
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Paper

Cite this article: Hulse D, Tumer K, Hoyle C,
Tumer I (2018). Modeling multidisciplinary
design with multiagent learning. Artificial
Intelligence for Engineering Design, Analysis
and Manufacturing 1–15. https://doi.org/
10.1017/S0890060418000161

Received: 17 October 2017
Revised: 31 May 2018
Accepted: 12 June 2018

Key words:
Agent-based approach; collaboration;
collaborative engineering; complex systems;
multi-agent systems

Author for correspondence:
Daniel Hulse, E-mail: hulsed@oregonstate.edu

© Cambridge University Press 2018

Modeling multidisciplinary design with
multiagent learning

Daniel Hulse, Kagan Tumer, Christopher Hoyle and Irem Tumer

School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, 2000 SW Monroe Ave,
204 Rogers Hall, Corvallis, OR 97331, USA

Abstract

Complex engineered systems design is a collaborative activity. To design a system, experts
from the relevant disciplines must work together to create the best overall system from
their individual components. This situation is analogous to a multiagent system in which
agents solve individual parts of a larger problem in a coordinated way. Current multiagent
models of design teams, however, do not capture this distributed aspect of design teams –
instead either representing designers as agents which control all variables, measuring organi-
zational outcomes instead of design outcomes, or representing different aspects of distributed
design, such as negotiation. This paper presents a new model which captures the distributed
nature of complex systems design by decomposing the ability to control design variables to
individual computational designers acting on a problem with shared constraints. These
designers are represented as a multiagent learning system which is shown to perform similarly
to a centralized optimization algorithm on the same domain. When used as a model, this mul-
tiagent system is shown to perform better when the level of designer exploration is not
decayed but is instead controlled based on the increase of design knowledge, suggesting
that designers in multidisciplinary teams should not simply reduce the scope of design
exploration over time, but should adapt based on changes in their collective knowledge of
the design space. This multiagent system is further shown to produce better-performing
designs when computational designers design collaboratively as opposed to independently,
confirming the importance of collaboration in complex systems design.

Introduction

The design of complex engineered systems provides a significant challenge to engineering
organizations. When designing a complex engineered system with a number of different anal-
yses and concerns, engineers must take into account the many interactions between subsys-
tems in order to optimize the performance of the design. Often this involves coordinating
specialists from the relevant disciplines. In the design of a spacecraft, for example, experts
in propulsion, computer science, power systems, and many other areas must work together
to create a working design (Kroo et al., 1994). As a result, coordinating these design processes
effectively can provide significant increases to the performance of the design organization,
increasing the throughput of designs and lowering costs (Smith, 1998).

Several frameworks have been used to approach complex engineered systems design, such
as integrated concurrent engineering (Smith, 1998; Mark, 2002), multidisciplinary design opti-
mization (Martins and Lambe, 2013), and systems engineering (Price et al., 2006). In inte-
grated concurrent engineering, a small team of disciplinary experts, guided by a facilitator,
design a complex engineered system over the course of a few 3-hour meetings (Smith, 1998;
Mark, 2002). In multidisciplinary design optimization, an optimization is broken up between
disciplines or components to co-optimize different parts of a complex system autonomously
(Martins and Lambe, 2013). In the broader field of systems engineering, different disciplinary
areas encompassing all parts or concerns with respect to a design must be brought together to
design a functioning system (Price et al., 2006). These approaches rely on delegating the design
of different subsystems, components, or disciplinary areas to experts or disciplinary groups,
which provides significant challenges to coordinating design activities, as no individual expert
is able to comprehensively know how a design change will affect the design as a whole.

The designers (or disciplines, in the case of multidisciplinary design optimization) in each
of these organizations are analogous to the agents in a multiagent system in that they act
autonomously, but must work together to achieve a desirable design outcome. Additionally,
complex engineered systems and the complex systems design process may be represented as
networks (Solé et al., 2002; Braha et al., 2006), a typical multiagent systems domain.
Multiagent systems have also had success designing policies for other complex systems
domains, such as power grids (Dimeas and Hatziargyriou, 2005; Pipattanasomporn et al.,
2009), air traffic control (Agogino and Tumer, 2012), and multi-robot coordination

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060418000161
https://doi.org/10.1017/S0890060418000161
mailto:hulsed@oregonstate.edu

(Yliniemi et al., 2014). Consequentially, a multiagent approach
has been used as a framework both for designing complex engi-
neered systems (Manion et al., 2015; Hulse et al., 2017; Soria
et al., 2017) and for modelling design organizations (Jin and
Levitt, 1993; Jin and Levitt, 1996).

These multiagent models have been used to study negotiation
in design settings (Klein et al., 2003; Jin and Lu, 2004), mental-
model formation in teams (Dionne et al., 2010; Sayama et al.,
2011), social learning in teams (Singh et al., 2009), the effect of
design problems on optimal team structure (McComb et al.,
2017), and the effect of designer search behaviors (McComb
et al., 2015a; 2015b). For the purposes of this paper, these mod-
els of teams may be placed into two categories: those which
represent the full problem to agents and those in which agents
act on partial solutions. Those in which agents act on full solu-
tions include the CISAT framework (McComb et al., 2015a;
2015b), the mental model framework presented in Dionne
et al. (2010), commonly used optimization methods such as
ant (Dorigo et al., 2006) and bee colony optimization
(Karaboga and Basturk, 2007), and protocol-based multiagent
systems (Landry and Cagan, 2011). Since these multiagent
methods and models of design teams assume that each designer
can propose any change in any part of the system, they likely do
not represent the coordination challenges present in decom-
posed, multidisciplinary organizations. As a result, while some
studies using these frameworks do produce results showing col-
laboration improves the design process (Landry and Cagan,
2011) [which would be expected from engineering research
showing that removing barriers to collaboration produces a
more effective design process (Smith, 1998; Mark, 2002)],
others do not – instead finding that the best team structures
maximize autonomy (McComb et al., 2017). It is likely that
this is because these models do not account for the ability of
designers to exclusively act on a local area of the problem and
not the entire design.

Multiagent representations of design in which agents act on
partial solutions show more promise towards modeling the effect
of collaboration across disciplines on design outcomes, however
current work using these models has not approached this specific
problem. While early work studied the learning of partial solu-
tions (Moss et al., 2004), this model partitioned the roles of agents
such that some agents generate solution fragments while others
integrate those fragments – essentially coordinating the solution
process – making it less representative of coordination problems
in a decomposed design process. The model used in Hanna and
Cagan (2009) did assign partial solutions to agents, but studied
the strategies that emerge in teams as a result of applying an evolu-
tionary process on agents, rather than the effect of collaboration.
Additionally, the models presented to study social learning in
teams focus on studying the formation of transactional memory
and other organizationally desirable behaviors, rather than design
outcomes (Singh et al., 2009; 2013a, 2013b). Finally, while models
studying negotiating represent the problems inherent in collabora-
tive design well, with agents acting on different subsystems, these
models capture a different aspect of collaborative design than is
approached in this paper, since in these papers agents are rewarded
based on their own part of the design which may or may not be
aligned with the overall system objective (Klein et al., 2003; Jin
and Lu, 2004). In this paper, however, the coordination challenge
to model comes not from differing designer objectives, but from
the nature of individual designers acting on different parts of the
design problem.

Contributions

This work introduces a new multiagent model of design teams
specifically targeting complex engineered systems design. This
representation allows modeling of independence and collabora-
tion between designers that take into account the core feature of
these processes – the decomposition of the ability to design across
the topology of the problem. In the multiagent system introduced
in this work, this distribution of design agency is represented by
having computational designers control different variables of the
model which they iteratively propose to optimize the design.
Studying behaviors of designers in this model is then used to pro-
vide insights into the complex systems design process. The main
challenges in developing this model include:

• devising a multiagent learning approach which approximates
the collaborative design process by acting as an effective optimi-
zation process in which agents act on different variables of the
problem

• extending this approach to be compatible with constraints and
mixed integer and continuous variables – common features of
engineering design problems

• adapting and applying this method to an optimization problem
where shared constraints between subsystems must be coordinated

This paper is presented in the following way: ‘Background’
describes the multiagent principles used in this work, and the
previous multiagent approaches to design. ‘Application: quadrotor
design’ describes the quadrotor design optimization problem
used to model a typical multidisciplinary design problem.
‘Multiagent learning for multidisciplinary design’ describes the
mechanics of the multiagent optimization method developed in
this work. The results section shows and reflects on the effective-
ness of using such a method compared with existing optimization
approaches and shows the effects of two behaviors – learning and
collaboration – on design. Finally, the conclusions section reflects
on the insight gained by developing this method and outlines
future work in both the method presented in this work.

Background

Developing a multiagent learning-based optimization method re-
quires knowledge of the principles of multiagent learning, optimi-
zation, and the problem at hand. This section provides an outline
of multiagent systems, multiagent principles which are used in the
optimization method, and the previous multiagent approaches in
engineering design and optimization.

Multiagent learning

Multiagent systems are systems in which multiple agents autono-
mously interact with each other and the environment (Stone and
Veloso, 2000; Weiss, 2013). The study of multiagent systems in
general covers a broad range of topics such as communication
protocols, coordination, and distributed cognition (Weiss,
2013). While a number of architectures exist for designing the
cognition of the agents, such as belief-desire-intention, logic-
based architectures, and layered architectures, this work relies
on the multiagent learning architecture, in which agents use feed-
back from the environment in terms of rewards to determine
which actions to take in a given state. Each of these processes is
outlined in the following sections.

2 Daniel Hulse et al.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Reinforcement learning
Reinforcement learning is a method of predicting or determining
the value of actions in an uncertain or stochastic environment
based on the previous rewards returned for those actions. It is popu-
larly known for its use in the multi-armed bandit problem (Sutton
and Barto, 1998), in which a gambler hopes to maximize his or her
returns on a series of slotmachines. Reinforcement learning has also
been successfully applied to other problems, such as air traffic con-
trol (Agogino and Tumer, 2012) and stock price prediction (Lee,
2001) in which it is useful to determine returns over time. The sim-
plest case of reinforcement learning is action-value learning, in
which an agent keeps a table of values for its actions, and updates
the table at each time step according to:

V(a) � V(a) + a(r − V(a))

where V(a) is the learned value of the action, r is the reward given
for the action taken, and α is the learning rate, which controls the
learning step size. More sophisticated methods of reinforcement
learning, such as Q-learning (Watkins and Dayan, 1992), encode
state information in order to allow the agent to learn the valuesof its
actions in different situations, or states, and comparisons with predic-
tions of future rewards. The Q-learning table assignment is:

Q(st , at) � Q(st , at) + a× (rt + g×max(Q(st+1, at+1))
− Q(st , at))

whereQ(st, at) is the value given to the action in the current state,α is a
learning rate, rt is the reward at the current state, γ is the preference for
future rewards, andmax(Q(st+1, at+1)) is the best value of the next state
reached by taking the current action in the current state.

Action selection
Action selection refers to the way agents take actions based on
their learned value in a particular situation. Two common
approaches are softmax and epsilon-greedy (Weiss, 2013) action
selection. For epsilon-greedy action selection, the agent chooses
its most highly valued action with probability 1− ε and a random
action with the probability ε. This random action is taken to keep
the values associated with each action up-to-date with the current
conditions of the environment. In softmax action selection, the
agent chooses actions with probabilities based on their relative
values. The probability p that an agent takes an action a is
based on a temperature parameter τ and value V(a), as shown
in the following equation:

p(a) = eV(a)/t
∑n

i=1 e
V(i)/t

where n is the number of actions available to the agent. This tem-
perature parameter τ, which is similar to the temperature
parameter used in simulated annealing, acts as a tolerance for sub-
optimal values (Richardt et al., 1998). For τ→ 0 , the agent picks
actions greedily, exclusively choosing high-valued actions; for
τ→∞, the actions become equally probable. Softmax action
selection is not to be confused with the softmax normalization
(also used in this paper), which is used in neural networks to
minimize the influence of outliers in a data-set (Priddy and
Keller, 2005).

Reward structure
Reward structure refers to how agents are incentivized based on
the results of their actions (Weiss, 2013). When using a local
reward, agents are incentivized based on the directly observable
results of their actions. When using a global reward, agents are
incentivized based on the total result of the actions of all of the
agents. When using a difference reward, agents are rewarded
based on their individual contribution to global reward. This is
calculated by finding the difference between the current global
reward, and a hypothetical world in which the agent took a differ-
ent “counterfactual” action (Agogino and Tumer, 2012; Yliniemi
et al., 2014). These rewards have attributes that affect the perfor-
mance of the system as a whole – local rewards are typically most
learnable, global rewards are most aligned with the global behav-
ior, and difference rewards capture the good attributes of both
(Agogino and Tumer, 2008).

Multiagent approaches in engineering design

Multiagent systems have been applied to engineering design prob-
lems in a variety of forms, as optimization methods, real and pro-
posed frameworks for design, computational synthesis systems,
models of design organizations, and in previous research. These
applications are summarized below.

Multiagent optimization methods
A variety of optimization methods have been developed in the
past using a multiagent paradigm, including particle swarm opti-
mization, ant colony optimization, and bee colony optimization.
In particle swarm optimization, candidate solutions travel through
the design space based on information about their own best
design and the best design found by all of the agents (Kennedy,
2011). In ant colony optimization, ants leave “pheromones” com-
municating the fitness of each solution found and stochastically
follow previous trails based on the strength of pheromone
(Dorigo et al., 2006). In bee colony optimization, bees communi-
cate the fitness of their route to the next population of bees, which
stochastically follow new routes based on the communicated fit-
ness (Karaboga and Basturk, 2007). In each of these optimization
methods, agents control candidate solutions rather than design
parameters. As a result, these optimization methods are not as
analogous to the complex systems design problem as the method
presented in this work, making them unfit (as with the models
referenced in the introduction) to model decomposition in com-
plex system design, where the agency is instead distributed by
components and disciplines.

Multiagent design systems
A variety of multiagent approaches to design have been proposed
and applied to perform a variety of design roles. Some multiagent
design systems have been proposed to manage the design process,
including information flow and design conflicts to enable collab-
oration or support design activities (Lander, 1997). Multiagent
design systems have also been applied as computational design
synthesis, with agents given different operations to perform on
the design, such instantiation, modification, and management
(Campbell et al., 1999; Chen et al., 2014). Finally, multiagent sys-
tems have been used to model the engineering design process (Jin
and Levitt, 1993; Jin and Levitt, 1996; Reza Danesh and Jin, 2001)
and support engineering design (Jin and Lu, 1998; Jin and Lu,
2004). While these systems typically use rule-based agent archi-
tectures and not multiagent learning, learning has been proposed

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

as a possible way for agents to discover how their internal condi-
tions affect external conditions (Grecu and Brown, 2000).

Previous work
Previous work by the authors using multiagent systems to design
complex engineered systems involved applying a coevolutionary
algorithm to racecar design (Soria et al., 2017) and applying
multiagent learning to the design of a self-replicating robotic
manufacturing factory (Manion et al., 2015). For the racecar
application, agents designed sets of component solutions, which
were combined into designs. The best performing racecar was
selected, and the contribution of each agent was judged by com-
paring those components with counterfactual components – an
adaptation of the difference reward. The team of agents was
shown to generate designs which perform better with respect to
a set of objectives as designs generated by a real design team.
For the self-replicating factory application, each agent was a
robot, with roles defining which agents could perform which
operations, such as mining regolith or installing solar cells. It
was shown that using Q-learning to find the best policies for
the agents created a factory which remained productive over the
long term, unlike preprogrammed behavior, which was unable
to sustain productivity.

While these approaches demonstrated the general applicability
of multiagent systems to engineering design, they do not address
the problems approached in this paper with respect to problem
representation. In the self-replicating factory application, the prob-
lem was more focused on designing the policies of the robots that
made up the factory than the factory itself. This problem was more
comparable to problems commonly encountered inmultiagent sys-
tems than engineering design since the design solution was a con-
trol policy, rather than a set of optimal design parameters. In the
racecar application, the problem at hand was very much an engi-
neering design problem, but the brunt of the optimization problem
was not handled by the agents themselves, but the cooperative coe-
volution coordination algorithm. That is, agents in this approach
merely represented individual design solutions for each compo-
nent which were then externally optimized, not the designers of
each component which work together to produce an optimal
design. The research presented in this paper, on the other hand,
is interested in using the agents themselves as the optimization
mechanism, rather than an external algorithm, since that is more
analogous to complex engineered systems design teams, where
the “agents,” or designers, design or optimize based on their own
actions, rather than an external algorithm acting on them.

Finally, work by the authors has been shown already towards
developing the method presented in this paper using a distributed
agent-based optimization method to optimize a quadrotor. This
work used an agent-based approach as an optimization method,
resulting in the learning assignment used in this work, but with-
out the theoretical justification shown in the section ‘Learning
design merit in distributed design’. Additionally, it used an exter-
nal entity – annealing – to control exploration and exploitation
(Hulse et al., 2017), which is tested against other methods of con-
trol in the section ‘Meta-agents for multiagent design’. This paper
further expands on that paper by extending the case study to a
more comprehensive formulation which takes into account
more components and operational characteristics, extending the
multiagent-based optimization method to act on mixed integer-
continuous domains and more explicitly take constraints into
account, and using the method as a model to study design teams.

Application: quadrotor design

The method presented in this paper is used to model design
teams in conjunction with a quadrotor design problem. This
problem was chosen because it embodies the core attributes of a
complex engineered systems design problem: constraints which
represent the interactions between subsystems and the various
requirements which must be met by those interactions.
Additionally, as a constrained integer-continuous problem, it
provides a significant challenge for our method, as some
variables must be acted on differently – while some variables
may accept small changes which are not very coupled with
others (such as the twist or taper of the propeller), others are
highly coupled with each other, and require an optimal configura-
tion (such as the number of batteries to use in series or parallel).
It should be stated that problems with inter-disciplinary
constraints create considerable challenge towards a decomposed
learning-based optimization (as is discussed in the section
‘Learning design merit in distributed design’), since violations
of those constraints (for example, caused by an agent choosing
a random variable value) necessarily yield extremely bad design
outcomes and objective function values. Nevertheless, they are
required to properly represent the type of multidisciplinary design
that this paper studies, as designers in multidisciplinary design
teams must necessarily ensure that their subsystem designs are
compatible.

The basic synopsis of the design problem is as follows [a full
description is shown in (Hulse, 2017)]. The quadrotor is commis-
sioned to perform ten missions in which it must climb to a height,
fly towards, and hover around a number of points of interest, and
then descend to its point of origin, visiting the maximum number
of points-of-interest possible with its available energy. The objective
of the design is to maximize profit based on the revenue of these
missions (generated by viewing points of interest) and the cost of
the quadrotor. This single-objective approach to an otherwise multi-
objective problem (e.g. with mass, cost, and other performances as
objectives) is inspired by decision-based design, in which a multi-
attribute design problem is transformed into a single-attribute
design problem of maximizing profit by using a demand model
(Chen and Wassenaar, 2003) – instead of weighting the various
objectives, the importance of each objective is modeled based on
the value generated. The variables and constraints of the problem
are shown in Tables 1 and 2, respectively. Since the mission has a
number of operational characteristics (hovering, climbing, and
steady flight), these constraints are considered for each characteris-
tic. Note that for our purposes the model is considered a black box,
with all equality constraints (as well as an external model) consid-
ered a part of the objective rather than a constraint given to the opti-
mizer. This multidiscipline-feasible optimization framework was
used because the coupling variables of each subsystem have a higher
dimensionality than the subsystem design variables [making it a
preferred framework (Allison et al., 2009)], and because this research
is studying the coordination of designers – not the model structure.
Additionally, this structuremakes the one-variable-per-agent multia-
gent system a more realistic model of design, since the impact of
each design variable is large and in several cases (such as the
motor or battery cell) directly sets several other parameters of the
design. The full description of these models is shown in (Hulse,
2017), however, for the purposes of this paper it merely provides
a multidisciplinary mixed-integer problem domain that encom-
passes challenges that multidisciplinary teams encounter: inter-
disciplinary requirements that cause the optimal selection of a

4 Daniel Hulse et al.

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

variable of one discipline to be coupled with the variable values in
other disciplines.

Multiagent learning for multidisciplinary design

This section presents a multiagent learning-based optimization
method which this paper uses to study decomposed, multidisci-
plinary design. The core representation of learning from the envi-
ronment when a problem is decomposed between individual
designers is presented in the section ‘Learning design merit in
distributed design’, along with a game-theoretic justification of
the custom learning heuristic presented in this paper. Then the
stochastic optimization method based on this representation is
presented in the section ‘Multiagent learning-based design opti-
mization method’, along with a summary of important parame-
ters in the section ‘Implementation’.

Learning design merit in distributed design

This method presented in this work is based on a custom learning
heuristic specifically designed to represent optimization on a
problem which has been decomposed across disciplinary lines

to different designers. While multiagent learning systems have
been shown to optimize the time-based actions of agents on
distributed problem domains, their application to a general design
optimization context is hindered because the merit of actions in a
design context is highly coupled with the other actions taken. In
distributed design, interdisciplinary constraints mean the design
of one subsystem and another subsystem have a significant impact
on the overall performance of the system.

Table 1. Design choices for each component for the quadrotor design
application

Component Design choice Symbol
Parameter range/
number of options

Motor Motor xm 9

Battery Cell xbc 6

Cells in series xbs 7

Cells in
parallel

xbp 4

Propeller Airfoil xpai 7

Diameter xpd 0.02–0.2 m

Angle xpan 0°–45°

Twist xptw (unitless)

Chord xpc 0.005–0.02 m

Taper xpta 0–1 (unitless)

Rod Material xrm 4

Thickness xrt 0.0009–0.06 m

Width xrw 0.0065–0.0380 m

Height xrh 0.0065–0.0380 m

ESC ESC xe 6

Landing
Skid

Material xsm 4

Leg angle xsθ 20°–60°

Diameter xsd 0.0065–0.0380 m

Thickness xpst 0.0009–0.006 meters

Mission Climb
velocity

xovc 0.1–30 m/sec

Steady flight
angle

xoθ 0.1°–45°

Shown are the components each variable is associated with, the design choice that variable
represents, the symbol used by that variable, and the parameter range (for continuous
variables) or number of options available (for discrete variables) for that variable.

Table 2. Design constraints for quadrotor design application

Component Constraint Explanation

System c1 = failure = 0 Performance calculations
must not fail–model must
not return an error.

c2 = 1− Thov + tol
Treq

≤ 0
System must produce
enough thrust (within a
small tolerance).

Motor
c3 = Ioper

Immax
− 1 ≤ 0

Current drawn must not
exceed motor max current
rating.

c4 = Poper
Pmmax

− 1 ≤ 0
Power drawn must not
exceed motor max power
rating.

Battery
c5 = Ioper

Ibmax
− 1 ≤ 0

Current drawn must not
exceed the battery current
rating.

c6 = Poper
Pbmax

− 1 ≤ 0
Power drawn must not
exceed motor max power
rating.

Propeller c7 = sp

spmax
− 1 ≤ 0 Must not exceed maximum

stress

Rod
c8 = 1− fsysnx

3× ff
≤ 0

Must have a natural
frequency in the x over
three times the motor
frequency.

c9 = 1− fsysny
3× ff

≤ 0
Must have a natural
frequency in the y over
three times the motor
frequency.

c10 = δx− 0.01Lr≤ 0
Must not deflect more
than one percent of its
length.

c11 = sx

sx, max
− 1 ≤ 0

Must not exceed maximum
bending stress in the x
direction.

c12 = sy

sy, max
− 1 ≤ 0

Must not exceed maximum
bending stress in the x
direction.

ESC
c13 = 1− Vb

Vemin
≤ 0

Voltage range must
support provided voltage
of the battery.

c14 = Vb
Vemax

− 1 ≤ 0
Voltage range must
support provided voltage
of the battery.

c15 = Ioper
Iemax

− 1 ≤ 0 Current must not exceed
ESC maximum current.

Landing
skid c16 = Fs

Fsmax
− 1 ≤ 0

Must not transmit a set
amount of force in a minor
fall.

Shown are the components the constraints belong to, the equation of the constraint in
negative-null form, and an explanation of the constraint.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

To understand how this property of distributed design hinders
multiagent learning, consider the simple design problem shown in
Figure 1 using the notation of game theory with a single reward
for both agents. In this problem, each designer must pick a design
(A or B) for their subsystem, which, when put together with the
other designer’s subsystem, has the best performance. While
design A–A and B–B are compatible, A–B and B–A are not,
such that they fundamentally have no merit as designs.
However, while Design B–B has better performance than design
A–A, design A–B is less infeasible than design B–A. If the
designers traverse the entire space of designs A–A, A–B, B–B,
and B–A in four time-steps, the learned value of each design
for each designer using the standard reinforcement learning heur-
istic V(a)← V(a) + α(r− V(a)) with α = 0.1 is shown in the mid-
dle of Figure 1. Based on their learned values, the designers would
conclude that design A-B was the best, despite being an infeasible
(and third-worst) design. This is because this learning heuristic
captures the “average” value of an action, which is overly skewed
by infeasible reward values.

In the learning heuristic presented in this paper, this problem is
solved by having designers simply learn the best value for their
action entered so far. This approach can be thought of as a simpli-
fication and adaptation of leniency in multiagent learning. With
leniency, agents ignore poor individual rewards (which may be
due to poorly-matched actions with their team-mates) in order to
focus on higher rewards from good joint actions, which helps agents
proceed from poor Nash equilibria to optimal Nash equilibria
(Panait, 2008). If the designers traverse the entire design space
using this heuristic,V(a)←max(V(a), r), their values for each vari-
able are shown on the right side of Figure 1. As can be seen, while
the learned values are inaccurate for the infeasible designs, they are
accurate for the feasible designs. Most importantly, the heuristic
allows the designers to identify the optimal design, as it has the
highest learned values for both designers. It should also be noted
that this heuristic does not change values (as would reinforcement
learning) depending on how the designers explore the space (e.g.
designer 2 choosing design A more than B giving it a lower value
over time), but gives a constant value based on the actual perfor-
mance given so far by the problem. This shows how this introduced
heuristic better represents the collaborative design process com-
pared with reinforcement learning.

Multiagent learning-based design optimization method

Designers in this framework are best thought of as meta-agents
controlling the exploration of sub-agents which in turn pick
which variable values to submit to the model at each iteration
of the algorithm, as shown in Figure 2. Each computational
designer is delegated the design of one variable value in the

model and learns two things based on feedback with the environ-
ment: which variable values are good (through the sub-agent) and
whether to explore new variable values or exploit the current best
values (through the meta-agent). The sub-agents use the heuristic
introduced in the section ‘Learning design merit in distributed
design’, while the meta-agents use stateless reinforcement learning
to control the degree of exploration or exploitation of those
sub-agents in picking variable values since the required amount
of exploration is likely to change throughout the design process.
The general steps of the algorithm shown below are illustrated
in Figure 3.

Step 1. Meta-Agent Action Selection: Using an epsilon-greedy
action selection process, the meta-agents choose the tempera-
ture (level of exploration) to use in picking the value of the
design variable.

Step 2. Sub-Agent Design Parameter Selection: Based on this tem-
perature value and a table listing the merit of each parameter
value, the sub-agents choose the parameter values of the
design.

Step 3. Sub-Agent Merit Update: The model gives the performance
of the resulting design in terms of the objective and overall con-
straint violation. Per the learning technique introduced in the
section ‘Learning design merit in distributed design’, if this
performance is better than the performance previously in the
table of any agent, the value in that table is updated.

Step 4. Meta-Agent Rewards and Learning: The increase in value
in each table is given to the Meta-agent as a reward. Depending
on the reward structure, these rewards are added together
(global reward) or given individually (local reward) to each
agent. The meta-agents learn this reward for their chosen tem-
perature using reinforcement learning.

Steps 1–4 are repeated until a stopping condition is reached. Each
step is described in depth in the following sections. Note that the
notation for actions and rewards differs from the general notation,
with actions and rewards for the sub-agent i stated as xi, and a
combination of the objective and constraint values f and c, respec-
tively, while actions and rewards generated by meta-agent i is
denoted as τi, and rfi , and rci , respectively.

Meta-agent action selection
Meta-agents are mechanisms which control the exploration and
exploitation level in order to act based on current knowledge or
seek new knowledge of the merit of the design variable. They
are used to coordinate the sub-agents to find the optimal design
parameters quicker by causing sub-agents to explore untried com-
binations of variable values. This is done by having each
meta-agent i choose the temperature τi based on its value table

Fig. 1. Learned values of reinforcement learning
and this paper’s introduced heuristic on a simple
example problem meant to capture the coupling
between different designer’s choices. Each agent
has two designs which may be picked – A and
B. Traversing the full space of designs, reinforce-
ment learning designers do not encode the optimal
design, while designers using the introduced
heuristic

Fi
g.

1
-
B
/W

on
lin

e

do.

6 Daniel Hulse et al.

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

for a given set of temperatures. The action selection process for
meta-agents is epsilon-greedy, as described in the section
‘Action selection’, choosing the best temperature with a certain
probability and a random temperature with a certain probability.

Sub-agent design parameter selection
Sub-agents realize the level of exploration or exploitation by using
the selected temperature to pick the variable value based on the
performance of past designs. This performance is encoded in a

Fi
g.

2
-
B
/W

on
lin

e

Fig. 2. High-level structure of the multiagent optimization
method and design model. Designers consist of meta-agents
control sub-agents which pick design parameter and receive
rewards based on design performance.

Fi
g.

3
-
B
/W

on
lin

e

Fig. 3. Overview of method described in the section ‘Multiagent learning-based design optimization method’ shown for a single agent in the multiagent system. The
meta-agent chooses a temperature, which the sub-agent uses to compute probabilities of design parameters based on their learned value. After modeling gen-
erates objective and constraint values, they return to the sub-agent, which updates the merit according to a heuristic. The new learned values by each of the sub-
agents then returns to the meta-agent as a reward to be learned.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

table which stores the best previous value of each parameter value
in terms of objectives fs(xi) and constraint violation cs(xi). By stor-
ing the best previous value of each parameter value, the
sub-agents collectively store the best design point found so far,
as well as the relative known merit of each design parameter,
unbiased by incompatible previous designs. To generate a single
metric of merit for the action selection process, these quantities
are combined using:

M(xi) = fs(xi) − s× cs(xi)

where M(xi) is the combined metric of merit, xi is the variable
value i, fs(xi) is the stored objective value, cs(xi) is the stored con-
straint violation value, and σ is a scaling factor which is similar to
penalties used in common constrained optimization methods
(Fiacco and McCormick, 1966).

This merit is then normalized using a softmax normalization,
putting the variable values with the worst possible merit at 0 and
the variable values with the best possible merit at 1. This normal-
ization is used to reduce the influence of outlying stored values on
the action selection process, and allows the action selection pro-
cess to work regardless of the scale it acts on. This normalization
follows the equation:

M(xi)n =
1

1+ e−(M(xi)−mx)/sx

where M(xi)n is the normalized merit, M(xi) is the non-
normalized merit, and μx and σx are the mean and standard
deviation of the merit of the n variable values [x1…xi…xn] avail-
able to the agent, respectively.

The variable value is then chosen based on the softmax action
selection process outlined in the section ‘Action selection’, with
the probability of choosing a variable value determined by the
equation:

p(xi) = eM(xi)n/t

∑n
i=1 e

M(xi)n/t

where p(xi) is the probability of choosing a variable value xi,
M(xi)n is the normalized merit of variable value i, and τ is the
temperature. In this framework, this temperature is chosen by
the meta-agent as outlined in the section ‘Meta-agent action
selection’.

Sub-Agent merit update: design performance
Sub-agents learn the merit of each variable value through interac-
tion with the model using an adaptation of the learning heuristic
introduced in the section ‘Learning design merit in distributed
design’. After each of the variable values has been chosen by
the sub-agents, the design is modeled with each of those variable
values, generating an objective function value f and constraint vio-
lation value c. This design information is captured by updating
the stored value of each variable value fs(xi) or cs(xi) if the
found objective and/or constraint violation value is better than
the currently stored value, per the learning heuristic introduced
in the section ‘Learning design merit in distributed design’, but
with further adaptations for determining how values compare
with each other given both objective and constraint values. In
addition, the reward for the meta-agents is calculated based on
this learning process as the difference between the old value
and the updated value.

The control logic for this is shown in Algorithm 1. If the found
constraint value is better than the stored constraint value, the
objective and constraint value is updated, and a reward is calcu-
lated for the meta-agent based on the decrease of the constraint
value and the objective value if the objective value decreased. If
the found constraint value is the same as the stored constraint
value, but the objective function is better than the stored objective
value, the stored objective value is updated and a reward is calcu-
lated. Otherwise, the currently stored merit is kept and a reward of
zero is returned for that agent’s variable. The result of this adap-
tation is that feasibility is always considered the primary consid-
eration in saving a design value, followed by performance – no
high performance (but ultimately meaningless) design is consid-
ered better than a feasible design for the purposes of learning.

Adaptation to continuous variables
This learning process is further adapted to continuous variables
by separating continuous space into zones [z1…zi…zn] repre-
sented by the best possible values [fzr1…fzri…fzrn] and [czr1…
czri…czrn] at points [xzr1…xzri…xzrn] inside the respective zones.
A piecewise cubic hermite polynomial interpolation is then
made between each point, creating objective and constraint func-
tions fs and cs for the variable at each value of the variable anal-
ogous to the value table used for the discrete variables. The
vectors returned by this interpolation x = [x1…xn], cs = [cx1…
cxn], and fs = [fx1…fxn] are then used in the same way as discrete
merit tables to pick a variable value. Learning for continuous vari-
ables then follows the same process as with discrete variables,

Al
go

ri
th
m
1
-
B
/W

on
lin

e

Algorithm 1. Control logic for sub-agent merit
update and subsequent meta-agent rewards.

8 Daniel Hulse et al.

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

except instead of having a better value than the stored value of the
current variable value, the found value must be better than the
point which represents of the zone. This is, fzri and czri are used
in Algorithm 1 instead of fs and cs. This process is illustrated in
Figure 4.

Meta-Agent rewards and learning: improvement over expected
values
The rewards for the meta-agents are calculated as the increase in
knowledge gained by exploring or exploiting that variable. This
reward is calculated from the increases in objective and constraint
value rfi and rci for each agent/variable i which are calculated as
shown in Algorithm 1. The reward ri generated by each agent is then:

ri = r fi + s× rci

where σ is a scaling factor which takes the place of a penalty factor.
Two reward structures can be easily constructed based on these

rewards: a local reward structure in which meta-agents are
rewarded solely on the information gained by their sub-agents,
and a global reward in which the meta-agents are rewarded by
the sum of the rewards of the sub-agents. In this case it is expected
that the global reward should be used, since there are no barriers to
calculation and because it better aligns the meta-agents’ actions
with the desired purpose of the overall behavior, and achieves bet-
ter results on common multiagent systems domains (Agogino and
Tumer, 2008), however, both will be tested in the section
‘Meta-agents for multiagent design’. The local reward Li and global
reward Gi are calculated for each meta-agent i as:

Li = ri

Gi =
∑n

i=1

ri

where ri is the reward based on new knowledge generated by each
corresponding sub-agent i.

Implementation

When using this method, a few adjustment parameters should be
considered. These parameters, as well as a short explanation and

the values used in the following tests, are shown in Table 3.
Stopping conditions must also be considered, which may be
(like other optimization methods) based on the number of func-
tion evaluations without improvement, the total number of eva-
luations, or reaching a desired objective function value. This
optimization method would also allow for unique stopping condi-
tions based on learning, such as the number of evaluations with-
out learning or the decrease in the magnitude of rewards over
time.

When applying the method to a given problem, the method
must also be given a few things in order to initialize and define
the agents. For each integer variable, the method must be given
the number of available values the variable can take. For each con-
tinuous variable, the method must be given the upper and lower
bounds of the variable, the number of zones to split that variable
into, and the minimum tolerance for the variable at which there is
no discernible difference. Additionally, the method must be
adapted to the constrained problem through a single metric of
feasibility, which in these tests was chosen to be:

c =
∑n

j=1

c2j

where c is the metric of feasibility, m is the number of constraints,
and cj is an individual constraint. These constraints have a large
impact on the problem, and in practice, it was found that the pen-
alty factor works best when it is increased over time according to:

s = smax × (1− e−k×e)

where e is the current evaluation, k is a decay constant, and σmax is
the maximum value of the penalty parameter. This method of
combining constraints with the objective used in this paper is sim-
ilar to what is done in most penalty methods, such as SUMT, in
which the penalty is increased over time when the optimization
approaches an apparent minimum (Fiacco and McCormick, 1966).

Results

The following tests demonstrate the effectiveness of the multia-
gent approach presented and then use the approach to study
the complex systems design process. This is done in the following
sections by:

Fi
g.

4
-
B
/W

on
lin

e

Fig. 4. Visualization of the continuous merit update process described in the section
‘Adaptation to continuous variables’. A spline is fit through the best points found in
each zone of the continuous space.

Table 3. Method adjustment parameters, including the symbol they are referred
to in the text, an explanation of the symbol, and the value taken

ε
Probability the meta-agent

chooses randomly 0.05

[τ1, τ2…τn] The temperatures for the
meta-agents to choose

[0.5,0.1,0.05,0.01,0.005,0]

n Number of zones for each
continuous parameter

5

σmax Max constraint scale factor 35,000

k Penalty decay factor 0.0005

ctol Constraint tolerance 0.2

fsinit Initial stored objective values 10,000

csinit Initial stored constraint values 10,000

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

1. comparing the multiagent method with centralized algo-
rithms in the section ‘Viability of the multiagent design
method’, demonstrating the effectiveness and validity of the
representation

2. showing the effect of meta-agents on the computational
designers in the section ‘Meta-agents for multiagent design’,
showing how the multidisciplinary design process is affected
by designers’ preferences for exploration over time, and

3. showing how synchronization and independence of computa-
tional designers affects multiagent design in the section
‘Collaboration and decomposition in multiagent design’ to
study collaboration in multidisciplinary design.

The results are discussed in their respective sections and summa-
rized in the section ‘Summary’.

Viability of the multiagent design method

The following tests compare the effectiveness of the decentralized
multiagent optimization method with existing centralized optimi-
zationmethods to show the effectiveness of themethod for complex
systems design in order to demonstrate the validity of the represen-
tation. This is important because the validity of the problem repre-
sentation forms the basis for the validity of the results presented in
the sections ‘Meta-agents for multiagent design’ and ‘Collaboration
and decomposition inmultiagent design’, and is being used tomake
conclusions about the design process. Therefore, it is important to
show that this method is a viable optimization method, and not
simply an optimizing process which may, due to some flaw in pro-
cess or implementation, reach an artificial minimum. To test this,
this paper compares the method presented here with a common
stochastic optimization method (a genetic algorithm), and a sto-
chastic hill-climbing algorithm which we expect to perform poorly
by reaching a local minimum – essentially showing the behavior
expected from a flawed stochastic optimizing process.

The comparison methods are a centralized genetic algorithm
and a stochastic hill-climbing algorithm. This centralized genetic

algorithm was set up using default parameters for MATLAB’s ga
function, with 200 generations of population 100 to show how a
global optimization method searches the space. The stochastic hill-
climbing algorithm was set up using MATLAB’s simulannealbnd
function by choosing a low temperature (T = 5) to simulate sto-
chastic hill-climbing to simulate how a flawed stochastic optimiza-
tion process would search the space, as it is known that stochastic
hill-climbing will converge to a local minimum. Custom annealing
functions for the mixed continuous-integer problem to show how
an optimizer that gets stuck in local optima searches the space.
These comparisons give a picture of whether the algorithm devel-
oped in this paper is capable of global optimization (causing per-
formance comparable with the centralized genetic algorithm) or
is prone to get stuck in local minima (causing performance compa-
rable to stochastic hill-climbing).

Figure 5 shows the general trend of the distributed multiagent
optimization method using the global reward structure compared
with centralized optimization methods like the genetic algorithm
and stochastic hillclimbing over 20,000 objective function evalua-
tions by showing the median value of the optimization and distri-
bution of results over 10 runs. Throughout the process, the
multiagent method outperforms the centralized genetic algo-
rithm, reaching better objective values in less computational
time. In addition to showing the general optimization effective-
ness of the method, this result also shows the ability of the
method to not get caught in early local minima, as is the case
with stochastic hill-climbing on this domain. This shows that
the method indeed optimizes without obvious process flaws hold-
ing it back. Additionally, the final results distribution shows that
the overall variability in results of the method is similar or better
than the comparison algorithms, showing that the method finds
the minimum reliably. While this result shows the general effec-
tiveness of the method, it should be noted that it is not a compre-
hensive comparison – just a check to confirm the validity of the
method. While it shows the multiagent method to perform well
on this problem, future work is needed to show how it performs
on a variety of problems to judge its effectiveness in practice.

Fi
g.

5
-
Co

lo
ur

on
lin

e

Fig. 5. Performance of multiagent design compared with a centralized genetic and stochastic hill-climbing algorithm. Multiagent design outperforms both, demon-
strating the validity of the optimization method introduced in the section ‘Multiagent learning-based design optimization method’.

10 Daniel Hulse et al.

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

Meta-agents for multiagent design

The following tests show the effect of different methods of con-
trolling the multidisciplinary design process by comparing the
reinforcement-learning meta-agents introduced in the section
‘Meta-agents for multiagent design’ with annealing and a random
table selection. Annealing was used in previous work by the
authors as a heuristic to control the exploration/exploitation
parameter τ of the agents (Hulse et al., 2017), so this result
demonstrates further development of this algorithm to model
exploratory design behavior. Additionally, a random selection of
temperatures from the same tables the agents choose from is pre-
sented to give a control for how much reinforcement learning
meta-agents really improve the process. Two reward structures
– the “global reward” based on the improvement of all of the
agents’ value functions and the “local reward” based on the
improvement of the individual agent’s value function – are addi-
tionally compared to show how rewards influence the perfor-
mance of the meta-agent.

The results are shown in Figure 6. As can be seen, agent-based
table selection (denoted by “Random Control,” “G-Control,” and
“L-Control”) vastly outperforms decaying temperatures over the
entire optimization process. Additionally, a few different trends
are visible for the controllers. First, controlling using the global
reward, while slow to start, outperforms a random control strategy
at about 75,000 function calls, settling in a lower minima than a
random strategy by the end of the optimization. The random con-
trol strategy, on the other hand, seems to find good solutions
quickly (in the first 75,000 iterations or so) compared with the
other strategies but loses this advantage later in the process.
Finally, the local reward actually decreases the performance of
the algorithm compared to random at each step of the process,
although it does outperform the global reward in the first 5000
iterations.

These results provide interesting insights, both for the develop-
ment of this optimization method and for distributed design in
general. First, it shows how reinforcement learning can be used
to increase the performance of this optimization algorithm, and
how, in this case, the reward structure can improve or hinder

that control. Reinforcement learning, which is used to maximize
rewards in a dynamic and probabilistic environment, has been
shown here to increase the performance of the optimization algo-
rithm when used with a reward system that promotes exploration
based on the increase in knowledge gained by that exploration.
Second, it shows how annealing – converging on a single solution
over time, reducing the impact of possible changes that may be
made – may not be a preferred behavior for designers that are
distributed across disciplinary boundaries. Previously, annealing
has been used as a model for design processes, as designers will
often explore the design space for changes before slowly converg-
ing around a design, reducing the impact of proposed design
changes over time (Cagan and Kotovsky, 1997; McComb et al.,
2015a; 2015b). While both these approaches had some level of
built-in adaptiveness that allowed them to explore newly-found
parts of the design space through re-annealing, this result shows
how annealing without any adaptiveness may lead to sub-optimal
outcomes in a multidisciplinary context when trying to find an
optimal set of interacting components.

Instead, this result shows that it is far better for the purposes of
design exploration to continue to explore at all levels at all times
of the process (random selection) and even better to explore
changes which increase the collective knowledge about the design
space (learning-based control with the G reward structure). It
should be noted for this discussion that the designers not decay-
ing their preference for exploration does not mean that they
should consider all designs equal throughout the design process
– design merit knowledge (encoded in the sub-agent) is still
always used to generate a design change. Instead, this means
knowledge should be sought out or leveraged at varying degrees
throughout the process that should not be based on the progres-
sion through the design process. Based on this result, design
exploration and exploitation is beneficial if the designer exploring
variables (or keeping their variables constant so that others may
explore) reveals unknown parts of the design space that are better
than expected, regardless of the progression through the design
process. While, in practice, it may be necessary to solidify parts
of the design to perform more detailed design work, this result
shows that slowly and permanently solidifying the entire design

Fi
g.

6
-
Co

lo
ur

on
lin

e

Fig. 6. Impact of meta-agent on multiagent design. Learning improves performance over random table selection using the global reward (G) and decreases
performance using the local reward (L). All strategies outperform decaying temperatures over time.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

while exploring the design space can prevent the designers from
finding the best-performing design. Instead, this result suggests
that designers should instead be incentivized by the increase in
design knowledge that their exploration causes. This is an impor-
tant insight for the early and embodiment design stages when the
goal is not a fully analyzed detailed design, but an optimal set of
interacting component parameters to be used as a basis for further
design.

Collaboration and decomposition in multiagent design

The following results compare the effects of designers designing
independently or collaboratively. This is represented by allowing
the computational designers to submit changes synchronously,
with only individual components designed synchronously, or
with all variables chosen asynchronously. This is how a design
team that collaborates or treats components as independent
would behave – if designers communicate and interact, they inves-
tigate joint changes between subsystems. On the other hand, if
designers remain autonomous, they will only see how their own
subsystem changes overall performance, and will make changes
individually. While independent component changes most realisti-
cally represent this problem, independent variable changes are
shown to further illustrate the trend.

Figure 7 shows the influence of these three behaviors – collab-
oration, component asynchrony, and variable asynchrony – on
the best objective function found by the algorithm over ten
runs. As can be seen, there is a significant difference in perfor-
mance between both the trends of these design processes and
the final results. While collaboration continues to improve perfor-
mance throughout the iterations in the test, both asynchronous
design strategies seem to reach process minima, or “floors” mid-
way through, after which they are unable to efficiently improve
the design. Additionally, the asynchronous variable design strat-
egy seems to be more efficient in the earlier stages, but more
quickly stops improving, while the asynchronous component

design strategy is slower in the early stages but continues improv-
ing, if slowly.

Intuitively, it is easy to understand why asynchrony causes the
algorithm to prematurely stop improving the design. One of
the major defining features of complex engineered systems is
the interconnections between components – it is often said that
“the inputs of one subsystem are the outputs of another subsys-
tem” (Kroo et al., 1994). As a result, the overall performance of
the system is related not just to an individual component’s contri-
bution, but how different components work together. Therefore,
combined changes between components must occur for a design
process to be effective. This can be understood by reconsidering
the simple game-theoretic design problem in Figure 1. If the
designers are currently at design A–A (a sub-optimal Nash equi-
librium), they can not proceed to design B–B (the optimal Nash
equilibrium) without both agents collaborating, as the non-collab-
orative paths from A–A to B–B require the agents accepting
incompatible designs. In the multidisciplinary context, this must
be done through communication and collaboration between
designers, which enables designers to design perform changes
which happen in multiple subsystems at the same time.

In addition to making intuitive sense, these results confirm
findings of design research about integrated concurrent engineer-
ing and suggest a mechanic by which increasing collaboration can
produce higher-value solutions. The conclusion most often
reached by research studying integrated concurrent engineering
is that it decreases the total time in producing a design compared
with a more siloed or independent design process (Smith, 1998;
Mark, 2002). The typical explanation for this is that radical
co-location enables engineers to complete a design more quickly
because of fewer communication delays – engineers design
quicker because they can speak face-to-face with the designers
of connected subsystems, rather than waiting for an email to
return (Chachere et al., 2009). However, this result shows that
decreasing communication barriers between designers can not
only increase solution time but also solution quality because of

Fi
g.

7
-
Co

lo
ur

on
lin

e

Fig. 7. Effect of synchronization on agents’ ability to design. Agents are better able to optimize when they collaborate by designing synchronously than when they
are decomposed into groups (by component or by variable) which design asynchronously.

12 Daniel Hulse et al.

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

the coupled nature of complex engineered systems. While all
design processes were able to reach designs which satisfied
requirements by meeting constraints, the collaborative design
process did not get stuck in process minimums caused by Nash
equilibria like the independent processes did. This is because
the designers in the multiagent system could make combined
changes which allowed the optimization process to navigate inter-
component constraints. This suggests that the relative ease of
making combined changes in an integrated collaborative engi-
neering process should also allow design teams to produce higher-
quality designs in addition to achieving a faster design process.

Summary

The results presented in the previous sections are summarized in
Table 4, in terms of the median and standard deviation of the
optimums found, the constraint violation at the final iteration
(using

∑n
j=1 c

2
j), and important model parameters, including

mass, component cost, energy stored, and mission time. Note
that these model parameters are not considered objectives in
themselves, but are instead taken into account using the mission
model, which calculates the objective based on the value of a the-
oretical mission (labeled profit). As can be seen, the parameters
most correlated with the objective are mission time and stored
energy, while others such as component cost and mass do not
correlate well with the objective, likely due to the smaller influence
of component cost and mass compared with mission revenue and
energy storage in the model. In summary, all methods were able
to produce feasible designs, but the best-performing method
was using the multiagent method with controlled by reinforce-
ment learners rewarded by the global exploratory reward.

Conclusions

This paper introduces a new multiagent optimization method
which may be used to model the multidisciplinary engineering
process by distributing authority over variables in the design
problem to computational designers represented as sets of learn-
ing agents. This optimization method was shown to perform sim-
ilarly to a centralized genetic algorithm applied to the same
domain when using reinforcement learning and an exploratory
reward to control the agents. Additionally, this learning-based
control (and even random control) was shown to outperform
annealing, calling into question the idea that engineers should
converge on a design in the early design exploration stages. It
instead suggests that designers in a collaborative multidisciplinary
setting should explore potentially high or low-impact changes
throughout the design exploration process based on the increase
in design knowledge. Finally, a collaborative process in which
designers propose design changes collaboratively at the same
time was shown to perform much better than a process in
which designers propose changes independently at different
times. This result suggests a mechanism by which increased coop-
eration can increase design quality: the ability to explore joint
design changes which would otherwise be unavailable if the sys-
tem was designed independently.

Future work

Future work will focus on improving the method and demonstrating
the insights gained using the method in real-world scenarios. A full,
comprehensive comparison between this method and others could Ta

b
le

4.
Su

m
m
ar
y
of

re
su
lt
s

Co
m
pa

ri
so
n
m
et
ho

ds
Co

nt
ro
lle
rs

Au
to
no

m
y

G
A

SH
C

G
-c
on

tr
ol

L-
co
nt
ro
l

An
ne

al
in
g

R
an

do
m

B
y-
va
r.

B
y-
co
m
p.

M
ed

.
O
bj
ec
ti
ve

−
46
,3
29

−
35
,2
61

−
48
,6
41

−
42
,9
59

−
37
,4
72

−
46
,6
97

−
33
,3
75

−
36
,2
08

SD
of

O
bj
ec
ti
ve

33
35
.1

54
00
.0

33
60
.3

29
92
.1

50
81
.8

25
81
.3

76
30
.2

72
48
.5

M
ed

.
Co

ns
t.
Vi
ol

0
0

0
0

0
0

0
0

SD
Co

ns
t.
Vi
ol

0
0

0
0

0
0

0
0

M
ed

.
M
as
s

1.
48
40

0.
61
38

1.
87
46

1.
54
61

1.
48
00

1.
62
40

0.
83
12

1.
10
88

SD
M
as
s

0.
21
30

0.
37
27

0.
24
59

0.
42
50

0.
37
60

0.
33
98

0.
31
96

0.
38
81

M
ed

.
Co

st
77
4.
65

65
8.
16

79
9.
51

77
7.
03

78
0.
94

79
2.
53

74
5.
25

75
4.
77

SD
Co

st
15
.6
0

34
.7
6

17
.1
4

51
.0
2

40
.5
2

43
.0
8

53
.1
6

32
.5
1

M
ed

.
En

er
gy

St
or
ed

53
2,
80
0

13
3,
20
0

79
9,
20
0

56
6,
10
0

53
0,
13
6

63
2,
70
0

23
7,
09
5

37
5,
62
4

SD
En

er
gy

St
or
ed

10
8,
76
0

19
3,
03
0

13
7,
57
0

19
1,
43
0

17
2,
99
0

16
5,
52
0

13
4,
45
0

20
0,
26
0

M
ed

.
M
is
si
on

Ti
m
e

41
.9
0

37
.8
4

51
.2
1

45
.1
4

39
.5
0

49
.6
9

35
.6
0

38
.3
3

SD
M
is
si
on

Ti
m
e

3.
59

7.
43

3.
41

2.
89

5.
20

3.
11

7.
91

7.
43

Sh
ow

n
ar
e
th
e
m
ed

ia
n
an

d
st
an

da
rd

de
vi
at
io
n
of

th
e
op

ti
m
um

ob
je
ct
iv
e,

co
ns
tr
ai
nt

vi
ol
at
io
n,

m
as
s,
co
st
,e

ne
rg
y
st
or
ed

,a
nd

m
is
si
on

ti
m
e
fo
r
ea
ch

of
th
e
m
et
ho

ds
te
st
ed

in
th
e
pa

pe
r:
th
e
ge
ne

ti
c
al
go

ri
th
m

an
d
st
oc
ha

st
ic
hi
ll-
cl
im

bi
ng

co
m
pa

ri
so
n

m
et
ho

ds
,
th
e
m
ul
ti
ag

en
t
m
et
ho

d
co
nt
ro
lle
d
us
in
g
th
e
gl
ob

al
re
w
ar
d,

lo
ca
l
re
w
ar
d,

a
te
m
pe

ra
tu
re

de
ca
y
an

d
ra
nd

om
te
m
pe

ra
tu
re

se
le
ct
io
n,

an
d
th
e
m
ul
ti
ag

en
t
m
et
ho

d
us
in
g
by

-v
ar
ia
bl
e
au

to
no

m
y
an

d
by

-c
om

po
ne

nt
au

to
no

m
y

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

be shown to characterize the performance on various model
domains. While the rewards used here were shown to perform well,
futurework could show if other rewardswould increase performance
further. Additionally, a study of the effectiveness of the difference
reward could be done, showing how to balance the computational
costs of the reward with the benefits. Finally, while the conclusions
that lowering the impact of design changes over time (annealing)
decreases design performance and increasing collaboration can
lead to better solution quality provide interesting insights into the
complex engineered system design process, real-world tests should
be done to validate that these conclusions hold in practice.

References

Agogino AK and Tumer K (2008) Analyzing and visualizing multiagent
rewards in dynamic and stochastic domains. Autonomous Agents and
Multi-Agent Systems 17, 320–338.

Agogino AK and Tumer K (2012) A multiagent approach to managing air
traffic flow. Autonomous Agents and Multi-Agent Systems 24, 1–25.

Allison JT, Kokkolaras M and Papalambros PY (2009) Optimal partitioning
and coordination decisions in decomposition-based design optimization.
Journal of Mechanical Design 131, 081008.

Braha D, Suh N, Eppinger S, Caramanis M and Frey D (2006) Complex engi-
neered systems. In Minai AA and Bar-Yam Y (eds), Unifying Themes in
Complex Systems Volume IIIA: Overview. Nashua, NH: Springer, pp. 227–274.

Cagan J and Kotovsky K (1997) Simulated annealing and the generation of
the objective function: a model of learning during problem solving.
Computational Intelligence 13, 534–581.

Campbell MI, Cagan J and Kotovsky K (1999) A-design: an agent-based
approach to conceptual design in a dynamic environment. Research in
Engineering Design 11, 172–192.

Chachere J, Kunz J and Levitt R (2009) The role of reduced latency in inte-
grated concurrent engineering. CIFE Working Paper #WP116.

Chen W and Wassenaar H (2003) An approach to decision-based design with
discrete choice analysis for demand modeling. Journal of Mechanical Design
125, 490–497.

Chen Y, Liu Z-L and Xie Y-B (2014) A multi-agent-based approach for con-
ceptual design synthesis of multi-disciplinary systems. International Journal
of Production Research 52, 1681–1694.

Dimeas AL and Hatziargyriou ND (2005) Operation of a multiagent system
for microgrid control. IEEE Transactions on Power Systems 20, 1447–1455.

Dionne SD, Sayama H, Hao C and Bush BJ (2010) The role of leadership
in shared mental model convergence and team performance improvement:
an agent-based computational model. The Leadership Quarterly 21,
1035–1049.

Dorigo M, Birattari M and Stutzle T (2006) Ant colony optimization. IEEE
Computational Intelligence Magazine 1, 28–39.

Fiacco AV and McCormick GP (1966) Extensions of SUMT for nonlinear
programming: equality constraints and extrapolation. Management
Science 12, 816–828.

Grecu DL and Brown DC (2000) Guiding agent learning in design. In
Finger S, Tomiyama T and Mäntylä M (eds), Knowledge Intensive
Computer Aided Design. Tokyo, Japan: Springer, pp. 275–293.

Hanna L and Cagan J (2009) Evolutionary multi-agent systems: an adaptive
and dynamic approach to optimization. Journal of Mechanical Design
131, 011010.

HulseD (2017, 1011)QuadrotorDesignModel. Retrieved fromGithub.Available at
https://github.com/hulsed/QuadrotorModel/blob/master/Quadrotor%20Design
%20Model.pdf

Hulse D, Gigous B, Tumer K, Hoyle C and Tumer I (2017) Towards a
Distributed Multiagent Learning-Based Design Optimization Method. ASME
2017 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. Cleveland, OH: ASME.

Jin Y and Levitt RE (1993) i-AGENTS: modeling organizational problem
solving in multi-agent teams. Intelligent Systems in Accounting, Finance
and Management 2, 247–270.

Jin Y and Levitt RE (1996) The virtual design team: a computational model of
project organizations. Computational & Mathematical Organization Theory
2, 171–195.

Jin Y and Lu S (2004) Agent based negotiation for collaborative design deci-
sion making. CIRP Annals-Manufacturing Technology 53, 121–124.

Jin Y and Lu SC-Y (1998) An agent-supported approach to collaborative
design. CIRP Annals-Manufacturing Technology 47, 107–110.

Karaboga D and Basturk B (2007) A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algorithm.
Journal of Global Optimization 39, 459–471.

Kennedy J (2011) Particle swarm optimization. In Sammut C and Webb GI
(eds), Encyclopedia of Machine Learning. Boston, MA, USA: Springer, pp.
760–766.

Klein M, Sayama H, Faratin P and Bar-Yam Y (2003) The dynamics of col-
laborative design: insights from complex systems and negotiation research.
Concurrent Engineering 11, 201–209.

Kroo I, Altus S, Braun R, Gage P and Sobiesky I (1994) Multidisciplinary
optimization methods for aircraft preliminary design. 5th Symposium on
Multidisciplinary Analysis and Optimization, pp. 697–707. Panama City
Beach,FL: The American Institute of Aeronautics and Astronautics. doi:
10.2514/6.1994-4325

Lander SE (1997) Issues in multiagent design systems. IEEE Expert 12, 18–26.
Landry LH and Cagan J (2011) Protocol-based multi-agent systems: examin-

ing the effect of diversity, dynamism, and cooperation in heuristic optimi-
zation approaches. Journal of Mechanical Design 133, 021001.

Lee JW (2001) Stock price prediction using reinforcement learning. IEEE
International Symposium on Industrial Electronics Proceedings, pp. 690–
695. Pusan, South Korea: IEEE.

Manion C, Soria N, Tumer K, Hoyle C and Tumer I (2015) Designing a
Self-Replicating Robotic Manufacturing Factory. ASME International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference. Boston, MA: ASME. doi:10.1115/DETC2015-47628

Mark G (2002) Extreme collaboration. Communications of the ACM 45, 89–93.
New York: Association for Computing Machinery. doi: 10.1145/508448.508453

Martins J and Lambe AB (2013) Multidisciplinary design optimization: a sur-
vey of architectures. AIAA Journal 51, 2049–2075.

McComb C, Cagan J and Kotovsky K (2015a) Lifting the veil: drawing
insights about design teams from a cognitively-inspired computational
model. Design Studies 40, 119–142.

McComb C, Cagan J and Kotovsky K (2015b) Rolling with the punches: an
examination of team performance in a design task subject to drastic
changes. Design Studies 36, 99–121.

McComb C, Cagan J and Kotovsky K (2017) Optimizing design teams based
on problem properties: computational team simulations and an applied
empirical test. Journal of Mechanical Design 139, 041101–041101-12. doi:
10.1115/1.4035793

Moss J, Cagan J and Kotovsky K (2004) Learning from design experience in
an agent-based design system. Research in Engineering Design 15, 77–92.

Panait L, Tuyls K and Luke S (2008) Theoretical advantages of lenient lear-
ners: An evolutionary game theoretic perspective. Journal of Machine
Learning Research 9, 423–457.

Pipattanasomporn M, Feroze H and Rahman S (2009) Multi-agent systems
in a distributed smart grid: Design and implementation. IEEE/PES Power
Systems Conference and Exposition, pp. 1–8. Seattle, WA: IEEE.

Price M, Raghunathan S and Curran R (2006) An integrated systems engi-
neering approach to aircraft design. Progress in Aerospace SciencesPrice
42, 331–376.

Priddy KL and Keller PE (2005) Artificial Neural Networks: An introduction.
Bellingham, WA, USA: SPIE Press.

Reza Danesh M and Jin Y (2001) An agent-based decision network for con-
current engineering design. Concurrent Engineering 9, 37–47.

Richardt J, Karl F and Müller C (1998) Connections between fuzzy theory,
simulated annealing, and convex duality. Fuzzy Sets and Systems 96, 307–334.

Sayama H, Farrell DL and Dionne SD (2011) The effects of mental model
formation on group decision making: an agent-based simulation.
Complexity 16, 49–57.

Singh V, Dong A and Gero JS (2009) Effects of social learning and team famil-
iarity on team performance. Proceedings of the 2009 Spring Simulation

14 Daniel Hulse et al.

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

https://github.com/hulsed/QuadrotorModel/blob/master/Quadrotor%20Design%20Model.pdf
https://github.com/hulsed/QuadrotorModel/blob/master/Quadrotor%20Design%20Model.pdf
https://github.com/hulsed/QuadrotorModel/blob/master/Quadrotor%20Design%20Model.pdf

Multiconference, pp. 6:1–6:8. San Diego, CA: Society for Computer
Simulation International.

Singh V, Dong A and Gero JS (2013a) Singh, Vishal, Andy Dong, and John
S. Gero. “Developing a computational model to understand the contributions
of social learning modes to task coordination in teams. AI EDAM 27, 3–17.

Singh V, Dong A and Gero JS (2013b) Social learning in design teams: the
importance of direct and indirect communications. AI EDAM 27, 167–182.

Smith J (1998) Concurrent Engineering in the Jet Propulsion Laboratory
Project Design Center. SAE Technical Paper 981869. Society of
Automotive Engineers. doi: 10.4271/981869.

Solé RV, Ferrer-Cancho R, Montoya JM and Valverde S (2002) Selection,
tinkering, and emergence in complex networks. Complexity 8, 20–33.

Soria N, Colby M, Tumer K, Hoyle C and Tumer I (2017) Design of
Complex engineering systems using multiagent coordination. Journal of
Computing and Information Science in Engineering 18, 011003–011003-13.
doi: 10.1115/1.4038158

Stone P and Veloso M (2000) Multiagent systems: a survey from a machine
learning perspective. Autonomous Robots 8, 345–383.

Sutton RS and Barto AG (1998) Reinforcement Learning: An Introduction.
Cambridge: MIT Press.

Watkins CJ and Dayan P (1992) Q-learning. Machine Learning 8, 279–292.
Weiss G (2013) Multiagent Systems. Cambridge, MA, USA: MIT Press.
Yliniemi L, Agogino AK and Tumer K (2014) Multirobot coordination for

space exploration. AI Magazine 35, 61–74.

Daniel Hulse is a Graduate Research Assistant at Oregon State University’s
Design Engineering Lab. He is interested in using novel modeling and opti-
mization techniques to inform and aid the design process. Specifically, he is
interested in developing formal design frameworks and instructive models
to overcome designers’ inherent bounded rationality when designing com-
plex systems, and in using optimization algorithms to explore large spaces
of solutions to a design problem.

Dr Kagan Tumer is Professor and the Director of the Collaborative Robotics
and Intelligent Systems (CoRIS) Institute at Oregon State University. His
research focuses on multiagent coordination, machine learning and autono-
mous systems. He has ∼200 peer-reviewed publications and holds one US
patent. He was program chair for the 2011 Autonomous Agents and
Multi-Agent Systems (AAMAS) conference. His work has received multiple
awards (including the best paper awards at the Autonomous Agents and
Multiagent Systems Conference in 2007 and the best application paper
award at the Genetic and Evolutionary Computation Conference (GECCO)
in 2012.

Dr Christopher Hoyle is currently Associate Professor in the area of Design in
the Mechanical Engineering Department at Oregon State University. His
current research interests are focused upon decision making in engineering
design, with emphasis on the early design phase. His areas of expertise are
uncertainty propagation methodologies, Bayesian statistics and modeling,
stochastic consumer choice modeling, optimization and design automation.
He is a coauthor of the book Decision-Based Design: Integrating Consumer
Preferences into Engineering Design. He received his PhD from Northwestern
University in Mechanical Engineering in 2009 and his Master’s degree in
Mechanical Engineering from Purdue University in 1994.

Dr Irem Y. Tumer is a Professor in Mechanical Engineering at Oregon State
University, and Associate Dean for Research for the College of Engineering.
Her research focuses on the challenges of designing highly complex and inte-
grated engineering systems with reduced risk of failures, and developing
formal methodologies and approaches for complex system design, modeling,
and analysis, funded through NSF, AFOSR, DARPA, and NASA. Prior to
coming to OSU, Dr Tumer worked in the Intelligent Systems Division at
NASA Ames Research Center, where she worked from 1998 through
2006 as Research Scientist, Group Lead, Program Manager. She is an
ASME Fellow.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

	Modeling multidisciplinary design with multiagent learning
	Introduction
	Contributions

	Background
	Multiagent learning
	Reinforcement learning
	Action selection
	Reward structure

	Multiagent approaches in engineering design
	Multiagent optimization methods
	Multiagent design systems
	Previous work

	Application: quadrotor design
	Multiagent learning for multidisciplinary design
	Learning design merit in distributed design
	Multiagent learning-based design optimization method
	Meta-agent action selection
	Sub-agent design parameter selection
	Sub-Agent merit update: design performance
	Adaptation to continuous variables
	Meta-Agent rewards and learning: improvement over expected values

	Implementation

	Results
	Viability of the multiagent design method
	Meta-agents for multiagent design
	Collaboration and decomposition in multiagent design
	Summary

	Conclusions
	Future work

	References

