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In this paper, we consider European and American option pricing problems under regime 
switching jump diffusion models which are formulated as a system of partial integro-
differential equations (PIDEs) with fixed and free boundaries. For free boundary problem 
arising in pricing American option, we use operator splitting method to deal with early 
exercise feature of American option. For developing a numerical technique we employ 
localized radial basis function generated finite difference (RBF-FD) approximation to 
overcome the ill-conditioning and high density issues of discretized matrices. The proposed 
method leads to linear systems with tridiagonal and diagonal dominant matrices. Also, 
in this paper the convergence and consistency of the proposed method are discussed. 
Numerical examples presented in the last section illustrate the robustness and practical 
performance of the proposed algorithm for pricing European and American options.

Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

Unlike the standard Black–Scholes model [9] which assumes that the underlying assets follow a geometric Brownian 
motion with constant mean return and volatility, the rationale behind the regime switching framework is that the market 
may switch from time to time among different regimes. In short-term political or economic uncertainty, this property of 
regime switching model help us to account for certain periodic or cyclic patterns. In many practical researches such as 
[6] regime switching model has been used widely. Some of regime switching applications are in insurance [28], electricity 
markets [27,48], natural gas [13,1], valuation of stock loans [53], and interest rate dynamics [32].

Jumps are regularly observed in the discrete movement of stock price and these jumps can not be captured by the log 
normal distribution characteristic of the stock price in the Black Scholes model. Therefore an alternative model is necessary 
to overcome these issues. To resolve these issues several models have been proposed in the literature. Among these, the 
jump diffusion model introduced by Merton [39] and Kou [34] is one of the most used model. These models have finite 
jump activity, unlike the more general approach with possibly infinite jump activity proposed in [12]. The addition of jumps 
into the model generates heavy tails in returns for short time intervals, and allows large sudden changes in the underlying 
asset. This is also important from a risk management perspective, since the implication is that large losses are possible even 
in a short time interval.

In this study, we develop a numerical method to price European and American options under the regime switching 
jump diffusion model. The prices of European options under the regime switching jump diffusion model are derived by 
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solving a system of PIDEs, and the American options lead to solving a system of PIDEs with free boundaries. A variety of 
numerical methods are proposed to price an European or American option when the underlying asset follows a regime 
switching model. In [7] a global RBF collocation method for pricing the American options is presented. In [15] an explicit 
formula is derived as an expectation of Merton jump diffusion process, and a more general multinomial method is proposed 
for accommodate an arbitrary number of regimes and a generic jump size distribution, and is used for pricing American 
options. A modified trinomial tree model is considered in [52] for controlling the risk neutral probability measure in dif-
ferent regimes to ensure that the tree model can accommodate the data of all different regimes at the same time. In [33], 
a numerical scheme is developed via a combination of an implicit implementation of the θ -method and a penalty scheme 
for pricing American option under a regime switching model without jump diffusion.

Also, in [51] a second-order method based on exponential time differencing approach is obtained for solving American 
basket options under regime switching model. For dealing with free boundary problems, they use a penalty technique, and 
consistency and convergence of the proposed method are derived. An implicit method with three time levels is employed 
in [36] for solving the PIDE arisen for pricing options under regime switching model with jump diffusion process, and 
the operator splitting method is considered for evaluation American options and solving the equivalent linear complimen-
tary problem. Optimal selling rules are considered in [18] for asset trading using a regime switching exponential Gaussian 
diffusion model. The derived optimization problem is solved by a combined method of boundary value problems and prob-
abilistic analysis. Also, a method of upper and lower solutions for a regime switching model is obtained in [17], then by 
using this method authors prove the existence of a unique C2 solution of the associated system of ordinary differential 
equations with two-point boundary conditions.

The regime switching recombining tree method for pricing options on a single asset is proposed in [37], and then gen-
eralized to options with two correlated underlying assets whose prices are governed by the regime switching geometric 
Brownian motion models in [38]. Then the weak convergence of the discrete lattice approximations to the continuous-time 
regime switching diffusion processes is discussed. In [19] authors provide an explicit finite difference scheme for the differ-
ential operator and four-points open type formula for integral operator to price European options under Bates model. Two 
algorithms for pricing of European options in a regime switching jump diffusion model are developed in [22] based on theo-
retical analysis for convergence of the algorithms which is carried out in [21]. Also, in [43] the authors consider a numerical 
algorithm based on finite element method to approximate the spatial terms of the option pricing equations using linear 
and quadratic basis polynomial approximations and for time discretization, they use exponential time integration technique. 
A finite element method and Chebyshev pseudospectral approximation are employed for pricing American options on an 
underlying described by the Bates model in [5,3] and they used a Richardson extrapolation technique to reduce the problem 
with fixed boundary. Also, method of lines algorithm is used in [14] for numerical evaluation of American call options under 
stochastic volatility and jump-diffusion.

Kernel based meshfree methods are of efficient tools for solving PDEs and integral equations, and especially in [4,20], 
meshfree methods based on RBF approximation have been shown to perform better than finite difference methods for option 
pricing problems in one and two spatial dimensions. However, all of these papers employ global RBF collocation methods 
which lead to the dense linear systems, and computational costs that become prohibitive as the number of dimensions 
increase. Localized RBF approximations such as the RBF partition of unity collocation method (RBF-PUM) and RBF-FD give 
an answer to deal with these issues. In [41,40], the authors price American and European options under Heston’s stochastic 
volatility and jump diffusion models using RBF-PUM applied to a linear complementary formulation of the free boundary 
partial differential equation problem.

RBF-FD method has been implemented in various favors and contexts in the last ten years, the first survey articles 
on RBF-FD are just emerging in [23,24]. The matrices formed during the localized RBF-FD method will be sparse and, 
hence, will not suffer from ill-conditioning and high computational costs. In the present paper, we use RBF-FD method for 
differential operator approximation of the system of partial integro-differential equations arisen in European and American 
option pricing problems under the regime switching model. In addition, for American option we apply operator splitting 
method which has been used in [29] for solving the free boundary problem.

In the next section, we introduce the regime switching model with jump diffusion and a system of partial integro-
differential equations for pricing European option, then we formulate the American option pricing problem as a free 
boundary value problem. Then operator splitting method is used to convert the free boundary value problem to a prob-
lem with fixed boundaries. For time discretization, we use a three-level implicit-explicit time discretization that treats the 
non-local integral term explicitly in section 3, and then RBF-FD approximation is introduced and applied for derivative 
approximation, and also discretization of integral term is prepared for full discretization in section 4. Convergence and con-
sistency analysis of proposed method are proved in section 5 to grantee the applicability of the algorithm. Finally, in the last 
section, the accuracy and efficiency of the proposed method is numerically investigated for European and American options, 
and compared with existing methods in the literature.

2. Regime-switching jump diffusion model

Consider a complete filtered probability space (�, F , (F)t∈[0,T ] , P) and T > 0 is a fixed finite time horizon. We suppose 
that the underlying asset switches among a finite number of states M := {1, 2, 3, ..., m}, which is modeled by a continuous-
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time Markov chain process {αt}t∈[0,T ] . Then we have the regime generator of the Markov chain {αt}t∈[0,T ] by an m × m
matrix

Q =
⎛⎝ q11 . . . q1m

. . . . . . . . .

qm1 . . . qmm

⎞⎠ . (1)

From Markov chain theory [50], the entries of generator matrix satisfy

• qij ≥ 0 if i �= j.

• ∑m
j=1 qij = 0 for each i ∈M.

Assume that there exists an equivalent martingale measure Q under which the dynamics of the asset price are given by 
the following stochastic differential equation (SDE) as in [11,16]

dSt

St−
= (rαt − qαt − λαt καt )dt + σαt dW (t) + (yαt − 1)dNt, (2)

where W is a standard Q-Brownian motion, N is an independent Poisson process with intensity rate λαt = λi > 0 for each 
economic regime i of αt , καt = κi is the expected value of the random value yαt − 1 = (yi − 1) of the jump size distribution 
producing a jump from St− to yi St− . The parameters rαt = ri , qαt = qi and σαt = σi(> 0), stand for the risk free interest 
rate, the continuous dividend yield and the volatility, respectively. In this paper we focus on two popular jump-diffusion 
models with finite activity, Merton’s [39] and Kou’s [34] model. Hence, the density function and corresponding expectation 
of the impulse function for Merton’s model with mean μ J

i and standard deviation σ J
i are given by

f (y, i) = 1

σ
J

i

√
2π

exp

⎡⎣−
(

y − μ
J
i√

2σ
J

i

)2
⎤⎦ , κi = exp(μ

J
i + (σ

J
i )2

2
) − 1, (3)

with σ J
i > 0, μ J

i ∈R, and for Kou’s model are defined by

f (y, i) = pη1e−η1 yH(y) + (1 − p)η2eη2 yH(−y), κi = p
η1

η1 − 1
+ (1 − p)

η2

η2 + 1
− 1, (4)

with η1 > 1, η2 > 0, 0 < p < 1 and H(·) is the Heaviside function.
Let V (t, S, i) denote the price of an European option when the underlying asset St follows the regime switching jump 

diffusion model with the no arbitrage condition in (2), so the price of a European option V (t, S, i) satisfies the system of 
partial integro-differential equations (PIDEs)

∂V (t, S, i)

∂t
+ σ 2

i S2

2

∂2 V (t, S, i)

∂ S2
+ (ri − qi − λiκi)S

∂V (t, S, i)

∂ S
− (ri + λi)V (t, S, i)

+ λi

∞∫
0

V (t, S y, i)ψ(y, i)dy +
m∑

j=1

qij V (t, S, j) = 0, (5)

for all (t, S, i) ∈ [0, T ) × [0, ∞) ×M with the terminal condition

V (T , S, i) = g(S) (6)

where T is the time to maturity, and g(S) is known as payoff function and defined by max(K − S, 0) for put options and 
max(S − K , 0) for call options, and K is the exercise price. Also, ψ is a density function for jump size.

Now, we consider the transformations x = log( S
K ) and τ = T − t , and let u(τ , x, i) = V (T − τ , K ex, i), denoted as the 

value of an option on the transformed space x for the ith regime, so u(τ , x, i) satisfies the system of PIDEs

∂u(τ , x, i)

∂τ
−Diu(τ , x, i) − λiJiu(τ , x, i) −

m∑
j=1

qiju(τ , x, j) = 0, i ∈ M (7)

with initial condition

u(0, x, i) = g(K ex), (8)

for all (τ , x, i) ∈ (0, T ] ×R ×M where
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Diu(τ , x, i) := σ 2
i

2

∂2u(τ , x, i)

∂x2
+ (ri − qi − σ 2

i

2
− λiκi)

∂u(τ , x, i)

∂x
− (ri + λi)u(τ , x, i), (9)

Jiu(τ , x, i) :=
∞∫

−∞
u(τ , y, i) f (y − x, i)dy. (10)

In order to develop a numerical scheme for PIDEs (7), we need to impose some boundary conditions, so let the asymp-
totic behavior of the European call option as

lim
x→−∞ u(τ , x, i) = 0, lim

x→∞[u(τ , x, i) − K (ex−qiτ − e−riτ )] = 0, (11)

and the asymptotic behavior of the European put option is defined by

lim
x→−∞[u(τ , x, i) − K (e−riτ − ex−qiτ )] = 0, lim

x→∞ u(τ , x, i) = 0. (12)

For the numerical purposes, first we localize the unbounded domain in x ∈ (−∞, ∞) direction with a bounded domain 
[xmin, xmax], so for boundary conditions of European call option we have

u(τ , xmin, i) = 0, u(τ , xmax, i) = K (exmax−qiτ − e−riτ ), (13)

and for European put option, boundary conditions are defined by

u(τ , xmin, i) = K (e−riτ − exmin−qiτ ), u(τ , xmax, i) = 0. (14)

In the following, we will give the system of PIDEs formulation to price an American option under regime switching jump 
diffusion model. An American option has the early exercise feature, so the optimal exercise boundary is a free boundary and 
separates the stopping and continuation region. Let V (t, S, i) denote the fair value of an American put option at time t if 
the asset price at that time is St = S , so V (t, S, i) satisfy the following free boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V (t,S,i)
∂t + σ 2

i S2

2
∂2 V (t,S,i)

∂ S2 + (ri − qi − λiκi)S ∂V (t,S,i)
∂ S − (ri + λi)V (t, S, i)

S > S F
i (t)

+λi
∫ ∞

0 V (t, S y, i)ψ(y, i)dy + ∑m
j=1 qij V (t, S, j) = 0

V (t, S, i) = K − S, 0 ≤ S ≤ S F
i (t),

V (T , S, i) = g(S),

limS→∞ V (t, S, i) = 0,

limS→S F
i (t) V (t, S, i) = K − S F

i (t),

limS→S F
i (t)

∂V (t,S,i)
∂ S = −1,

S F
i (T ) = K ,

(15)

where g(S) is the payoff function, and S F
i (t) for i ∈M denote the unknown free moving exercise boundaries of the option. 

For solving the free boundary problem (15), there are some techniques such as linear programming [10], operator splitting 
method [29] penalty method which has been presented in [54,44,47].

In this work, we employ operator splitting method which has an advantage that the free boundary S F
i (t) does not explic-

itly appear in the problem formulation which later enables numerical discretization. Now, first we use the transformations 
x = log( S

K ) and τ = T − t similar to the European option, and let u(τ , x, i) = V (T − τ , K ex, i), denoted as the value of an 
American option on the transformed space x for the ith regime, then u(τ , x, i) satisfies the following linear complementary 
problem (LCP) [46]⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u(τ ,x,i)
∂τ −Diu(τ , x, i) − λiJiu(τ , x, i) − ∑m

j=1 qiju(τ , x, j) ≥ 0,

u(τ , x, i) ≥ g(K ex),(
∂u(τ ,x,i)

∂τ −Diu(τ , x, i) −Jiu(τ , x, i) − ∑m
j=1 qiju(τ , x, j)

)
(u(τ , x, i) − g(K ex)) = 0,

(16)

for all (τ , x, i) ∈ (0, T ] × (−∞, ∞) ×M.
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3. Time discretization

Let 
τ = T
M with integer M ≥ 1 be a given time step and let the corresponding temporal grid points be given by 

τk = k
τ for 0 ≤ k ≤ M . We apply an implicit-explicit (IMEX) time semi-discretization with three time levels to the PIDE (7). 
In particular, we consider the Crank–Nicolson–Leap–Frog (CNLF) scheme as in [2] and [31]. In [45] this type of scheme is 
called the IMEX-midpoint scheme. The differential part is treated implicitly, while the integral part is treated explicitly. In 
order to start the algorithm we will need initial data for k = 0 and the value for k = 1 is obtained by an implicit-explicit 
backward difference method of order one (IMEX-BDF1). Thus, let U k

i := u(τk, x, i), the PIDE (7) for the price of an European 
option is approximated by following time semi-discrete scheme

U 1
i − U 0

i


τ
= Di U

1
i + λiJi U

0
i +

m∑
j=1

qij U
1
j , (17)

U k+1
i − Uk−1

i

2
τ
= Di(

Uk+1
i + Uk−1

i

2
) + λiJi U

k
i +

m∑
j=1

qij(
Uk+1

j + Uk−1
j

2
), i ∈ M, 1 ≤ k ≤ M − 1 (18)

with initial condition

U 0
i (x) = g(K ex), for x ∈ [xmin, xmax],

and boundary conditions for European call and put options are (13) and (14), respectively.
For American options, we employ and generalize operator splitting method which was introduced and applied for Black–

Scholes model in [29] for solving LCP (16). By using an auxiliary function ϒ(τ , x, i), we can reformulate LCP (16) as⎧⎪⎪⎨⎪⎪⎩
∂u(τ ,x,i)

∂τ −Diu(τ , x, i) − λiJiu(τ , x, i) − ∑m
j=1 qiju(τ , x, j) = ϒ(τ , x, i), ϒ(τ , x, i) ≥ 0

u(τ , x, i) ≥ g(K ex),

ϒ(τ , x, i)(u(τ , x, i) − g(K ex)) = 0,

(19)

for all (τ , x, i) ∈ (0, T ] × (−∞, ∞) ×M. Each time step is split into two parts. Let ϒk
i := ϒ(τk, x, i) and start from the initial 

value U 0
i and ϒ0

i := 0. First, the intermediate solution Ũ k+1
i is solved from the modified semi-discrete system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ũ 1
i −U 0

i
τ −Di Ũ 1
i − λiJi U 0

i − ∑m
j=1 qij Ũ 1

j = ϒ0
i ,

ϒ1
i = ϒ0

i + U 1
i −Ũ 1

i
τ ,

ϒ1
i ≥ 0, U 1

i ≥ g(K ex), ϒ1
i (U 1

i − g(K ex)) = 0,

(20)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ũk+1

i −Uk−1
i

2
τ −Di(
Ũk+1

i +Uk−1
i

2 ) − λiJi Uk
i − ∑m

j=1 qij(
Ũk+1

j +Uk−1
j

2 ) = ϒk
i ,

ϒk+1
i = ϒk

i + Uk+1
i −Ũk+1

i
2
τ ,

ϒk+1
i ≥ 0, Uk+1

i ≥ g(K ex), ϒk+1
i (Uk+1

i − g(K ex)) = 0,

(21)

with initial condition

U 0
i (x) = g(K ex), for x ∈ [xmin, xmax],

for American put option boundary conditions are

Uk
i (xmin) = K , Uk

i (xmax) = 0, for 1 ≤ k ≤ M,

and for American call option boundary conditions will be

Uk
i (xmin) = 0, Uk

i (xmax) = K , for 1 ≤ k ≤ M.
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4. RBF-FD approximation

Consider a spatial domain � ⊂ Rd and a set of distinct points X = {x1, x2, ..., xN} in �. Also, let φ : � × � → R be a 
kernel with the property φ(x, y) := φ(||x − y||) for x, y ∈ �, and || · || is the Euclidean norm. Kernels with this property 
known as radial functions. The RBF interpolant for a continuous target function u : � → R known at the nodes in X takes 
the form

Iu(x) =
N∑

j=1

γ jφ(||x − x j||). (22)

The interpolation coefficients {γ j}N
j=1 are determined by collocating the interpolant Iu(x) to satisfy the interpolation 

condition Iu(xi) = u(xi) for i = 1, 2, ..., N . This results in a symmetric system of linear equations⎛⎜⎜⎜⎝
φ(||x1 − x1||) φ(||x1 − x2||) · · · φ(||x1 − xN ||)
φ(||x2 − x1||) φ(||x2 − x2||) · · · φ(||x2 − xN ||)

...
...

. . .
...

φ(||xN − x1||) φ(||xN − x2||) · · · φ(||xN − xN ||)

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

A

⎛⎜⎜⎜⎝
γ1
γ2
...

γN

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

γ

=

⎛⎜⎜⎜⎝
u1
u2
...

uN

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

u

. (23)

When the points in X are chosen to be distinct and φ is a positive-definite radial kernel or an order one conditionally 
positive-definite kernel on Rd , the coefficient matrix A is guaranteed to be non-singular, see [49]. Now, assume that u :
� → R is a differentiable function. Also, let D as a linear differential operator. We want to approximate Du at scattered 
grids X with finite-difference-style local approximations. Consider any subset of X denoted by �i = {x1, ..., xn} containing 
n � N nodes which are nearest neighbors to xi measured by Euclidean distance in Rd . We refer to �i as the stencil 
corresponding to xi . Approximation to Du at xi involves a linear combination of the values of u over the stencil �i of the 
form

D(u(xi)) ≈
n∑

j=1

w ju(x j), (24)

where weights {w j}n
j=1 can be computed by RBFs, so this technique known as RBF-FD. We can rewrite (24) as D(u(xi)) ≈

wiui , where wi = [w1, w2, . . . , wn]� and ui = [u1, u2, . . . , un]� , so for computing RBF-FD weights, first of all, we prepare a 
local interpolant

Iu(x) =
n∑

j=1

γ jφ(||x − x j||), (25)

and matrix-vector form of this relation is Aiγ i = ui , where Ai is the local distance matrix and γ i = [γ1, γ2, . . . , γn]� and ui

is the known data corresponding to stencil of xi , respectively. Unknown coefficients γ i are determined by γ i = A−1
i ui . Now, 

we apply the differentiation operator D to the both side of (25), then we have

D(Iu(x)) =
n∑

j=1

γ jD(φ(||x − x j||)). (26)

Now, by collocating (26) at xi and writing matrix-vector form, we derive

D(u(xi)) = D�(xi)γ i = D�(xi)A−1
i ui, (27)

where D�(xi) = [Dφ(||xi − x1||), Dφ(||xi − x2||), ..., Dφ(||xi − xn||)]. By comparing (24) with (27), we conclude wi =
D�(xi)A−1

i .
Global RBF method for deriving differentiation matrix needs O (N3) operations, and leads to a dense matrix, but in 

RBF-FD method for each stencil, we need O (n3) operations and there are N such stencils, so that the total cost of computing 
is O (n3N), although we do not take into account the cost of determining the stencil grids. Since n � N and n is fixed as 
N increases, so that the total cost will be O (N). For computing weights, we need to compute the inverse of local distance 
matrix of order n × n for each stencil, and since distance matrix depends only on distance of grid points, in uniform grids 
which we use in this study, we only need to compute the inverse of local distance matrix once. Also, since computing 
differentiation matrix for each stencil is independent to other stencils, so parallel algorithms can be employed to increase 
the efficiency of RBF-FD method in high dimensional problems and adaptive algorithms.
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4.1. Spatial discretization

For spatial discretization, we replace the unbounded domain {(τ , x) | τ ∈ (0, T ], x ∈ R} with a bounded one (0, T ] ×
[xmin, xmax] where the values xmin and xmax, will be chosen based on standard financial arguments, such that the error 
caused by truncating the solution domain is negligible. Let X = {x0, x1, ..., xNx } ⊂ [xmin, xmax] such that xmin = x0 < x1 < . . . <

xNx = xmax , and h = x j+1 −x j for j = 0, . . . , Nx −1. For each point x j , we choose an influence domain X j = {x1, x2, ..., xn} ⊂ X
which contains a local region formed by the n closest neighboring interpolation points to x j . Local RBF interpolant for each 
regime is defined by

u(τk, x, i) ≈
n∑

l=1

γlφ(‖x − xl‖) (28)

where unknown {γl}n
l=1 are determined by imposing the interpolation conditions and solving linear system of equations 

� jγ j = u j
i , where � j = [φ(‖xi − xk‖)]1≤i,k≤n , γ j = [γ1, γ2, ..., γn]T and u j

i = [u(τk, x1, i), u(τk, x2, i), ..., u(τk, xn, i)]T , re-

garding to this fact that � j is invertible, so we have γ j = (� j)−1u j
i .

For each interior point x j ∈ X we apply differential operator (9) to the local interpolant (28), so we have

Diu(τk, x j, i) =
n∑

l=1

γlDiφ(‖x j − xl‖) =: D j
i u j

i (29)

where

D j
i = [Diφ(‖x j − x1‖),Diφ(‖x j − x2‖), ...,Diφ(‖x j − xn‖)](� j)−1. (30)

Note that the influence domain for all the interior points is the same. Hence, � j is the same for all interior points and thus 
needs to be computed only once, and the computational efficiency can be improved. D j

i is the local differentiation matrix, 
by inserting zeros in the proper locations, global differentiation matrix Di is derived.

4.2. Discretization of the integral operator

To approximate the integral operator Ji numerically, let � = [xmin, xmax]. So, we divide the integral into two parts on �
and R\�, so we have

Jiu(τ , x, i) =
∫
�

u(τ , y, i) f (y − x, i)dy +
∫

R\�
u(τ , y, i) f (y − x, i)dy (31)

Let R(τ , x, i) = ∫
R\� u(τ , y, i) f (y − x, i)dy and by using the boundary conditions for European put option we can calcu-

late R(τ , x, i) by

R(τ , x, i) =
xmin∫

−∞
(K e−riτ − K e y−qiτ ) f (y − x, i)dy,

where for Merton model we have

R(τ , x, i) = K e−riτN (
xmin − x − μ

J
i

σ
J

i

) − K ex−qiτ+μ
J
i + (σ

J
i )2

2 N
(

xmin − x − μ
J
i − (σ

J
i )2

σ
J

i

)
where N (·) is the cumulative normal distribution, and for Kou model we have

R(τ , x, i) = K (1 − p)

(
e−riτ+η2(xmin−x) − η2

η2 + 1
e−η2x−qiτ+(η2+1)xmin

)
.

For American put option we can calculate R(τ , x, i) by

R(τ , x, i) =
xmin∫

−∞
(K − K e y) f (y − x, i)dy,

where for Merton model we have
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R(τ , x, i) = KN (
xmin − x − μ

J
i

σ
J

i

) − K ex+μ
J
i + (σ

J
i )2

2 N
(

xmin − x − μ
J
i − (σ

J
i )2

σ
J

i

)
and for Kou model we have

R(τ , x, i) = K (1 − p)

(
eη2(xmin−x) − η2

η2 + 1
e−η2x+(η2+1)xmin

)
.

For approximating 
∫
�

u(τ , y, i) f (y − x)dy we use the classical numerical integration method known as trapezoidal rule 
by ∫

�

u(τ , y, i) f (y − x, i)dy ≈ h

2

⎛⎝ Nx∑
j=0

ω ju(τ , y j, i) f (y j − x, i)

⎞⎠
where y j = xmin + jh with h = xmax−xmin

Nx
where Nx is the number of grids in x direction, and ω j = 1 for j = 0, Nx and 

ω j = 2 for j = 2, ..., Nx − 1.

4.3. Fully discretized system

Let X = {x0, x1, . . . , xNx } be a set of distinct interpolation points of [xmin, xmax], and T = {τ0 = 0 < τ1 < · · · < τM = T }
be a partition of [0, T ]. Applying the RBF-FD method and the discretization of the integral operator as described in the 
previous subsections to the time semi-discrete problem (17)–(18), the evaluation of an European option price is reduced to 
finding an approximation Uk := [Uk

1, U
k
2, · · · , Uk

m]� where Uk
i = [u(τk, x1, i), u(τk, x2, i), · · · , u(τk, xNx−1, i)]� , as a solution to 

the following time stepping scheme

U1 − U0


τ
= DU1 + λJU0 + QU1, (32)

Uk+1 − Uk−1

2
τ
= D(

Uk+1 + Uk−1

2
) + λJUk + Q(

Uk+1 + Uk−1

2
), 1 ≤ k ≤ M − 1, (33)

where the initial vector g = U0 = [U0
1, U

0
2, · · · , U0

m]� defined by U0
i = [g(K ex1 ), g(K ex2 ), · · · , g(K exNx−1 )]� where g(·) is the 

payoff function (8) and i ∈ M. One of the sources of error can arise when we use initial function (8) at the RBF-FD grid 
points, since this function is discontinuous in their first derivatives. A useful notion in the implementation of numerical 
method is that the value of a function on a grid represents average value of the function over the surrounding grids rather 
than its value sampled at each grid point [42] by

g(xi) ≈ 1

h

xi+ h
2∫

xi− h
2

g(x)dx,

and this makes the payoff function smooth at the strike price K , and we use this technique to improve the accuracy of 
RBF-FD numerical method especially near the strike price. Also, D = blkdiag[D1, D2, . . . , Dm] where Di for i ∈ M is the 
differentiation matrix associated with the differential operator Di which will be defined in section 5 and blkdiag means 
block diagonal, and J is the integral matrix corresponding to the integral operator defined by J = blkdiag[J1, J2, . . . , Jm] and 
Ji for i ∈M is the integral matrix associated with the discretization of integral operator Ji , λ = blkdiag[λ1, λ2, . . . , λm], and 
matrices λJ = λ ⊗ J and Q = Q ⊗ I(Nx−1)×(Nx−1) where ⊗ means tensor product.

For evaluation of an American option price, Uk := [Uk
1, U

k
2, · · · , Uk

m]� where Uk
i = [u(τk, x1, i), u(τk, x2, i), · · · , u(τk,

xNx−1, i)]� is derived as a solution to the following time stepping schemes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ũ

1−U0


τ − DŨ
1 − λJU0 − QŨ

1 = ϒ0,

ϒ1 = ϒ0 + U1−Ũ
1


τ ,

ϒ1 ≥ 0, U1 ≥ g, (ϒ1)�(U1 − g) = 0,

(34)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ũ

k+1−Uk−1

2
τ − D( Ũ
k+1+Uk−1

2 ) − λJUk − Q( Ũ
k+1+Uk−1

2 ) = ϒk,

ϒk+1 = ϒk + Uk+1−Ũ
k+1

2
τ ,

ϒk+1 ≥ 0, Uk+1 ≥ g, (ϒk+1)�(Uk+1 − g) = 0,

(35)
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where Ũk+1
is an intermediate solution, ϒk := [ϒk

1, ϒ
k
2, · · · , ϒk

m]� where ϒk
i = [ϒ(τk, x1, i), ϒ(τk, x2, i), · · · , ϒ(τk, xNx−1, i)]�

is the auxiliary function ϒ(τ , x, i) evaluated at the discretization points.
Each time step is split into two parts. Starting from the initial vector U0 = g and ϒ0 = 0, first, the intermediate solution 

vector Ũk+1
is solved from the modified system of linear equations

Ũ
k+1 − Uk−1

2
τ
− D(

Ũ
k+1 + Uk−1

2
) − λJUk − Q(

Ũ
k+1 + Uk−1

2
) = ϒk.

Second, the intermediate solution Ũk+1
is projected to be feasible, and ϒk is updated in

ϒk+1 = ϒk + Uk+1 − Ũ
k+1

2
τ
,

to satisfy relations

ϒk+1 ≥ 0, Uk+1 ≥ g, (ϒk+1)�(Uk+1 − g) = 0.

The update step can be performed very fast and at each spatial grid point independently with the formulas Uk+1 =
max(g, ̃Uk+1 − 2
τϒk) and ϒk+1 = ϒk + Uk+1−Ũ

k+1

2
τ .

5. Convergence analysis

In this section, we discuss about consistency and convergence analysis of fully discretized system of equations (32) and 
(33) with initial condition (8) and boundary condition (14), also we assume that the computed solution belongs to C∞ . To 
apply RBF-FD discretization for operator Di corresponding to the ith regime defined by (9), we show how we can derive 
the exact RBF-FD formulas for first and second derivatives. In the following, we use multiquadrics as RBFs, defined by

φ(‖x − y‖) =
√

ε2 + (‖x − y‖)2, (36)

where ‖ · ‖ is the Euclidean norm and ε is the shape parameter. Also, we assume that the grid points in x direction 
are equidistance with step size h and n = 3 is the number of grids in influence domain which are closest neighboring 
interpolation points to x j . So, the first derivative of u(τ , x, i) at x = x j is approximated by

∂u

∂x
(τ , x j, i) = α j−1u(τ , x j − h, i) + α ju(τ , x j, i) + α j+1u(τ , x j + h, i), (37)

so, by substituting function u(τ , x, i) by multiquadrics radial basis functions centered at x j − h, x j , and x j + h, the unknown 
coefficients α j−1, α j and α j+1 are derived by solving a 3 × 3 linear system of equations, then we have

α j−1 = −α j+1 = − 1

4h

1 +
√

1 + 4h2

ε2√
1 + h2

ε2

, α j = 0. (38)

In the numerical experiments, we assume ε � h, so we get [8]

α j−1 = −α j+1 = − 1

2h
(1 + h2

2ε2
), α j = 0, (39)

and since our grid points are equidistance, so for all j, we let

α = α j+1 = 1

2h
(1 + h2

2ε2
), α j−1 = −α, α j = 0. (40)

Now, for second derivative of u(τ , x, i) at x = x j let

∂2u

∂x2
(τ , x j, i) = β j−1u(τ , x j − h, i) + β ju(τ , x j, i) + β j+1u(τ , x j + h, i), (41)

so, the unknown coefficients β j−1, β j and β j+1 are derived by

β j−1 = β j+1 =
2 + ( h2

ε2 + 2)

√
1 + 4h2

ε2 + 5h2

ε2 + 2h4

ε4

4h2(1 + h2
)

3
2

, β j = −
2 + ( h2

ε2 + 2)

√
1 + 4h2

ε2 + 3h2

ε2

2h2(1 + h2

2 )
. (42)
ε2 ε
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Also, if we assume ε � h, and the gride points are equidistance, then we have [8]

β2 = β j−1 = β j+1 = 1

h2
(1 + h2

ε2
), β1 = β j = − 2

h2
(1 + h2

ε2
). (43)

Now, by substituting the above first and second derivative approximations in operator Di we get the following differential 
matrix

Di = 1

2
σ 2

i

⎛⎜⎜⎜⎜⎜⎝
β1 β2
β2 β1 β2

. . .
. . .

. . .

β2 β1 β2
β2 β1

⎞⎟⎟⎟⎟⎟⎠ + (ri − qi − σ 2
i

2
− λiκi)

⎛⎜⎜⎜⎜⎜⎝
0 α

−α 0 α
. . .

. . .
. . .

−α 0 α
−α 0

⎞⎟⎟⎟⎟⎟⎠ − (ri + λi)I, (44)

finally,

Di = tridiag

(
1

2
σ 2

i β2 − (ri − qi − σ 2
i

2
− λiκi)α ,

1

2
σ 2

i β1 − ri − λi ,
1

2
σ 2

i β2 + (ri − qi − σ 2
i

2
− λiκi)α

)
, (45)

where tridiag means tridiagonal matrix.

Theorem 1. Matrix −Di is a diagonal dominant matrix, if

2|ri − qi − σ 2
i

2 − λiκi|
σ 2

i

<
β2

α
≈ O (

1

h
). (46)

Proof. Since ri , λi and σi are positive for all i ∈M and β1 is negative, so ri +λi − 1
2 σ 2

i β1 > 0 which are the diagonal entries 
of matrix −D. So, for diagonal dominant, we should show that

−1

2
σ 2

i β1 + ri + λi >

∣∣∣∣∣1

2
σ 2

i β2 − (ri − qi − σ 2
i

2
− λiκi)α

∣∣∣∣∣ +
∣∣∣∣∣1

2
σ 2

i β2 + (ri − qi − σ 2
i

2
− λiκi)α

∣∣∣∣∣ .
Now, we consider two cases. First, assume that (ri − qi − σ 2

i
2 − λiκi) ≥ 0, so from (46), we get 1

2 σ 2
i β2 − (ri − qi − σ 2

i
2 −

λiκi)α > 0 and we know 1
2 σ 2

i β2 + (ri − qi − σ 2
i

2 − λiκi)α is positive, so∣∣∣∣∣1

2
σ 2

i β2 − (ri − qi − σ 2
i

2
− λiκi)α

∣∣∣∣∣ +
∣∣∣∣∣1

2
σ 2

i β2 + (ri − qi − σ 2
i

2
− λiκi)α

∣∣∣∣∣ = σ 2
i β2

= −1

2
σ 2

i β1

< −1

2
σ 2

i β1 + ri + λi (47)

and (47) confirms that matrix −Di is a diagonal dominant matrix.

Second, assume that (ri −qi − σ 2
i

2 −λiκi) < 0, so from (46), we get 1
2 σ 2

i β2 + (ri −qi − σ 2
i

2 −λiκi)α > 0 and also, we know 
1
2 σ 2

i β2 − (ri − qi − σ 2
i

2 − λiκi)α is positive, so∣∣∣∣∣1

2
σ 2

i β2 − (ri − qi − σ 2
i

2
− λiκi)α

∣∣∣∣∣ +
∣∣∣∣∣1

2
σ 2

i β2 + (ri − qi − σ 2
i

2
− λiκi)α

∣∣∣∣∣ = σ 2
i β2

= −1

2
σ 2

i β1

< −1

2
σ 2

i β1 + ri + λi (48)

and (48) confirms that matrix −Di is a diagonal dominant matrix. �
Remark 1. Let Q as a generated matrix defined by (1), it is easy to derive that matrix −Q is diagonal dominant with positive 
diagonal entries, and nonpositive off-diagonal entries.
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Theorem 2. Let u(τ , x, i) ∈ C∞((0, T ] × [xmin, xmax] × M) satisfies the initial condition (8) and boundary conditions (14) and 
asymptotic behavior (12). For sufficiently small h and 
τ and all i ∈M,

∂u(τk, x j, i)

∂τ
−Liu(τk, x j, i) = u(τk+1, x j, i) − u(τk−1, x j, i)

2
τ
− Liu(τk, x j, i) + O ((
τ )2 + h2 + h2

ε2
), (49)

where

Liu(τ , x, i) = Diu(τ , x, i) + λiJiu(τ , x, i) +
m∑

j=1

qiju(τ , x, i),

and Li is the corresponding discretized operator to the Li .

Proof. By using the RBF-FD approximation for first and second derivatives of differential operator Di defined by (9), so we 
have

∂u(τk, x j, i)

∂x
− [u(τk, x j+1, i) − u(τk, x j−1, i)

2h
](1 + h2

2ε2
) ≈ h2

6

∂3u(τk, x j, i)

∂x3
+ h2

2ε2

∂u(τk, x j, i)

∂x
(50)

so,

∂u(τk, x j, i)

∂x
= 1

2
[u(τk+1, x j+1, i) − u(τk+1, x j−1, i)

2h

+ u(τk−1, x j+1, i) − u(τk−1, x j−1, i)

2h
](1 + h2

2ε2
) + O ((
τ )2 + h2 + h2

ε2
), (51)

and for second derivative

∂2u(τk, x j, i)

∂x2
− [u(τk, x j+1, i) − 2u(τk, x j, i) + u(τk, x j−1, i)

h2
](1 + h2

ε2
)

≈ h2

12

∂4u(τk, x j, i)

∂x4
+ h2

ε2

∂2u(τk, x j, i)

∂x2
− 3h2

4ε2
u(τk, x j, i)

then

∂2u(τk, x j, i)

∂x2
= 1

2
[u(τk+1, x j+1, i) − 2u(τk+1, x j, i) + u(τk+1, x j−1, i)

h2

+u(τk−1, x j+1, i) − 2u(τk−1, x j, i) + u(τk−1, x j−1, i)

h2
](1 + h2

ε2
) + O ((
τ )2 + h2 + h2

ε2
) (52)

by using the first derivative approximation (51) and second derivative approximation (52) the differential operator Di is 
approximated by the discrete operator Di with the error at each grid point (τk, x j, i)

Diu(τk, x j, i) = Di(
u(τk+1, x j, i) + u(τk−1, x j, i)

2
) + O ((
τ )2 + h2 + h2

ε2
). (53)

For the integral operator we have∫
R

u(τk, y, i) f (y − x j, i)dy = h

2

(
Nx∑

v=1

ωv u(τk, yv , i) f (yv − x j, i)

)
+ R(τk, x j, i) + O (h2)

therefore

Jiu(τk, x j, i) = Jiu(τk, x j, i) + O (h2). (54)

In addition, we need the following interpolation error∣∣∣∣∣∣
m∑

j=1

qiju(τk, x j, i) −
m∑

j=1

qij
u(τk+1, x j, i) + u(τk−1, x j, i)

2

∣∣∣∣∣∣ ≤ (
τ )2

2
sup

τ∈[τk−1,τk+1]

∣∣∣∣ ∂2u

∂τ 2
(τ , x j, i)

∣∣∣∣ (55)

Now, let

Liu(τ , x, i) = Diu(τ , x, i) + λiJiu(τ , x, i) +
m∑

qiju(τ , x, i),

j=1
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then by using (53) for differential operator approximation, (54) for integral operator approximation and (55) for identity 
part, we get

Liu(τk, x j, i) = Liu(τk, x j, i) + O ((
τ )2 + h2 + h2

ε2
). (56)

Also, for the time derivative we have the following approximation

∂u(τk, x j, i)

∂τ
= u(τk+1, x j, i) − u(τk−1, x j, i)

2
τ
+ O ((
τ )2), (57)

so, finally by using (56) and (57), we get

∂u(τk, x j, i)

∂τ
−Liu(τk, x j, i) = u(τk+1, x j, i) − u(τk−1, x j, i)

2
τ
− Liu(τk, x j, i) + O ((
τ )2 + h2 + h2

ε2
),

and this completes the proof. �
Let us define the error vector Ek = [uk

1 − Uk
1, u

k
2 − Uk

2, . . . , u
k
m − Uk

m]T where uk
i is the exact solution of (7) with initial 

condition (8) and boundary condition (12) for ith regime and kth time level, and Uk
i is the solution derived by solving 

linear system of equations (33). Also, let I = Im×m ⊗ I(Nx−1)×(Nx−1) , Q = Q ⊗ I(Nx−1)×(Nx−1) and d is the column vector of 
size m × (Nx − 1) with entries 
τ O ((
τ )2 + h2 + h2

ε2 ). Now, by using (33) and (49), we obtain the error vector by solving 
the following system of equations

(I − 
τ (Q + D))Ek+1 = (I + 
τ (Q + D))Ek−1 + 2
τλJEk + d. (58)

Lemma 1. If A := (aij) is a diagonal dominant matrix, then for any vector x the inequality

‖x‖∞ ≤ ‖(I + 
τA)x‖∞, (59)

is satisfied, and also, if 
τ ≤ 1
maxi |aii | , then ‖(I − 
τA)x‖∞ ≤ 1.

Proof. [30] �
Lemma 2. Let {an}n≥0 be a nonnegative sequence such that for n ≥ 2

an ≤ an−2 + K ′
τan−1 + d,

where three terms K ′, 
τ and d are positive constants. If a0 = 0 then for n ≥ 2

an ≤ (1 + K ′
τ )n−1a1 + d
n−2∑
j=0

(1 + K ′
τ ) j .

Proof. [35] �
Theorem 3. Let u(τ , x, i) is the solution of the PIDE (7) with initial condition (8) and boundary condition (14), and let Uk

i is the 
solution derived by solving linear system of equations (33). If h and 
τ are sufficiently small, then for system of equations defined by 
(58) we have

‖Ek+1‖∞ ≤ e2λT 
τ O (
τ + h2 + h2

ε2
) + e2λT − 1

2λ
O ((
τ )2 + h2 + h2

ε2
), (60)

where λ = max λi for i ∈M and λi is the i-th intensity rate and T is time of maturity.

Proof. From Theorem 1 and Remark 1, matrix −(Q + D) is a diagonal dominant matrix and let A = −(Q + D) in Lemma 1, 
so we get

‖Ek+1‖∞ ≤ ‖(I − 
τ (Q + D))Ek+1‖∞
≤ ‖(I + 
τ (Q + D))‖∞‖Ek−1‖∞ + 2λ
τ‖J‖∞‖Ek‖∞ + ‖d‖∞,

where λ = max λi . A right stochastic matrix is a square matrix of nonnegative real numbers, with each row summing to one 
[25]. We assume that J does not have error due to the truncation of the domain, so matrix J leads to a non-negative right 
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Fig. 1. Maximum error as function of the shape parameter ε for European and American options and Example 1.

stochastic matrix [45]. Therefore ‖J‖∞ ≤ 1 then

‖Ek+1‖∞ ≤ ‖Ek−1‖∞ + 2λ
τ‖J‖∞‖Ek‖∞ + ‖d‖∞.

Now, by using Lemma 2, we have

‖Ek+1‖∞ ≤ (1 + 2λ
τ )k max
{
‖E0‖∞,‖E1‖∞

}
+ ‖d‖∞

k−1∑
j=0

(1 + 2λ
τ ) j

≤ e2λT max
{
‖E0‖∞,‖E1‖∞

}
+ e2λT − 1

2λ
τ
‖d‖∞,

and we know that ‖E0‖∞ = 0, ‖E1‖∞ ≤ 
τ O (
τ + h2 + h2

ε2 ) and ‖d‖∞ ≤ 
τ O ((
τ )2 + h2 + h2

ε2 ), finally we have

‖Ek+1‖∞ ≤ e2λT 
τ O (
τ + h2 + h2

ε2
) + e2λT − 1

2λ
O ((
τ )2 + h2 + h2

ε2
). �

6. Numerical results

In this section, we carry out some numerical experiments to evaluate the prices of European and American options under 
the regime switching model with jump. As RBF for spatial discretization, we select the multiquadric radial basis function 
defined by (36) with ε = 1 for all American and European options, and we choose n = 3 as number of local nodes in each 
stencil, and all experiments are performed on a PC with a 3.6 GHz Corei3 processor.

Figs. 1 and 2 display the dependence of the maximum error on the size of the shape parameter for European and 
American options for Examples 1 and 3. We derive from these figurers that ε = 1 is a good and optimal choice for our 
numerical experiments.

For a special case presented in Example 1, we will derive a closed form solution, but in general cases, for European 
and American options, closed form solution is not available, so in tables, Error refers to the difference between successive 
numerical solutions following mesh refinements at specific grid point S j , given by

Error =
∣∣∣Vh,
τ (0, S j, i) − V h

2 ,

τ
2

(0, S j, i)
∣∣∣ ,

where h = xmax−xmin
Nx

and 
τ = T
M are space and time step sizes, respectively. Also, Ratio denotes the log2 ratio of errors 

defined by
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Fig. 2. Maximum error as function of the shape parameter ε for European and American options and Example 3.

Ratio = log2

(∣∣∣∣∣ Vh,
τ (0, S j, i) − V h
2 ,


τ
2

(0, S j, i)

V h
2 ,


τ
2

(0, S j, i) − V h
4 ,


τ
4

(0, S j, i)

∣∣∣∣∣
)

.

Example 1. In this example, we consider European and American put option under the regime switching model with pa-
rameters(

r1
r2

)
=

(
0.08
0.08

)
,

(
σ1
σ2

)
=

(
0.3
0.1

)
, Q =

( −0.5 0.5
0.5 −0.5

)
, T = 1, K = 40

and jump parameters for i = 1, 2 are μ J
i = −0.025, σ J

i = √
0.05, λi = 5 and qi = 0 chosen from [15,43].

To derive a closed-form solution for European option, we have to consider a special case where m = 2 (two regimes) 
and the jump process (the Poisson process N and the jump sizes Y ) do not depend on the Markov chain αt , i.e., Yαt = Y , 
λαt = λ, and καt = κ . We also assume that the log jump size ln Y follows the Merton’s normal distribution with mean μ J

and variance (σ J )2. Then we have St = e Xt , where

Xt = X0 +
t∫

0

(
rαs − qαs − 1

2
σ 2

αs
− λκ

)
ds +

t∫
0

σαs dW (s) +
Nt∑

j=1

ln Y j,

where X0 = ln S0.
For convenience, let aαs = rαs − qαs − 1

2 σ 2
αs

− λκ . Given {αs : 0 ≤ s ≤ T } and NT = n. Then XT is a conditional normal 
random variable with conditional mean and variance given by

E[XT ] = X0 +
T∫

0

aαs ds + nμ J ,

V ar[XT ] =
T∫

0

σ 2
αs

ds + n(σ J )2.

Let

Ti =
T∫

I{αs=i}ds, i = 1,2,
0
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be the sojourn time of the Markov chain αt in state i during the interval [0, T ]. Then T1 + T2 = T . It follows that

E[XT ] = X0 + a1T1 + a2(T − T1) + nμ J = X0 + (a1 − a2)T1 + a2T + nμ J ,

V ar[XT ] = σ 2
1 T1 + σ 2

2 (T − T1) + n(σ J )2 = (σ 2
1 − σ 2

2 )T1 + σ 2
2 T + n(σ J )2.

The European put option prices V 1(S) and V 2(S) at time t = 0 are given by

V i(S) = Ẽ

⎧⎨⎩exp

⎛⎝−
T∫

0

rαt dt

⎞⎠ (K − ST )+
∣∣∣∣∣S0 = S,α0 = i

⎫⎬⎭
=

∞∑
n=0

e−λT (λT )n

n! Ẽ

{
e−(r1−r2)T1−r2 T (K − e XT )+

∣∣∣∣∣S0 = S,α0 = i, NT = n

}
,

where Ẽ(·) is the expectation operator. Note that the conditional distribution of XT depends on the trajectory {αs : 0 ≤ s ≤ T }
via T1. Given T1 = t , we have

Ẽ

{
e−(r1−r2)T1−r2 T (K − e XT )+

∣∣∣∣∣S0 = S,α0 = i, NT = n, T1 = t

}

=
ln K∫

−∞
e−(r1−r2)t−r2 T (K − ex)ρ(x,m(t), v(t))dx

=
K∫

0

e−(r1−r2)t−r2 T y

K − y
ρ (ln(K − y),m(t), v(t))dy

where the substitution y = K − ex was used, and ρ (x,m(t), v(t)) is the Gaussian density function with mean m(t) and 
variance v(t) given by,

m(t) = ln S + (a1 − a2)t + a2T + nμ J ,

v(t) = (σ 2
1 − σ 2

2 )t + σ 2
2 T + n(σ J )2.

Finally, we obtain the closed-form solution for V 1(S) and V 2(S) by taking integral with respect to the density function 
of T1

V i(S) =
∞∑

n=0

e−λT (λT )n

n!
K∫

0

T∫
0

e−(r1−r2)t−r2 T y

K − y
ρ (ln(K − y),m(t), v(t)) f i(t, T ) dt dy , (61)

where [26]

f1(t, T ) = eq11 T δ0(T − t) + eq22 T +(q11−q22)t

×
(√

q11q22t

T − t
I1(2

√
q11q22t(T − t)) − q11 I0(2

√
q11q22t(T − t))

)
f2(t, T ) = eq22 T δ0(t) + eq22 T +(q11−q22)t

×
(√

q11q22(T − t)

t
I1(2

√
q11q22t(T − t)) − q22 I0(2

√
q11q22t(T − t))

)
where δ0(·) is the Dirac Delta function, I0(·) and I1(·) are the modified Bessel functions given by

I0(z) =
∞∑

n=0

( z
2

)2n

(n!)2
, I1(z) =

∞∑
n=0

( z
2

)2n+1

n!(n + 1)! .

For the given set of parameters numerical results are reported in Table 1 at S = K = 40 for different regimes and 
European and American options with the truncated domain of the log price [xmin, xmax] = [−2, 2]. Also, analytical solutions 
for European option reported in Table 1 at S = K = 40 for different regimes are derived from (61). The parameter set of this 
example has been considered in [43] and finite element scheme was employed for pricing European option under regime 
switching jump diffusion processes. Comparing numerical results given in Table 1 of [43] with the results of present paper 
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Table 1
Numerical results for European and American put options under regime switching of Merton model for Example 1 at S = K = 40.

Nx M European American

Price Absolute error Time (s) Ratio Price Error Time (s) Ratio

Regime 1
50 50 7.0391789 2.2(-3) 0.095 7.3826097 0.115
100 100 7.0374726 5.6(-4) 0.349 2.012 7.3818215 7.8(-4) 0.402
200 200 7.0370477 1.3(-4) 0.397 2.031 7.3816092 2.1(-4) 0.493 1.893
400 400 7.0369430 3.2(-5) 0.742 2.064 7.3815324 7.6(-5) 0.903 1.465
800 800 7.0369173 7.2(-6) 2.849 2.183 7.3814998 3.2(-5) 3.004 1.237
1600 1600 7.0369120 2.0(-6) 19.18 1.836 7.3814871 1.2(-5) 20.75 1.365

Analytical solution 7.0369101

Regime 2
50 50 6.3183120 2.0(-3) 0.095 6.6289657 0.115
100 100 6.3167538 5.2(-4) 0.349 1.999 6.6290914 1.2e(4) 0.402
200 200 6.3163626 1.2(-4) 0.397 2.013 6.6291911 9.9(-5) 0.493 0.335
400 400 6.3162654 3.1(-5) 0.742 2.025 6.6292294 3.8(-5) 0.903 1.378
800 800 6.3162413 7.4(-6) 2.849 2.084 6.6292371 7.6(-6) 3.004 2.319
1600 1600 6.3162357 1.9(-6) 19.18 1.936 6.6292373 2.5(-7) 20.75 4.931

Analytical solution 6.3162338

Fig. 3. Left: Error convergence in space for European put option using 1600 time discretization steps. Right: Error convergence in space for American put 
option using 1600 time discretization steps.

shows that RBF-FD method is accurate than finite element scheme. Also, in [15], the numerical solution for first and second 
regime are 7.0369 and 6.3177 generated using 2000 time steps and reported in Table 7 of [15], by comparing with the 
analytical solution given in Table 1, it is easy to derive that RBF-FD method is accurate than multinomial lattice approach 
presented in [15].

For more investigation about the efficiency of RBF-FD method, we define the following maximum error

Max Error = max
j

|V (0, S j, i) − V ref (0, S j, i)| (62)

where S j ∈ [K e−3, K e3] corresponding with x j ∈ [xmin, xmax] = [−3, 3] and i = 1, 2. In the definition of Max Error, we use a 
very accurate solution obtained by the RBF-FD approximation with a very large number of grid points 3200 and time steps 
3200 as V ref (0, S j, i). Fig. 3 depicts the rate of convergence in space for European and American options.
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Table 2
Numerical results for European put option under regime switching of Merton model for Example 1 at S = K = 40 for large 
jump intensity values.

Nx M λi = 25 λi = 50

Price Absolute error Ratio Price Error Ratio

Regime 1
50 50 15.1249770 1.9(-2) 20.5804952 5.2(-2)
100 100 15.1388321 5.2(-3) 1.867 20.6178556 1.5(-2) 1.770
200 200 15.1427231 1.3(-3) 1.965 20.6293012 4.0(-3) 1.937
400 400 15.1437257 3.3(-4) 1.991 20.6323213 1.0(-3) 1.978
800 800 15.1439782 8.4(-5) 1.997 20.6330889 2.5(-4) 1.985
1600 1600 15.1440413 2.1(-5) 1.981 20.6332819 6.6(-5) 1.966

Analytical solution 15.1440626 20.6333483

Regime 2
50 50 14.8368272 1.3(-2) 20.4156739 3.9(-2)
100 100 14.8467467 3.7(-3) 1.865 20.4432097 1.1(-2) 1.735
200 200 14.8495402 9.6(-4) 1.965 20.4519236 3.1(-3) 1.927
400 400 14.8502598 2.4(-4) 1.991 20.4542423 7.9(-4) 1.976
800 800 14.8504411 6.0(-5) 1.997 20.4548330 1.9(-4) 1.987
1600 1600 14.8504864 1.5(-5) 1.981 20.4549816 5.0(-5) 1.973

Analytical solution 14.8505017 20.4550323

Table 3
Numerical results for European put option under regime switching of Merton model for Example 1 at S = K = 40 with 
high volatility.

Nx M Regime 1 Regime 2

Price Absolute error Ratio Price Error Ratio

50 50 22.7016107 9.9(-1) 16.7542614 3.0(-1)
100 100 23.4200793 2.7(-1) 1.860 16.9735597 8.2(-2) 1.872
200 200 23.6229010 7.0(-2) 1.958 17.0348450 2.1(-2) 1.964
400 400 23.6753534 1.7(-2) 1.978 17.0506282 5.3(-3) 1.985
800 800 23.6886438 4.5(-3) 1.971 17.0546134 1.3(-3) 1.983
1600 1600 23.6920002 1.1(-3) 1.930 17.0556124 3.5(-4) 1.946

Analytical solution 23.6931939 17.0559626

We know that closed form solutions are not available for European options under more than two regimes and jump dif-
fusion process as well as all American options, so for testing the accuracy and efficiency of RBF-FD method and investigating 
on the rate of convergence, we devote more considerations to this example since analytical solution is available, and we 
have a possibility to test efficiency of proposed method by changing different type of parameters. Therefore, to study the 
influence of the large jump intensities λi on the convergence rate and accuracy, we consider same parameters except that 
the jump intensities λi for i = 1, 2 are replaced by 25 and 50 respectively. The results for European option are reported in 
Table 2 at S = K = 40 for different regimes with the truncated domain of the log price [xmin, xmax] = [−5, 5], and analytical 
solutions are derived from (61).

To show the efficiency of RBF-FD method, also we report the results for high volatility, so we consider same parameters 
except that the volatilities σi for i = 1, 2 are replaced by 2 and 1 respectively. The results for European option are reported in 
Table 3 at S = K = 40 for different regimes with the truncated domain of the log price [xmin, xmax] = [−5, 5], and analytical 
solutions are derived from (61). Convergence rates for large jump intensity and high volatility are depicted in Fig. 4 and 
confirms the stability and accuracy of RBF-FD method combined by three time level discretization for European option. Also, 
for computing maximum error defined by (62) we let S j ∈ [K e−5, K e5] corresponding with x j ∈ [xmin, xmax] = [−5, 5].

Example 2. In this example, we consider European and American put option under the regime switching model with pa-
rameters⎛⎝ r1

r2
r3

⎞⎠ =
⎛⎝ 0.05

0.05
0.05

⎞⎠ ,

⎛⎝ σ1
σ2
σ3

⎞⎠ =
⎛⎝ 0.15

0.15
0.15

⎞⎠ ,

⎛⎝ λ1
λ2
λ3

⎞⎠ =
⎛⎝ 0.3

0.5
0.7

⎞⎠ Q =
⎛⎝ −0.8 0.6 0.2

0.2 −1 0.8
0.1 0.3 −0.4

⎞⎠ .

All options have maturity time T = 1 and exercise price K = 100, and jump parameters for i = 1, 2, 3 are μ
J
i =

−0.5, σ J
i = 0.45, and qi = 0 chosen from [36,43]. The results are reported in Tables 4 and 5 at S = 90, 100, 110 for dif-

ferent regimes and European and American options with the truncated domain of the log price [xmin, xmax] = [−1.5, 1.5].
The prices of the European put option at the first state of the economy under the regime switching Merton model by 

using the implicit method with three time levels have been presented in Table 1 of [36]. Comparison of the numerical results 
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Fig. 4. Left: Error convergence for large jump intensity λi = 50 in space using 1600 time discretization steps for European put option. Right: Error conver-
gence for high volatility in space using 1600 time discretization steps for European put option.

Table 4
Numerical results for European put option under regime switching of Merton model for Example 2.

Nx M S = 90 S = 100 S = 110 Time (s)

Price Error Ratio Price Error Ratio Price Error Ratio

Regime 1
50 50 13.497753 10.498988 8.725180 0.099
100 100 13.520459 2.2(-2) 10.534547 3.5(-2) 8.743977 1.8(-2) 0.127
200 200 13.526355 5.8(-2) 1.945 10.543064 8.5(-2) 2.062 8.748600 4.6(-3) 2.024 0.308
400 400 13.527850 1.4(-3) 1.980 10.545179 2.1(-3) 2.010 8.749756 1.1(-3) 1.999 0.900
800 800 13.528229 3.7(-4) 1.980 10.545710 5.3(-4) 1.994 8.750048 2.9(-4) 1.988 4.195
1600 1600 13.528330 1.0(-4) 1.896 10.545847 1.3(-4) 1.945 8.750123 7.5(-5) 1.947 38.403

Regime 2
50 50 15.723340 13.057382 11.228812 0.099
100 100 15.767713 4.4(-2) 13.094860 3.7(-2) 11.244196 1.5(-2) 0.127
200 200 15.778620 1.0(-2) 2.024 13.103741 8.8(-3) 2.077 11.248042 3.8(-3) 2.000 0.308
400 400 15.781342 2.7(-3) 2.002 13.105943 2.2(-3) 2.012 11.249009 9.6(-4) 1.991 0.900
800 800 15.782028 6.8(-4) 1.990 13.106496 5.5(-4) 1.992 11.249254 2.4(-4) 1.979 4.195
1600 1600 15.782205 1.7(-4) 1.951 13.106638 4.2(-5) 1.961 11.249318 6.4(-5) 1.938 38.403

Regime 3
50 50 17.427609 14.868918 12.939276 0.099
100 100 17.481211 5.3(-2) 14.901355 3.2(-2) 12.950619 1.1(-2) 0.127
200 200 17.493948 1.2(-2) 2.073 14.909056 7.7(-3) 2.074 12.953575 2.9(-3) 1.940 0.308
400 400 17.497104 3.1(-3) 2.013 14.910970 1.9(-3) 2.009 12.954327 7.5(-4) 1.974 0.900
800 800 17.497896 7.9(-4) 1.995 14.911451 4.8(-4) 1.991 12.954519 1.9(-4) 1.972 4.195
1600 1600 17.498099 2.0(-4) 1.961 14.911574 1.2(-4) 1.960 12.954569 5.0(-5) 1.931 38.403

confirm that RBF-FD method needs less time and spatial steps than the method presented in [36], also since both methods 
lead to the tridiagonal and diagonal dominant matrices, then it is easy to derive that the RBF-FD method is faster than the 
proposed method in [36]. Also, parameters of this example have been used for numerical approximation of European and 
American options with finite element scheme in [43]. Comparing the CPU times in second reported in Table 4 with those 
given in [43] confirms that RBF-FD method is faster than finite element scheme presented in [43].

For convergence analysis of RBF-FD method, we plot maximum error defined by (62) for S j ∈ [K e−3, K e3] and differ-
ent regimes. Analytical solutions for both European and American options are not available, then we use a very accurate 
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Table 5
Numerical results for American put option under regime switching of Merton model for Example 2.

Nx M S = 90 S = 100 S = 110 Time (s)

Price Error Ratio Price Error Ratio Price Error Ratio

Regime 1
50 50 14.272457 11.054786 9.197599 0.129
100 100 14.340025 6.7(-2) 11.106532 5.1(-2) 9.223212 2.5(-2) 0.100
200 200 14.358567 1.8(-2) 1.866 11.120249 1.3(-2) 1.916 9.230116 6.9(-3) 1.891 0.263
400 400 14.363438 4.8(-3) 1.929 11.123851 3.6(-3) 1.929 9.231945 1.8(-3) 1.917 0.906
800 800 14.364642 1.2(-3) 2.016 11.124762 9.1(-4) 1.983 9.232411 4.6(-4) 1.970 4.305
1600 1600 14.364933 2.9(-4) 2.048 11.124991 2.2(-4) 1.987 9.232530 1.1(-4) 1.967 42.846

Regime 2
50 50 16.565212 13.766685 11.853872 0.129
100 100 16.637651 7.2(-2) 13.814636 4.7(-2) 11.875627 2.1(-2) 0.100
200 200 16.657288 1.9(-2) 1.883 13.827081 1.2(-2) 1.946 11.881597 5.9(-3) 1.866 0.263
400 400 16.662406 5.1(-3) 1.940 13.830312 3.2(-3) 1.945 11.883172 1.5(-3) 1.922 0.906
800 800 16.663697 1.2(-3) 1.987 13.831133 8.2(-4) 1.976 11.883574 4.0(-4) 1.971 4.305
1600 1600 16.664017 3.2(-4) 2.010 13.831340 2.0(-4) 1.983 11.883676 1.0(-4) 1.979 42.846

Regime 3
50 50 18.373931 15.696379 13.670450 0.129
100 100 18.446424 7.2(-2) 15.737293 4.0(-2) 13.688616 1.8(-2) 0.100
200 200 18.465373 1.8(-2) 1.936 15.747919 1.0(-2) 1.945 13.693829 5.2(-3) 1.801 0.263
400 400 18.470273 4.9(-3) 1.951 15.750673 2.7(-3) 1.948 13.695213 1.3(-3) 1.913 0.906
800 800 18.471514 1.2(-3) 1.982 15.751371 6.9(-4) 1.978 13.695565 3.5(-4) 1.975 4.305
1600 1600 18.471823 3.0(-4) 2.002 15.751547 1.7(-4) 1.988 13.695653 8.8(-5) 1.988 42.846

Fig. 5. Left: Error convergence in space for European put option using 1600 time discretization steps. Right: Error convergence in space for American put 
option using 1600 time discretization steps.

solution obtained by the RBF-FD approximation with a very large number of grid points 3200 and time steps 3200 as 
V ref (0, S j, i). Fig. 5 shows the rate of convergence in space for European and American options and confirms the result in 
Theorem 3.

Example 3. In this example, we consider European and American put option under the regime switching model with pa-
rameters chosen from [36]
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Table 6
Numerical results for European put option under regime switching of Kou model for Example 3.

Nx M S = 90 S = 100 S = 110 Time (s)

Price Error Ratio Price Error Ratio Price Error Ratio

Regime 1
50 50 14.906954 9.795429 6.213575 0.539
100 100 14.901212 5.7(-3) 9.789655 5.7(-3) 6.204507 9.0(-3) 0.201
200 200 14.899750 1.4(-3) 1.974 9.788151 1.5(-3) 1.941 6.202214 2.2(-3) 1.983 0.428
400 400 14.899384 3.6(-4) 1.999 9.787772 3.7(-4) 1.989 6.201638 5.7(-4) 1.995 1.680
800 800 14.899290 9.4(-5) 1.961 9.787676 9.6(-5) 1.974 6.201494 1.4(-4) 1.989 14.146
1600 1600 14.899277 1.2(-5) 2.914 9.787666 9.4(-6) 3.350 6.201472 2.1(-5) 2.757 119.123

Regime 2
50 50 15.448248 10.353514 6.754610 0.139
100 100 15.441654 6.5(-3) 10.347045 6.4(-3) 6.745027 9.5(-3) 0.201
200 200 15.439981 1.6(-3) 1.978 10.345370 1.6(-3) 1.950 6.742606 2.4(-3) 1.985 0.428
400 400 15.439563 4.1(-4) 2.002 10.344949 4.2(-4) 1.993 6.741999 6.0(-4) 1.997 1.680
800 800 15.439457 1.0(-4) 1.972 10.344842 1.0(-4) 1.981 6.741847 1.5(-4) 1.992 14.146
1600 1600 15.439440 1.6(-5) 2.706 10.344830 1.1(-5) 3.161 6.741823 2.3(-5) 2.701 119.123

Regime 3
50 50 15.980462 10.903399 7.289208 0.139
100 100 15.972947 7.5(-3) 10.896177 7.2(-3) 7.279060 1.0(-2) 0.201
200 200 15.971046 1.9(-3) 1.982 10.894316 1.8(-3) 1.957 7.276499 2.5(-3) 1.986 0.428
400 400 15.970571 4.7(-4) 2.004 10.893850 4.6(-4) 1.996 7.275858 6.4(-4) 1.998 1.680
800 800 15.970451 1.2(-4) 1.981 10.893732 1.1(-4) 1.988 7.275697 1.6(-4) 1.995 14.146
1600 1600 15.970431 1.9(-5) 2.634 10.893716 1.5(-5) 2.943 7.275671 2.5(-5) 2.646 119.123

Regime 4
50 50 16.503821 11.445235 7.817432 0.139
100 100 16.495317 8.5(-3) 11.437203 8.0(-3) 7.806670 1.0(-2) 0.201
200 200 16.493170 2.1(-3) 1.985 11.435142 2.0(-3) 1.963 7.803957 2.7(-3) 1.988 0.428
400 400 16.492635 5.3(-4) 2.005 11.434627 5.1(-4) 1.998 7.803278 6.7(-4) 1.999 1.680
800 800 16.492500 1.3(-4) 1.989 11.434497 1.2(-4) 1.993 7.803109 1.7(-4) 1.998 14.146
1600 1600 16.492476 2.3(-5) 2.519 11.434478 1.8(-5) 2.790 7.803080 2.8(-5) 2.573 119.123

Regime 5
50 50 17.018541 11.979170 8.339349 0.139
100 100 17.008983 9.5(-3) 11.970272 8.8(-3) 8.327924 1.1(-2) 0.201
200 200 17.006574 2.4(-3) 1.988 11.967998 2.2(-3) 1.968 8.325047 2.8(-3) 1.989 0.428
400 400 17.005974 5.9(-4) 2.007 11.967430 5.6(-4) 2.000 8.324328 7.1(-4) 2.001 1.680
800 800 17.005824 1.5(-4) 1.995 11.967288 1.4(-4) 1.998 8.324148 1.8(-4) 2.001 14.146
1600 1600 17.005795 2.8(-5) 2.418 11.967265 2.2(-5) 2.643 8.324117 3.0(-5) 2.558 119.123

⎛⎜⎜⎜⎝
r1
r2
r3
r4
r5

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.05
0.05
0.05
0.05
0.05

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
σ1
σ2
σ3
σ4
σ5

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.5
0.5
0.5
0.5
0.5

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
λ1
λ2
λ3
λ4
λ5

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.1
0.3
0.5
0.7
0.9

⎞⎟⎟⎟⎠

Q =

⎛⎜⎜⎜⎝
−1 0.25 0.25 0.25 0.25

0.25 −1 0.25 0.25 0.25
0.25 0.25 −1 0.25 0.25
0.25 0.25 0.25 −1 0.25
0.25 0.25 0.25 0.25 −1

⎞⎟⎟⎟⎠ .

All regimes have maturity time T = 0.25 and exercise price K = 100, and jump parameters for Kou density function 
are η1 = 3, η2 = 2, p = 0.5 and qi = 0. The results are reported in Tables 6 and 7 at S = 90, 100, 110 for different regimes 
and European and American options with the truncated domain of the log price [xmin, xmax] = [−1.5, 1.5]. Comparing results 
presented in [36] for this set of parameters with RBF-FD method confirms that for getting a specific level of accuracy, RBF-FD 
technique needs less numbers of time and space steps and therefore RBF-FD will be faster than the method proposed in 
[36].

Maximum errors defined by (62) for S j ∈ [K e−3, K e3] and different regimes are plotted in Fig. 6. Since exact solutions 
for both European and American options are not available, then we used a very accurate solution obtained by the RBF-FD 
approximation with a very large number of grid points 3200 and time steps 3200 as V ref (0, S j, i). Fig. 6 grantees the 
analytical discussions and shows order of space convergence.
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Table 7
Numerical results for American put option under regime switching of Kou model for Example 3.

Nx M S = 90 S = 100 S = 110 Time (s)

Price Error Ratio Price Error Ratio Price Error Ratio

Regime 1
50 50 15.017425 9.849017 6.242376 0.135
100 100 15.019067 1.6(-3) 9.849967 9.5(-4) 6.235870 6.5(-3) 0.202
200 200 15.019601 5.3(-4) 1.615 9.850214 2.4(-4) 1.943 6.234595 1.2(-3) 2.351 0.428
400 400 15.019783 1.8(-4) 1.547 9.850281 6.7(-5) 1.872 6.234350 2.4(-4) 2.383 1.680
800 800 15.019819 3.6(-5) 2.351 9.850300 1.9(-5) 1.812 6.234298 5.2(-5) 2.234 14.282
1600 1600 15.019839 2.0(-5) 0.847 9.850324 2.4(-5) 0.372 6.234307 9.1(-6) 2.509 120.301

Regime 2
50 50 15.515114 10.388098 6.773823 0.135
100 100 15.511389 3.7(-3) 10.383251 4.8(-3) 6.765114 8.7(-3) 0.202
200 200 15.510532 8.5(-4) 2.120 10.382074 1.1(-3) 2.042 6.762981 2.1(-3) 2.030 0.428
400 400 15.510304 2.2(-4) 1.910 10.381773 3.0(-4) 1.969 6.762447 5.3(-4) 1.999 1.680
800 800 15.510238 6.7(-5) 1.775 10.381693 8.0(-5) 1.913 6.762312 1.3(-4) 1.983 14.282
1600 1600 15.510228 9.3(-6) 2.830 10.381685 7.0(-6) 3.511 6.762292 1.9(-5) 2.821 120.301

Regime 3
50 50 16.022729 10.927216 7.304358 0.135
100 100 16.016262 6.4(-3) 10.920520 6.6(-3) 7.294497 9.8(-3) 0.202
200 200 16.014654 1.6(-3) 2.008 10.918826 1.6(-3) 1.983 7.292040 2.4(-3) 2.004 0.428
400 400 16.014256 3.9(-4) 2.014 10.918408 4.1(-4) 2.018 7.291432 6.0(-4) 2.016 1.680
800 800 16.014154 1.0(-4) 1.972 10.918304 1.0(-4) 2.006 7.291282 1.5(-4) 2.017 14.282
1600 1600 16.014139 1.4(-5) 2.844 10.918292 1.1(-5) 3.231 7.291260 2.1(-5) 2.789 120.301

Regime 4
50 50 16.537290 11.466335 7.832278 0.135
100 100 16.529580 7.7(-3) 11.458797 7.5(-3) 7.821850 1.0(-2) 0.202
200 200 16.527675 1.9(-3) 2.016 11.456903 1.8(-3) 1.993 7.819258 2.5(-3) 2.008 0.428
400 400 16.527209 4.6(-4) 2.032 11.456440 4.6(-4) 2.030 7.818620 6.3(-4) 2.023 1.680
800 800 16.527094 1.1(-4) 2.023 11.456327 1.1(-4) 2.036 7.818464 1.5(-4) 2.031 14.282
1600 1600 16.527077 1.6(-5) 2.780 11.456314 1.2(-5) 3.128 7.818441 2.2(-5) 2.779 120.301

Regime 5
50 50 17.049874 12.000328 8.354932 0.135
100 100 17.041167 8.7(-3) 11.992018 8.3(-3) 8.343930 1.1(-2) 0.202
200 200 17.039023 2.1(-3) 2.021 11.989940 2.0(-3) 1.999 8.341200 2.7(-3) 2.011 0.428
400 400 17.038502 5.2(-4) 2.042 11.989434 5.0(-4) 2.037 8.340530 6.7(-4) 2.027 1.680
800 800 17.038376 1.2(-4) 2.047 11.989312 1.2(-4) 2.053 8.340368 1.6(-4) 2.041 14.282
1600 1600 17.038357 1.8(-5) 2.746 11.989297 1.4(-5) 3.039 8.340343 2.4(-5) 2.731 120.301

Example 4. In this example, we consider European put option under the four regimes with parameters⎛⎜⎜⎝
r1
r2
r3
r4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0.02
0.1

0.06
0.15

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
σ1
σ2
σ3
σ4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0.9
0.5
0.7
0.2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
λ1
λ2
λ3
λ4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
8
2
5
1

⎞⎟⎟⎠

Q =

⎛⎜⎜⎜⎝
−1 1

3
1
3

1
3

1
3 −1 1

3
1
3

1
3

1
3 −1 1

3
1
3

1
3

1
3 −1

⎞⎟⎟⎟⎠ .

In this case, the market can be in any of the four regimes with equal probability. All options have maturity time T = 1
and exercise price K = 100, and jump parameters for Kou density function are η1 = 3.0465, η2 = 3.0775, p = 0.3445 and for 
all regimes qi = 0, and these parameters are chosen from [22]. Numerical results are reported in Table 8 at S = 92, 100, 108
for second and forth regimes and European option with the truncated domain of the log price [xmin, xmax] = [−5, 5]. Com-
paring the CPU times for RBF-FD method given in Table 8 with two different algorithms presented in [22] given in Table 5 
reveals that RBF-FD method is more faster than the algorithms presented in [22] for solving PIDE arisen in pricing European 
option under regime switching model with jump diffusion process.

Maximum errors for second and fourth regimes and S j ∈ [K e−5, K e5] are plotted in Fig. (7). Since exact solution for 
European option is not available, then we used a very accurate solution obtained by the RBF-FD approximation with a very 
large number of grid points 3200 and time steps 3200 as V ref (0, S j, i).
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Fig. 6. Left: Error convergence in space for European put option using 1600 time discretization steps. Right: Error convergence in space for American put 
option using 1600 time discretization steps.

Table 8
Numerical results for European put option under regime switching of Kou model for Example 4.

Nx M S = 92 S = 100 S = 108 Time (s)

Price Error Ratio Price Error Ratio Price Error Ratio

Regime 2
50 50 32.8235 30.2674 28.0005 0.115
100 100 32.0192 8.0(-1) 29.5138 7.5(-1) 27.2922 7.0(-1) 0.184
200 200 31.8214 1.9(-1) 2.023 29.3285 1.8(-1) 2.024 27.1180 1.7(-1) 2.023 0.398
400 400 31.7722 4.9(-2) 2.007 29.2824 4.6(-2) 2.007 27.0747 4.3(-2) 2.008 1.495
800 800 31.7599 1.2(-2) 1.998 29.2708 1.1(-2) 1.995 27.0639 1.0(-2) 1.996 8.223
1600 1600 31.7568 3.0(-3) 2.004 29.2680 2.8(-3) 2.007 27.0611 2.7(-3) 2.005 67.025

Regime 4
50 50 24.9835 22.4728 20.4033 0.115
100 100 24.3921 5.9(-1) 21.9291 5.4(-1) 19.8956 5.0(-1) 0.184
200 200 24.2472 1.4(-1) 2.028 21.7959 1.3(-1) 2.029 19.7714 1.2(-1) 2.031 0.398
400 400 24.2111 3.6(-2) 2.005 21.7627 3.3(-2) 2.003 19.7404 3.1(-2) 2.002 1.495
800 800 24.2021 9.0(-3) 2.003 21.7544 8.3(-3) 1.996 19.7327 7.7(-3) 2.009 8.223
1600 1600 24.1998 2.2(-3) 2.003 21.7523 2.0(-3) 2.009 19.7308 1.9(-3) 1.996 67.025

7. Conclusion

In this work, we employed a radial basis function-generated finite differences scheme for European and American option 
pricing problems under regime switching jump diffusion model. The free boundary problem formulated as a PIDE was 
transformed into a LCP problem. A RBF-FD approximation was used for the spatial discretization, and then, three time 
levels are considered for time discretization which were combined with an operator splitting method. These result in a 
linear algebraic system with a sparse matrix. Also, we prove that the coefficient matrix of the linear system of equations 
is tridiagonal and diagonal dominant. To overcome the discontinuity issue near the strike price for derivatives of payoff 
function, average value of the payoff function over the surrounding grids rather than its value sampled at each grid point 
is considered and this makes the payoff function smooth at the strike price K , and by using this technique we make 
some improvements in the accuracy of RBF-FD method especially near the strike price. Convergence theorems confirms 
theoretically the accuracy of RBF-FD approximation combined with three time level of discretization, and numerical results 
reported in some tables and figures grantee this fact numerically.

Parameter set of the first example has been considered in [43] by finite element method and in [15] by multinomial lat-
tice approach. Comparing the results confirms that RBF-FD method combined with an stable three level time discretization 



R. Mollapourasl et al. / Applied Numerical Mathematics 134 (2018) 81–104 103
Fig. 7. Error convergence in space for European put option using 1600 time discretization steps.

for European option and operator splitting method for American option is accurate and faster that finite element method 
and multinomial lattice approach. To show the efficiency of RBF-FD method for different kind of parameter values, we 
considered large values for jump intensity and high volatility in Example 1 and numerical results show that the proposed 
numerical scheme gives good accuracy for high volatility and large jump intensity as well as small values and for both 
European and American put option prices. Presented results show that RBF-FD technique needs less time and space steps 
for reaching an specific level of accuracy than classical finite difference method [36].
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