with increas-
ing probability of ECN marking slows down the rapid increase
of queue length in medium service-queues without throttling
throughput for majority of the flows.

c) Large flows: Figures 5c and 5f show the average FCT
of large (10MB,∞) flows when comparing ML-ECN to other
schemes. Observe that all flows achieve similar performance.
This shows the efficiency of ML-ECN in reducing the FCT for
small and medium flows without jeopardizing the performance
of large flows.

2) Web-Search and Cache Workloads:
a) Short flows: Figure 6 shows the FCT statistics across

different flow sizes for Web search and Cache workloads.
ML-ECN has a significant improvement in FCT for short
flows exceeding 55% for web search compared to the other
schemes as shown in Figures 6a and 6d. Similarly, ML-ECN
performance exceeds 60% when running cache workload as
shown in Figures 6g and 6j. We attribute the remarkable
improvement of ML-ECN to its enqueueing, dequeueing and
ECN-marking mechanisms as follows. First, ML-ECN dedi-
cates a couple of queues to serve short flows only. Once a
flow grows in size, it is migrated to medium service queues.
This avoids buildup of small service-queues that causes long
queueing delay. Second, ML-ECN assigns higher weight to
small service-queues. Finally, instead of marking short flows
when the total length of all queues reaches the standard
threshold, ML-ECN marks small flows only if the length of
their corresponding queues exceeds the standard threshold.

b) Medium flows: Figures 6a and 6d evaluate the im-
provement of ML-ECN for medium flows (100KB, 10MB].
Running Web search workload, ML-ECN reduces the average
FCT by around 22%,22%,20%, and 18% compared to A-ECN,
MM-ECN, DCTCP, and MQ-ECN respectively as shown in
Figures 6b and 6e. On the other hand, Figures 6h and 6k
show that ML-ECN achieves about 18%,18%,17%, and 15%
reduction compared to A-ECN, MM-ECN, DCTCP, and MQ-
ECN respectively when running the schemes under Cache
workload.

c) Large flows: Similar to the Mix workload, ML-ECN
achieves comparable performance for large flows compared
to the other schemes. Figures 6f and 6l show that the perfor-

mance of ML-ECN has dropped by around 7% compared to
the other schemes.

3) Data-Mining and Hadoop Workloads:
a) Short flows: Figure 7 further confirms the superior

performance of ML-ECN for short flows when running the
schemes under both Data mining and Hadoop workloads. The
performance gap of ML-ECN, as shown in Figures 7b and 7e,
reaches 40% in WRR and 47% in DWRR compared to MQ-
ECN for Data mining workload. Running Hadoop workload,
Figures 7h and 7k show that the performance improvement
reaches 44% in WRR and 52% in DWRR. Compared to A-
ECN, MM-ECN, and DCTCP, the performance gap of ML-
ECN exceeds 44% using WRR and 52% using DWRR for
both workloads.

b) Medium flows: Figure 7 shows interesting results
about the FCT of medium flow sizes when running Data
mining and Hadoop workloads. Observe that the performance
gain of ML-ECN becomes more significant compared to Web
search and Cache workloads in Figure 6. The reason is that in
Data mining and Hadoop, the majority of the bytes are from
small percent of the flows. For example, over 95% of bytes in
Data mining are from about 3.6% flows that are larger than
35MB [31]. Therefore, ML-ECN migrates these large flows
from medium to large service-queues once they grow beyond
a certain size. This results in a remarkable improvement in
the average performance of medium flows.

c) Large flows: For large flows, Figure 7 shows that
all schemes provide similar performance when running both
Data mining and Hadoop workloads. This shows that ML-
ECN is efficient and incurs no performance degradation for
large flows.

B. Throughput

The achievable average rate is calculated by first dividing
each flow size by its measured FCT and then averaging the
overall flows. Figure 8 shows the average throughput achieved
under the studied schemes when running the schemes across
different workloads. Observe that ML-ECN outperforms the
other schemes in all the workloads for both schedulers.
More specifically, the throughput performance of ML-ECN,
compared to the other schemes, exceeds 24%, 38%, 33%,
36% and 34% when running Mix, Web search, Cache, Data
mining, and Hadoop workloads respectively. Next, we show
the breakdown of throughput across different flow sizes for
each individual workload.

1) Mix Workload:
a) Short flows: Figures 9a and 9d show the average

throughput for short flows. Observe that ML-ECN achieves
about 35%, 33%, 37%, and 32% gain in throughput perfor-
mance using the WRR scheduler compared to A-ECN, MM-
ECN, DCTCP, and MQ-ECN. On the other hand, it increases
the throughput performance by 45%, 34%, and 30% For the
DWRR scheduler.

b) Medium flows: For medium flow sizes, the perfor-
mance gain of ML-ECN exceeds 26%, , 25% 25%, and 21%



(a) WRR:Mix (b) WRR:Web search (c) WRR:Data mining (d) WRR:Hadoop (e) WRR:Cache

(f) DWRR:Mix (g) DWRR:Web search (h) DWRR:Data mining (i) DWRR:Hadoop (j) DWRR:Cache

Fig. 8: Overall throughput statistics across different workload

(a) WRR-Short (b) WRR-Medium (c) WRR-Long (d) DWRR-Short (e) DWRR-Medium (f) DWRR-Long

Fig. 9: Throughput statistics across different flow sizes for Mix workload

(a) WRR-Short (b) WRR-Medium (c) WRR-Long (d) DWRR-Short (e) DWRR-Medium (f) DWRR-Long

(g) WRR-Short (h) WRR-Medium (i) WRR-Long (j) DWRR-Short (k) DWRR-Medium (l) DWRR-Long

Fig. 10: Throughput statistics across different flow sizes for Web search and Cache Workloads



(a) WRR-Short (b) WRR-Medium (c) WRR-Long (d) DWRR-Short (e) DWRR-Medium (f) DWRR-Long

(g) WRR-Short (h) WRR-Medium (i) WRR-Long (j) DWRR-Short (k) DWRR-Medium (l) DWRR-Long

Fig. 11: Throughput statistics across different flow sizes for Data mining and Hadoop Workloads

compared to A-ECN, MM-ECN, DCTCP, and MQ-ECN as
shown in Figures 9b and 9f.

c) Large flows: Figures 9c and 9f show that ML-
ECN maintains comparable performance compared to the
other schemes. This confirms the efficiency of ML-ECN in
achieving better latencies for short flows while ensuring the
throughput of large flows is not affected.

2) Web Search and Cache Workloads: Figure 10 shows the
throughput statistics across different flow sizes for Web search
and Cache Workloads. The results show similar performance
improvement for ML-ECN over the other schemes as achieved
in the Mix workload.

3) Data Mining and Hadoop Workloads: Figure 11 shows
the throughput statistics across different flow sizes for Data
mining and Hadoop Workloads. Observe that the throughput
performance of ML-ECN compared to the other schemes has
been further increased for medium flows when running the
schemes under Data mining and Hadoop workloads. For large
flows, we can see that ML-ECN slightly outperforms the
other schemes in Data mining workload. More specifically, it
achieves about 6% throughput gain compared to other schemes
as shown in Figures 11c and 11f. The reason for the further
increase in the performance of large flows is that ML-ECN
decides not to mark packets, if the queue length is less than
minimum threshold, in large queues even if the total length
of all queues exceeds the standard threshold K.

C. ECN Marking

1) Mix Workload: Figure 12 shows the total number of
ECN-marked packets across different flow sizes. Compared
to other schemes, ML-ECN guarantees fairness for small
flows by performing no ECN-marking on packets belonging
to these flows as shown in Figures 12a and 12d. Although
other schemes achieve lower marking for medium and larger
flows, they incur more queueing delay, which results in higher
FCT as shown in Figure 5.

2) Web-Search and Cache Workloads: Figure 13 shows the
marking performance of the studied schemes when running
under Web search and Cache workloads. Notice that ML-ECN
has lower ECN marking for large flows in contrast to the other
schemes. There are two reasons for that: First, the size of the
large flows in Web search and Cache is not as big as the
size of large flows in Data mining and Hadoop. Thus, there
is low chance they co-exist in large queues for long period of
time given that they start on small queues then get demoted to
medium queues before they grow more in size and be placed
on large queues. Second, ML-ECN insures good throughput
for large flows by not marking their packets when the length
of their corresponding queues is below the minimum threshold
TL1.

3) Data-Mining and Hadoop Workloads: Figure 14 shows
the marking performance of the studied schemes when running
under Data mining and Hadoop workloads. Observe that ML-
ECN incurs no packet marking on short flows and more
markings on medium and large flows. Compared to Web
search and Cache workloads, ML-ECN marking performance
on large flows is inferior to the other schemes. This is
because the size of large flows in Data mining and Hadoop
is significant, which results in more pressure on large queues
and more marking.

D. Packet Drop Rate
1) Mix Workload: Figures 15a and 15f show the average

packet drop rate, due to queue overflow, achieved under
different schemes in Mix workload. Observe that DCTCP has
the highest packet drop rate among the schemes. The reason
is that DCTCP applies the standard threshold in all queues,
which makes it difficult to prevent queue buffers from being
filled out and dropping packets. It is clear that ML-ECN
provides significant reduction in packet drop rate compared
to A-ECN and DCTCP across all loads. Compared to MQ-
ECN and MM-ECN, observe that ML-ECN achieves slightly



(a) WRR-Short (b) WRR-Medium (c) WRR-Long (d) DWRR-Short (e) DWRR-Medium (f) DWRR-Long

Fig. 12: ECN-marked packets across different flow sizes for mix workload

(a) WRR-Short (b) WRR-Medium (c) WRR-Long (d) DWRR-Short (e) DWRR-Medium (f) DWRR-Long

(g) WRR-Short (h) WRR-Medium (i) WRR-Long (j) DWRR-Short (k) DWRR-Medium (l) DWRR-Long

Fig. 13: ECN-marked packets across different flow sizes for Web search and cache Workloads

(a) WRR-Short (b) WRR-Medium (c) WRR-Long (d) DWRR-Short (e) DWRR-Medium (f) DWRR-Long

10 20 30 40 50 60 70 80
0

2

4

6

8

T
o

ta
l 
n

o
.o

f 
E

C
N

 M
a
rk

e
d

P
a
c
k
e
ts

 f
o

r 
S

m
a
ll
 F

lo
w

s

104

ML-ECN
MQ-ECN
MM-ECN
DCTCP
A-ECN

(g) WRR-Short

10 20 30 40 50 60 70 80
0

1

2

3

4

T
o

ta
l 
n

o
.o

f 
E

C
N

 M
a
rk

e
d

P
a
c
k
e
ts

 f
o

r 
M

e
d

iu
m

 F
lo

w
s

105

ML-ECN
MQ-ECN
MM-ECN
DCTCP
A-ECN

(h) WRR-Medium

10 20 30 40 50 60 70 80
0

1

2

3

4

5

T
o

ta
l 
n

o
.o

f 
E

C
N

 M
a
rk

e
d

P
a
c
k
e
ts

 f
o

r 
L

a
rg

e
 F

lo
w

s

106

ML-ECN
MQ-ECN
MM-ECN
DCTCP
A-ECN

(i) WRR-Long

10 20 30 40 50 60 70 80
0

2

4

6

8

10

T
o

ta
l 
n

o
.o

f 
E

C
N

 M
a
rk

e
d

P
a
c
k
e
ts

 f
o

r 
S

m
a
ll
 F

lo
w

s

104

ML-ECN
MQ-ECN
MM-ECN
DCTCP
A-ECN

(j) DWRR-Short

10 20 30 40 50 60 70 80
0

1

2

3

4

5

T
o

ta
l 
n

o
.o

f 
E

C
N

 M
a
rk

e
d

P
a
c
k
e
ts

 f
o

r 
M

e
d

iu
m

 F
lo

w
s

105

ML-ECN
MQ-ECN
MM-ECN
DCTCP
A-ECN

(k) DWRR-Medium

10 20 30 40 50 60 70 80
0

1

2

3

4

5

T
o

ta
l 
n

o
.o

f 
E

C
N

 M
a
rk

e
d

P
a
c
k
e
ts

 f
o

r 
L

a
rg

e
 F

lo
w

s

106

ML-ECN
MQ-ECN
MM-ECN
DCTCP
A-ECN

(l) DWRR-Long

Fig. 14: ECN-marked packets across different flow sizes for Data mining and Hadoop Workloads



higher drop rate at 80%. This is because, at high load, MQ-
ECN and MM-ECN sets the ECN-marking threshold at each
queue to a lower value and starts marking all packets when
the queue length exceeds this threshold. Although MM-ECN
reduces the drop rate, it degrades the FCT of small flows as
they share the same queues with large flows.

2) Web-Search and Cache Workloads: Figure 15 shows that
ML-ECN maintains the superior performance compared to
A-ECN, MM-ECN and DCTCP in Web search and Cache
workloads. On the other hand, ML-ECN provides inferior
performance compared to MQ-ECN. This is because MQ-
ECN dynamically lowers the marking threshold in all queues,
which marks all packets at the early stages of queue buildup
while ML-ECN performs no early marking on packets in the
small service queues to achieve low FCT for short flows.

3) Data-Mining and Hadoop Workloads: ML-ECN, MM-
ECN, and MQ-ECN provide low packet drop rates for Data
mining and Hadoop workloads. The reason is that in those
workloads, the majority of bytes come from a very small
number of large flows. Thus applying early ECN-marking on
packets belonging to those flows reduces queue buildup and
lowers the packet drop rate.

V. RELATED WORK

Single-Queue ECN Marking: Tons of literature have been
proposed to minimize the flow latency in datacenters [32–37].
These schemes are designed with the assumption that a switch
port has only one queue and mainly consider how to perform
ECN/RED marking for a single queue. For space limitation,
we only introduce part of this literature. DCTCP [10] marks
packets, during the enqueuing process, when the instantaneous
queue length exceeds a static threshold. ECN∗ [38] chooses
to mark packets based on a static threshold but during the
dequeuing process. CEDM [39] goes further and decided to
mark packets during both the enqueing and dequeuing process
by using two static thresholds.

Multi-queue ECN Marking: The performance of single-
queue schemes is drastically degraded in the presence of
multi-queue switch ports, thereby prompting researchers to
propose schemes for multi-service multi-queue switches.
Multi-Service Multi-Queue ECN (MQ-ECN) [19] has been
proposed to optimize the ECN marking scheme of DCTCP in
multi-queue scenarios. MQ-ECN periodically adjusts the ECN
marking threshold for each queue independently based on the
queue weight and the round-trip time. However, imprecise
measurement is considerable in MQ-ECN since data traffic
in DCN is bursty in nature. Moreover, setting the threshold
dynamically requires periodic round-trip time measurement
which incurs non-negligible overhead for switches [19]. De-
mePro [20], on the other hand, decides to measure the total
queue length in the port buffer instead of measuring the
round-trip time of each queue periodically. DemePro marks
the head packet in the most congested queue when the total
queue length becomes greater than per-port threshold. A-
ECN [21] designs an adaptive ECN marking scheme that
does not consider time interval, as in MQ-ECN, to update

the marking threshold. Instead, A-ECN uses the number
of enqueued packets as the interval to update the marking
threshold. TCN [40] decided to mark packets according to
the sojourn times and a static threshold rather than the
instantaneous length of the queue. DC-ECN [41] uses a ma-
chine learning-based classifier to separate mice and elephant
flows through dual-coupled queues with independent ECN
marking thresholds. Moreover, it dynamically tunes the ECN-
marking threshold for the elephant queue to absorb micro-
burst mice traffic, thereby lowering latency without impacting
throughput. PMSB [42] uses a per-queue threshold to revoke
or cancel the ECN marking of victim flows even if they qualify
the per-port threshold. Although the schemes mentioned above
can deliver low latency and high throughput, none of them
consider fairness enqueueing and marking among flows.

Congestion Control: Much research has been devoted to
congestion control for wide-area networks and data center
networks. For instance, Cubic [43] achieves high scalability
and proportional RTT-fairness by using the cubic time function
to grow the congestion window. TCP Wave [44], based
on proactive burst transmission, replaces traditional window-
based transmission paradigms. BBR and BBRp [45, 46] are
new congestion control mechanisms proposed to enhance
the network performance in WANs. DCTCP [10], designed
primarily for datacenters, leverages ECN to detect congestion
and react in proportion to the measured congestion level.

VI. CONCLUSION

We propose ML-ECN for multi-service multi-queue DCNs
to attain both high throughput and low latency simultaneously
while maintaining fairness marking among flows. ML-ECN
separates small, medium, and large flows into their desired
queues with a different number of ECN thresholds. After-
ward, instead of marking all flows when a queue length hits
the lower threshold levels, ML-ECN only marks flows that
contribute the most to the queue length increase. Simulation
results show the superiority of ML-ECN in delivering lower
FCT, maintaining high throughput, ensuring fairness marking
among flows when compared to existing approaches.

REFERENCES

[1] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang,
“Understanding data center traffic characteristics,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 1, pp. 92–99, 2010.

[2] Ting Wang, Zhiyang Su, Yu Xia, and Mounir Hamdi, “Rethinking the
data center networking: Architecture, network protocols, and resource
sharing,” IEEE access, vol. 2, pp. 1481–1496, 2014.

[3] Jarallah Alqahtani, Sultan Alanazi, and Bechir Hamdaoui, “Traffic
behavior in cloud data centers: A survey,” in 2020 International Wireless
Communications and Mobile Computing (IWCMC). IEEE, 2020, pp.
2106–2111.

[4] Sultan Alanazi and Bechir Hamdaoui, “Caft: Congestion-aware fault-
tolerant load balancing for three-tier clos data centers,” in 2020 Inter-
national Wireless Communications and Mobile Computing (IWCMC).
IEEE, 2020, pp. 1746–1751.

[5] Jarallah Alqahtani, Hassan H Sinky, and Bechir Hamdaoui, “Clustered
multicast source routing for large-scale cloud data centers,” IEEE
Access, vol. 9, pp. 12693–12705, 2021.

[6] Jeffrey Dean and Sanjay Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM, vol. 51,
no. 1, pp. 107–113, 2008.



(a) WRR:Mix (b) WRR:Web search (c) WRR:Cache (d) WRR:Data mining

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

A
vg

.P
ac

ke
t 

D
ro

p
 R

at
e

104

ML-ECN
MQ-ECN
MM-ECN
DCTCP
A-ECN

(e) WRR:Hadoop

(f) DWRR:Mix (g) DWRR:Web search (h) DWRR:Cache (i) DWRR:Data mining

10 20 30 40 50 60 70 80
0

1

2

3

4

A
vg

.P
ac

ke
t 

D
ro

p
 R

at
e

104

ML-ECN
MQ-ECN
MM-ECN
DCTCP
A-ECN

(j) DWRR:Hadoop

Fig. 15: Packet drop rate comparison across different workload

[7] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C
Snoeren, “Inside the social network’s (datacenter) network,” in
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, 2015, pp. 123–137.

[8] Ting Wang, Lu Wang, and Mounir Hamdi, “A cost-effective low-latency
overlaid torus-based data center network architecture,” Computer
Communications, vol. 129, pp. 89–100, 2018.

[9] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster, “Silo:
Predictable message latency in the cloud,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
2015, pp. 435–448.

[10] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan, “Data center tcp (dctcp),” in Proceedings of the ACM
SIGCOMM 2010 Conference, 2010, pp. 63–74.

[11] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,
Amin Vahdat, and Masato Yasuda, “Less is more: Trading a little
bandwidth for ultra-low latency in the data center,” in 9th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
12), 2012, pp. 253–266.

[12] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar, “Deadline-
aware datacenter tcp (d2tcp),” ACM SIGCOMM Computer Communi-
cation Review, vol. 42, no. 4, pp. 115–126, 2012.

[13] Haitao Wu, Jiabo Ju, Guohan Lu, Chuanxiong Guo, Yongqiang Xiong,
and Yongguang Zhang, “Tuning ecn for data center networks,” in
Proceedings of the 8th international conference on Emerging networking
experiments and technologies, 2012, pp. 25–36.

[14] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang, “Congestion control for large-
scale rdma deployments,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 523–536, 2015.

[15] Kadangode Ramakrishnan, Sally Floyd, David Black, et al., “The
addition of explicit congestion notification (ecn) to ip,” 2001.

[16] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker, “pfabric: Minimal near-
optimal datacenter transport,” ACM SIGCOMM Computer Communica-
tion Review, vol. 43, no. 4, pp. 435–446, 2013.

[17] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang,
“Information-agnostic flow scheduling for commodity data centers,”
in 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), 2015, pp. 455–468.

[18] Ali Munir, Ghufran Baig, Syed M Irteza, Ihsan A Qazi, Alex X Liu,
and Fahad R Dogar, “Friends, not foes: synthesizing existing transport
strategies for data center networks,” in Proceedings of the 2014 ACM
conference on SIGCOMM, 2014, pp. 491–502.

[19] Wei Bai, Li Chen, Kai Chen, and Haitao Wu, “Enabling {ECN} in
multi-service multi-queue data centers,” in 13th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 16), 2016,
pp. 537–549.

[20] Chengxi Gao, Victor CS Lee, and Keqin Li, “Demepro: Decouple packet
marking from enqueuing for multiple services with proactive congestion
control,” IEEE Transactions on Cloud Computing, 2017.

[21] Shuo Wang, Jiao Zhang, Tao Huang, Tian Pan, Jiang Liu, and Yunjie
Liu, “A-ecn minimizing queue length for datacenter networks,” IEEE
Access, vol. 8, pp. 49100–49111, 2020.

[22] Yifei Lu, Xu Ma, and Zhengzhi Xu, “Choose a correct marking position:
Ecn should be freed from tail mark,” Computer Networks, vol. 197, pp.
108329, 2021.

[23] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and
Sudipta Sengupta, “Vl2: A scalable and flexible data center network,”
in Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, 2009, pp. 51–62.

[24] Yawen Pan, Chen Tian, Jiaqi Zheng, Gong Zhang, Hengky Susanto,
Bo Bai, and Guihai Chen, “Support ecn in multi-queue datacenter
networks via per-port marking with selective blindness,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2018, pp. 33–42.

[25] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar, “Analysis
of dctcp: stability, convergence, and fairness,” ACM SIGMETRICS
Performance Evaluation Review, vol. 39, no. 1, pp. 73–84, 2011.

[26] “Microsoft sql server,” https://www.microsoft.com/en-us/sql-server, Ac-
cessed: 2021-04-30.

[27] “Openstack object storage,” https://docs.openstack.org/api-ref/
object-store/index.html, Accessed: 2021-04-30.

[28] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang,
“Pias: Practical information-agnostic flow scheduling for commodity
data centers,” IEEE/ACM Transactions on Networking, vol. 25, no. 4,
pp. 1954–1967, 2017.

[29] C Hopps, “Rfc2992: analysis of an equal-cost multi-path algorithm,”
2000.

[30] Sultan Alanazi and Bechir Hamdaoui, “Ml-ecn: Multi-level ecn marking
for fair datacenter traffic forwarding,” in ICC 2022-IEEE International
Conference on Communications. IEEE, 2022, pp. 2726–2731.

[31] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, et al., “Conga: Distributed congestion-
aware load balancing for datacenters,” in Proceedings of the 2014 ACM
conference on SIGCOMM, 2014, pp. 503–514.

[32] Li Chen, Shuihai Hu, Kai Chen, Haitao Wu, and Danny HK Tsang,
“Towards minimal-delay deadline-driven data center tcp,” in Proceed-



ings of the Twelfth ACM Workshop on Hot Topics in Networks, 2013,
pp. 1–7.

[33] Sally Floyd and Van Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on networking, vol. 1,
no. 4, pp. 397–413, 1993.

[34] Kadangode Ramakrishnan, Sally Floyd, David Black, et al., “The
addition of explicit congestion notification (ecn) to ip,” 2001.

[35] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar, “Deadline-
aware datacenter tcp (d2tcp),” ACM SIGCOMM Computer Communi-
cation Review, vol. 42, no. 4, pp. 115–126, 2012.

[36] Haitao Wu, Jiabo Ju, Guohan Lu, Chuanxiong Guo, Yongqiang Xiong,
and Yongguang Zhang, “Tuning ecn for data center networks,” in
Proceedings of the 8th international conference on Emerging networking
experiments and technologies, 2012, pp. 25–36.

[37] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang, “Congestion control for large-
scale rdma deployments,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 523–536, 2015.

[38] Haitao Wu, Jiabo Ju, Guohan Lu, Chuanxiong Guo, Yongqiang Xiong,
and Yongguang Zhang, “Tuning ecn for data center networks,” in
Proceedings of the 8th international conference on Emerging networking
experiments and technologies, 2012, pp. 25–36.

[39] Danfeng Shan and Fengyuan Ren, “Ecn marking with micro-burst
traffic: Problem, analysis, and improvement,” IEEE/ACM Transactions
on Networking, vol. 26, no. 4, pp. 1533–1546, 2018.

[40] Wei Bai, Kai Chen, Li Chen, Changhoon Kim, and Haitao Wu,
“Enabling ecn over generic packet scheduling,” in Proceedings of the
12th International on Conference on emerging Networking EXperiments
and Technologies, 2016, pp. 191–204.

[41] Akbar Majidi, Nazila Jahanbakhsh, Xiaofeng Gao, Jiaqi Zheng, and
Guihai Chen, “Dc-ecn: A machine-learning based dynamic threshold
control scheme for ecn marking in dcn,” Computer Communications,
vol. 150, pp. 334–345, 2020.

[42] Yawen Pan, Chen Tian, Jiaqi Zheng, Gong Zhang, Hengky Susanto,
Bo Bai, and Guihai Chen, “Support ecn in multi-queue datacenter
networks via per-port marking with selective blindness,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2018, pp. 33–42.

[43] Sangtae Ha, Injong Rhee, and Lisong Xu, “Cubic: a new tcp-friendly
high-speed tcp variant,” ACM SIGOPS operating systems review, vol.
42, no. 5, pp. 64–74, 2008.

[44] A Abdelsalam, M Luglio, C Roseti, and F Zampognaro, “Tcp wave
resilience to link changes,” in SCITEPRESS-Science and Technology
Publications, Lda, 2016, pp. 72–79.

[45] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson, “Bbr: congestion-based congestion con-
trol,” Communications of the ACM, vol. 60, no. 2, pp. 58–66, 2017.

[46] Carlo Augusto Grazia, Natale Patriciello, Martin Klapez, and Maurizio
Casoni, “Bbr+: improving tcp bbr performance over wlan,” in ICC
2020-2020 IEEE International Conference on Communications (ICC).
IEEE, 2020, pp. 1–6.


