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Abstract: Operational studies are necessary to support production and management decisions
of forest industries. A time study (TS) approach is widely used in timber harvesting operations
to understand the performance of individual harvesting machines as well as the entire system.
However, several limitations of the TS approach include the use of generalized utilization rates,
incapability of capturing interactions among equipment, and model extrapolation in sensitivity
analysis. In this study, we demonstrated the use of discrete event simulation (DES) techniques in
modeling a ground-based timber harvesting system, and compared the DES results with those of
the TS model developed with the same observed data. Although both TS and DES models provided
similar estimation results for individual machine cycle times and productivities, the estimated
machine utilization rates were somewhat different due to the difference in synthesizing machine
processes in each approach. Our sensitivity analysis and model expansion to simulate a hypothetical
harvesting system suggest that the DES approach may become an appropriate method for analyzing
complex systems especially where interactions among different machine processes are unknown.

Keywords: discrete-event; machine interactions; operational details; hypothetical systems

1. Introduction

Various timber harvesting systems have been developed to implement silvicultural treatments
(e.g., clearcut, commercial thinning, and selective harvesting) under a wide range of vegetation and
terrain conditions [1]. Involving multiple machines and operators, timber harvesting is a complex
process that, if poorly designed and implemented, could become dangerous, costly or environmentally
damaging. Efforts to understand harvesting system performance and the ability to identify the most
suitable system for given operational conditions are essential to achieve safe, economically viable,
and environmentally sound harvesting operations.

Time study (TS) techniques have been widely applied to timber harvesting operations to
understand the performance of individual harvesting machines as well as the entire system [2].
In general, the field-collected data are used to model the productivity of individual machines based
on independent variables (e.g., stand density, skidding distance, terrain slope, tree size, etc.) through
regression. These regression models are then used to predict machine productivity in productive
machine hours (PMH) in various scenarios under similar work conditions [3-5]. A timber harvesting
system often involves multiple machines working simultaneously, and estimating the productivity of
the entire harvesting system requires the productivity of individual machines in scheduled machine
hours (SMH). The conversion of productivity from PMH to SMH is based on the rate of machine
utilization which incorporates potential delays that may occur to individual machines. Because the
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entire system productivity is limited by bottlenecks in any given machine or operation, it is important
to understand and accurately quantify the utilization rates of individual machines [6-8].

However, quantifying machine utilization rates is often omitted in TS techniques when the field
observation period is not long enough to accurately assess utilization rates. It has been a custom to use
the published machine utilization rates from past studies [9-11], or the average values from long-term
shift-level production data [12-14]. But either approach may not provide suitable estimates unless the
harvesting system and site are similar to the ones used in the past studies, or represent the average
system and work conditions. Using the published or average data becomes a larger issue when one
attempts to compare different harvesting systems or system configurations. It may not be justifiable to
assume the same utilization rates for machines used in different systems.

One might collect machine delay times during a detailed time study for future uses.
However, due to high costs of field data collection, most detailed time studies are conducted only
for a short time period (e.g., a few days) [15], and short-term data on delays might misrepresent the
“normal” operational conditions as data can be biased with the presence or absence of any irregular
and unpredictable events, such as machine breakdowns and adverse weather conditions. Alternatively,
shift-level time studies are less costly [16] and can provide long-term delay data, but once data are
averaged out, they lack detail, such as delay types and causes, and thus provide limited insights for
future improvement [17]. It is also noted that some studies only reported delays longer than 15 min
and included shorter delays as part of productive time [18]. A drawback with an arbitrary cutoff time
is that this interpretation could depict system performance very differently when most delays last less
than the cutoff time.

The TS approach also provides limited insights on how multiple machines interact with each
other during the harvesting process. Although delay-free cycle time regression models depict the
relationship between dependent and independent variables [19], outputs are only mean cycle time
values without accounting for variation, especially variation caused by chain effects across multiple
machines and tasks. When system components (i.e., individual machines) are highly interdependent,
cycle time regression developed for individual machines can lead to biased productivity and cost
estimates [20]. In addition, when one machine performs multiple tasks (e.g., a loader is used to sort and
deck logs, as well as to load log trucks), it would be difficult to build a regression model representing a
series of different tasks.

Simulation techniques have been widely used in industrial and manufacturing engineering as an
effective tool to understand production systems and estimate system productivity and costs [21].
When properly developed and applied, simulation techniques can be useful to overcome the
aforementioned limitations of the conventional TS approach in forest operations. Discrete-event
simulation (DES) models the operation of a system as a series of events occurring at discrete points in
time. In DES, events are broadly defined as things that may happen and cause a change in the system’s
state [22]. The term “discrete’ means the system’s state changes only at specific time points in response
to events occurring at those time points. The simulation clock advances by jumping from one event
time point to the next. No system components change in the interval between two events. As events
occur in sequence, mimicking operations in practice, all operational information (e.g., processing time,
wait time, queue length) is recorded to evaluate the performance of the modeled system. With DES,
systems are analyzed by numerical methods rather than analytical methods [23], which becomes an
advantage when a large number of variables, parameters and functions are involved in a system,
and various interactions occur among system components.

In addition, the ability of DES models to keep track of all events throughout the simulation process
enables the user to build and test various operational scenarios simply by changing simulation inputs
and observing the resulting outputs without disturbing the actual workflow [23]. Another attractive
benefit of the DES technique is the ability to construct and examine hypothetical, unobserved systems.
Production and supply systems can be studied by observing the operation of the system if the system
is already in operation [24]. However, due to high costs and the laborious work of field data collection,
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it would be beneficial if previously collected data can be used to estimate the performance of an
unobserved system. The DES model can facilitate this because with the same machines and technology,
some processes and parameter values are invariant and still applicable under different circumstances.
For instance, when the same machine is operated by the same operator under similar terrain and
vegetation conditions for the similar harvest practice (e.g., clearcut), a skidder’s empty travelling speed
might not dramatically change by skidding distances or system layouts. In such cases, previously
collected data may be used in designing and analyzing new systems through DES models.

DES techniques have been applied to operational studies in forestry for many years, and
simulation of harvesting operations was among the first attempts. Some studies focused on the
productivity and operation of individual machines [25] and others addressed interactions among
harvest equipment and interactions between the harvesting system and log transportation [26,27].
These early stage models were implemented with the General Purpose Simulation System (GPSS/360,
International Business Machines Corporation, Armonk, NY, USA) or programming language
(e.g., FORTRAN, International Business Machines Corporation, Armonk, NY, USA), and thus
required long development times especially when complex model construction was required.
Later, the emergence of graphical-based simulation software development systems (e.g., Arena,
Arena 15, Rockwell Automation Technologies, Inc., Milwaukee, W1, USA), AnyLogic (AnyLogic
8.3, The AnyLogic Company, Oakbrook Terrace, IL, USA), and Witness (Witness Horizon 22.0,
Lanner Group Limited, Houston, TX, USA) facilitated the DES modeling process, and DES has
been proved to be a reliable approach in supply chain management through various applications [28].
In recent years, there were some DES applications in the fields of forest biomass supply chains
where different chipping locations [29], equipment configurations [20,30], trucking options [31],
and transportation methods [32] were examined. These studies mainly focused on supply chain
logistics, comparing different systems under various circumstances in order to support operational
decisions. For upstream forest harvesting operations, however, there is a dearth of studies that
have employed the DES technique. Asikainen [33,34] modeled mechanized harvesting systems
and log transportation, incorporating the effects of random elements such as machine failures and
transportation distances on the entire system. Hogg et al. [35] simulated stump-to-mill multi-stem
Eucalyptus harvesting and transport operations for system comparisons. However, none of the past
studies explicitly compared DES with TS to highlight the differences between the two approaches and
the potential benefits of the DES approach in analyzing the performance of harvesting systems.

In this study, we developed a stochastic DES model for a ground-based, whole-tree harvesting
(WT) system, and compared it to the conventional TS approach in order to demonstrate the use of
DES techniques in timber harvesting operations modeling and highlight its potential advantages
in flexibility, precision, and analytical ability. We also applied the data from the WT DES model
to a new DES model simulating another ground-based harvesting method called “lop-and-scatter
(LS)”, to demonstrate the ability of DES in analyzing hypothetical harvesting systems by reusing the
previously collected data from the existing system.

2. Materials and Methods

2.1. Harvesting System and Data Collection

We conducted a time study on a ground-based, whole-tree clear cut of the beetle-killed lodgepole
pine (Pinus contorta Dougl. ex. Loud. var. latifolia) harvest unit located in Colorado State Forest State
Park (Figure 1) in northern Colorado (40°35'59” N, 106°00'27” W) [36]. This 1.9-ha unit was affected
by the mountain pine beetle outbreak since 2008 and the mortality rate in 2015 was 47.3%. The stand
density was 865 trees ha~! and the average basal area was 34.6 m? ha~!. The mean diameter at breast
height (dbh) of trees was 22.4 cm and the mean height was 19.6 m. Due to the small tree size, most trees
were processed into only one piece of log. Post harvesting, we sampled 28 logs to measure small end
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diameter and length. These measured data were used to estimate oven dry log weight [37], resulting in
an average of 0.1185 oven dry ton (odt) per piece.
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Figure 1. Site map showing the harvesting unit in Colorado State Forest State Park.

The WT system consisted of one tracked feller-buncher for cutting trees down (TimberPro
TL-735-B, TimberPro Inc., Shawano, WI, USA), one grapple skidder (Tigercat 615C, Tigercat Industries
Inc., E. Brantford, ON, Canada) for primary transportation (i.e., from stump to landing), two stroke
boom delimbers (Timberline SDL2, DDI Equipment, Whitewater, CO, USA) for delimbing and bucking,
and one grapple loader (Barko 4995ML Magnum, Barko Hydraulics, LLC, Superior, WI, USA) for
sorting, decking, and loading logs (Figure 2). All equipment was operated by experienced operators
and worked simultaneously on site. Cut trees were transported to the landing by the skidder in the
form of whole trees. The delimbers staying close to the landing processed trees into logs. When there
was a truck on site, the loader performed sorting and loading simultaneously by directly loading some
logs onto the truck while placing other logs (i.e., different sorts) onto the deck. When no trucks were
on site, the loader performed only log sorting and decking.
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Figure 2. Description of the whole-tree harvesting system used in Colorado State Forest State Park.

Following standard work study methods [2,17], we collected detailed time study data in December
2015 from the harvesting unit. Readers are referred to Han et al. [36] for a detailed description of the WT
harvest unit and field data collection. Table 1 shows cycle time elements and corresponding operational
data for each machine and their applications in building TS and DES models. Some data were only
used in the DES model because they were not related to delay-free machine cycles. Some other data
were only used in the TS model because they were identified as independent variables of regression
models whereas the DES model used other information to describe the same processes.
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Hourly machine costs (Table 2) were estimated using the commonly accepted machine rate
calculation method [9,38]. In addition to machine fixed and operation costs, we distinguished machine
idle costs from operating costs to differentiate costs related to machines idling (e.g., operational delay;,
warm-up, etc.). This is deemed necessary because some machine operating costs, such as for fuels and
lubricants, are lower during idle time. We assumed the fuel consumption rate during idle times is 10%
of the productive time rate [39,40].

Table 1. Field-collected data and applications in models.

Equipment Data Value Range  Mean  Application
Feller-buncher Felling time (s) 7-71 20.8 Both
Move distance (m) 0-11.6 0.9 TS
Number of standing trees 04 19 Both
Number of down trees 0-2 0.1 Both
Tree pile size 9-20 14.5 DES
Relocation chance (0 = no, 1 = yes) Oor1l 0.05 DES
Relocation time (s) 11-63 46.0 DES
Skidder (Tree) Empty travel time (s) 60-128 88.6 Both
Positioning and grappling time (s) 12-33 20.8 Both
Bunching time (s) 25-130 40.7 Both
Loaded travel time (s) 58-145 86.1 Both
Empty travel distance (m) 82.6-219.8 165.0 Both
Loaded travel distance (m) 43.9-230.7 141.3 Both
Number of trees 940 21.9 Both
Skidder (Log) Empty travel time (s) 22-43 35.1 Both
Positioning and grappling time (s) 5-18 8.9 Both
Loaded travel time (s) 11-42 21.0 Both
Empty travel distance (m) 29.0-63.7 443 TS
Loaded travel distance (m) 6.7-43.6 27.1 TS
Number of logs 9-40 229 TS
Delimber Delimbing time (s) 12-104 42.3 Both
Reposition chance (0 = no, 1 = yes) Oorl 0.1 DES
Positioning time (s) 9-88 29.8 DES
Number of live trees 0-5 0.76 Both
Number of dead trees 0-5 0.92 Both
Loader Sorting and decking time (s) 6-119 36.4 Both
Loading time * (s) 11-115 43.7 Both
Task (0 = sort and deck, 1 = direct loading) Oor1l 0.30 TS
Direct loading chance * (0 = no, 1 = yes) Oor1l 0.50 DES
Number of logs 1-14 3.3 Both

* Loading cycle time data include both direct loading and loading from deck. * Proportion of direct loading while a
truck is on site. TS = time study, DES = discrete-event simulation.

Table 2. Estimated hourly costs of each machine in the study.

Feller-Buncher Delimber Skidder Loader
Cost Component
Operating Idle Operating Idle Operating Idle Operating Idle
Sale price ($) 395,000 395,000 355,000 355,000 219,000 219,000 205,000 205,000
Salvage value ($) 59,250 59,250 71,000 71,000 32,850 32,850 61,500 61,500
Machine life (year) 5 5 5 5 5 5 5 5
Depreciation ($/year) 67,150 67,150 56,800 56,800 37,230 37,230 28,700 28,700
Interests ($/year) 26,070 26,070 24,140 24,140 14,454 14,454 14,760 14,760
Insurance ($/year) 10,428 10,428 9656 9656 5781.6 5781.6 5904 5904
SMH (h/year) 2000 2000 2000 2000 2000 2000 2000 2000
Fixed cost ($/h) 51.82 51.82 45.30 45.30 28.73 28.73 24.68 24.68
Fuel (L/h) 29.9 3.0 32.0 32 233 2.3 14.2 14
Fuel ($/h) 17.46 1.75 18.68 1.87 13.61 1.36 8.28 0.83
Lubricant ($/h) 6.46 0.65 6.91 0.69 5.04 0.50 3.06 0.31
R&M* ($/h) 55.96 0 39.32 0 27.92 0 19.87 0
Labor ($/h) 34.29 34.29 34.29 34.29 34.29 34.29 34.29 34.29
Operation cost ($/h) 114.16 36.68 88.29 36.85 80.86 36.16 65.50 35.42
Total cost ($/h) 165.99 88.51 14451 82.15 109.60 64.89 90.19 60.11

* Repair and maintenance cost proportional to machine depreciation and utilization, adapted from [9]. SMH =
scheduled machine hours.
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2.2. Model Building

Detailed time study data were used to build both DES and TS regression models to evaluate
the stump-to-truck harvesting process of the WT system. Two thirds of the cycle time data were
randomly selected for model construction and the rest were used for model validation. In the DES
model, time element data and other observed operational data were used to create discrete events of
each machine process and corresponding input probability distributions. In the TS model, cycle time
data were used as dependent variables to build delay-free cycle time equations for each machine based
on independent variable values. Both models (referred to as base DES and TS models) were applied to
the harvesting of 1700 trees where the average skidding distance was 152 m. The system productivity
per scheduled machine hour (SMH) and the timber stump-to-truck cost estimated by both models
were compared to show the differences between these two modeling approaches. The DES and TS
models are described in detail below.

2.2.1. Discrete-Event Simulation Models

We constructed our DES model in the Rockwell Arena simulation software [41], which has been
widely used as a DES simulation tool for both research and practical applications [42,43]. In the
simulation, entities are used to represent objects (e.g., products, customers) that are processed by
resources (e.g., machine, labor) of the modeled system. They flow through the system from one
resource to another, triggered by the occurrence of events. Events themselves occur due to the arrival
of entities, the completion of process tasks, random equipment failures, and other related items
(e.g., break times). The model generates random realizations of these operational items from the
user-defined probability distributions representing their durations. In this manner, events occur and
entities move through the system over time until the simulation meets the designated terminating
condition (e.g., the completion of processing of all entities, a certain length of simulation time). The DES
model is normally run multiple times and provides summary statistics of the simulation results in
order to account for uncertainties that may exist in the system [44].

In our study, trees/logs were modeled as entities and machines were modeled as resources.
All procedures related to the harvesting process, such as machine processing times, machine reposition
probabilities, the number of trees/log pieces in a machine cycle, etc. were modeled within the
simulation. To derive appropriate probability distributions for these procedures, several theoretical
distributions in the form of mathematical formulations (e.g., Exponential, Gamma) were statistically
“fit” to the field time study data. The quality of fit was determined by the Chi-square Goodness-of-Fit
test and all proposed distributions were ranked by p-values from high to low. A p-value greater than
0.05 indicated an acceptable fit and the distribution could be used in the simulation model. If no
theoretical distributions were acceptable, an empirical distribution was used, which merely divided
data into groups with values representing proportions of data in each group. For example, the number
of trees that were delimbed in a delimbing cycle followed an empirical distribution, and the time used
for delimbing one tree was drawn from an Erlang distribution. The final fitted distributions of all
modeled processes are listed in Table 3. Events were connected by logical links developed to form the
structure and logic of the DES model (Figure 3). A simulation run began as the feller-buncher started
cutting trees. Trees/logs were then processed by each machine following the order in practice. For a
feller-buncher cutting cycle, the model first determined if a machine relocation was necessary prior
to cutting based on the machine relocation probability. If yes, the model randomly drew a relocation
time from the relocation time distribution and added it to the machine cycle time. The model then
generated the number of trees cut for the cycle and assigned a cutting time randomly drawn from the
cutting time distribution. After completing one tree-cutting cycle, the feller-buncher was ready for the
next cycle and trees were stacked in a pile waiting to be transported by the skidder.
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Table 3. Fitted distributions for each event of machine operations.

Equipment Event Distribution Arena Expression * p-Value
Relocation chance Empirical DISC (0.95,0,1,1) -
Relocation time Empirical CONT (0.00, 10.50, 0.29, 23.50, 0.64, 36.50, 0.86, 49.50, 1, 63.50) -
Down tree cycle chance Empirical DISC (0.94,0,1, 1) -
Down tree cycle time Beta 11.5 + 31 x BETA (1.57,1.47) 0.30
Feller-buncher Cycle cut piece Empirical DISC (0.22,1,0.85,2,0.96, 3,1, 4) -
One-piece felling time Erlang 4.5+ ERLA (2.57, 4) 0.37
Two-piece felling time Erlang 7.5+ ERLA (24, 5) 0.09
More-piece felling time Gamma 12.5 + GAMM (3.25, 3.37) 0.17
Tree pile size Weibull 8.5 + WEIB (6.73, 2.06) 0.06
Reposition chance Empirical DISC (0.90,0,1, 1) -
Reposition time Erlang 8.5+ ERLA (10.7, 2) 0.36
Delimber Cycle cut piece Empirical DISC (0.53,1,0.87,2,0.94,3,1,4) -
One-piece delimb time Erlang 11.5 + ERLA (4.96, 5) 0.23
Two-piece delimb time Gamma 12.5 + GAMM (7.67,4.13) 0.17
More-piece delimb time Beta 27.5 + 54 x BETA (1.36, 1.59) 0.12
Empty distance ratio * Triangular TRIA (0.55,1.15, 1.57) 0.14
Loaded distance ratio Triangular TRIA (0.09, 0.77, 1) 0.49
Skidder Empty speed Triangular TRIA (1.41,1.91,2.27) 0.27
Loaded speed Triangular TRIA (0, 1.27, 2.44) 0.06
Skid log trip Triangular TRIA (49.5, 67, 88.5) 0.44
Loading piece Poisson POIS (2.88) 0.74
Direct loading chance Empirical DISC (0.51,0,1, 1) -
Loader Loading time Beta 13.5 + 69 x BETA (1.27,1.91) 0.36
Sort and deck piece Poisson POIS (3.45) 0.31
Sort and deck time Erlang 5.5+ ERLA (7.35, 4) 0.24

* In Arena expression, DISC (CumP1, Vall, ... , CumPn, Valn) and CONT (CumP1, Vall, ... , CumPn, Valn) are
empirical distributions showing pairs of cumulative probabilities and associated values. For other distributions
(i.e.,, BETA, ERLA, GAMM, WEIB, TRIA and POIS), input values are parameters specified according to distribution
mathematical forms. More details on Arena’s probability distribution can be found in [44]. * The skidder empty
travel distance in each trip was estimated to be proportional to the average skidding distance. In the same trip,
the skidder loaded travel distance was estimated to be proportional to the empty travel distance.

The skidder started a new cycle with an empty travel from the landing to a tree pile. Travel time
was estimated using travel distance and speed that were randomly drawn from the user-defined
distance and speed distributions. When the skidder arrived at a tree pile, the skidder operator checked
if the pile was ready for transportation; if not, the operator had to wait for the feller-buncher to
finish cutting trees and completing a tree pile. The skidder grabbed a tree pile otherwise, and then
sought another tree pile to combine if the capacity was not met yet. As the skidder travelled loaded
towards the landing, the operator checked if any of the two delimbers had completed processing of the
previously delivered trees. If no delimber was available, the skidder waited until one delimber was
ready, and then passed the trees onto the available delimber. The skidder then grabbed the processed
logs and skidded them to the loader. Similarly, the operator checked the loader’s availability before
passing logs.

The delimber operator started a new cycle by checking if the previous tree pile had been finished.
If there was no tree to delimb, the operator stayed idle and waited for the skidder to deliver trees.
If there were trees from the previous pile, the model determined if the delimber needed to adjust
machine position before delimbing. If yes, it added a reposition time. The model then randomly
generated the number of trees and delimbing time to complete the delimbing cycle. Processed logs
were stacked in a log pile and readied for pick up by the skidder that delivered a log pile to the log
deck at the landing.

The loader had different tasks depending on the availability of log trucks and sorted logs.
When the skidder delivered logs and a truck was available on site, the loader operator simultaneously
sorted logs and loaded the requested sort onto the truck (“direct loading”). When a truck was available
but there were no more logs to sort, the loader loaded the previously sorted and decked logs onto the
truck (“load from deck”). When no truck was available at the landing, the loader operator sorted logs
and stacked them on the deck (“sort and deck”). When neither logs to sort nor trucks were available,
the loader stays idle.
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Figure 3. The DES model logic developed for the feller-buncher (FB) (a), skidder (SK) (b), delimber
(DL) (c), and loader (LO) (d) in the whole-tree harvesting system.

Because long-term shift level information was not available, assumptions were made during the
simulation in order to setup work shifts and machine breakdowns. A work day was assumed to be
10 SMH with a 45-min machine warm-up period in the morning and 45-min machine maintenance work
at the end of day. Five trucks were scheduled to visit the harvest site to haul logs and their inter-arrival
time was assumed to be normally distributed (i.e., NORM (60, 15) in Arena). For all equipment,
machine failures might occur at any time. The failure rate and repair times were assumed to follow
an exponential distribution with parameters of 1000 and 30 min (i.e., EXPO (1000) and EXPO (30) in
Arena), respectively. For each machine, time spent on operation, warm-up and maintenance, idle state,
and other disturbances (e.g., repair, personal delay) were categorized as utilization, scheduled delay,
operational delay, and other delays. Scheduled delays included machine warm-up and scheduled
maintenances, while operational delays were mainly caused by machine interactions (i.e., time spent
to wait until other machines finish their cycles). When all harvested logs were delivered to the landing,
all the machines except for the loader stopped working and returned to their parking spots. The loader
continued working until all harvested logs were loaded onto trucks. Once all logs were loaded, a single
simulation run was considered completed. In this study, a total of 100 simulation runs were made.

2.2.2. Time Study Regression Models

We adopted the multiple least-squares linear regression models in [36] for most machines in
our TS models except for the skidder. In this study, we developed two separate regression equations
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(R Statistical Software version 3.4.0 [45]) for the skidder to estimate delay-free cycle times of two
different tasks: skidding trees to the delimbers at the landing, and skidding logs from the delimbers to
the loader. A tree skidding cycle included empty travel from the landing, grabbing trees, bunching
trees, loaded travel and dropping trees. A log skidding cycle included empty travel to a processed log
pile, grabbing logs, loaded travel to the loader, and dropping logs.

For each machine, the average values of independent variables were used to predict the
mean delay-free cycle times. Combined with the average processed log volume in each machine
cycle, hourly productivities in PMH were calculated for all equipment. Because TS models were
static, machine interactions and different types of delays could not be captured by the model.
Instead, machine productivities in PMH were converted to productivities in SMH by applying the
following empirical utilization rates [9,36]: 60% for the feller-buncher, 65% for the delimbers, 60% for
the skidder, and 65% for the loader. A machine with the lowest SMH productivity became the
system bottleneck and its productivity was used for the entire system productivity. As the result,
unit production costs, resulting machine utilization rates, and unutilized machine times (categorized
as delay) were estimated.

2.3. Sensitivity Analysis

The average skidding distance normally has a large influence on the skidder’s cycle time,
productivity, interactions with other machines, and ultimately the performance of the entire system.
We conducted a sensitivity analysis to evaluate the impact of the average skidding distance on both
the DES and TS models. Different average distances were used ranging between 50 and 600 m with
an increment of 50 m. The results from the DES and TS models are compared in terms of system
productivity, unit production cost, and machine utilization rates.

We also examined the sensitivity of the DES model to truck availability to assess how the
harvest system responds to different number and frequency of trucks. In our studied system,
the loader serves as a link between in-woods harvesting operations and truck transportation.
Different trucking schedules likely affect the loader’s work pattern and its interactions with
other machines. Truck scheduling has been traditionally dealt with as a separate problem from
stump-to-landing operations in forest operations analysis, but it may become an important factor for
operational efficiency when harvesting units have limited space for landing and log decking. Using the
DES model, we varied the number of trucks on site from 0 to 10 trucks per day and examined its
influence on the loader’s utilization, time used for different tasks, and truck on-site time. We were not
able to estimate the impact of different truck schedules using the TS approach because TS regression
models were static and the loader’s interactions with trucks were impossible to model with our
limited data. Therefore, we did not make comparisons between the DES and TS models for varying
truck schedules.

2.4. Hypothetical Systems

To demonstrate the potential advantage of DES models in analyzing hypothetical systems, we built
a new DES model to simulate another ground-based harvesting system called lop-and-scatter (LS) [36].
The LS system employs the same machines as the WT system, but with differences in the delimbing
location and the order of operations (Figure 4). In LS, the delimber processes trees at the stump instead
of at the landing, leaving limbs and tree tops in the woods. The skidder then forwards the processed
logs to the loader at the landing.

For the DES model developed for the LS system (hereafter referred to as LS DES), we used the
same discrete events and input probability distributions as those used in the previous DES model
developed for the WT system (hereafter referred to as WT DES). A new additional event required for
the LS DES model was a delimber’s in-woods movement from tree pile to pile. For this, we used a
delimber’s reposition time distribution as a substitution. Logical links were developed to connect
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sequential events necessary for the LS system (Figure 5). In this system, the delimbers directly interact
with the feller-buncher, while the skidder transports only processed logs from stump to landing.

; Delimber W Gl Log deck
' X !
i — e ' i SEESE H
H ] ! i ; !
: i ‘ < ""-‘" E i ) :
! Feller- ; ' Skidder (log) ! Loader i
| buncher \ . ; ‘ p '
H : i
! ) i l ) :
! = : = ! = i
H ; ; ' o o > '
[~ Delimber { ' H
| @ ° 1 | i v Log truck H
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Figure 4. Description of the lop-and-scatter system used in Colorado State Forest State Park.

The LS DES model was run under the same harvesting conditions used in the WT DES model.
The results were then compared with our independent data obtained from the LS operations conducted
in the same unit in Colorado State Forest State Park for model validation [36].

The field LS data were also used to develop a new TS model for the LS system (LS TS).
We compared the results of the LS TS model with the LS DES model. For further analysis, we
used two sets of machine utilization rates when converting machine productivities in PMH to those
in SMH. The first set is the general utilization rates [9] used in the WT TS model. The other set is
the utilization rates resulting from the LS DES model. Estimations from these two approaches are
referred to as LS TS_conventional and LS TS_adjusted, and are compared with the outputs from the LS
DES model in terms of system productivity in SMH and unit production cost to further highlight the
importance of machine utilization rates in system performance evaluation.
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Figure 5. The DES model logic developed for the delimber (DL) (a) and skidder (SK) (b) in the
lop-and-scatter system. The feller-buncher (FB) and loader (LO) have the same work patterns as in the
WT DES model (Figure 3a,d), and thus are not presented here.
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3. Results

3.1. DES and TS Models for Whole-Tree Harvesting

The results of 100 simulation runs of the base WT DES model are presented in Table 4. Individual
machine process productivities ranged from 17.08 to 145.01 odt/PMH with log processing by delimber
B having the lowest productivity and log skidding by the skidder having the highest productivity
in the system. The utilization rates were fairly even among the individual machines except for the
feller-buncher that had the lowest rate of 51.7%. The entire system productivity was 20.16 odt/SMH
and unit production cost was estimated at $29.71/o0dt. The coefficient of variation (i.e., the ratio
of standard deviation to the mean) was less than 7% for all the machines, indicating the simulated
machine processes were not variable among simulation runs.

Table 4. Performance metrics of individual machines and the entire system of whole-tree harvesting
generated by 100 simulation runs of the DES model. Standard deviations are shown inside parentheses.

Machine Cycle Time * (s) P(f)‘ﬁ;‘lf;[‘;‘lt)y Utilization (%) (f,ﬁ?}s?&ﬁ; U(‘;‘/Lgt‘;“
Feller-buncher 205 (1.5) 41.83 (0.66) 51.7 (4.2) 20.16 (1.71)  29.71 (1.92)
Delimber A 42.5 (3.0) 17.14 (0.35) 61.6 (6.1)
Delimber B 429 (3.0) 17.08 (0.40) 56.3 (6.0)
Skidder (trees) 256.0 (3.1) 39.86 (1.71) 64.5 (5.2)
Skidder (logs) 71.3(9.1) 145.01 (4.49)
Loader (loading ) 42.2 (3.0) 29.43 (1.86) 66.9 (4.5)
Loader (sort and deck) 36.4 (3.0) 40.17 (1.31)

* Delay free cycle time. ' Loading includes both direct loading and load from deck. odt = oven dry ton,
PMH = productive machine hours.

Table 5 presents the delay-free cycle time regression models used in this study for the TS approach.
Each regression model was tested for assumptions of normality, independence and equal variance
in order to ensure the validity of regression analysis. No serious violations were identified, and
all models were significant (p < 0.05). The TS model predicted the system productivity and unit
production cost to be 18.67 odt/SMH and $30.21/0dt, respectively (Table 6). The skidder became
the system bottleneck due to its lowest productivity in SMH after conversion using the generalized
utilization rate. The feller-buncher was predicted to have the highest productivity and therefore the
lowest utilization in the system.

Table 5. Delay-free cycle time regression models for individual machines used in whole-tree harvesting

(adopted from [36]).
Machine Average Cycle Time Estimator (s) SE t p-Value Adj. R? Model p-Value
=10.140 0.614 16.50 <0.01 0.4329 <0.01
Feller-bunch +3.709 x No. of standing trees 0.296 12.54 <0.01
erer-buncher +13.082 x No. of down trees 0.870 15.04 <0.01
+0.301 x move dist. (m) 0.025 12.29 <0.01
=30.765 1.522 22.22 <0.01 0.1898 <0.01
Delimber +6.624 x No. of live trees 0.913 7.25 <0.01
+5.729 x No. of dead trees 0.961 5.96 <0.01
=25.125 47.53 0.529 0.603 0.5976 <0.01
. +0.192 x empty travel dist. (m) 0.099 1.944 0.066
Skidder (trees) +0.145 x loaded travel dist. (m) 0.073 1.983 0.061
+1.881 x No. of trees 0.984 1.913 0.070
Skidder (logs) =42.290 6.964 6.073 <0.01 0.2625 <0.01
8 +0.890 x No. of logs 0.312 2.850 0.010
=22.006 1.892 11.629 <0.01 0.2033 <0.01
Loader +3.739 x No. of logs 0.471 7.937 <0.01

+8.248 x loading activity (1 or 0) 1.794 4.597 <0.01
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Table 6. Performance metrics of individual machines and the entire system of whole-tree harvesting
predicted by the TS model.

Sys. Prod. Unit cost

. s . . e e o
Machine Cycle time * (s) P(l“)(:ic:}.ll’cl:;[\ﬁt)y Utilization (%) (0dt/SMH) $lodt)
Feller-buncher 19.5 41.83 44.6 18.67 30.21
Delimber A 411 17.53 53.3
Delimber B 411 17.53 53.3
Skidder (trees) 237.5 39.33 60
Skidder (logs 1) 62.6 148.29
Loader (loading §) 425 28.89 48.8
Loader (sort and deck) 34.3 42.94

* Delay free cycle time. ¥ Calculated by assuming equal number of skidding tree process and skidding log process.
§ Calculated with the assumption that loader spends 30% and 70% of its times on direct loading, and sorting and
decking, respectively.

The comparisons of machine productivity between the estimated values and the field-observed
values in the validation data set show that the estimated average machine productivities of all
equipment by both models deviate less than 9% from the observed values (Table 7). The DES model
has better estimates of productivity for the feller-buncher, skidder and loader, while the TS model
has better estimates for the delimbers. The biggest difference was found with the loader “sort and
deck” process where the TS model overestimated the productivity by 8.6%. As for machine utilization,
the two models reported similar rates for all machines but the loader (Figure 6). For the feller-buncher,
delimbers and skidder, the minor differences in machine utilization rates by the two models mainly
came from the differences in estimated machine productivities and the system productivity. In the
DES model, Delimber A had a higher utilization than Delimber B because during the simulation it was
assigned as the primary resource, which means Delimber A is used first if delimbers were available.
In the TS model, the two delimbers were equally treated. For the loader, the difference in the reported
utilization is apparent. The TS model reported lower utilization because it only included “direct
loading” and “sort and deck” whereas the DES model also considered “load from deck” processes.
The occurrence of this last process depends on the status of the loader (i.e., no log pile to sort and
load) and the truck (i.e., available on site). The TS model could not assess this situation so that it
overestimated loader productivity and underestimated the loader utilization.

Table 7. Comparison of the estimated mean machine productivities obtained from the WT DES and TS
models with the field-observed productivities for whole-tree harvesting.

Difference * (%)

Machine Observed Productivity (odt/PMH)

DES WT

Feller-buncher 42.75 —2.1 —2.2
Delimber A 17.30 -1.0 1.3
Delimber B 17.30 -13 1.3
Skidder (tree) 37.30 6.9 54

Skidder (log) 153.18 —-5.3 -3.2
Loader (load) 27.78 5.9 4.0
Loader (sort and deck) 39.54 1.6 8.6

* Percentage difference between model estimates and the observed values. WT = whole-tree harvesting, DES =
discrete event simulation, TS = time study.



Forests 2018, 9, 683 13 of 20

Feller-buncher Delimber A Delimber B Skidder Loader

DES TS DES T8 DES TS DES s

DES TS
Modeling method

DES [l Utilization [ll Operational delay [ll Scheduled delay [] Other delay

Ts [l Utilization || All delays

100

Proportion (%)
8 >

N
3

0

Figure 6. Machine utilization and delay proportions estimated by the WT DES and WT TS models.

The DES model was also able to provide both delay type and quantity of each machine.
The amount of scheduled delays and other delays were similar across all machines, while the
feller-buncher had the largest proportion of operational delay because of its high productivity
and interactions with lower productivity machines. Due to the variation of operations and
interdependencies among machines, there was no “absolute” system bottleneck and all other machines
experienced a certain amount of operational delays. The TS model was able to estimate only the overall
utilization of individual machines based on their published empirical utilization rates (or long-term
utilization rates) and the bottleneck machine’s productivity. The feller-buncher had the largest overall
delays as well in the TS model due to its high productivity compared to the other machines. The skidder
was the system bottleneck and its utilization rate was estimated to be equal to the empirical rate.

3.2. Sensitivity Analysis

3.2.1. Skidding Distances

The utilization rates of individual machines changed with different skidding distances (Figure 7).
The results show that operational delays of individual machines varied widely across different skidding
distances, while the proportions of scheduled and other delays were relatively constant over the range
of skidding distance. A longer skidding distance increased the skidder’s cycle time and utilization,
and decreased its operational delay, while it increased operational delays of all the other machines.
This indicates the skidder becomes the system bottleneck causing the delimbers and the loader to wait
for the skidder to supply logs. As skidding distance increases, the feller-buncher appears to experience
increased operational delay because it has to spend a longer time waiting for the other machines.
The TS model shows similar patterns of changes in total delays but with more abrupt transitions as
skidding distance increases. This is because the utilization rate of the bottleneck machine is assumed
to be constant.

The productivity of the entire system and its unit production cost also change in response to
different skidding distances (Figure 8). Overall, the estimated system productivity decreased and the
unit cost increased as skidding distance increased in both models. However, when skidding distances
were relatively short (i.e., less than 100 m), the TS model estimated the system productivity and unit
cost to be constant, whereas the DES model showed gradual changes. This is because for the short
skidding distances the delimber was the system bottleneck and skidding distance does not influence
the system cost nor the productivity in the TS model. The DES model, however, was able to capture
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changes in skidder efficiency caused by different skidding distances and incorporate them into system
productivity and cost estimation.

Feller-buncher Delimber A Delimber B Skidder Loader
100
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N
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Figure 7. Changes in machine utilization and delay proportions over different skidding distances
estimated by the WT DES model (a) and the WT TS model (b).
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Figure 8. Changes in system productivity (left y-axis) and unit production cost (right y-axis) over
different skidding distances estimated by the DES and TS models.

3.2.2. Trucking Schedules

The DES model estimated the utilization rate of the loader at about 55% when no trucks were
scheduled (Figure 9). The utilization rate increased by approximately 2% per truck as more trucks
were scheduled to pick up the logs. The results show that the loader spends an increasing amount
of time in “direct loading” as more trucks are scheduled. On the other hand, the truck on-site time,
which includes truck waiting time in queue and truck loading time, increased due to higher chances of
queueing. When the scheduled truck number was less than four, the truck on-site time had an average
of 60 min and a standard deviation of 15 min. Beyond that, the on-site time increased quickly in both
the average and standard deviation. With 10 trucks visiting the harvesting site per day, the loader
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would spend about 30%, 25% and 25% of its productive times on “direct loading”, “load from deck”,
and “sort and deck”, respectively, with a total utilization rate of approximately 80%. But the truck
on-site time had an average of 177 min and a standard deviation of 35 min.

Loader Bl Sort and deck Bl Direct loading == Load from deck

o F200
801 Truck -O- On-site time

Loader utilization (%)

(s@nuiw) awiy ays - uo yoru|

Truck number

Figure 9. Loader utilization with task proportions (left y-axis) and truck on-site time (right y-axis)
under different trucking schedules.

3.3. DES Model for the Lop-and-Scatter System

The results of the DES model built for the lop-and-scatter harvesting system using the whole-tree
harvesting data show that the estimated machine productivities for individual machines were similar
to the field-observed productivities (Table 8). The biggest difference was with the skidder. The model
underestimated the skidder productivity by 9.7% with the observed value being about two standard
deviations from the mean estimate. This difference might be attributed to the intrinsic differences
between transportation of trees and logs (e.g., turn size). Our comparisons of the LS DES model with
the two LS TS models (i.e., TS conventional and TS adjusted) show that the LS DES model estimates
were similar to those of TS adjusted, but somewhat different from TS conventional in terms of system
productivity and unit production cost (Figure 10). This indicates that both the DES and TS models
assess the performance of individual machines similarly when the same, scenario-based machine
utilization rates are used as inputs. The results of the TS conventional model were different (15.7% and

10.7% difference in productivity and cost estimates, respectively) because of the published machine
utilization rates used in the analysis.

Table 8. Comparison of the estimated mean machine productivities obtained from the LS DES model
with the field-observed productivities for lop-and-scatter.

Machine Productivity (od/PMH) Difference * (%)
Observed DES
Feller-buncher 41.35 41.88 (0.60) 1.3%
Delimber A 13.20 13.81 (0.35) 4.6%
Delimber B 13.20 13.72 (0.40) 4.0%
Skidder 41.07 37.10 (2.02) —9.7%
Loader (load) 28.40 29.16 (3.98) —3.4%
Loader (sort and deck) 40.98 39.60 (1.76) 2.7%

* Percentage difference between model estimates and the observed values.
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Figure 10. LS system performance estimated by the DES, TS conventional and TS adjusted models.

4. Discussion

4.1. Process Synthesis and Model Resolution

Comparing the WT TS and DES model results, the TS model estimated the system productivity to
be 7.4% lower and the unit cost to be 1.7% higher (Tables 4 and 6). The differences were mainly caused
by the synthesis procedure for machine processes of the two modeling approaches. The TS model does
not track the material flow in the system and thus determines the system productivity as the lowest
machine SMH productivity, whereas the DES model is able to keep track of material flow and machine
activities as a series of events. As Asikainen [20] noted, static, deterministic models, such as the TS
model, generate satisfactory results when the studied system is simple and unbalanced (i.e., apparent
bottleneck) but may lead to biased estimates for complex systems.

The ability of capturing operational details in DES modelling is of great value for system
improvement. In this study, the TS model was not able to provide information on machine utilization
in enough detail to understand the system dynamics (Figures 6 and 7). The DES model, however,
could capture machine interactions more precisely by mimicking the actual work pattern and
machine-to-machine wood flows. The DES model was able to not only quantify the amount of
operational delays but also identify the cause of delays (e.g., the skidder’s operational delays were
caused by other “bottleneck” machines, such as the delimber or the loader). While scheduled and
other delays are unavoidable in machine operations, the amount of operational delays depicts the
efficiency of the harvesting system, and understanding the cause-and-effect of delays can greatly help
improve system balance and thus overall efficiency [18].

4.2. Sensitivity Analysis

When TS regression models are applied to a wide range of independent variable values,
model extrapolation always becomes a concern. In the TS approach, coefficients in a regression
model only infer associations between the dependent and independent variables in the given data set,
not necessarily cause-and-effect relationships in general. For example, estimating skidding cycle times
based on a linear relationship may produce unreasonable results when the coefficient is applied beyond
the original observation range (Figures 7 and 8). The DES approach has a similar restriction because
input probability distributions are produced from site-specific data. However, in DES models, a full
machine cycle is broken into multiple processes that can be estimated independently. Grappling time,
dropping time, skidder empty and loaded traveling speed are still likely to be the same across a wide
range of skidding distances, whereas skidder travel times is a direct function of skidding distance.
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This separate estimation of process times makes the DES models more applicable to a wider range of
independent variable values than the TS models. The more gradual changes shown in the DES model
outputs from the current study confirmed this benefit (Figures 7 and 8).

The results of our sensitivity analysis on truck availability shows that loader operations and log
transportation mutually affect each other. With very few trucks scheduled, the loader has to spend
time for “sort and deck” and later “load from deck”, handling logs twice. Increasing the number of
scheduled trucks increases the loader “direct loading” time and loader utilization, but too many trucks
on site increases the average and variability of truck queue time. This leads to decreased trucking
efficiency and increased transportation cost. In a forest supply chain, efficient wood flow from the
harvesting system to transportation is critical in reducing logistics costs [46]. The strength of the
DES in capturing changes in machine interactions is particularly beneficial to scenario analysis on
trucking schedules [29,31]. Our DES model shows the potential tradeoff between loader utilization
and truck on-site time (Figure 9) and can be used in operational planning to balance harvesting and
transportation efficiency for optimal outcomes.

4.3. Analysis of Hypothetical Systems

In harvesting operations, delay times may vary significantly by system design, as well as stand and
terrain conditions [18]. Our study shows that the use of general machine utilization rates in evaluating
new harvesting systems (e.g., TS_conventional) may not be appropriate because such utilization rates
do not reflect system-specific work conditions, such as machine interactions, that may be caused by a
new composition or arrangement of machine processes (Figure 10). A discrete-event simulation of
wood flow through a series of machine processes seems more appropriate for new system evaluation
because of its ability to address potential machine interactions and precisely estimate the utilization of
individual machines. Our finding is consistent with a previous study [30] that compared a DES model
with a deterministic spreadsheet model developed for stump crushing and truck transportation.

4.4. DES Model Drawbacks

While the DES approach has many advantages, there are also drawbacks. Special skills are
required to build DES models, and the modeling process can be expensive and time-consuming [23].
DES model construction also requires a considerable amount of data, such as time elements of
individual machines and their probability distributions, and it is often the case that sufficient data are
not available in forest operations to make DES modeling feasible. Although modern data acquisition
technologies (e.g., auto-video recording, GPS tracking, sensors) can help access operational data more
easily and frequently [47-49], long-term field data collection is still necessary to obtain a representative
sample of field operations and thus ensure quality output. Also, the large amount of random inputs
in DES modeling can make it difficult to interpret the output in simple terms, especially for highly
complex systems [50].

5. Conclusions

Our comparison of the TS and DES approaches in modeling a ground-based timber harvesting
system indicates that the DES approach may be a more appropriate method for analyzing
complex systems especially where interactions among different machine processes are unknown.
Randomness and uncertainties can be considered in DES throughout the modeling process to account
for variations of operations. Replications of DES model runs enable the user to show a comprehensive
picture of the system performance in terms of both average and variability. In addition, the ability
of DES to reuse the previously collected data provides an opportunity to evaluate alternative or
hypothetical systems that have not been tested in field. Although model construction and output
interpretation can be complex and expensive, we believe the potential benefits of the DES approach to
provide more comprehensive and precise information that can help identify problematic areas and
improvement opportunities in forest operations planning, surpass its potential drawbacks.
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