
Accelerating solutions of one-dimensional unsteady PDEs
with GPU-based swept time-space decomposition

Daniel J. Mageea, Kyle E. Niemeyera,∗

aSchool of Mechanical, Industrial, and Manufacturing Engineering, Oregon State
University, Corvallis, OR, USA

Abstract

The expedient design of precision components in aerospace and other high-tech
industries requires simulations of physical phenomena often described by partial
differential equations (PDEs) without exact solutions. Modern design problems
require simulations with a level of resolution difficult to achieve in reasonable
amounts of time—even in effectively parallelized solvers. Though the scale of
the problem relative to available computing power is the greatest impediment
to accelerating these applications, significant performance gains can be achieved
through careful attention to the details of memory communication and access.
The swept time-space decomposition rule reduces communication between sub-
domains by exhausting the domain of influence before communicating boundary
values. Here we present a GPU implementation of the swept rule, which mod-
ifies the algorithm for improved performance on this processing architecture
by prioritizing use of private (shared) memory, avoiding interblock communi-
cation, and overwriting unnecessary values. It shows significant improvement
in the execution time of finite-difference solvers for one-dimensional unsteady
PDEs, producing speedups of 2–9× for a range of problem sizes, respectively,
compared with simple GPU versions and 7–300× compared with parallel CPU
versions. However, for a more sophisticated one-dimensional system of equations
discretized with a second-order finite-volume scheme, the swept rule performs
1.2–1.9× worse than a standard implementation for all problem sizes.

Keywords: GPU computing, partial differential equations, computational
fluid dynamics, high-performance computing, communication-avoiding
algorithms, domain decomposition

1. Introduction

High-fidelity computational fluid dynamics (CFD) simulations are essential
for developing aerospace technologies such as rocket launch vehicles and jet en-
gines. This project aims to accelerate such simulations to approach real-time

∗Corresponding author
Email address: kyle.niemeyer@oregonstate.edu (Kyle E. Niemeyer)

Preprint submitted to Elsevier November 15, 2017

ar
X

iv
:1

70
5.

03
16

2v
2

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
0

N
ov

 2
01

7

execution—simulation at the speed of nature—in accordance with the high-
performance computing development goals set out in the CFD Vision 2030 re-
port [1]. Classic approaches to domain decomposition for parallelized, explicit,
time-stepping partial differential equation (PDE) solutions incur substantial
computational performance costs from the communication between nodes re-
quired every timestep. This communication cost consists of two parts: latency
and bandwidth, where latency is the fixed cost of each communication event
and bandwidth is the variable cost that depends on the amount of data trans-
ferred. Latency in inter-node communication is a fundamental barrier to this
goal, and advancements to network latency have historically been slower than
improvements in other computing performance barriers such as bandwidth and
computational power [2]. Performance may be improved by avoiding external
node communication until exhausting the domain of dependence, allowing the
calculation to advance multiple timesteps while requiring a smaller number of
communication events. This idea is the basis of swept time-space decomposi-
tion [3, 4].

Extreme-scale computing clusters have recently been used to solve the com-
pressible Navier–Stokes equations on over 1.97 million CPU cores [5]. The mon-
etary cost, power consumption, and size of such a cluster impedes the realization
of widespread peta- and exa-scale computing required for real-time, high-fidelity,
CFD simulations. While these are significant challenges, they also provide an
opportunity to develop new tools that increase the use of the available hardware
resources. As the authors of CFD Vision 2030 note, “High Performance Com-
puting (HPC) hardware is progressing rapidly and is on the cusp of a paradigm
shift in technology that may require a rethinking of current CFD algorithms
and software” [1]. Using graphics processing unit (GPU) hardware as the pri-
mary computation device or accelerator in a heterogeneous system is a viable,
expedient option for high-performance cluster design that helps mitigate these
problems. For this reason, GPUs and other emerging coprocessor architectures
are increasingly used to accelerate CFD simulations [6].

GPU technology has improved rapidly in recent years; in particular, NVIDIA
GPUs have progressed from Kepler to Pascal architecture in four years. This de-
velopment doubled and tripled peak single- and double-precision performance,
respectively [7]. In addition, the presence of GPUs in clusters, such as ONRL’s
Titan supercomputer, has become increasingly common in the last decade.
These advances have driven the development of software capable of efficiently
using and unifying the disparate architectures [8]. Although the ultimate mo-
tivation of our work is accelerating the solution of PDEs—particularly relevant
to fluid flow—on distributed-memory systems, in this work we focused on a
single GPU-accelerated node/workstation in the design of the algorithms and
associated software. By investigating the effectiveness of the swept rule on a
workstation, we provide results that can be applied to simulations on a single
machine as well as an initial framework for understanding the performance of
the swept rule on heterogeneous computing systems.

The swept rule operates on a simple principle: do the most work possible
on the values closest to the processor before communicating. In practice, this

2

directive results in an algorithm that advances the solution in time at all spatial
points using locally accessible stencil values at the previous timestep. Because
the data closest to the processor is also the least widely accessible, the strict
application of this principle does not always provide the best performance, but
it is a useful heuristic for implementing the procedure and analyzing its perfor-
mance.

This study presents an investigation of the performance characteristics of
three swept rule implementations for a single GPU in a workstation. These
procedures are tested on three one-dimensional PDEs with numerical schemes
of varying complexity and compared with the performance of parallel CPU al-
gorithms and unsophisticated GPU versions. The (next) Section 2 describes
recent work on partitioning schemes for PDEs and communication-avoiding al-
gorithms, especially as applied to GPUs. Section 3 gives a brief overview of the
GPU architecture, particularly the thread and memory hierarchies. Section 4
discusses the swept rule, and our adjustments to the original algorithm in re-
sponse to the details of GPU architecture. Section 5 describes the swept rule
implementation in detail. In Section 6 we present the results of the tests and,
lastly, draw further conclusions in Section 7.

2. Related work

Alhubail and Wang introduced the swept rule for explicit, time-stepping, nu-
merical schemes applied to PDEs [3, 4, 9], and our work takes their results and
ideas as its starting point. The swept rule is closely related to cache optimiza-
tion techniques, in particular those that use geometry to organize stencil update
computation such as parallelograms [10] and diamonds [11]. The diamond tiling
method presented by Malas et al. [11] is similar to the swept rule but uses the
data dependency of the grid to improve cache usage rather than avoid commu-
nication. Concepts such as stencil optimization using domain decomposition on
various architectures that are fundamental to this study are explored by Datta
et al. [12]. Their work explores comparisons between parallel GPU and CPU
architectures and tunes the stencil algorithm with nested domain decomposi-
tion. The swept rule also has elements in common with parallel-in-time and
communication-avoiding algorithms.

Parallel-in-time methods [13], such as multigrid-reduction-in-time (MGRIT)
algorithms [14], accelerate PDE solutions with time integrators that overcome
the interdependence of solutions in the time domain, allowing parallelization
of the entire space-time grid. These methods calculate the solution over the
space-time domain using a coarse grid and iterate over successively finer grids
to achieve the desired accuracy. The use of coarse grids in parallel-in-time meth-
ods reduces efficiency and accuracy when applied to nonlinear systems [3]. This
shortcoming is intuitive: since chaotic, nonlinear systems may suddenly change
in time, and coarse grids are prone to aliasing, the required grid granularity di-
minishes gains in performance. The swept rule arises from the same motivation,
but does not seek to parallelize the computation in time or vary dimensions
during the process.

3

The swept rule does not alter the numerical scheme; it decomposes the do-
main and organizes computation. That is, compared to a classic domain decom-
position, the swept rule performs the same operations in a different order and
location. In this way communication-avoiding algorithms share many imple-
mentation details with the swept rule. Recent developments in communication-
avoiding algorithms for GPUs have generally focused on applications involving
matrices such as QR and LU factorization. The LU factorization algorithm
presented by Baboulin et al. [15] is motivated by the increasing use of GPU
accelerators in large-scale, heterogeneous clusters. This method splits tasks be-
tween the GPU and CPU, minimizing communication between devices. This
allows the communication and computation performed on each device to over-
lap, so all data transfer occurs asynchronously with computation. We explore
this approach—overlapping data transfer with hybrid computation—in this ar-
ticle. The motivation and structure of our study is comparable to the work of
Anderson et al [16]. They developed methods for arranging and tuning com-
putation for single general-purpose GPU (GPGPU) in a desktop workstation,
without altering the basic QR factorization algorithm. Similarly, this study fo-
cuses on adapting the swept rule to a single GPU. The swept rule is a strategy
for arranging the computational path of explicit numerical methods, and this
work seeks to design the data structures and operations used in that path to
achieve the best performance on GPUs.

3. GPU architecture and memory

The impressive parallel processing capabilities of modern GPUs resulted
from architecture originally designed to improve visual output from a computer.
GPU manufacturers and third-party authors [17–20] have described the features
of this architecture in great detail, while others discussed general best practices
for developing efficient GPU-based algorithms [6, 21]. Particular aspects of
this architecture, such as the unique and accessible memory hierarchy, are at
the core of this work, so some explanation of its relevant elements is necessary
before describing the details of the implementation.

Programs that run on the GPU can be implemented using several software
packages, the most common of which are the OpenCL and OpenACC frame-
works, and the CUDA parallel computing platform. These packages use different
nomenclatures and are compatible with different hardware types. In this project
all programs use CUDA, which is exclusively compatible with NVIDIA GPUs;
therefore, all descriptions of GPU hardware presented here use the CUDA
nomenclature. CUDA programs consist of functions, referred to as kernels,
launched from a C/C++ host program. The CPU executes the host code and
specifies the size and number of blocks when calling a kernel, the stream (queue)
in which the kernel will be launched, and the amount of shared memory to be
allocated per block at runtime. All threads in a warp—a group of 32 threads
that execute as a single-instruction multiple thread (SIMT) unit—must be in
the same block, so for good practice blocks should launch with some multiple
of 32 threads.

4

The information presented here is valid for all NVIDIA GPUs with compute
capability 3.0 or higher (i.e., Kepler architecture or later). The device used in
this study is a Tesla K40c GPGPU, compute capability 3.5. This device contains
15 streaming multiprocessors, each capable of processing 64 warps of 32 threads,
or 2048 total threads, at once [7]. A maximum of 16 blocks may concurrently
reside on a streaming multiprocessor; blocks may not be split between streaming
multiprocessors. While each streaming multiprocessor can support 2048 resident
threads, in practice their capacity is often lower because each thread or block
makes demands on limited memory resources—most notably the shared memory
and registers. Each streaming multiprocessor on the Tesla K40c has 48 kB of
shared memory and 65536 registers available. Registers offer the fastest access,
but are the most limited memory type and are private to each thread, but can be
accessed by other threads in the same warp using shuffle operations available on
devices with compute capability 3.5 or higher. Shared memory is a controllable
portion of the L1 cache accessible only to threads within a block. As a result,
for a thread to read a value stored in shared memory in a different block, a
thread with access to that value must write the value to global memory where
the reader thread has access. Global memory is the slowest and most plentiful
memory type, and where data copied from the host program resides. Global
memory stores all variables passed to a kernel and large arrays declared therein.

Other memory types in the CUDA memory hierarchy include constant, tex-
ture, and surface; of these, the work presented here only uses constant memory.
Constant memory is read-only, available to all kernels for the lifetime of an ap-
plication, and quick to access when all threads access the same location. This
makes it a convenient and performance conscious choice for storing constant
values of the governing equations calculated at runtime [18].

4. Methodology

4.1. Experimental method
The primary goal of this study is to compare the performance of the swept

rule to a simple domain decomposition scheme, referred to as Classic, on a
GPU. A domain decomposition scheme is a way of splitting up a large problem
so tasks can be shared by discrete workers working on distinct parts of the
problem. In this case the decomposition scheme divides the space-time domain
of the PDE solution. We will compare the performance of these methods by the
time cost of each timestep, including the time required to transfer data to/from
the GPU. While encoding the Classic is relatively straightforward, finding the
best approach for the swept rule on the GPU presents a more subtle problem.

In the original swept rule approach [3], the spatial domain is partitioned
into independent pieces called “nodes” that correspond to compute nodes on a
distributed system with private memory spaces. A major concern in adapting
this nodal analogy to a single GPU is the type of memory allocated for the
working array, the container for the values that are the solution to and the
basis for each timestep. Several available approaches exist to map the original

5

analogy for a node to a single GPU; here, we will explore three of them: Shared,
Hybrid, and Register (which we will describe in detail in Section 5).

In all approaches we map one thread to one spatial point. Handling more
than one spatial point per thread would allow for larger nodes but would require
more resources and complicate the procedure without reducing thread idleness.
Additional swept rule properties could be adjusted for potential implementation
variants such as the data structure to hold the working values, and the method
to globally synchronize threads. However, for the purposes of this study, we
did not vary these attributes. In all cases in this study the working array is a
standard, one-dimensional C array with two flattened rows; and kernel calls are
implicitly synchronized by returning control to the queue in the host program.

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

10

12

14

16

Node 0 Node 1

(a) The first step of the swept rule. Values at t = 0 are
split between nodes 0 and 1, which compute solutions in
their domain of dependence, a triangle in the space-time
plane. The edge values are collected in global arrays L0/R0

and L1/R1.

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

10

12

14

16

L
0
 -> R

0
R

0
 -> L

1
L

1
 -> R

1
R

1
 -> L

0

(b) The second step in the swept rule. The nodes pass their
right edge to the neighboring node. The passed values be-
come the initial left edge, and the left edge from the previous
stage becomes the right edge. Each node advances through
their domain of dependence, a diamond in space-time.

Figure 1: The first two steps of the swept rule for a numerical scheme with a first-order domain
of dependence. Li/Ri refer to left/right arrays of node i, which collect edge values shown with
thick bordered dots [22].

6

4.2. First-order domain of dependence
A domain of dependence is a region on the space-time grid that can be

completed by a numerical scheme with some set of initial values. For the pur-
poses of this project, numerical schemes consist of stencil operations, where a
value at a grid point is updated based on the weighted contribution of values
at grid points in the vicinity. A three-point stencil uses values at neighboring
grid points only, and the timestep of any numerical scheme can be decomposed
into a series of sub-timesteps that only require a three-point stencil [23]. The
numerical scheme defines the order of the domain of dependence: it increases
by one for every two sub-timesteps required per timestep. Therefore, a domain
of dependence is first-order if all sub-timesteps in the numerical scheme use a
three-point stencil, and intermediate values are required no more than two steps
after they are calculated. The initial incarnation of the swept rule presented
by Alhubail and Wang [3, 9] decomposes multi-step timesteps and large stencils
into sub-timesteps with a three-point stencil. This regularizes the procedure and
ensures that all equations and schemes can be evaluated using a swept decom-
position with a first-order domain of dependence, but requires more memory
to store the intermediate values that result from each sub-timestep. In order
to conserve limited private memory, for the GPU-based swept rule a first-order
domain of dependence is applicable to schemes that require two or fewer three-
point stencil sub-timesteps per timestep. Figure 1 shows the first two stages of
the swept rule using k = 2 nodes with n = 16 spatial points.

At the start of the first step, shown in Figure 1a, the initial conditions are
passed to the kernel and each node evaluates the solution at as many points
as possible in the space-time grid. The initial domain of dependence forms a
triangle. The working array stores the solutions as each node steps through
time and is maintained in a fast memory space private to node member threads.
When each node cannot advance any further it’s necessary for each to pass one
edge to a neighboring node and retain the values of the other edge. Figure 1b
shows how the second step proceeds from the first using the edge values.

For the nodes to communicate as Figure 1 illustrates, the values on the edges
must be passed to global arrays available to all nodes since any sufficiently fast
memory location is private to a subset of threads terminated on kernel exit.
Consequently, any data necessary to continue the computation must be shared
between nodes using an intermediary container. The information needed to
begin a new nodal cycle, including the values retained by each node, must be
read in from, and out to, global memory at the beginning and end of each
kernel, respectively. Figure 2a shows how the working array values are stored
and passed to the global arrays.

Figure 1b illustrates the reason the two edges are stored individually as Li
and Ri: only one of the edges is passed between nodes. After the first step, the
right edge is passed to its right neighbor node; the left edge is stationary. At
the beginning of the subsequent kernel, Li and Ri are swapped and reinserted
into the working array to seed the next progression with one data transfer event
from global to private memory as shown in Figure 2b. When the right edge

7

is passed between nodes, node 0 is split across the spatial boundary and must
apply the boundary conditions at its center.

The swept rule allows the computation to advance by n timesteps with two,
rather than n, global memory accesses, where n is the number of threads per
block (or the number of spatial points per node). The procedure advances by
passing values in the alternating directions and zig-zagging the location of the
nodes in this fashion until the simulation is complete. Since the diamonds shown
in Figure 1b do not store all the values at a single timestep, the simulation can
only output values when a complementary triangle is computed and the final
n-length local tier is returned. This kernel can only be called after the values
are passed to the left, so the results can only be read out every nth timestep.

0 2 4 6 8 10 12 14 16

Shared array column index

0

1

S
ha

re
d

ar
ra

y
ro

w
 in

de
x

00 11

22 33

44 55

66 77

88 99

1010 1111

1212 1313

1414 1515

(a) At the end of a kernel (completion of an inverted tri-
angle), the working array is stored and passed from private
memory to global memory. The location shows the index of
the working array in (private) shared memory. The number
in the shape refers to the offset global memory index where
the working value is passed.

0 2 4 6 8 10 12 14 16

Shared array column index

0

1

S
ha

re
d

ar
ra

y
ro

w
 in

de
x

00 11

22 33

44 55

66 77

88 99

1010 1111

1212 1313

1414 1515

(b) Edges are reinserted to seed the inverted triangle of a
new swept cycle. The location shows the index of the work-
ing array in (private) shared memory receiving the global
memory value denoted by the number.

Figure 2: The procedure for edge passing shown in Figure 1b. The global arrays Li and Ri

are represented by circles and squares, respectively, and the numbers in those shapes represent
the position of the value in the global array. The axes describe the location of the value in
the working array [22].

8

Although we already described the working array and showed in Figure 2
how the relevant values are communicated between the nodes, it is instructive to
outline the performance concerns that motivate this arrangement. As Section 3
describes, the number of resident threads on a streaming multiprocessor depends
on the GPU architecture and resources requested at kernel launch. For instance,
storing every double-precision value in the triangle shown in Figure 1a in shared
memory in a kernel with 512 threads per block would require 8 × 65792 =
514 kB of shared memory—this is over 100 times greater than the 48 kB limit
for NVIDIA GPUs with Kepler architecture. The maximum number of threads
per streaming multiprocessor would be limited to 128, which would negatively
impact program performance.

Figure 1a shows that the interior of the triangle is only needed to progress
to the next timestep, and that edges on even and odd tiers do not overlap in the
spatial domain. Thus, the triangle may be stored as a matrix with two rows,
where the first and second rows contain the even and odd sub-timesteps results,
respectively. The interior values are overwritten once they are used, and only
the edge values remain. Figure 2a shows the result of a local computation with
this method. The last two values, the tips of each triangle, are copied into both
arrays.

At the start of the next kernel, the left and right arrays are inserted into
the working array to seed successive calculations as Figure 2b shows. The edges
of the previous cycle’s first row are moved to the center, and the center of the
current top row is now left open for the first tier of the inverted triangle. Each
row requires space for n+2 values because two edge values are required on either
side to complete the stencil for the longest row where n values are computed.
The computation proceeds by filling the empty two indices on the top row,
overwriting the bottom row’s middle four indices, and so on. In contrast to the
memory demands of storing the entire nodal computation, this method uses only
2×(n+2) values. For a block with n = 512 threads, this requires 8×1028 ≈ 8 kB.
In general, a stencil with width k would require storing 2 × (n + k − 1) values
in the working array. By reducing the amount of shared memory to only 8 kB,
the kernel is less limited and achieves higher occupancy, the number of threads
each streaming multiprocessor is capable of handling simultaneously.

4.3. Higher-order domain of dependence
The first-order domain of dependence suffices for relatively simple prob-

lems. However, more complicated problems with elements such as nonlinear
equations, discontinuities, or higher-order derivatives require more sophisticated
procedures. The original swept rule program calculates and stores intermediate
values at sub-timesteps for higher-order schemes to avoid using larger sten-
cils [3]. Breaking a timestep into a series of sub-timesteps allows any numerical
scheme for any equation of the same dimension to be decomposed in the same
way since all stages in the computation depend on the minimum stencil, that is,
only the neighbors of the current spatial point [23]. For example, a second-order
in time midpoint method applied to a fourth-order differential equation would
require four sub-timesteps per timestep. The first sub-timestep would find the

9

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

10

12

Timestep

Timestep

(a) First step of swept rule for discretization with four, three-
point stencil sub-timesteps per timestep.

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

10

12

(b) Using four sub-timesteps per timestep will overwrite val-
ues marked with an “×” before they are needed.

Figure 3: Conflicts in the domain of dependence for discretizations requiring more than two
sub-timesteps per timestep [22].

second derivative of the dependent variable so that the second sub-timestep, the
midpoint solution, would only require a three point stencil: the second deriva-
tive and initial values at the neighboring spatial points. The third sub-timestep
would find the second derivative using the midpoint solution, and the final sub-
timestep would complete the timestep using the results of the second and third
sub-timesteps on the three-point stencil and the previous timestep solution at
the current spatial point. This approach presents a storage and data transfer
problem on the GPU because values in the interior of the working array are
overwritten two sub-timesteps after they are calculated. These forgotten but
required values are marked with an “×” in Figure 3b.

Saving four values per tier would fix the problem, but requires a larger
matrix in shared memory, which would diminish occupancy and require more
unnecessary values to be passed between nodes. Figure 4 shows our solution to
this problem: a five-point stencil that requires two sub-timesteps per timestep—
a predictor and a final step. This flattens the triangle or diamond in the time
domain and requires four values per sub-timestep, but the two-row matrix may
be used as described in Section 4.2 and illustrated by Figure 2 with minor
adjustments. The same number of values are transferred between nodes in
each communication, but inevitably more communication events are required

10

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

(a) First step in swept rule for second-order domain of de-
pendence. The working array is able to be folded and passed
as shown in Figure 2

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

(b) Second step in the swept rule second-order domain of
dependence.

Figure 4: The first two steps of the swept rule for a numerical scheme with a second-order
domain of dependence [22].

to advance the solution. Conveniently, the predictor-corrector method ensures
that all odd tiers, the second matrix row, will contain predictor values, and the
bottom row will hold final values.

The problem that motivates our adjustment to the swept rule is the result
of both the midpoint method and the five-point stencil discretization. Either
of these circumstances alone would accommodate the method described in the
previous section. Generally, the decomposition must be adjusted in this fashion
when there are more than two sub-timesteps per timestep. It would need to be
adjusted further for problems with more than four sub-timesteps per timestep.

5. Implementation

5.1. Swept rule variants
While the order of the swept domain of dependence is a natural consequence

of the equations and numerical scheme, the computational hierarchy available
on GPUs allows this structure to be implemented in different ways. To more
thoroughly investigate the effects of the swept rule, we consider three versions:

11

__global__ void
upTriangle(const REAL *IC, REAL *right, REAL *left) {
//tid = threadIdx.x (bottom row idx),
//tidT = tid+blockDim.x (top row idx);
//tids and tidTs: stencil for each tidT and tid respectively.
//shareT = working array in shared memory
//Read initial data in from IC to shareT.

if (tid > 1 && tid <(blockDim.x-2)) {
shareT[tidT]=predictorStep(shareT, tids);
}

__syncthreads();
//4 is stencil length - 1
for (int k = 4; k<(blockDim.x/2); k+=4)
{

if (tid < (blockDim.x-k) && tid >= k) {
shareT[tid]+=finalStep(shareT, tidTs);
}

k += 2;
__syncthreads();
if(tid < (blockDim.x-k) && tid >= k) {
shareT[tidT]=predictorStep(shareT,tids);
}

__syncthreads();
}

//Read out the edges to left and right arrays.
}

Figure 5: Main loop of the starting kernel for the
swept rule as illustrated by Figure 4a.

__global__ void
classicKS(const REAL *ks_in, REAL *ks_out, bool final)
{
//Global Thread ID
int gid = blockDim.x * blockIdx.x + threadIdx.x;
//number of spatial points - 1
int lastidx = ((blockDim.x*gridDim.x)-1);
//Stencil indices.
int gids[5];

//True for all spatial points from periodic BCs.
#pragma unroll
for (int k = -2; k<3; k++) {
gids[k+2] = (gid + k) & lastidx;
}

//Final is false for predictor step, true otherwise.
if (final) {
ks_out[gid] += finalStep(ks_in, gids);
}

else {
ks_out[gid] = predictorStep(ks_in, gids);
}

}

Figure 6: Classic kernel for Kuramoto-
Sivashinsky solver. Final and predictor
step functions can be written in C with
__device__ keyword.

Shared, Hybrid, and Register, and compare them with a basic decomposition
algorithm, Classic. In all of these programs, one GPU thread is assigned to
one spatial point.

The Classic algorithm is a naive GPU implementation of the numerical
solution and the baseline against which the efficacy of the swept rule is measured.
It advances one sub-timestep per kernel call and uses global memory to store the
working array. Figure 6 shows the structure of the procedure, and it is similar
for all problems and discretizations.

We consider the Shared strategy for implementing the swept rule the most
natural way to map the analogy of CPU nodes to GPU architecture. It is applied
to every test case and is considered the “default” swept rule GPU version for
comparing the performance of the GPU programs with their MPI-based CPU
counterparts [9]. The Shared version treats a block as a node and uses shared
memory for the working array. Each block has exclusive access to a shared
memory space and may contain up to 1024 threads, so it has access to fast
memory and the capacity for various node sizes. There are some drawbacks to
this version: a high number of idle threads for sub-timesteps where the domain
of dependence contains relatively few spatial points, poor utilization of CPU
resources, and the fact that shared memory is not the fastest memory type [24].

The Hybrid strategy uses the same GPU procedure as Shared, uses the
CPU to compute the node that is split across the boundary, as seen in Figure 1b,
Transfers between the host and device are costly operations, but the devices can
execute instructions concurrently—so if the CPU can complete the boundary
node before the GPU finishes the other nodes, no penalty arises. In this study,
we apply this strategy to problems with non-periodic boundary conditions as a
way to mitigate the underutilization of the CPU and the thread divergence that

12

results from applying boundary conditions in a GPU kernel.
The Register approach is applied to problems with periodic boundary con-

ditions because of the difficulty involved in applying boundary conditions using
warp shuffle functions. This implementation limits the number of points in
a node to the size of a warp, 32 threads (which has been constant over sev-
eral iterations of NVIDIA GPUs). In this version the values are initially read
from global memory to shared memory to the registers. Passing the values
to the intermediate shared memory is necessary because the shuffle operations
that trade registers between threads only operate on active threads in the warp
being called; if some threads are masked, they will be unable to supply the nec-
essary stencil values. Thus, data must be moved between memory levels at each
tier rather than once at the start and end of the kernel. This seriously limits
the Register approach, but it still warrants exploration since registers are the
fastest memory type.

5.2. Test cases
We present three test cases to demonstrate the performance and function-

ality of the GPU-based swept rule in one spatial dimension: the heat equa-
tion, Kuramoto–Sivashinsky (KS) equation, and Euler equations for compress-
ible flow. Appendices Appendix B–Appendix D contain the full derivations of
the procedures for the numerical solutions. First, we chose the heat equation
for its simplicity and familiarity. Here it is discretized with a first-order scheme
using forward differencing in time and central in space. Next, we selected the
KS equation to demonstrate the swept rule for higher-order, nonlinear PDEs.
We discretized the KS equation with second-order, central differencing in space,
which requires a five-point stencil, and a second-order Runge–Kutta method in
time. Lastly we chose to solve the Euler equations, a system of quasilinear, hy-
perbolic equations for describing compressible, inviscid flow. The conservative
form of these equations are applied to the Sod shock tube problem to demon-
strate the application of the swept rule to a canonical CFD problem involving
discontinuities and several dependent variables. These equations are discretized
with a second-order, finite-volume scheme in space and a second-order method
in time. The heat equation requires a first-order domain of dependence, while
the KS and Euler equations require second-order domains of dependence. These
problems also provide examples of various types of boundary conditions. The
heat and Euler equations are solved with reflective and Dirichlet boundary con-
ditions, respectively; therefore, the boundary conditions must be imposed with
control flow. The KS equation uses periodic boundary conditions, which is a
convenient formulation for the swept rule that splits a node across the boundary.

6. Results and discussion

All tests presented here were performed on a single workstation with a Tesla
K40c GPU and an Intel Xeon 2630-E5 CPU with eight cores and 16 potential
threads. The GPU-based swept rule algorithms and test cases were implemented

13

104 105 106

Number of spatial points

100

101

102

T
im

e
 p

e
r

ti
m

e
st

e
p
 (

u
s)

Classic
Hybrid
Shared

(a) Time cost of GPU classic and swept
domain decomposition algorithms.

104 105 106

Number of spatial points

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
u
p
 v

s
C

la
ss

ic

Hybrid
Shared

(b) Speedup of swept rule programs with
respect to the Classic version.

Figure 7: Performance comparison of the GPU heat equation programs [22].

1DSweptCUDA v2 [25]. For the results we present here, each program was exe-
cuted in double precision with {2x | x ∈ N | 4 < x < 11} threads per block and
{2x | x ∈ N | 10 < x < 21} spatial points. Each run advanced 50,000 timesteps
and recorded the average time per timestep; the initial GPU memory allocations
and data transfer between the host and device are included in the overall time
measurement. Then, we collected the best time per timestep for each number
of spatial points. We repeated this procedure five times and took the average to
obtain the results presented here. There were no significant differences in the
results between the tests for the same configuration.

Figures 7a and 8a show the execution time per timestep for all algorithms
applied to the heat and KS equations. When applied to these problems, the
swept rule algorithm outperforms the Classic procedure, and the GPU-only
shared memory version, Shared, is faster than the alternate swept rule versions.
Figures 7b and 8b show the speedup of the swept rule programs, or the ratio
of time costs with the Classic version. Both cases exhibit similar performance
patterns: Shared generally provides a larger speedup for small spatial domains
(< 104 spatial points), but only a 2× speedup for large ones (> 105 spatial
points). Figures 7a and 8a show the performance trends of the algorithms with
respect to the spatial domain size. Their time costs are insensitive to the spatial
domain at smaller domain sizes and grow linearly with increasing domain size
after about 3× 105 spatial points. The similarity in the performance trends of
the heat and KS programs is intuitive; although the KS equation is nonlinear,
fourth-order, and discretized with a higher-order scheme, both are continuous,
scalar equations and use finite difference schemes.

The speedup of the swept rule declines as the number of spatial points in the
domain increases, caused primarily by occupancy and the fixed cost of kernel
launch. The occupancy of a kernel is the number of threads that can reside con-
currently on a streaming multiprocessor at launch. This quantity is determined

14

104 105 106

Number of spatial points

100

101

102

T
im

e
 p

e
r

ti
m

e
st

e
p
 (

u
s)

Classic
Register
Shared

(a) Time cost of GPU classic and swept
domain decomposition algorithms.

104 105 106

Number of spatial points

1

2

3

4

5

6

7

S
p
e
e
d
u
p
 v

s
C

la
ss

ic

Register
Shared

(b) Speedup of swept rule programs with
respect to the Classic version.

Figure 8: Performance comparison of the GPU Kuramoto–Sivashinsky equation programs [22].

by the block size, since blocks of threads are indivisible, and the resources re-
quested by the kernel. The swept rule requests more resources, specifically
shared memory and registers, than Classic to store the working array and
carry out its procedure, which involves more steps. If more resources are re-
quested than are available to the streaming multiprocessors on the device, the
GPU launches waves of blocks. If the occupancy is limited by resource alloca-
tion, the kernel must begin launching waves of blocks on domains with fewer
spatial points. Each wave must wait until the previous one completes before
beginning; theoretically this implies two waves will cost about twice as much
as one. As the number of spatial points in the domain grows, more blocks are
launched, and the difference in the number of waves per kernel call increases
more quickly for the swept rule program. This conclusion arises from the obser-
vation that the time cost of the swept rule versions begins growing linearly at a
smaller spatial domain size, about 2× 104 points, than Classic, about 6× 104

points, as shown in Figures 7a and 8a.
By timing the launch of many empty kernels and taking their average, we

measured the fixed cost of kernel launch on the testing workstation to be about
4 µs. We conclude that this cost dominates the performance of Classic at
small problem sizes because it is quite close to the cost of each timestep for
spatial domains with less than 3× 104 spatial points for both the heat and KS
equations. This fixed cost accounts for less time cost at larger spatial domain
sizes where all kernels must launch several waves of blocks, so the portion of the
swept rule speedup from avoiding kernel launches becomes negligible, and the
overall speedup of the swept rule is reduced.

Each of the swept rule variants experiences these trends, but in all cases the
Shared version performs better. Figure 7 shows the heat equation test, where
the Hybrid version performs as well as Shared for large spatial domain sizes and
2–3 times worse for small ones. The Hybrid version uses the same GPU kernels

15

104 105 106

Number of spatial points

101

102

103

T
im

e
 p

e
r

ti
m

e
st

e
p
 (

u
s)

Classic
Hybrid
Shared

(a) Time cost of GPU classic and
swept domain decomposition algorithms.
Hybrid and Shared lines overlap.

104 105 106

Number of spatial points

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S
p
e
e
d
u
p
 v

s
C

la
ss

ic

Hybrid
Shared

(b) Speedup of swept rule programs with
respect to the Classic version.

Figure 9: Performance comparison of the GPU Euler equation programs [22].

as Shared, but uses the CPU to calculate the first node when it is split across
the boundary. At smaller domain sizes, the data transfer between the host and
device dominates the cost of the Shared scheme. At larger domain sizes, this
cost drops in comparison with the overall costs, but at the same time the thread
divergence caused by handling boundary conditions also drops in importance.
Thus, the Shared and Hybrid methods perform similarly at larger domain sizes
(i.e., above 6× 104 spatial points).

Figure 8 shows the KS equation test, where, similar to the heat equation,
the Shared version performs better in all cases. While registers are the fastest
memory type, because of memory access rules the Register version must use
a warp as a node, which limits the domain of dependence to 32 spatial points.
A Register program with n = 32 must launch four times as many kernels to
advance the same number of timesteps as Shared with n = 128 (most often
the best block size). Despite these differences, the Register version exhibits
a similar performance trend to Shared, which shows about 1.5× the speedup
of Register at all spatial domain sizes. The limit on node size results in a
constant four timesteps per cycle for the KS equation, which only reduces the
number of communication events by 1/8 compared with Classic.

In contrast to the previous test cases, Figure 9 shows that the classic decom-
position outperforms the swept rule at all problem sizes when applied to the
Euler equations. This result differs from the findings of Alhubail and Wang [3]
for the swept rule implemented only with MPI on CPUs, which produces roughly
equivalent speedups for both the KS and Euler equations. The GPU implemen-
tation of the swept rule for the Euler problem involves much greater arithmetic
intensity than the other problems, causing greater low-level memory usage. This
limits the performance of the swept scheme on a GPU more than a CPU, re-
ducing the benefits of the scheme over the classic approach within a single

16

104 105 106

Number of spatial points

100

101

102

103

104
T
im

e
 p

e
r

ti
m

e
st

e
p
 (

u
s)

ClassicCPU
SweptCPU
ClassicGPU
SweptGPU

(a) Time cost of CPU and GPU programs
for KS equation.

104 105 106

Number of spatial points

0

50

100

150

200

250

300

S
p
e
e
d
u
p
 v

s
C

la
ss

ic

ClassicGPU
SweptGPU

(b) Performance improvement of GPU
program compared to the same algorithm
on the CPU.

Figure 10: Performance comparison of CPU (MPI) and GPU (CUDA) programs for the KS
equation [22].

GPU compared with the other problems. Those cases involve higher ratios of
floating-point operations to memory accesses (both read and write). This will
particularly degrade performance as the intra-domain timesteps proceed and
nodes become inactive.

With regard to the potential performance of the swept rule, this result is
not encouraging for more complex problems in more dimensions. However, on
a larger scale in a cluster, where global memory is used for the working array
and the communication to be avoided is through a physical network between
processors, we expect that the swept rule will provide a benefit for these types
of problems.

Figure 10 compares the CPU-based KS equation programs with the GPU
algorithms, Classic and Shared. This CPU version is parallelized with MPI,
similar to that originally presented by Alhubail and Wang [9]. Figure 10 refers
to the Shared program as SweptGPU because it serves as the “default” swept
rule version on the GPU for comparison with the CPU-based swept rule. The
original CPU program was designed for a distributed-memory cluster, but the
Alhubail and Wang’s original performance study used only two processes on two
CPUs [3]. The parallel CPU program was tested similarly to the GPU programs:
it was run on the same workstation with the same spatial domain sizes and 2–16
threads. Here we compare the best results for each number of spatial points,
which usually occurred with 16 threads. This did not degrade the performance
compared with the original study; in fact, both CPU versions of the program
performed significantly better, and for most spatial domain sizes the CPU-based
swept rule improved by about 6×. Since the test used up to eight times the
number of threads, this result supports the validity of repurposing this code and
comparing the result with the GPU versions.

17

Figure 10 illustrates the performance benefits of the GPU architecture more
than the swept rule itself. On small spatial domains (e.g., less than 1× 104

points) the GPU can assign one thread to each spatial point and process all
in a single wave. There it improves performance over the CPU version by less
than 50×, because the work does not fully utilize the GPU. On larger spatial
domains (e.g., more than 1× 104 points), where the work completely utilizes
the resources of the GPU, the performance increases continue growing with
problem size. The increase of the GPU programs’ improvement with respect
to the number of points in the spatial domain inverts the trend of the swept
rule’s improvement with respect to the Classic kernel. Both GPU algorithm
types show a speedup of about 5× for the smallest spatial domain. At the other
end, the speedup grows to about 300× for the swept and 100× for the classic
domain decomposition.

7. Conclusions

In this study we compared the time per timestep of three swept rule time-
space decomposition implementations to a simple domain decomposition scheme,
Classic, for GPU accelerators. These programs were evaluated on a range of
spatial domain sizes. The Classic and Shared programs were also compared
with their CPU-based counterparts parallelized with MPI.

Generally, the swept rule performs better relative to Classic when the kernel
launch cost is a substantial element of the program cost and the spatial grid
has fewer points than concurrently launchable threads on the GPU. Once this
is exceeded, the launch cost penalty becomes negligible and greater resource
usage penalizes the swept rule in the form of reduced occupancy and reduced
availability of the L1 cache, which is reserved for shared memory. But, like
the initial performance penalty for the Classic program, the resource usage
penalty does not scale and all programs see their time cost rise nearly linearly
with respect to spatial domain size after about 105 spatial points.

Both alternate swept-rule procedures, Hybrid and Register, performed
slightly worse than the Shared version. We attribute the failure of the Hybrid
routine to improve performance to improvements made in the handling of the
boundary conditions in Shared rather than the cost of host-to-device communi-
cation, which is handled with asynchronous streams. Though the Hybrid version
does not improve performance, it does not substantially degrade it either, espe-
cially with large spatial domain sizes. Ultimately, Hybrid computation seeks to
solve a problem more efficient to solve within the GPU paradigm. The Register
computation shows more promise but falls short because of the limited node size.

This study also shows that implementing a Classic decomposition on the
GPU for an explicit numerical scheme is simple and may result in noticeable
performance improvements. This may be enough for many applications, but
in performance-critical cases the swept rule may further reduce execution time.
The performance of the Classic decomposition programs may be improved by
altering the synchronization method. Implicit synchronization incurs the cost
of kernel launch at each sub-timestep, and this kernel executes so quickly at

18

small problem sizes that synchronization cost dominates the performance of
the program. Using off-the-shelf, GPU-based synchronization [26] could also
provide performance benefits for the swept rule, and in particular Register,
which is also limited by kernel launch cost for small spatial domains.

The specific results presented here depend on the hardware used. A commer-
cial GeForce GPU with Kepler architecture would perform worse than the Tesla
K40c, which is designed for computation as opposed to actual graphics. Despite
the significant performance increase shown here, the Tesla K40c is three-year-old
technology. The current state-of-the-art GPGPU with Pascal architecture, the
Tesla P100, offers twice the K40c base clock speed, nearly four times the number
of streaming multiprocessors, and an extra 16 kB of shared memory indepen-
dent of the L1 cache. Additional dedicated shared memory could dramatically
impact the swept rule’s performance for the Euler equations. We predict that
this device could at least halve the execution times shown here and maintain
insensitivity to problem size up to over 105 spatial points, potentially result-
ing in speedups on the order of 103 over CPU parallel versions. Future GPU
accelerators could further improve performance, as well as devices with similar
SIMT architectures like Intel MIC/Xeon Phi.

Our future work will focus on further developing the swept rule for use on
distributed memory systems with heterogeneous node architectures and imple-
menting the swept rule in higher dimensions on the GPU. We expect the per-
formance benefits to increase from the swept rule when applied to a distributed
memory system comprised of nodes with CPUs and GPUs, where network com-
munications incur more latency than intra-GPU memory access. However, we
anticipate the performance benefits of the swept rule will diminish for higher
dimensions; in two dimensions the swept rule requires three stages of inter-
node communication to advance one cycle, analogous to a single diamond in
one dimension. This, along with the associated increase in required memory
allocation, arithmetic intensity, and kernel launch events could limit the per-
formance of the swept rule as observed by Alhubail et al. [4]. In spite of these
challenges, recent developments such as grid-wide synchronization and increased
shared memory capacity could aid the performance of the swept rule and permit
the exploration of additional design options.

Appendix A. Availability of materials

The results for this article were obtained using 1DSweptCUDA v2 [25]. All
figures, and the data and plotting scripts necessary to reproduce them, are
available openly under the CC-BY license [22].

Appendix B. Heat equation

The unsteady heat conduction equation without volumetric heat flux is

∂T

∂t
= α∇2T . (B.1)

19

where T is temperature, t is time, and α is thermal diffusivity. In one dimension,
this is reduced to

∂T

∂t
= α

∂2T

∂x2
. (B.2)

Discretizing Eq. (B.2) with forward differencing in time and central in space
yields

Tm+1
i − Tmi

∆t
= α

Tmi+1 + Tmi−1 + 2Tmi
∆x2

, (B.3)

where i is the spatial node index and m is the time index corresponding to
time tm. This is a first-order, explicit, finite-difference approximation. To step
forward in time, define the Fourier number, Fo = α∆t

∆x2 , where ∆t is the timestep
size and ∆x is the spatial grid size, and solve for temperature at the next
timestep:

Tm+1
i = Fo(Tmi+1 + Tmi−1) + (1− 2Fo)Tmi . (B.4)

In this study the approximation is evaluated with insulated boundary conditions
at both ends and n spatial points:

T−1 = T1 and Tn+1 = Tn−1 . (B.5)

Appendix C. Kuramoto–Sivashinsky equation

The Kuramoto–Sivashinsky equation is a nonlinear, fourth-order, one-dimensional
unsteady PDE:

ut = −(uux + uxx + uxxxx) = −
(

1

2
u2
x + uxx + uxxxx

)
, (C.1)

where u is the dependent chaotic variable (e.g., fluid velocity). It is discretized
similarly to the heat equation, as shown in Eq. (C.2), with central differencing
in space. In this case, decomposing the fourth spatial derivative requires a
five-point stencil:

um+1
i − umi

∆t
= −

(
(umi+1)2 − (umi−1)2

4∆x
+
umi+1 + umi−1 + 2umi

∆x2
+

umi+2 − 4umi+1 + 6umi − 4umi−1 + umi−2

∆x4

)
. (C.2)

The chaotic nature of the problem necessitates a higher-order scheme overall;
therefore, an explicit, second-order Runge–Kutta scheme, also known as the
midpoint method, is applied to the time domain.

Let the right-hand side of Eq (C.2) be f(u(x, t)), then the predictor solution
is found at um+1/2

i :

u
m+1/2
i = umi +

∆t

2
f(umi) . (C.3)

20

Then f(u
m+1/2
i) may be evaluated and added to umi to obtain um+1

i :

um+1
i = umi + ∆tf(u

m+1/2
i) . (C.4)

The problem demonstrated here uses periodic initial and boundary condi-
tions. That is, the stencil at point 0 includes points n and n− 1 and the initial
condition is periodic and continuous at the spatial boundaries.

Appendix D. Euler equations (Sod shock tube)

The Sod shock tube problem is a one-dimensional unsteady compressible
flow problem based on the nonlinear, quasi-hyperbolic Euler equations:

∂Q

∂t
+
∂F

∂x
=
∂Q

∂t
+ J

∂Q

∂x
= 0 (D.1)

where J is the Jacobian matrix,

Q =

 ρ
ρu
ρe

 , (D.2)

F =

 ρu
ρu2 + P
u(ρe+ P)

 , (D.3)

ρ is density, e is internal energy, u is velocity, P is pressure given by

P = (γ − 1)(e− ρu2

2
) , (D.4)

and γ = 1.4 is the heat capacity ratio of air.
The initial boundary conditions, given in Eq. (D.5), are constant values for

the state variables on either side of a diaphragm separating two parcels of the
same fluid. The spatial boundary conditions are these values at their respective
ends of the tube:ρLuL

PL

 =

1.0
0.0
1.0

 and

ρRuR
PR

 =

0.125
0.0
0.1

 . (D.5)

The equation is discretized using a second-order, finite-volume scheme with
cell-centered values. The first step in the solution is evaluating the pressure
ratio at the current timestep over a five-point stencil

Pr,i =
Pi+1 − Pi
Pi − Pi−1

at i− 1, i, i+ 1 (D.6)

This value is used with a minmod limiter to compute reconstructed values
on both sides, L and R, of the current cell boundaries at i± 1/2:

QLn =

{
QLo +

min(PL
r ,1)

2 ∗ (QRo −QLo), if 0 < PLr <∞
QLo , otherwise.

(D.7)

21

QRn =

{
QRo +

min((PR
r)−1,1)
2 ∗ (QLo −QRo), if 0 < 1

PR
r
<∞

QRo , otherwise.
(D.8)

where subscript n refers to the reconstructed, or new, values on the edge of
the interface and o refers to the original values. For example, at i − 1/2 the
original values on the left side of the interface are at i− 1. These reconstructed
boundaries do not represent solutions for any grid cell; they are temporary
values that interpolate the solutions.

Once we have the reconstructed values on either side of the interface, we can
calculate the flux at that cell boundary with

Flux =
1

2
∗ (F (QR) + F (QL) + rsp ∗ (QL −QR)) (D.9)

where F (Q) is given by Eq. (D.3) and rsp is the spectral radius, the largest
eigenvalue of the Jacobian matrix J .

The spectral radius can be found with the Roe average Q at the interface

Qsp =

ρspusp
esp

 =

√
ρL ∗ ρR√

ρL∗uL+
√
ρR∗uR√

ρL+
√
ρR√

ρL∗eL+
√
ρR∗eR√

ρL+
√
ρR

 (D.10)

and Psp with Qsp using Eq. (D.4).
The spectral radius is given by

rsp =

√
γ ∗ Psp
ρsp

+ |usp| (D.11)

Repeating this process at both interfaces yields all required values to solve
for a timestep

Qn+1
i = Qni +

∆t

∆x
(Fluxn+1/2

i+1/2 − Fluxn+1/2
i−1/2) (D.12)

The results presented here for the Euler equations use a second-order Runge–
Kutta scheme in time, which can be obtained with the same procedure shown
in Eqs. (C.4) and (C.3).

Acknowledgments

This material is based upon work supported by NASA under award No. NNX15AU66A
under the technical monitoring of Drs. Eric Nielsen and Mujeeb Malik. We also
gratefully acknowledge the support of NVIDIA Corporation with the donation
of the Tesla K40c GPU used for this research.

22

[1] J. P. Slotnick, A. Khodadoust, J. J. Alonso, D. L. Darmofal, W. D. Gropp,
E. A. Lurie, D. J. Mavriplis, CFD vision 2030 study: A path to revolu-
tionary computational aerosciences, NASA Technical Report, NASA/CR-
2014-218178, NF1676L-18332 (Mar. 2014).

[2] D. A. Patterson, Latency lags bandwith, Commun. ACM 47 (10) (2004)
71–75. doi:10.1145/1022594.1022596.

[3] M. Alhubail, Q. Wang, The swept rule for breaking the latency barrier in
time advancing PDEs, Journal of Computational Physics 307 (2016) 110–
121. doi:10.1016/j.jcp.2015.11.026.

[4] M. M. Alhubail, Q. Wang, J. Williams, The swept rule for breaking the la-
tency barrier in time advancing two-dimensional PDEs, arXiv:1602.07558
[cs.NA] (2016).

[5] I. Bermejo-Moreno, J. Bodart, J. Larsson, B. M. Barney, J. W. Nichols,
S. Jones, Solving the compressible Navier–Stokes equations on up to 1.97
million cores and 4.1 trillion grid points, in: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’13, ACM, New York, NY, USA, 2013, pp. 62:1–62:10.
doi:10.1145/2503210.2503265.

[6] K. E. Niemeyer, C. J. Sung, Recent progress and challenges in exploiting
graphics processors in computational fluid dynamics, Journal of Supercom-
puting 67 (2) (2014) 528–564. doi:10.1007/s11227-013-1015-7.

[7] NVIDIA Corporation, Whitepaper Nvidia Tesla P100, http://www.
nvidia.com/object/pascal-architecture-whitepaper.html (2016).

[8] F. Witherden, A. Farrington, P. Vincent, PyFR: An open source framework
for solving advection–diffusion type problems on streaming architectures
using the flux reconstruction approach, Computer Physics Communications
185 (11) (2014) 3028–3040. doi:10.1016/j.cpc.2014.07.011.

[9] M. Alhubail, Q. Wang, KSIDSwept, git commit e575d73, https://
github.com/hubailmm/K-S_1D_Swept (2015).

[10] R. Strzodka, M. Shaheen, D. Pajak, H.-P. Seidel, Cache oblivious parallel-
ograms in iterative stencil computations, in: Proceedings of the 24th ACM
International Conference on Supercomputing, ICS ’10, ACM, New York,
NY, USA, 2010, pp. 49–59. doi:10.1145/1810085.1810096.

[11] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, D. Keyes, Multicore-
optimized wavefront diamond blocking for optimizing stencil updates,
SIAM Journal on Scientific Computing 37 (4) (2015) C439–C464. doi:
10.1137/140991133.

23

http://dx.doi.org/10.1145/1022594.1022596
http://dx.doi.org/10.1016/j.jcp.2015.11.026
https://arxiv.org/abs/1602.07558
http://dx.doi.org/10.1145/2503210.2503265
http://dx.doi.org/10.1007/s11227-013-1015-7
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://dx.doi.org/10.1016/j.cpc.2014.07.011
https://github.com/hubailmm/K-S_1D_Swept
https://github.com/hubailmm/K-S_1D_Swept
http://dx.doi.org/10.1145/1810085.1810096
http://dx.doi.org/10.1137/140991133
http://dx.doi.org/10.1137/140991133

[12] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, K. Yelick, Stencil computation optimization and auto-
tuning on state-of-the-art multicore architectures, in: Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, SC ’08, IEEE Press, Pis-
cataway, NJ, USA, 2008, pp. 4:1–4:12.
URL http://dl.acm.org/citation.cfm?id=1413370.1413375

[13] M. J. Gander, 50 years of time parallel time integration, in: T. Carraro,
M. Geiger, S. Körkel, R. Rannacher (Eds.), Multiple Shooting and Time
Domain Decomposition Methods, Vol. 9 of Contributions in Mathematical
and Computational Sciences, Springer, Cham, 2015, pp. 69–113. doi:
10.1007/978-3-319-23321-5_3.

[14] R. Falgout, S. Friedhoff, T. Kolev, S. MacLachlan, J. B. Schroder, Parallel
time integration with multigrid, PAMM 14 (2014) 951–952. doi:10.1002/
pamm.201410456.

[15] M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy, S. Tomov, A
class of communication-avoiding algorithms for solving general dense linear
systems on CPU/GPU parallel machines, Procedia Computer Science 9
(2012) 17–26. doi:10.1016/j.procs.2012.04.003.

[16] M. Anderson, G. Ballard, J. Demmel, K. Keutzer, Communication-avoiding
QR decomposition for GPUs, in: Parallel Distributed Processing Sympo-
sium (IPDPS), 2011 IEEE International, 2011, pp. 48–58. doi:10.1109/
IPDPS.2011.15.

[17] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J. C. Phillips,
GPU computing, Proc. IEEE 96 (5) (2008) 879–899. doi:10.1109/JPROC.
2008.917757.

[18] NVIDIA Corporation, CUDA C programming guide, version 8.0 (2016).
URL http://docs.nvidia.com/cuda/cuda-c-programming-guide

[19] A. R. Brodtkorb, T. R. Hagen, M. L. Sætra, Graphics processing unit
(GPU) programming strategies and trends in GPU computing, J. Parallel
Distrib. Comput. 73 (1) (2013) 4–13. doi:10.1016/j.jpdc.2012.04.003.

[20] D. Storti, M. Yurtoglu, CUDA for Engineers: An introduction to High-
Performance Parallel Computing, Addison-Wesley, 2015.

[21] F. A. Cruz, S. K. Layton, L. A. Barba, How to obtain efficient GPU kernels:
An illustration using FMM & FGT algorithms, Comput. Phys. Comm.
182 (10) (2011) 2084–2098. doi:10.1016/j.cpc.2011.05.002.

[22] D. J. Magee, K. E. Niemeyer, Data, plotting scripts, and figures for “Ac-
celerating solutions of PDEs with GPU-based swept time-space decompo-
sition” (Nov. 2017). doi:10.6084/m9.figshare.4968050.v4.

24

http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://dx.doi.org/10.1002/pamm.201410456
http://dx.doi.org/10.1002/pamm.201410456
http://dx.doi.org/10.1016/j.procs.2012.04.003
http://dx.doi.org/10.1109/IPDPS.2011.15
http://dx.doi.org/10.1109/IPDPS.2011.15
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/JPROC.2008.917757
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://dx.doi.org/10.1016/j.jpdc.2012.04.003
http://dx.doi.org/10.1016/j.cpc.2011.05.002
http://dx.doi.org/10.6084/m9.figshare.4968050.v4

[23] Q. Wang, Decomposition of stencil update formula into atomic stages,
arXiv:1606.00721 [math.NA] (2017).

[24] M. Harris, CUDA pro tip: Do the Kepler shuffle, https://devblogs.
nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/, ac-
cessed: 3 June 2016 (Feb. 2014).

[25] D. J. Magee, K. E. Niemeyer, Niemeyer-Research-Group/1DSweptCUDA
v2 (May 2017). doi:10.5281/zenodo.570984.

[26] S. Xiao, W. C. Feng, Inter-block GPU communication via fast barrier
synchronization, in: 2010 IEEE International Symposium on Parallel Dis-
tributed Processing (IPDPS), 2010, pp. 1–12. doi:10.1109/IPDPS.2010.
5470477.

25

https://arxiv.org/abs/1606.00721
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/
http://dx.doi.org/10.5281/zenodo.570984
http://dx.doi.org/10.1109/IPDPS.2010.5470477
http://dx.doi.org/10.1109/IPDPS.2010.5470477

	1 Introduction
	2 Related work
	3 GPU architecture and memory
	4 Methodology
	4.1 Experimental method
	4.2 First-order domain of dependence
	4.3 Higher-order domain of dependence

	5 Implementation
	5.1 Swept rule variants
	5.2 Test cases

	6 Results and discussion
	7 Conclusions
	Appendix A Availability of materials
	Appendix B Heat equation
	Appendix C Kuramoto–Sivashinsky equation
	Appendix D Euler equations (Sod shock tube)

