
AQ-CAR: Adaptive-Queueing Congestion-Aware
Routing for Datacenter Traffic Forwarding

Sultan Alanazi and Bechir Hamdaoui
School of EECS, Oregon State University, Corvallis, Oregon, USA

{alanazsu,hamdaoui}@oregonstate.edu

Abstract—Modern datacenters are constructed with multi-
rooted tree topologies and support multiple service queues
per switch port. They support a wide variety of applications
and services with stringent performance needs and conflicting
requirements. To meet these requirements, recent works focus
on load balancing or ECN marking approaches. Though existing
load-balancing approaches can deliver good performance for
both short and long flows, they do not consider integrating
active queue management with load balancing to further improve
the network performance and meet applications’ requirements.
In this paper, we propose AQ-CAR, a novel framework that
combines active queue management with an efficient load-
balancing algorithm to deliver high throughput and low latency
simultaneously. More specifically, it classifies the queues in each
switch port into small, medium, and large classes, each serving
a specific flow type. Then it performs adaptive queueing where
a flow initially is enqueued at the small service queue and
then gets migrated adaptively to the other queues based on
the number of bytes it has sent. To achieve congestion- and
traffic-aware routing/rerouting, the load balancer first detects
the flow type and then piggybacks the congestion information
of the queues that serve this flow type. Then it routes/reroutes
the flow to the path with minimum congestion. Large-scale ns-
2 simulations show that AQ-CAR outperforms the state-of-the-
art load balancing and ECN marking schemes for different
performance metrics under a variety of workloads.

Index Terms—Datacenter networks, congestion control, ex-
plicit congestion notification, queue management, fairness.

I. INTRODUCTION

Cloud datacenters host a variety of applications and ser-
vices, which generate a mix of delay-sensitive short flows
and throughput-oriented long flows. For instance, file transfer
[1] requires high throughput, whereas group video calls [2]
require low latency. Moreover, some services such as online
data-intensive applications [3] require both high throughput
and low latency. Thus, it is important to have a resource
allocation and management framework that can deliver both
low latency and high throughput simultaneously. To meet
these requirements, some researchers focus on improving
load balancing while others aimed at providing active queue
management of the network switches.

Modern datacenter networks are typically organized in
multi-rooted tree topologies such as leaf-spine to provide
multiple paths for communications between any host pairs [4].
Thus, many load balancing approaches have been proposed to
efficiently balance the traffic across multiple available paths.
As a flow-level load balancer, Equal Cost Multi-Path (ECMP)
randomly maps each flow to one of the paths by using a hash

taken over the packet headers. Even though ECMP is very
simple, it suffers from the well-known hash collision problem
and the lack of flexible traffic rerouting. To mitigate this issue,
several load balancing schemes have been proposed with finer
traffic routing granularity such as per-packet and per-flowlet.
While packet-based load balancing schemes [5, 6] can rapidly
maximize the link utilization and balance the traffic more
efficiently, they suffer from serious packet reordering that can
severely degrade the network performance.

Flowlet-based load-balancing schemes [7, 8], on the other
hand, split each flow into small flowlets, which are a group
of packets belonging to the same flow that are separated by
a large enough time in order to avoid reordering. Flowlet-
based approaches can make a good balance between packet
reordering and link utilization. Nonetheless, they perform
congestion-oblivious rerouting, which may increase the tail
latency of short flows. On the other hand, a great body of work
leverages ECN (explicit congestion notification) marking [9]
to deliver both low latency and high throughput simultane-
ously. ECN-based transport mechanisms such as DCTCP [10]
and DCQCN [11] have been broadly used in industry because
of their simplicity. Although DCTCP and other transport
schemes can deliver low latency and high throughput, their
ECN marking schemes are designed for switches with only
one single queue per switch port. However, current industry
trends towards manufacturing switches with up to 8 classes
of service queues per port [12].

MQ-ECN [13] has been proposed to optimize the ECN
marking scheme of DCTCP in multi-queue scenarios. MQ-
ECN periodically adjusts the ECN marking threshold for each
queue independently based on the queue weight and the round-
trip time. However, imprecise measurement is considerable
in MQ-ECN since data traffic in DCN is bursty in nature.
Moreover, setting the threshold dynamically requires periodic
round-trip time measurements which incur non-negligible
overhead for switches [13]. A-ECN [14] designs an adaptive
ECN marking scheme that does not consider time interval,
as in MQ-ECN, to update the marking threshold. Instead,
it uses the number of enqueued packets as the interval to
update the marking threshold. Although the ECN marking
schemes mentioned above can achieve low latency and high
throughput, they cannot ensure fairness among flows during
the enqueueing and ECN marking process.

Therefore, in this paper, we propose AQ-CAR, a framework
that combines active queue management and congestion-aware



Fig. 1: AQ-CAR Overview

load balancing to deliver low latency for short flows while
maintaining high throughput for long flows. To this end, the
main contributions of the paper are:

1) Integrating active queue management with load balancing
capability to develop efficient resource allocation and
management framework for cloud datacenter networks.

2) Proposing a congestion-aware routing algorithm that
makes initial flows to paths allocation during TCPâĂŹs
3-way handshaking process.

3) Proposing congestion- and traffic-aware rerouting algo-
rithm that reroutes medium flows that contribute the most
to link congestion without causing packet reordering.

4) Large-scale NS2 simulations of AQ-CAR under differ-
ent realistic workloads. Our results show that AQ-CAR
greatly reduces the average flow completion time over
the state-of-the-art load balancing mechanisms.

The paper is organized as follows. Section II presents
the proposed framework, AQ-CAR. Section III presents the
performance results. Finally, Section IV concludes the paper.

II. AQ-CAR DESIGN

We now present AQ-CAR, our proposed adaptive-queueing
and congestion-aware routing framework for datacenter
switches with multiple queues per port. At its core, AQ-CAR
has two main components: packet tagging and switch design.

A. Packet Tagging

Maintaining per-flow states at switches requires counting
and storing how much data has been sent for each flow, which
is not supported in existing commodity switches. Therefore,
AQ-CAR relies on end hosts’ TCP to count the number of sent
bytes and include this packet tagging information in the packet
header. Switches can then leverage the tagged information to
perform efficient routing and management of traffic. However,
as it is not feasible for packets to carry accurate flow size
information, which requires large header bits, we set and rely
on threshold levels to indicate the size of the flow. Once the
number of bytes sent by a flow reaches a certain threshold,
the corresponding threshold level is tagged, again by end
host’s TCP, into the packet header to convey the flow’s current
size. Thus, at initialization when a flow starts, its packets are
initially tagged with the first level, and as more bytes are sent,
the flow’s packets are tagged with increasing levels.

B. Switch Design

As shown in Fig. 1, AQ-CAR switch design has three main
components: a flow class identifier, a forwarding manager, and

an active queue manager (AQM). First, the flow class identifier
extracts the flow size information from packet headers and
arranges packets into small, medium, and large classes. The
forwarding manager handles the routing and rerouting of each
flow class. AQM is responsible for enqueueing, ECN marking,
and dequeuing packets based on their flow class.

1) Flow Class Identifier: Upon a packet arrival, the flow
class identifier extracts the flow size information tagged, by
end hosts, in the IP DSCP field in the packet header and
compares it to predefined thresholds, Tsmall and Tmedium, to
determine its flow class (stage value). Thus, when the stage
value is less than or equal to Tsmall, an arriving packet will
be handed to the initial routing module to forward the packet.
When the stage value is greater than Tsmall and less than or
equal to Tmedium, the packet will be delivered to the medium
rerouting module to check the possibility of rerouting without
incurring packet reordering. Otherwise, the packet will be
handed to the large rerouting module.

2) Forwarding Manager: Congestion-aware load-balancing
protocol designs require the following key elements:

• Congestion Measurement: Leaf switches need to acquire
spine switches’ queue length information. One way is
to carry this information in packets’ headers, but this
would require a large number of bits in the packet header.
Instead, we use multi-level thresholds to represent queue
length levels, which are then used to infer congestion lev-
els. Specifically, AQ-CAR designates 2 bits in the packet
header for this information. Following [10], to achieve
full link utilization while maintaining low latency, the
maximum threshold level is set as: K = C ×RTT × λ,
where C is the link capacity, RTT is the average round-
trip time, and λ is a parameter set by the congestion
control algorithm. AQ-CAR considers four levels, based
on the value of K/4, with K = 64. These levels serve to
exchange congestion information between leaf switches.

• Congestion Feedback Table: Congestion-aware load-
balancing protocols require source leaf switches to have
real-time congestion information from all paths between
the flowâĂŹs source and destination. In the switch port as
shown in Fig. 1, we have three service queues and each
queue serves one of the flow classes (small, medium,
and large). To manage the forwarding of each flow class,
source leaf switches need to know the congestion level of
each queue class. On each spine, the congestion level of
the queue class serving the data packet will be tagged in
the packet header before forwarding it to the destination
leaf switches. This information is stored at the destination
leaf switch in a flow class table and is fed back to the
source leaf (when needed) through packet piggybacking
in the reverse direction.

• Path Allocation Table (PAT): Path allocation decisions
are maintained in PAT in each leaf switch. Each PAT
entry represents a flow-to-path allocation, and records
flow ID, selected port number, destination leaf ID, arrival
time of the last enqueued packet, a valid bit indicating
whether a flow is active (1) or not (0), and an age



Fig. 2: ML-ECN Overview

bit indicating entry timeout. Upon the arrival of each
packet, the switch looks for an entry based on its flow
ID. If the entry is found and is valid, the packet is
forwarded through the corresponding port indicated in
the entry. If the entry is invalid or no entry exists, then
the packet represents a new flow and starts a new path
allocation process. PAT entries timeout after a period
of inactivity indicating expired entries and triggering a
new path allocation process. Only one bit is needed to
implement the timer for each entry and a global timer
for the entire PAT [5].

a) Initial Routing: Figure 2 illustrates our path allocation
for a new flow. There is a new TCP connection between a
source host under leaf switches L1 and a destination host
under leaf switch L2. The flow is initiated using SYN in
the forward direction from L1 to L2. When the first packet
(SYN in this case) reaches the leaf switch L1, the flow class
identifier detects that it is a new flow and hands the packet to
the initial routing component for packet forwarding. The initial
routing triggers the path selection mechanism after checking
PAT. It forwards the SYN packet using ECMP and inserts a
new entry into the PAT. Spine switches tag SYN and data
packets with the congestion level of the queue that dequeued
the packet. Upon the arrival of the SYN or a data packet, the
destination leaf switch, L2 in this example, detects the flow
class, pulls the congestion information, and updates the small
congestion feedback table. However, if the packet belongs to a
medium flow, then the medium congestion feedback table will
be updated. The destination leaf then forwards the SYN packet
to the destination host. This finishes the forward direction part
of the path allocation process.

The reverse direction part starts when the destination host
initiates SYN-ACK packet and forwards it to leaf switch L2.
The leaf switch tags the packet with the ingress congestion
information saved in the small feedback table for each port
and routes the packet to the upper switch level using ECMP,
which in turn forwards the packet to the leaf switch L1. L1
pulls the congestion information and aggregates it, entry-by-
entry, with its egress link loads. The effective congestion of
all n paths between the source leaf and the spine level is
determined simply as the maximum load of the two hops. L1
then chooses the spine switch ID with the minimum effective
congestion, which is 1 in this case. Finally, all the subsequent
packets of this flow will be routed through port 1.

b) Medium Reouting: Since flow sizes are not known a
priori, the initial routing algorithm can’t achieve good load
balancing. Initially, assigned flows in some ports may finish
early while the flows in other ports grow in size and create
bottlenecks in the network. Thus, it is essential to reroute
parts of the traffic for better load balancing and for alleviating
congestion and ensuring high network throughput. AQ-CAR
adopts a rerouting approach with three key design goals:

• Alleviate congestion: Ensure that the newly selected path
is not congested.

• Mitigate packet reordering: Ensure that earlier arrived
packets are forwarded before latter arrived packets.

• Incur low overheads: Minimize the number of rerouted
flows while achieving efficient load balancing.

To achieve these goals, AQ-CAR’s rerouting algorithm lever-
ages cooperation among network switches, with ECN marking
is triggered on certain flows once the length of a medium
queue class exceeds any of the predefined thresholds.

Destination leaf switches react to the marked packet by
extracting the queue length information tagged in the packet
header and checking if the following conditions exist. First,
the queue length should exceed the rerouting threshold. Sec-
ond, the flow must be among the larger flows in the medium
class range. Medium queue class has a range of flow sizes,
so as to minimize the number of rerouted flows and hence
to reduce the rerouting overhead; i.e., AQ-CAR reroutes the
flows that contribute the most to the queue buildup.

Once these conditions are met, the switch inserts the flow in
the medium rerouting table. Then, it piggybacks every ACK
for this flow with congestion information of all the ports
recorded in the medium feedback table. The destination leaf
stops packet piggybacking either if the flow is rerouted or
the congestion is alleviated (the queue length falls below a
predefined threshold) to reduce the network overhead.

Upon the arrival of the tagged ACK packet, the source leaf
switch extracts the piggybacked congestion information and
stores it in a piggy table indexed by the destination leaf switch
ID. When a packet pi, belongs to a medium flow f that needs
to be rerouted, arrives at the source leaf switch at time ti, the
leaf calculates and records the leaf queueing delay as

LQDi =
Psize × (mqlength + 1)

C ×mqweight/Totalweight
(1)

where Psize is the packet size, mqlength is the length of the
medium queue class in pi’s destined output port, C is the
link bandwidth corresponding to the output port, mqweight is
the weigh of the medium queue class, and Totalweight is the
weight sum of all the queues. When the following packet pi+1

that belongs to a medium flow f arrives at time ti+1, then the
leaf switch reads the medium queue length information of the
current spine queue, stored in a piggy table, and calculates
the spine queueing delay as

SQDi =
Psize × (mqlength)

C ×mqweight/Totalweight
(2)



Fig. 3: AQM with ML-ECN Overview

The remaining queueing delay of packet pi is then

RQDi = SQDi + LQDi + (ti − ti+1) (3)

The forwarding manager of the switch then finds the paths
with a larger queueing delay than RQDi and selects the path
with the current minimum queueing delay among all possible
paths. Packet pi+1 and all the subsequent packets of flow f
will be routed through the newly selected path.

c) Large ReRouting: 10% of TCP flows generate about
90% of overall data traffic, while 90% only generate around
10% of the traffic [10, 15]. This means that a significant
portion of the data traffic comes from large flows. Thus, the
aim of the large rerouting component is to distribute these
large flows across the network and to prevent multiple large
flows from sharing the same port. Once a destination leaf
switch detects that two large flows share the same port and
there exists another port with no large flows, it piggybacks
one of the large flows’ ACK packets with the ports that do
not have large flows, thus signaling the source leaf to initiate
large flow rerouting. Upon receiving these packets, the source
leaf reroutes the flow to a new path that has no large flows.

3) Active Queue Manager:
a) ECN Marking: As depicted in Fig. 3, AQ-CAR adopts

multi-level ECN (ML-ECN) marking in each switch queue.
ML-ECN is designed with the three-fold goal of ensuring:

• Low latency for small (latency-sensitive) flows.
• High throughput for large (throughput-sensitive) flows.
• Fair packet enqueueing and ECN marking so as to not

penalize smaller flows due to high buffer pressure that
could result from larger flows.

ECN-marking based on a single threshold value cannot
always guarantee high throughput, low latency, and fairness in
the presence of flows with various sizes [13, 16]. To overcome
this limitation, we leverage the classification of queues into
different classes and design a specific ECN-marking scheme
for each queue class as follows:

• Small service-queue: We employ per-queue standard
threshold K for this queue class.

• Medium service-queue: We design a scheme that marks
packets in the queue based on the current queue length
and the total length of all queues in the port buffer. First,
the scheme compares the total length of all queues to the
standard threshold K. If the total length is less than K,
then it applies ECN-marking, based on multi-level thresh-
olds, as follows: TLi = i ×K/L with i ∈ [1, L] where
TLi, K, and L are respectively the i-th threshold level,

standard thresholds and the total number of thresholds.
Furthermore, for each threshold level employed on the
service queues, we perform fairness-aware probabilistic
ECN marking on a selective range of flows to ensure
that smaller flows are not marked (penalized) at the early
stages of queue build-up. Therefore, at the first (mini-
mum) threshold, ML-ECN only performs ECN marking,
with low probability, on large flows with maximum stage
value tagged in their packet headers. As the threshold
level increases, ECN marking is also performed, with low
probability, on flows with lower stage values. Moreover,
the marking probability will increase on the flows with
larger stage values. Thus, packet marking in ML-ECN is
proportional to the queue length. On the other hand, if the
total length of all queues in the port buffer is greater than
the standard threshold K, then the ECN-marking scheme
marks all dequeued packets if the queue length exceeds
its minimum threshold TL1.

• Large service-queue: We employ similar ECN-marking
as in the medium service-queue but with the following
changes. Instead of applying selective marking, based
on flow sizes, when queue length reaches each thresh-
old level, the scheme in large service-queue marks all
packets at each threshold level with increasing marking
probability. Moreover, if the total length of all queues in
the port buffer is greater than the standard threshold K,
the scheme on each queue marks all packets regardless
of the current queue length.

b) Scheduler: As the case of most commodity switches,
AQ-CAR adopts Weighted Round Robin (WRR) scheduling to
dequeue packets from the different queues, where the number
of packets dequeued from each queue is proportional to the
weight assigned to the queue. With packets enqueued into
different queues according to their current stage level, the
built-in WRR scheduler leverages the classification of queues
into small, medium, and large service queues, and assigns
weights to the queues with the goal of achieving low latency
for small flows without impacting the throughput of large
flows. Therefore, ML-ECN assigns higher weights to small
and medium queues and lower weights to large queues.

III. PERFORMANCE EVALUATION

Large-scale ns-2 simulations are conducted to evaluate
the performances of AQ-CAR, and compare them against
representative schemes that focus on either load balancing or
ECN marking to improve datacenter network performances.

• Flex [7]: A load balancing scheme based on load-
adaptive flowlet timeout. It splits network traffic into
flowlets at end hosts and forwards each packet at switches
using both the five-tuple and a flowlet tag. It uses the
default ECN-marking scheme of DCTCP [10] for AQM.

• A-ECN [14]: An adaptive ECN marking scheme de-
signed to minimize the flow completion time (FCT) while
maintaining high throughput. It uses the default equal-
cost multipath (ECMP) for load balancing.



• ECMP [17]: The most commonly used routing in data-
centers that provides equal-cost multipath. ECMP routes
each packet by taking a hash of the packet’s TCP 5-tuple
(src IP, dest IP, src port, dest port, protocol). It uses the
default ECN-marking scheme of DCTCP [10] for AQM.

Topology: We run the experiments on 144-host Leaf-Spine
topology. The network in our experiments has 12 leaf (Top-
of-Rack) switches, and 12 spine (Core) switches. Each Leaf
switch is connected to 12 hosts through 10Gbps downlink
ports and is connected to 12 Spine switches through 10Gbps
uplink ports, forming a non-blocking network. The round-trip-
time (RTT) latency across spines (4 hops) is 85.2µsec.

Workloads: We run 4 different workloads, a Web search
[10], a Data mining [18], a Cache [19], and a Hadoop [19]
with 914 KB, 1671 KB, 4149 KB, and 7495 KB of mean flow
sizes, respectively. In addition, we run a workload consisting
of the four different flow distributions all mixed together (mix
workload). We use FCT (flow completion time), throughput,
and the number of dropped packets as the performance metrics
in our simulation. We divide all flows based on their sizes
into three classes, including short flows (0, 100KB], medium
flows (100KB, 10MB], and large flows (> 10MB). We
consider the results of overall flows and the breakdown across
different flow sizes independently (short, medium, and long).
All simulations last for 50K flows.

A. Flow Completion Time (FCT)

FCT is the time from when the SYN packet of a flow is
sent until the last packet is received by the destination. In this
section, we show the FCT performance of all the schemes
when running them across different workloads.

1) Mix Workload:
a) Short Flows: The majority of short flows in datacen-

ter networks are generated by applications and services that
demand low latency [4]. Figure 4b shows how the schemes
perform in delivering low latency for short flows when running
Mix Workload. Observe that AQ-CAR significantly reduces
its average FCT by 54% and 49% compared to ECMP and
A-ECN respectively. The reason for the inferior performance
in A-ECN and ECMP is the long queueing delay that short
flows experience before leaving the switches. Moreover, both
schemes perform congestion-oblivious routing decisions at a
very coarse granularity. They route multiple long-lived flows
on the same path, leading to congestion and thus increased
latency. Compared to Flex, AQ-CAR yields about 33% reduc-
tion in FCT at high loads. Flex achieves better performance
compared to A-ECN and ECMP because it uses flowlet-
level routing granularity which is fine-grained compared to
the flow-level granularity used by ECMP and A-ECN. We
attribute the improvement of AQ-CAR to the congestion-
aware routing and to the enqueueing mechanism that isolates
short flows from other flows into a separate queue.

b) Medium and Overall Flows: For medium flows
(100KB, 10MB], AQ-CAR also achieves superior perfor-
mance in FCT compared to all other schemes as shown
in Figure 4c. AQ-CAR yields about 25%, 17%, and 13%

reduction in FCT, at high loads, when compared to A-EC,
Flex, and DCTCP, respectively. This is mainly because AQ-
CAR performs congestion-aware routing and rerouting load
balancing. Even though Flex performs flowlet routing, it is
oblivious to the congestion in the spine-level switches which
may incur long queueing delays and cause packet reordering.

Figure 4a shows a similar trend for the average FCTs
(averaged over all flows) as for the FCT of medium flows.

c) Large Flows: Figure 4d shows the average FCT of
large flows (> 10MB) when comparing AQ-CAR to other
schemes. Observe that the performance gap between the
schemes is not significant. This shows the efficiency of AQ-
CAR in reducing the FCT for small and medium flows without
jeopardizing the performance of large flows.

2) Web search and Cache Workloads:
a) Short Flows: Figures 5b and 6b show the aver-

age FCT of short flows under the Web search and Cache
workloads, respectively. AQ-CAR improves FCT significantly
compared with the other three schemes, especially at high
loads. More specifically, in the Web search workload, AQ-
CAR minimizes FCT by about 65%, 62%, and 56% at 80
percent load over ECMP, A-ECN, and Flex, respectively.
Similarly, in the Cache workload, AQ-CAR outperforms the
other schemes by around 47%− 57%. These results demon-
strate the advantage of AQ-CAR, with adaptive queueing
and congestion-aware routing, over the other schemes in
alleviating the impact of large queueing delays that severely
degrade the performance of the delay-sensitive short flows.
When the load becomes high, more flows with different sizes
coexist in the same output ports at the switches. Thus, more
short flows experience long-tail queueing delays. ECMP and
A-ECN perform congestion oblivious routing, resulting in a
hash collision and more queueing delay.

b) Medium and Overall Flows: Figure 5c shows the av-
erage FCT of medium flows under the Web search workload.
Observe that AQ-CAR achieves up to 17% reduction in FCT
compared to the other schemes. However, the performance of
AQ-CAR decreases at the 0.8 load. Note that under Cache
workload in Figure 6c, the performance of AQ-CAR also
decreases at high loads similar to the Web search workload.
The reason is that most traffic in both workloads are from
medium flows and AQ-CAR puts them in a designated queue
and triggers ECN marking based on the queue length. Thus, at
high loads, more medium flows are concurrently active, lead-
ing to larger queue length and more frequent ECN marking.
On the other hand, the medium flows in the other schemes are
distributed among the queues rather than a single queue in our
scheme, leading to less ECN marking as the ECN marking is
triggered based on each queue independently.

Figures 5a and 6a show the average (over all flows) FCT
under both Web search and Cache workloads. Observe that
they are similar to the medium flow figures as in Web search
and Cache workloads, most traffic comes from medium flows.

c) Large Flows: Figures 5d and 6d show the aver-
age FCT of large flows when comparing AQ-CAR to the
other schemes, under both Web search and Cache work-



(a) Overall (b) Small (c) Medium (d) Large

Fig. 4: FCT statistics across different flow sizes for Mix workload

(a) Overall (b) Small (c) Medium (d) Large

Fig. 5: FCT statistics across different flow sizes for Web search workload

(a) Overall (b) Small (c) Medium (d) Large

Fig. 6: FCT statistics across different flow sizes for Cache workload

loads, respectively. Observe that all schemes achieve similar
performances. This again shows the efficiency of AQ-CAR
in significantly reducing the FCT for small flows without
jeopardizing the performance of medium and large flows.

3) Data mining and Hadoop Workloads:
a) Short Flows: Figures 7b and 8b further confirm the

superiority of AQ-CAR in reducing the latency for short
flows under both Data mining and Hadoop workloads. The
performance gap of AQ-CAR reaches about 56%, 54%, and
44% for the Data mining workload when compared to DCTCP,
A-EC, and Flex, respectively. Under the Hadoop workload,
AQ-CAR reduces the average FCT by about 56%, 53%, and
39% compared to DCTCP, A-ECN, and Flex, respectively.

b) Medium Flows: FCT of medium flows running Data
mining and Hadoop workloads present interesting results as
shown in Figures 7c and 8c. Compared to Web search and
Cache workloads, the performance gain of AQ-CAR over the
other schemes becomes more significant in the Data mining

and Hadoop workloads. This is because in these workloads,
only a small portion of the total bytes is generated by medium
flows. For example, less than 5% of bytes in Data mining are
from medium flows while 95% of bytes are from large flows
[20]. Therefore, AQ-CAR eliminates the negative impact of
large flows on the other flows in two ways. First, it distributes
large flows across the network to avoid hash collisions that
cause long queueing delays and frequent packet drops. Sec-
ond, it isolates large flows in separate queues and triggers
ECN marking on each queue independently. This results in
a remarkable improvement in the average performance of
medium flows under both Data mining and Hadoop workloads.

c) Large and Overall Flows: For large flows, Figures 7d
and 8d show that AQ-CAR achieves performances comparable
to the other schemes. This confirms the efficiency of AQ-CAR
in reducing the latency of short and medium flows while not
impacting the throughput achieved by long flows. Similarly
in Figures 7a and 8a, all the schemes provide comparable



(a) Overall (b) Small (c) Medium (d) Large

Fig. 7: FCT statistics across different flow sizes for Data mining workload

(a) Overall (b) Small (c) Medium (d) Large

Fig. 8: FCT statistics across different flow sizes for Hadoop workload

performance in the overall average FCT when running both
Data mining and Hadoop workloads.

B. Throughput

1) Mix Workload: Figure 9 shows the average throughput
of the studied schemes achieved under the Mix workload. Ob-
serve that AQ-CAR has noticeably improved the throughput
of short and medium flows without significantly degrading
the throughput of large flows, thus achieving better overall
throughput performance. For short flows, Figure 9b shows
that AQ-CAR, at high loads, yields about 17%, 35% and
39% performance gain in throughput when compared to
Flex, A-ECN, and ECMP, respectively. Furthermore, AQ-CAR
improves the average throughput for medium and overall flows
by more than 22% compared to other schemes as shown in
Figures 9c and 9a. Even though AQ-CAR shows no gain in
throughput for large flows as shown in Figure 9d, it manages
to deliver comparable performance against the other schemes.

2) Web search and Cache Workloads: Figures 10b and
11b show the average throughput for short flows under both
Web search and Cache workloads. Observe that AQ-CAR
achieves more than 42%, 48%, and 50% gain in throughput
in comparison to Flex, A-ECN, and ECMP, respectively.

For medium and overall flow sizes under the Web search
workload, the performance gain of AQ-CAR exceeds 42%
compared to the other schemes as shown in Figures 10c and
10a. Running the Cache workload, the throughput gain of
AQ-CAR surpasses 30% in contrast to the other schemes as
demonstrated by Figures 11c and 11a.

Figures 10d and 11d show that AQ-CAR degrades the
throughput performance of large flows by less than 7% con-
trasted with the other approaches. This confirms the efficiency
of the proposed work in reducing latency for short flows
without significantly impacting the throughput of long flows.

3) Data mining and Hadoop Workloads: Figures 12 and
13 show the throughput statistics across different flow sizes
for Data mining and Hadoop Workloads. Observe that AQ-
CAR outperforms the other schemes in throughput across all
flow sizes except for long flows, where it shows no throughput
gain. This shows the efficiency of the proposed framework in
delivering high throughput across all flow sizes.

C. Packet Drop Loss

Figure 14 compares the total number of dropped pack-
ets, normalized to the maximum dropped value across all
loads, running all the schemes across different workloads.
Observe that AQ-CAR significantly reduces the number of
dropped packets compared to the other frameworks across all
workloads. Three factors contribute to AQ-CAR’s remarkable
reduction in the number of dropped packets. First, AQ-CAR
performs congestion-aware routing for new flows. Then, it
triggers adaptive rerouting on larger flows at bottleneck links
to alleviate congestion that causes frequent packet drops.
Finally, it performs adaptive queueing and ECN marking on
each queue independently. This allows AQ-CAR to trigger
more ECN marking on the flows that contribute the most to
the queue buildup, which results in a gradual increase in the
port buffer, and hence in a lower number of dropped packets.



(a) Overall (b) Small (c) Medium (d) Large

Fig. 9: Throughput statistics across different flow sizes for Mix workload

(a) Overall (b) Small (c) Medium (d) Large

Fig. 10: Throughput statistics across different flow sizes for Web search workload

(a) Overall (b) Small (c) Medium (d) Large

Fig. 11: Throughput statistics across different flow sizes for Cache workload

(a) Overall (b) Small (c) Medium (d) Large

Fig. 12: Throughput statistics across different flow sizes for Data mining workload



(a) Overall (b) Small (c) Medium (d) Large

Fig. 13: Throughput statistics across different flow sizes for Hadoop workload

(a) Mix (b) Web search (c) Cache (d) Data mining (e) Hadoop

Fig. 14: Dropped packets comparison across different workloads

IV. CONCLUSION

We propose AQ-CAR for multi-rooted multi-queue DCNs
to attain both high throughput and low latency. AQ-CAR
separates small, medium, and large flows into their separate
queues with a different number of ECN thresholds. Afterward,
it performs congestion-aware routing and rerouting based on
flow types. Simulation results show the superiority of AQ-
CAR in reducing FCT when compared to existing approaches.

REFERENCES

[1] Andrew R Curtis, Wonho Kim, and Praveen Yalagandula, “Mahout:
Low-overhead datacenter traffic management using end-host-based ele-
phant detection,” in Proc. of IEEE INFOCOM, 2011, pp. 1629–1637.

[2] Ting Wang, Lu Wang, and Mounir Hamdi, “A cost-effective low-latency
overlaid torus-based data center network architecture,” Computer
Communications, vol. 129, pp. 89–100, 2018.

[3] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster, “Silo:
Predictable message latency in the cloud,” in Proc. of ACM Conference
on SIG on Data Communication, 2015, pp. 435–448.

[4] Tao Zhang, Qianqiang Zhang, Yasi Lei, Shaojun Zou, Juan Huang,
and Fangmin Li, “Load balancing with traffic isolation in data center
networks,” Future Gen. Computer Systems, vol. 127, pp. 126–141, 2022.

[5] Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kompella,
“On the impact of packet spraying in data center networks,” in 2013
Proceedings IEEE INFOCOM. IEEE, 2013, pp. 2130–2138.

[6] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and
Amin Firoozshahian, “Drill: Micro load balancing for low-latency data
center networks,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, 2017, pp. 225–238.

[7] Xinglong Diao, Huaxi Gu, Xiaoshan Yu, Liang Qin, and Changyun Luo,
“Flex: A flowlet-level load balancing based on load-adaptive timeout in
dcn,” Future Generation Computer Systems, 2022.

[8] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom
Edsall, “Let it flow: Resilient asymmetric load balancing with flowlet
switching,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 2017, pp. 407–420.

[9] Kadangode Ramakrishnan, Sally Floyd, David Black, et al., “The
addition of explicit congestion notification (ecn) to ip,” 2001.

[10] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan, “Data center tcp (dctcp),” in Proceedings of the ACM
SIGCOMM 2010 Conference, 2010, pp. 63–74.

[11] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang, “Congestion control for large-
scale rdma deployments,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 523–536, 2015.

[12] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker, “pfabric: Minimal near-
optimal datacenter transport,” ACM SIGCOMM Computer Communica-
tion Review, vol. 43, no. 4, pp. 435–446, 2013.

[13] Wei Bai, Li Chen, Kai Chen, and Haitao Wu, “Enabling {ECN} in
multi-service multi-queue data centers,” in 13th {USENIX} Symposium
on Networked Systems Design and Implementation, 2016, pp. 537–549.

[14] Shuo Wang, Jiao Zhang, Tao Huang, Tian Pan, Jiang Liu, and Yunjie
Liu, “A-ecn minimizing queue length for datacenter networks,” IEEE
Access, vol. 8, pp. 49100–49111, 2020.

[15] Theophilus Benson, Aditya Akella, and David A Maltz, “Network traffic
characteristics of data centers in the wild,” in Proc. of ACM SIGCOMM
Conf. on Internet Measurement, 2010, pp. 267–280.

[16] Sultan Alanazi and Bechir Hamdaoui, “Ml-ecn: Multi-level ecn marking
for fair datacenter traffic forwarding,” in ICC 2022-IEEE International
Conference on Communications. IEEE, 2022, pp. 2726–2731.

[17] C Hopps, “Rfc2992: analysis of an equal-cost multi-path algorithm,”
2000.

[18] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and
Sudipta Sengupta, “Vl2: A scalable and flexible data center network,”
in Proc. of the ACM SIGCOMM Conference on Data communication,
2009, pp. 51–62.

[19] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C
Snoeren, “Inside the social network’s (datacenter) network,” in
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, 2015, pp. 123–137.

[20] Jinbin Hu, Jiawei Huang, Wenjun Lyu, Weihe Li, Zhaoyi Li, Wenchao
Jiang, Jianxin Wang, and Tian He, “Adjusting switching granularity
of load balancing for heterogeneous datacenter traffic,” IEEE/ACM
Transactions on Networking, vol. 29, no. 5, pp. 2367–2384, 2021.


