Gulf of Mexico Science

Volume 22	Article 10
Number 1 Number 1	Afficie 10

2004

Microsatellite Markers for Red Drum, Sciaenops ocellatus

E. Saillant Texas A&M University

K. Cizdziel Texas A&M University

K.G. O'Malley Texas A&M University

T.F. Turner Texas A&M University

C.L. Pruett Texas A&M University

et al.

DOI: 10.18785/goms.2201.10 Follow this and additional works at: https://aquila.usm.edu/goms

Recommended Citation

Saillant, E., K. Cizdziel, K. O'Malley, T. Turner, C. Pruett and J. Gold. 2004. Microsatellite Markers for Red Drum, *Sciaenops ocellatus*. Gulf of Mexico Science 22 (1). Retrieved from https://aquila.usm.edu/goms/vol22/iss1/10

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.

Microsatellite Markers for Red Drum, Sciaenops ocellatus

E. SAILLANT, K. CIZDZIEL, K. G. O'MALLEY, T. F. TURNER, C. L. PRUETT, AND J. R. GOLD

Polymerase chain reaction (PCR) primers are reported for 68 nuclear-encoded microsatellites developed during the past several years from genomic libraries of red drum (*Sciaenops ocellatus*). All 68 microsatellites were tested for reproducibility and polymorphism on a sample of five to 12 red drum; 60 of the microsatellites were found to be polymorphic. Estimates of observed and expected heterozygosity (gene diversity) and tests of conformity of genotypes to Hardy–Weinberg equilibrium were carried out for a subset of 31 microsatellites on a larger sample of 45 adults provided by Texas Parks and Wildlife. Levels of allelic and gene diversity were average relative to values observed for marine and anadromous fishes. The set of genetic markers should be useful for a variety of studies, including monitoring and assessment of red drum stock enhancement.

The red drum, Sciaenops ocellatus, is an estuarine-dependent sciaenid fish found in the western Atlantic Ocean from Massachusetts to the Yucatan Peninsula, including the Gulf of Mexico (Pattillo et al., 1997). The species comprises an important recreational fishery in bays and estuaries of Gulf Coast states and along the Atlantic coast of the southeastern United States (Swingle, 1987; Van Voorhees et al., 1992). Because of significant declines in red drum abundance stemming from overfishing and habitat deterioration (Heffernan and Kemp, 1982; Swingle et al., 1984), recovery plans were implemented in nearly all Gulf Coast and Atlantic states. These recovery plans included assessment of red drum stock structure and in some states, principally Texas, stock enhancement with hatchery-raised fingerlings (McEachron et al., 1995).

Previous studies of red drum population genetics have used a variety of genetic markers and shown that 1) red drum in the Gulf comprise a different stock than red drum along the Atlantic coast (Bohlmeyer and Gold, 1991; Gold et al., 1993) and 2) population structure of red drum in the northern Gulf follows a modified one-dimensional, linear steppingstone model (Gold et al., 2001). More recently, there has been an increasing interest for estimating the genetic component of traits important in red drum culture. This necessitates development of genetic markers that permit identification of kinship among offspring raised in the same environment from early life stages when physical tagging is impossible. For both types of studies, i.e., population structure and kinship analysis, deoxyribonucleic acid (DNA) microsatellites have proved to be a powerful tool. Briefly, microsatellites are short stretches of nuclear DNA composed of di-, tri-,

and tetranucleotide arrays that are embedded in unique (specific) DNA flanking regions, inherited in a codominant fashion (Wright and Bentzen, 1994), and distributed throughout euchromatic regions of chromosomes (Weber and May, 1989; Weber, 1990). Variants at microsatellite loci are thought to arise rapidly (Schug et al., 1998), meaning that 1) recently diverged subpopulations (stocks) may be detected more easily with microsatellites than with other, commonly used genetic markers (e.g., mitochondrial DNA) and 2) the degree of genetic identity in microsatellite alleles may be used to estimate degree of genetic relatedness. When available in large number, microsatellites in principle can be used to carry out large-scale "family printing" for use in identifying hatchery-raised juveniles released into the wild, enabling evaluation of long-term survival and ecological performance of these fish. Large numbers of microsatellites also can be used to generate genetic maps and, ultimately, to localize quantitative trait loci or QTLs (Georges et al., 1995) of interest for both wild and cultured populations.

In this note, we report on polymerase chain reaction (PCR) primers and optimized annealing temperatures for the 68 microsatellites developed during the past several years in our laboratory from red drum genomic libraries. Most of the PCR primer pairs are published (Turner et al., 1998; O'Malley et al., 2003), but assays (primarily, annealing temperature) for many of the microsatellites were not optimized nor were data on gene diversity based on sample sizes of more than a few individuals. We also report data on observed and expected heterozygosity (gene diversity) and results of tests of conformity of genotypes to expectations of Hardy–Weinberg equilibrium for 31 of the

TABLE 1. Summary data for 68 microsatellites developed from red drum (*Sciaenops ocellatus*) genomic libraries. The PCR primer sequences are forward (top) and reverse (bottom). Primers developed from a single clone are designated with the same letter as subscript.^a

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Micro- satellite	PCR primer sequence $(5' \rightarrow 3')$	Repeat sequence of cloned allele	Size of cloned allele (base pair)	AT	N	N _A	Range in allele size (base pair)	H _o /H _e	P _{HW}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Soc 9	AACATTTCCATCACGTATTTATCT	(AT) ₉₇	233	58	12	4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		TCCACATGAACACCAGTGCAGTTC								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Soc 11	GCCGAGTCACGAAGGAACAGAGAA	(GA) ₁₁	219	62	45	14	217-240	0.733/0.721	0.713
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TGTCGTCTCATCTATCTCCATCTC								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Soc 12	GCACCATCTTGCCACTGATGAATT	(GT) ₇	187	62	12	2			
Soc 19 GGSTACAACTAAACAGACAATA (GATA) ₁₆ 229 58 45 21 195–267 0.844/0.898 0.01 Soc 34 TCTTTTTCTGCTTTCAGGTAACC (GT) ₈ 176 58 12 1		GGGCTCTTACAACTCGTTTCAGAT								
TTEGAAARTGETCCTOTGAATCAC Soc 34 TCTTTTTCAACAAGCTOTACC (GT) ₈ 176 58 12 1 Soc 35 TGTCCATCAACAGGCAGACTCT (CT) ₅ (CA) ₉ 262 62 12 19 Soc 44 GAGGGTCACCCTCAAAGAT (CA) ₂₂ (GT) ₅ 230 62 43 6 211–271 0.907/0.930 0.30 Soc 44 GAGGGTCACCCTCGAAAGT (CA) ₂₄ (GT) ₅ 230 62 43 6 211–271 0.907/0.930 0.30 Soc 49 GTGCCTTCGACATACACTGT (CA) ₂₄ 237 58 12 6 12 <t< td=""><td>Soc 19</td><td>GGGTACAACTAAACAGACACAATA</td><td>(GATA)₁₆</td><td>229</td><td>58</td><td>45</td><td>21</td><td>195 - 267</td><td>0.844/0.898</td><td>0.019</td></t<>	Soc 19	GGGTACAACTAAACAGACACAATA	(GATA) ₁₆	229	58	45	21	195 - 267	0.844/0.898	0.019
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		TTTGAAAATGTTCCTGTGAATCAC								
δACCGTCTTCAACAAGGCTGTGAC CCT)5 (CA)9 262 62 12 19 Soc 35 TGTCCCATCAACAGGCGAGCTCT (CT)5 (CA)9 262 62 12 19 Soc 44 GAGGGTGACGCTAACAGTTGA (CA)22 (GT)5 230 62 43 6 211–271 0.907/0.930 0.30 Soc 49 GTTGCCTTCTGACAATACACTGTT (CA)24 237 58 12 6 5 6 211–271 0.907/0.930 0.30 Soc 49 GTGCGTCTGACAATACACTGTT (CA)24 237 58 12 6 5 6 211–271 0.907/0.930 0.30 Soc 50 CCCGTGAATTACACTGTT (CA)24 237 58 12 3 5 5 6 151–163 0.511/0.570 0.74 Soc 60 CCTTATGAGAGCATAGATAGATT (AGC)8 155 56 45 6 151–163 0.511/0.570 0.74 Soc 60 TGTGTAATGAAGCCTTATAGT (AGC)8 155 56 45 6 114–142 0.867/0.826 </td <td>Soc 34</td> <td>TCTTTTTCTGTCTTTCAGGTAAGC</td> <td>(GT)₈</td> <td>176</td> <td>58</td> <td>12</td> <td>1</td> <td></td> <td></td> <td></td>	Soc 34	TCTTTTTCTGTCTTTCAGGTAAGC	(GT) ₈	176	58	12	1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		AACCGTCTTCAACAAGGCTGTGAC								
Soc 44 CACCACCCCTCACACTCCT CAAGTT CCA) ₂₂ (GT) ₅ 230 62 43 6 211–271 0.907/0.930 0.38 Soc 44 CACACCTCCACACTCTGATAG CCA) ₂₄ (GT) ₅ 237 58 12 6 121–271 0.907/0.930 0.38 Soc 49 GTGCCTTCTGACAATACACTGTT (CA) ₂₄ 237 58 12 6 121–271 0.907/0.930 0.38 Soc 50 CCGGCTGCACCTGACATATCACTGTT (CA) ₂₄ 237 58 12 6 121–271 0.907/0.930 0.38 Soc 50 CCGGCTGCCCTTGACAATACACTGTT (CA) ₂₄ 237 58 12 6 121–271 0.907/0.930 0.38 Soc 50 CCGGTGATTTAGACAATACACTGTT (GT) ₇ 183 58 12 8 1 121–163 0.511/0.570 0.74 Soc 60 TCTATTGGACCTTCAGAA (TG) ₂₂ 147 58 12 1 121–163 0.511/0.570 0.74 Soc 83 TGCTGTAATGACATTGC (TG) ₁₉ 130 56 <	Soc 35	TGTCCCATCAATCAAGCAGACTCT	$(CT)_{5} (CA)_{9}$	262	62	12	19			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CTCTACCTCACACTCCTCAAAGTT								
$\begin{array}{c c} CACAGCTCCACTCTGATATG \\ Soc 49 & GTTGCCTTCTGACAATACACTGTT & (CA)_{24} & 237 & 58 & 12 & 6 \\ & CCGGCCGCGTTGAAATGAATGAT \\ CCGGCCGTCGAATTTAGGATGAATGAT & (GT)_7 & 183 & 58 & 12 & 3 \\ & CCTTTAGAGTGCAGTAAGTGATT \\ Soc 60 & TCTATTCAAGCCTGTAAAGTAGTT & (AGG)_8 & 155 & 56 & 45 & 6 & 151-163 & 0.511/0.570 & 0.72 \\ & CAGGAAGGAGGGGGGAATGACAA \\ & CAAGGAAGGAGGGGGGAATGACAA \\ Soc 77 & TAGCCCTTTGCCTCTCAGAA & (TG)_{22} & 147 & 58 & 12 & 1 \\ & ACCCATAATGGACCTATTC \\ & ACCCATAATGGACCTATTC \\ & ACCCATAATGGACCTATTC \\ & Soc 83 & TGCTGTAATTGAAAAGCAGTGTAC & (TG)_{19} & 130 & 56 & 45 & 6 & 114-142 & 0.867/0.826 & 0.66 \\ & AGGGAACTAAGGATCGATTTATA \\ & Soc 85 & TTTTGGACCTACATAGGATGAC & (AC)_{17} & 104 & 58 & 45 & 5 & 80-122 & 0.822/0.869 & 0.14 \\ & CGTGGGGAGCTAGCGATGTAGAT \\ & Soc 86 & TCTGCTTCTATAATTGCACTTTT & (TGTC)_9 & 135 & 56 & 12 & 1 \\ & TTACACGGTGCCGCTACACG \\ & Soc 99 & CACCCACTGACACAATACAC & (CA)_{29} & 185 & 62 & 45 & 1 & 131-209 & 0.933/0.923 & 0.66 \\ & GGAACCAATATGTCTGCCATGAT \\ & Soc 105 & TGGGGAGAAAAACAGGGAG & (AG)_5 & 191 & 56 & 12 & 1 \\ & Soc 125 & CGGCCGCCACTCTCTAAAC$	Soc 44	GAGGGTGACGCTAACAGTTGA	$(CA)_{22} (GT)_5$	230	62	43	6	211-271	0.907/0.930	0.363
Soc 49 GTTGCCTTCTGACAATACACTGTT (CA) ₂₄ 237 58 12 6 Soc 50 CCGGCGCGCTTGAAATGAATGAT (GT) ₇ 183 58 12 3 Soc 50 CCGTTAGAGTGAGTAAGGATT (GT) ₇ 183 58 12 3 Soc 60 TCTATTGAAGCCGTAAGTAGTT (AGG) ₈ 155 56 45 6 151–163 0.511/0.570 0.74 Soc 60 TCTATTGAAGCAGTGTGGAATGACAA (TG) ₂₂ 147 58 12 1		CACAGCTCCACTCTGATATG								
$ \begin{array}{c} \mbox{CCGGCTCGCCTTGAAATGAATGAT} & (GT)_7 & 183 & 58 & 12 & 3 \\ & & & & & & & & & & & & & & & & &$	Soc 49	GTTGCCTTCTGACAATACACTGTT	(CA) ₂₄	237	58	12	6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CCGGCTCGCCTTGAAATGAATGAT								
$\begin{array}{c c} CCTTTAGAGCTGCAGTAAGTGATTT \\ Soc 60 & TCTATTGAAGCCTGTAAGTTAGTT (AGG)_8 & 155 & 56 & 45 & 6 & 151-163 & 0.511/0.570 & 0.74 \\ CAAGGAAGGAGGGGGGAATGACAA & (TG)_{22} & 147 & 58 & 12 & 1 \\ & & & & & & & & & & & & & & & & &$	Soc 50	CCCGTGATTTTAGGCTCAGATA	$(GT)_7$	183	58	12	3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CCTTTAGAGTGCAGTAAGTGATTT								
$Soc 77 \qquad \begin{array}{c} \mbox{CAAGGAAGGAGTGGGGAATGACAA} \\ Soc 77 \qquad TAGCCCTTTGCCTCTCAGAA & (TG)_{22} & 147 & 58 & 12 & 1 \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Soc 60	TCTATTGAAGCCTGTAAGTTAGTT	(AGG)8	155	56	45	6	151 - 163	0.511/0.570	0.752
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAAGGAAGGAGTGGGGAATGACAA								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Soc 77	TAGCCCTTTGCCTCTCAGAA	(TG) ₂₂	147	58	12	1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ACCCATAATGGACCTATTTC								
$\begin{array}{c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	Soc 83	TGCTGTAATTGAAAAGCAGTGTAC	(TG) ₁₉	130	56	45	6	114 - 142	0.867/0.826	0.682
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		AGCGGAACTAGAATTGGTTTTATA								
CGTGGGAGACTAGCGATGTAGAT Soc 86 TCTGCTTCTATATTTCCACTTTTT (TGTC)9 135 56 12 1 TTACACGGTGCCGCTCACAG TTACACGGTGCCGCTCACAG (CA)29 185 62 45 1 131–209 0.933/0.923 0.64 Soc 99 CACCCACTGACACACACATACAC (CA)29 185 62 45 1 131–209 0.933/0.923 0.64 Soc 105 TGGGGAAGAAAACAGGGAG (AG)5 191 56 12 1 Soc 125 CCGCCGGCCACTCTGAGGACTCAT (TG)10 124 56 12 7	Soc 85	TTTTGGACCTACACTAGAGTAGC	(AC) ₁₇	104	58	45	5	80-122	0.822/0.869	0.105
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CGTGGGAGACTAGCGATGTAGAT								
$Soc 99 \qquad \begin{array}{c} \mbox{TTACACGGTGCCGCTCACAG} \\ Soc 99 & CACCCACTGACACACACATACAC & (CA)_{29} & 185 & 62 & 45 & 1 & 131-209 & 0.933/0.923 & 0.66 \\ \hline & & & & & & & & & & & & & & & & & &$	Soc 86	TCTGCTTCTATATTTCCACTTTTT	(TGTC) ₉	135	56	12	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		TTACACGGTGCCGCTCACAG								
GGAACCAATATGTCTGCCATGAT Soc 105 TGGGGAAGAAAACAGGGAG (AG)5 191 56 12 1 AAACCCCTGCATCTCTCTAAAC Soc 125 CCGCCGGCCACTCTGAGGACTCAT (TG)10 124 56 12 7	Soc 99	CACCCACTGACACACATACAC	(CA) ₂₉	185	62	45	1	131 - 209	0.933/0.923	0.662
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GGAACCAATATGTCTGCCATGAT								
AAACCCCTGCATCTCTCTAAAC Soc 125 CCGCCGGCCACTCTGAGGACTCAT $(TG)_{10}$ 124 56 12 7	Soc 105	TGGGGAAGAAAAACAGGGAG	$(AG)_5$	191	56	12	1			
Soc 125 CCGCCGGCCACTCTGAGGACTCAT (TG)10 124 56 12 7		AAACCCCTGCATCTCTCTAAAC								
	Soc 125	CCGCCGGCCACTCTGAGGACTCAT	(TG) ₁₀	124	56	12	7			
ACACTTGCGCTCATACAGTTAGCT		ACACTTGCGCTCATACAGTTAGCT								

TABLE 1. Continued.

Micro- satellite	PCR primer sequence $(5' \rightarrow 3')$	Repeat sequence of cloned allele	Size of cloned allele (base pair)	AT	N	N _A	Range in allele size (base pair)	H _o /H _e	P _{HW}
		(TOO)	90F		10	9	•		
500 133		$(16C)_{10}$	205	90	12	э			
Sec 197			999	EO	19	1			
300 157	AGGATCAGTCTCCGTTTGT	$(1GLC)_8$	223	56	14	ĩ			
6 199		(TCTC)	01	zo	45	0	77 199	0 000 /0 000	0.908
300 138		$(1G1C)_6$	91	56	49	0	77-125	0.009/0.020	0.205
8140			149	۲C	45	E	190 144	0 779 /0 699	0.990
306 140		(CIGI) ₈	142	50	45	5	152-144	0.778/0.025	0.280
S 156	GCAAAATCGAAGACCGAGTTTAG		100	EO	45	19		0 522 /0 452	0.019
300 150		$(UCI)_6$	162	56	49	14		0.555/0.455	0.018
C 177		$(TCC)_4$	109	50	10	19			
300 177		$(IAGA)_{10}$	192	56	14	12			
C 901			990	50	45	4	001 019	0 600 /0 679	0.910
<i>Soc</i> 201	GGAGGAACTGATGAGGGCAGTGT	$(UU1)_6$	229	50	45	4	224-243	0.000/0.078	0.510
S 904			109	FO	10	14			
300 204		$(U1G)_{12}$	195	50	12	14			
S 906			057	FO	45	4	940 965	0 570 /0 540	0.099
300 200		$(GUAC)_5$	257	9C	49	4	249–205	0.578/0.348	0.028
a 090	AGT'ITGGTCGCT'ITAAAGGC		104	20	10	-			
Soc 232	AGGCACAGTTGCATCTCTG	$(AGAC)_4$	184	50	12	1			
6 0.40	CCCATCCTCAAGGCAGAAC		7.0.0	~ ~			04 700		0.040
Soc 243	GACGGGGATGCCATCTGC	(CCT) ₉	106	56	45	6	94-106	0.733/0.753	0.243
0.015	AATGCGAAAAAGACGAAACAGT		010	20		~			
Soc 247	AGGCGCTGTTTCTGAATTTC	$(TAT)_7$	210	56	12	2			
a	TGGGAGTTTTTTTTTGGTGGT	(21)			10	-			
Soc 252	GCTCCAATTAGTCCCCATTC	$(CA)_{10}$	114	62	12	19			
~	GCGGGCTTTCTCTAGTCACA	10.11				_			
Soc 400	TGCCATTGTCATTCTACAGAGC	$(CA)_{19}$	253	52	45	7	245-266	0.622/0.719	0.688
	TTATAGTGGGGTGAGTGTTTGA								
Soc 401	ACGTCTTAATCGGTCTCTGTCC	(TG) ₁₄	174	52	45	6	174_{-206}	0.733/0.848	0.463
	ATCTCTGTGTGAAAGGAAAACA								
Soc 402	CATATTTAACGAGCGACATAGC	$(CA)_{20}$	149	52	44	5	134–164	0.818/0.878	0.262
	AAACAGATGAAGCACCTGGACT								
Soc 403_A	AGGGAAATGGTTGGTGAAGTAG	(TG) ₃₆	272	58	6	11	272-310		
	GTCTGGACCTGTTTGTTGAGAG								

TABLE 1.	Continued.
----------	------------

Micro- satellite	PCR primer sequence $(5' \rightarrow 3')$	Repeat sequence of cloned allele	Size of cloned allele (base pair)	AT	N	N _A	Range in allele size (base pair)	H _o /H _e	P _{HW}
Soc 404 _A	AGACCCTTTTGTTGATTTCATA	(TG) ₂₃	168	52	45	9	150-212	0.778/0.904	0.018
	ATGACTGCACCATTTCAAAAAG								
Soc 405	CTTAGCCTTTTGTTTAGTTTCC	$(CA)_{12}$	189	56	8	5	189-217		
	CACACTCATGGTCACTCCTCTC								
Soc 406	TAGGGGGTAAGGTAGGATGATG	(TG) ₁₀	165	52	8	1			
	GAAGAGCAGTGACGCTATCAAT								
Soc 407	AAAGTCTGCCTCTTACAGCTTC	(CA) ₁₃	147	56	43	6	139–157	0.907/0.843	0.341
	GAGTTAAAGCGTGTGCTAGTCC								
Soc 409 _B	TTTATCTGCTCTGTGTGGAAGT	(TG) ₁₁	323	52	8	7	323–367		
	ATCTATTTGTCGGTTTCTCTGC								
Soc 410 _B	GTACCAAGTCAGCCAGTGTCAG	(TG) ₁₇	318	56	43	7	306-344	0.721/0.810	0.169
	TCTCTGTGTCCCTCTGTGTTTG								
Soc 411	TCTGCCTCTTACAGCTTCAAGG	(AC) ₁₃	149	54	7	6	147 - 163		
	CTTGTTGAGTTAAAGCGTGTGC								
Soc 412	CACAGAAACTCAGCTCGAGACC	(AC) ₁₃	114	49	44	6	102-168	0.818/0.906	0.003
	AGGAAGAATGTACAAGGTGTTC								
Soc 415_{C}	CTCAGCACCCTCAGACATATGG	(TG) ₁₅	193	52	45	6	187-235	0.667/0.709	0.583
	CACAAGTTAAGTGGTATCGAGT								
Soc 416_{C}	CTCGATACCACTTAACTTGT	(GA) ₃₈	159	49	45	6	141–181	0.733/0.851	0.368
	ATCGACATAATCTGGCACCA								
Soc 417_{C}	CTTACGTGATAAAGTGTGGGTGA	(AC) ₂₄	96	49	45	4	86-112	0.778/0.756	0.278
	ATATGCCAGTAATCCACCGAAG								
Soc 418	GTTTTTCTGGCATTTATGGATG	(TG) ₂₄	288	52	8	22	272-294		
	TGAGGTTATCAAACACCTGCCCACT								
Soc 419	ATTTAGCCAACTGCTCCGCTCA	(AC) ₂₀	246	56	42	6	238-260	0.929/0.847	0.909
	GAGTGCGTGGTGTAGGGGGGTA								
Soc 421	CTCACTGCTCCCTCGTCACACG	(TG) ₃₄	172	56	8	10	138–188		
	CTGTGACAGGATGCGGCTTTTC								
Soc 422	CTGAAGGGATGGCAATGTTGATTGG	(TG) ₃₄	372	56	7	6	360-374		
	ATTCTCTGGGTTTATGGGATGT								
Soc 423	GTCACCGCACCATGATGGAGAT	(CA) ₂₆	202	54	45	6	172-208	0.889/0.881	0.126
	TACCACTTACACTCAGCAGGTG								
Soc 424	CACTCTTCATCCCTCACTCGTC	(CA) ₁₅	208	56	45	9	204-230	0.844/0.840	0.333
	TTCGATGGGTGACAGCGTCAGG								

TABLE 1. Continued.

Micro- satellite	PCR primer sequence $(5' \rightarrow 3')$	Repeat sequence of cloned allele	Size of cloned allele (base pair)	AT	N	N _A	Range in allele size (base pair)	H _o /H _e	P _{HW}
Soc 425	ACACCGCATTGCCCACCAGGAA	(CA) ₁₄	150	54	8	2	149-150		
	CGAGTTTATCCTTCACGCTTG								
Soc 426	GAGAGGACGTGAGCTGCTGA	$(CA)_{11}$	142	52	8	4	138–152		
	TGAGAAACAGAAACAGAAGGT								
Soc 428	GACATCGCATTTGTCTACAGAGTCG	(TG)38	229	53	45	8	172-242	0.956/0.946	0.256
	AACTCCCAGTCATAATATCCCTTT								
Soc 429	AAAAATTCTGCCTGCCTGTG	(TG) ₁₂	128	52	8	4	124-132		
	TTAAGAGCAACCTCCGTCTC								
Soc 430	TAACAGTCCCTAAACAGGTT	(TG) ₂₃	277	52	8	10	265-339		
	GTTTCTCCTCCCCTTTCCTC				•				
Soc 431	GACACGCTGTGGTAGATGAAAACG	(TG) ₂₉	172	53	8	8	151-180		
	TGTATATTAGTTGGCAAGGCAGAG								
Soc 432_{D}	TTTAGGCTACGTCTGGAGGCACA	(AC) ₁₆	108	52	45	5	98–118	0.867/0.808	0.868
	GTGTGTTTGAGGGTCAGCGTAC								
<i>Soc</i> 433 _D	AGTACGCTGACCCTCAAACACA	(TG) ₁₆	100	52	45	6	84-102	0.867/0.828	0.194
	TTCTCTTTGCCTCCTTTTTCCCTGA								
Soc 434	GACACTCCCAGATATGCTGA	(CA) ₂₃	197	52	7	7	169-219		
	TCCTTGTTTATCTTGGTGCTGT								
Soc 435	AACTGGAGCCTGACTCACTGC	(AC) ₂₂	179	49	8	1	179		
	GTGATAACTCTCTTTTCTTGTG								
Soc $437_{\rm E}$	CTACTTTCTAGTCTTTGCTCCACT	(TG) ₃₆	296	54	5	7	296-330		
	GTCAAACGCTATTTTTTCCAGT								
Soc 438_{E}	AATACAGCTAACTCGAAA	(TG) ₂₄	144	49	7	6	132-154		
	ACTGCACCATTTCAAAAACGCCTCT								
Soc 439	ACTCTCGTCCCACTTACCACA	(TG) ₁₇	103	49	6	4	91–105		
	TATGTTTGCATATAAGCTCA						-		
Soc 442	TTTGTTGGCAATAAACTGCGAGA	(TG) ₃₀	195	52	8	8	179–199		
	TTCTTAATACGTGCCCCGACT								
Soc 443	CACAGGAGGAGTTTGTCCAAT	(TG) ₁₅	202	52	7	11	206-242		
	ATGTTTCGGTTTTCGTTTGCTC								
Soc $444_{\rm F}$	TGAACTAATCCAGCCACAGATG	(TG) ₁₇	161	52	. 45	3	161-165	0.600/0.504	0.526
	CACAGCCGATTAAAGAGAGGGAAT								
Soc $445_{\rm F}$	ATACAAAGGGACTCTCATACTCTC	(TCC) ₁₀	156	52	45	7	134–166	0.778/0.805	0.129
	TTTTAATCCCATTACAGCTTT								

 $^{a}AT = angealing temperature; N = number of individuals assayed; N_{A} = number of alleles detected; H_{o}/H_{e} = observed/expected heterozygosity; and P_{HW} = probability of conformity to Hardy-Weinberg equilibrium. Published by The Aquila Digital Community, 2004$

polymorphic microsatellites based on a sample of 45 wild-caught adults. We anticipate that the microsatellite markers will be useful for a variety of studies, including monitoring and assessment of red drum stock enhancement.

Details on genomic library construction, ligation of size-selected (200-1,200 base pair) fragments into cloning vectors, and transformation into Escherichia coli competent cells may be found in Turner et al. (1998) and O'Malley et al. (2003). A total of 14,080 clones were hybridized with cocktails of oligonucleotide probes, and 393 positive clones have been sequenced. Thus far, 204 clones that contained microsatellite motifs have been isolated. The PCR primers were designed from sequences flanking the microsatellites by using the program Oligo[®] (Macintosh version 4.0, National Biosciences), and optimization of PCR protocols was carried out on a panel of DNAs from 12 individuals. The PCR was performed in a 10-µl volume containing 1 µl (100 ng) of DNA, 1 μl of 10× reaction buffer [500 mM KCl, 200 mM Tris-HCl (pH 8.4)], 1.5 mM MgCl₂, 2.5 mM of each deoxynucleoside triphosphates, 5 pmol of each primer, and 0.5 units Taq DNA polymerase (GibcoBRL). The PCR thermal cycling consisted of an initial denaturation at 95 C for 5 min, followed by 30 cycles consisting of 45 sec at 95 C, 45 sec at the optimized annealing temperature (Table 1), 1 min at 72 C, and a final extension of 10 min at 72 C.

The PCR primer sequences, repeat sequence and size (in base pairs) of cloned alleles, optimal annealing temperature, number of individuals assayed, and number of alleles detected for all 68 microsatellites are given in Table 1. The range in allele size is given for a subset of 48 microsatellites. The entire set of 68 microsatellites includes 51 di-, six tri-, and eight tetranucleotide repeat motifs; three microsatellites are complex repeats (i.e., a combination of different repeat motifs). Sixty of the microsatellites were found to be polymorphic; the average number of alleles per (polymorphic) microsatellite was 7.5 (range = 2-22 alleles). Genotypes for a subset of 31 microsatellites were acquired from 45 adults sampled from offshore waters along the Texas coast and held by Texas Parks and Wildlife (TPW) as broodstock for the TPW stock enhancement program. Estimates of observed and expected heterozygosity (gene diversity) and results of tests for conformity of genotype proportions to Hardy-Weinberg expectations for these 31 microsatellites also are given in Table 1. Estimates of observed and expected heterozygosity were computed using GENETIX v. 4.05 (Belkhir et

al., 1996-2002); probability of departure from Hardy-Weinberg equilibrium (P_{HW}) was assessed using a Markov chain method (Guo and Thompson, 1992), as implemented in GENE-POP v. 3.3 (Raymond and Rousset, 1995) and using 5,000 dememorizations, 500 batches, and 5,000 iterations per batch. The average number of alleles for these 31 microsatellites was 12.6, and the average expected heterozygosity (gene diversity) was 0.784. These values are intermediate between those typically found in marine and anadromous fish (DeWoody and Avise, 2000). Following (sequential) Bonferroni correction for multiple tests performed simultaneously (Rice, 1989), genotypes at all 31 microsatellites did not differ significantly from Hardy-Weinberg equilibrium expectations. Tests that were significant before Bonferroni correction included microsatellites Soc 19, Soc 404, and Soc 412 (heterozygote deficiency) and Soc 156 and Soc 206 (heterozygote excess). This set of microsatellites should prove to be an extremely powerful tool for future studies of red drum population structure and for parental assignment (kinship) in studies monitoring the results of red drum stock enhancement.

ACKNOWLEDGMENTS

This study was supported by grants from the Advanced Research Program (ARP) of the State of Texas (Project 999902-103), the National Sea Grant Program (OAR-NOAA Award NA16RG1631), the Texas Sea Grant Program (Award NA16RG1078), and the Texas Agricultural Experiment Station (Project H-6703). We thank Blackwell Publishing for allowing us to use material in the publications authored by Turner et al. (1998) and O'Malley et al. (2003). The article is number 39 in the series "Genetic Studies in Marine Fishes" and is contribution number 118 from the Center for Biosystematics and Biodiversity at Texas A&M University.

LITERATURE CITED

- BELKHIR, K., P. BORSA, L. CHIKHI, N. RAUFASTE, AND F. BONHOMME. 1996–2002. GENETIX 4.04, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France.
- BOHLMEYER, D. A., AND J. R. GOLD. 1991. Genetic studies in marine fishes. II. A protein electrophoretic analysis of population structure in red drum *Sciaenops ocellatus*. Mar. Biol. 108:197–206.
- DEWOODY, J. A., AND J. C. AVISE. 2000. Microsatellite variation in marine, freshwater and anadromous

fishes compared with other animals. J. Fish Biol. 56:461-473.

- GEORGES, M., D. NIELSEN, M. MACKINNON, A. MISHRA, R. OKIMOTO, A. T. PASQUINO, L. S. SARGEANT, A. SORENSEN, M. R. STEELE, X. Y. ZHAO, J. E. WOMACK, AND I. HOESCHELE. 1995. Mapping quantitative trait loci controlling milk-production in dairy-cattle by exploiting progeny testing. Genetics 139: 907–920.
- GOLD, J. R., C. P. BURRIDGE, AND T. F. TURNER. 2001. A modified stepping-stone model of population structure in red drum, *Sciaenops ocellatus* (Sciaenidae), from the northern Gulf of Mexico. Genetica 111:305–317.
- ——, L. R. RICHARDSON, C. FURMAN, AND T. L. KING. 1993. Mitochondrial DNA differentiation and population structure in red drum (*Sciaenops ocellatus*) from the Gulf of Mexico and Atlantic Ocean. Mar. Biol. 116:175–185.
- GUO, S., AND E. THOMPSON. 1992. Performing the exact test of Hardy-Weinberg proportion from multiple alleles. Biometrics 48:361-372.
- HEFFERNAN, T. L., AND R. J. KEMP. 1982. The conflicts and controversies surrounding red drum and spotted seatrout, p. 57–63. *In:* Marine recreational fisheries, vol. VII. R. H. Stroud (ed.). Sport Fishing Institute, Washington, DC.
- MCEACHRON, L. W., C. E. MCCARTY, AND R. R. VEGA. 1995. Beneficial uses of marine fish hatcheries: enhancement of red drum in Texas coastal waters. Am. Fish. Soc. Symp. 15:161–166.
- O'MALLEY, K. G., C. A. ABBEY, K. ROSS, AND J. R. GOLD. 2003. Microsatellite DNA markers for kinship analysis and genetic mapping in red drum, *Sciaenops ocellatus* (Sciaenidae, Teleostei). Mol. Ecol. Notes 3:155–158.
- PATTILLO, M. E., T. E. CZAPLA, D. M. NELSON, AND M. E. MONACO. 1997. Distribution and abundance of fishes and invertebrates in Gulf of Mexico estuaries. Vol. II. Species life history summaries. ELMR Report No. 11. NOAA/NOS Strategic Environmental Assessments Division, Silver Springs, MD.
- RAYMOND, M., AND F. ROUSSET. 1995. GENEPOP: a population genetics software for exact test and ecumenicism. J. Hered. 86:248–249.

- RICE, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223–225.
- SCHUG, M. D., C. M. HUTTER, K. A. WETTERSTRAND, M. S. GAUDETTE, T. F. C. MACKAY, AND C. F. AQUAD-RO. 1998. The mutation rates of di-, tri-, and tetranucleotide repeats in *Drosophila melanogaster*. Mol. Biol. Evol. 15:1751–1760.
- SWINGLE, W. E. 1987. Status of the commercial and recreational fishery, p. 46–49. *In:* Manual of red drum aquaculture. G. W. Chamberlain, R. J. Miget, and M. G. Haby (eds.). Texas Agricultural Extension Service and Sea Grant College Program, Texas A&M Univ., College Station, TX.
- ——, T. LEARY, C. DAVIS, V. BLOMO, W. TATUM, M. MURPHY, R. TAYLOR, G. ADKINS, T. MCILWAIN, AND G. MATLOCK. 1984. Fishery profile of red drum. Gulf of Mexico Fishery Management Council, Gulf States Marine Fisheries Commission, Ocean Springs, MS. 74 p.
- TURNER, T. F., L. R. RICHARDSON, AND J. R. GOLD. 1998. Polymorphic microsatellite DNA markers in red drum (*Sciaenops ocellatus*). Mol. Ecol. 7:1771– 1788.
- VAN VOORHEES, D. A., J. F. WITZIG, M. F. OSBORN, M. C. HOLLIDAY, AND R. J. ESSIG. 1992. Marine recreational fishery statistics survey, Atlantic and Gulf coasts, 1990–1991. NOAA/NMFS Fisheries Statistics Division, Silver Spring, MD [Current Fisheries Statistics No. 9204].
- WEBER, J. L. 1990. Informativeness of human (dC dA)_n (dG dT)_n polymorphisms. Genomics 7:524–530.
- ------, AND P. E. MAY. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain re-action. Am. J. Hum. Genet. 44:388–396.
- WRIGHT, J. M., AND P. BENTZEN. 1994. Microsatellites: genetic markers for the future. Rev. Fish Biol. Fish. 4:384–388.
- CENTER FOR BIOSYSTEMATICS AND BIODIVERSITY, DEPARTMENT OF WILDLIFE AND FISHERIES SCI-ENCES, TEXAS A&M UNIVERSITY, COLLEGE STA-TION, TEXAS 77843-2258. Date accepted: February 19, 2004.