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Abstract

Forests play a crucial role in the global carbon (C) cycle by storing and sequestering a sub-

stantial amount of C in the terrestrial biosphere. Due to temporal dynamics in climate and

vegetation activity, there are significant regional variations in carbon dioxide (CO2) fluxes

between the biosphere and atmosphere in forests that are affecting the global C cycle. Cur-

rent forest CO2 flux dynamics are controlled by instantaneous climate, soil, and vegetation

conditions, which carry legacy effects from disturbances and extreme climate events. Our

level of understanding from the legacies of these processes on net CO2 fluxes is still limited

due to their complexities and their long-term effects. Here, we combined remote sensing, cli-

mate, and eddy-covariance flux data to study net ecosystem CO2 exchange (NEE) at 185

forest sites globally. Instead of commonly used non-dynamic statistical methods, we

employed a type of recurrent neural network (RNN), called Long Short-Term Memory net-

work (LSTM) that captures information from the vegetation and climate’s temporal dynam-

ics. The resulting data-driven model integrates interannual and seasonal variations of

climate and vegetation by using Landsat and climate data at each site. The presented
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LSTM algorithm was able to effectively describe the overall seasonal variability (Nash-Sut-

cliffe efficiency, NSE = 0.66) and across-site (NSE = 0.42) variations in NEE, while it had

less success in predicting specific seasonal and interannual anomalies (NSE = 0.07). This

analysis demonstrated that an LSTM approach with embedded climate and vegetation

memory effects outperformed a non-dynamic statistical model (i.e. Random Forest) for esti-

mating NEE. Additionally, it is shown that the vegetation mean seasonal cycle embeds most

of the information content to realistically explain the spatial and seasonal variations in NEE.

These findings show the relevance of capturing memory effects from both climate and vege-

tation in quantifying spatio-temporal variations in forest NEE.

Introduction

Forests cover about 30% of the terrestrial surface of our planet, accounting for 75% of gross

primary production (GPP), and store 45% of all terrestrial carbon (C) [1–3]. This fundamental

role highlights the importance of understanding forest C dynamics, which are generally driven

by climatic conditions and vegetation dynamics as well as natural and anthropogenic distur-

bances [4–6]. Changes in climate and disturbance regime can influence the development,

structure, and functioning of forest ecosystems [7–12], therefore causing anomalies in the net

carbon dioxide (CO2) exchange of terrestrial ecosystems (NEE). As a result, quantifying the

effects of climatic variations and forest disturbances on biosphere-atmosphere CO2 fluxes

across-scales has considerable importance for understanding the net CO2 balance of forest

ecosystems [13–16].

Disturbances, such as fire, disease, insect outbreaks, drought, windthrow, or harvesting,

can shift forest ecosystems into early stages of ecological succession [17, 18]. These events

can potentially trigger an accelerated release of stored C back to the atmosphere by reducing

the amount of photosynthetic tissue and also by increasing the pool of respiring detritus

material for subsequent gradual release [14, 19–21]. During recovery, forests accumulate bio-

mass and potentially sequester C from the atmosphere at rates that could alter current trends

of atmospheric C cycling [10]. Post-disturbance successional trajectories are often complex,

depending on pre-disturbance forest structure and function, disturbance type, frequency,

and intensity [22, 23] as well as the climate of the region [24, 25] and land management.

Some disturbances, such as insect outbreaks, can slow down recovery process during regen-

eration or transform forests from closed to open canopies [26], while other low to moderate

severity disturbances increase structural complexity leading to less of an impact on mid-suc-

cession net primary productivity than is often assumed [27]. Therefore, climate and distur-

bance regimes contribute to interannual and seasonal variations in forest net CO2 fluxes.

Changes in climate may also exacerbate the frequency and intensity of extreme meteorologi-

cal events (e.g. droughts, [6] or associated fire events [28, 29]), thereby increasing both mor-

tality rates and the vulnerability of forest ecosystems [30], which would necessarily impact

the dynamics of ecosystem C cycle.

Current response patterns observed in forest CO2 fluxes depend on the contemporaneous

environment conditions as well as on the so-called memory effects of disturbances, climatic

variation, and their interactions [30, 31]. In fact, disturbances or climate extreme events exert

both instantaneous and lagged impacts on biosphere-atmosphere C fluxes [6, 32]. Memory

effects can be defined as the influence that past events have on the present or future responses

of an ecosystem to environmental conditions. Extensive research has been done to understand
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climate and disturbance memory effects on CO2 fluxes (i.e. NEE, gross primary productivity,

and ecosystem respiration) [33–38]. However, given the complexity of NEE responses to dis-

turbances and climate extremes and highly non-linear processes, the legacies of these events

on CO2 fluxes remain unclear [32, 39], and thus they are rarely implemented in current C

cycle models. As such, statistical models capable of dynamically incorporating temporal infor-

mation related to episodic disturbances and climatic fluctuations are required to enhance

our understanding and predictive capabilities of the global C budget [8, 40]. Recently, deep

learning (DL) techniques, such as Recurrent Neural Networks (RNNs), have shown the poten-

tial to capture long-term temporal dependencies and variable-length observations [41–43].

Yet, DL is early in its application for CO2 flux predictions [44]; questions related to the poten-

tial of extracting temporal information for estimating CO2 fluxes across-scales have yet to be

investigated.

In this study, we explore the potential of a dynamic statistical approach—a type of RNN,

called Long Short-Term Memory model (LSTM)—to characterize the memory effects of dis-

turbance and climate variations on NEE across temporal and spatial scales at 185 forest and

woodland FLUXNET sites globally utilizing remote sensing, climate, and eddy-covariance

(EC) flux datasets. In particular, this study focuses on: (1) comparing the statistical power of

an LSTM approach to a Random Forest algorithm in predicting ecosystem level NEE, and (2)

assessing the importance of capturing the memory effects of vegetation and climate to predict

forest NEE using data-driven LSTMs. The analysis focuses on the variations in NEE spatially

and temporally for seasonal, monthly, and interannual anomalies, for which a factorial experi-

ment was designed as explained below. We propose that the application of dynamic statistical

approaches results in estimating net CO2 fluxes across-scales more realistically by including

the responses of NEE to antecedent climate and disturbance conditions.

Materials and methods

Data materials

Eddy-covariance data and quality check. The current dataset consists of 185 forest and

woodland sites (S1 Table) composed of five plant functional types (PFTs): deciduous broadleaf

forest (DBF; n = 42), deciduous needleleaf forest (DNF; n = 1), evergreen broadleaf forest

(EBF; n = 27), evergreen needleleaf forest (ENF; n = 81), mixed forest (MF; n = 14), woody

savanna (WSA; n = 10), and savanna (SAV, n = 10); and four climate class: arid (n = 11), boreal

(n = 67), temperate (n = 86), and tropical (n = 21). We aggregated DBF and DNF into a decid-

uous forest class, EBF and ENF into an evergreen forest class, and SAV and WSA into a

savanna class. The sites were part of both version 2 of the LaThuile FLUXNET and the FLUX-

NET2015 datasets (https://fluxnet.fluxdata.org) of the FLUXNET network [45, 46]. For each

site, continuously measured or gap-filled net CO2 fluxes (i.e. NEE) and microclimatic variables

(i.e. air temperature (Tair), precipitation (P), global radiation (Rg), and vapor pressure deficit

(VPD)) were obtained at half-hourly time intervals from the FLUXNET datasets. The data pro-

cessing included: storage-correction despiking, u�-filtering [47], flux partitioning [48]. Half-

hourly NEE were aggregated into monthly averages (i.e. seasonal cycle). Only monthly obser-

vations with more than 80% of the original or good quality gap-filled data were considered in

this analysis [47]. A total of’ 14, 000 observed or gapfilled monthly NEE flux data was used,

from which’ 1, 500 monthly observations were collected in forests younger than 30 years.

Remote sensing data. For each FLUXNET site, the entire multi-temporal collection 1

from the Landsat 4, 5, 7 and 8 archives (https://www.usgs.gov/) spanning the past 30 years at

30 meters resolution was collected. Landsat data have been pre-processed using the Landsat

Ecosystem Disturbance Adaptive Processing System (LEDAPS) [49] and the Landsat Surface
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Reflectance Code (LaSRC) (https://landsat.usgs.gov/landsat-surface-reflectance-data-

products) for atmospheric correction. Poor quality retrievals due to the clouds, cloud shadows,

snow, and ice were masked out [50, 51]. The data extraction and the pre-processing chains (i.e.

cloud, cloud shadow masking, and downloading) were implemented in the Google Earth

Engine (GEE) platform [52] (https://earthengine.google.com/). The seven spectral bands of

the Landsat product were used; i.e. blue, green, red, near infrared (NIR), shortwave infrared

(SWIR) 1, SWIR 2, and thermal infrared (TIR) (https://landsat.usgs.gov/what-are-band-

designations-landsat-satellites). To better represent the EC footprint area, a circular buffer of

500 m radius centered on each FLUXNET tower was defined for which a mean value within

the different Landsat cutouts was extracted. Note that the proposed LSTM approach can only

be implemented with regular time series, but most of the Landsat time series were irregular

due to cloud cover or data quality issues. A first gap-filling procedure was conducted by pre-

dicting monthly reflectance values for each Landsat band with a Random Forest (RF) model

[53, 54] using the monthly Moderate Resolution Imaging Spectroradiometer (MODIS,

MCD43A4 version 6) bands as predictive variables (S1 Fig). The gap-filling procedure was

completed for the remaining gaps in the entire Landsat time series (i.e. from the 1980s to now)

by predicting each Landsat band with an RF model using climate variable (i.e. Tair, Precip, Rg,

VPD, rpot), PFT, month of the year, and latitude as predictive variables (Fig 1 and S2 Fig). For

the two aforementioned gap-filling procedures, the best set of the predictors for predicting

each Landsat band independently was obtained with a feature selection analysis (i.e. the Boruta

algorithm [55]).

Climate data. Long-term time series of Tair, P, Rg, and VPD were down-scaled for the

period of 1979-2015 from the ERA-Interim datasets [56]. For each site, the three nearest grid

cells in the ERA-Interim datasets were extracted and several statistical models were trained

(i.e. relational logistic regression, kernel ridge regression, Gaussian processes regression, and

neural networks) for each target variable (i.e. Tair, P, Rg, and VPD) using the time series of the

three nearest gridcells as predictive variables. For each target variable and at each site, the best

statistical model was consequently selected based on the highest Nash-Sutcliffe modeling effi-

ciency (NSE) (S3 Fig). These down-scaled climate time series were used to gap-fill climate

observations measured at the site level in order to have climatic data covering the entire

remote sensing data period.

Recurrent neural network model for dynamic modeling

RNNs were employed to learn vegetation and climate history based on sequential observations

(https://github.com/bgi-jena/RNNFluxes.jl.git) [44]. RNNs are effective tools for capturing

temporal information from sequential/time series data. We used a special kind of RNNs, capa-

ble of learning long-term dependencies, called long short-term memory networks (LSTMs)

[57]. LSTMs utilize relevant information from all previous observations and are suitable to

model long-term temporal dependencies and memory effects.

Monthly climate data (i.e. Tair, P, Rg, and VPD) and Landsat raw bands from the period

of 1982 to 2015 were used to train the LSTM models (Fig 2). A single layered LSTM was used

to learn information based on the input of the current and of all previous observations. At

each training iteration, a loss function (Mean Squared Error) was calculated by comparing

monthly predicted and observed NEE. The loss function was used to derive the gradients for

backpropagation over the entire sequence [58]. The gradients were further used by an Adam
optimizer [59] for adjusting the weights of the connections in the model so as to minimize

the loss function. During the learning procedure, 20% of the training set (i.e. evaluation set)

served for optimizing the weights of the networks. The learning procedure was stopped

Memory effects of climate and vegetation affecting global forests NEE
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Fig 1. Flowchart of the Landsat data extraction and post-processing. SWIR = Shortwave Infrared. SR = Surface Reflectance. Monthly temporal gap-filled Landsat

time series from 1982 to 2015 of the shortwave Infrared band are shown for AR-Vir and US-SO3 sites where, respectively, afforestation-reforestation and fire followed

by a regrowth were reported in 2003. The solid and the dashed lines depict the real observations and the gap-filled data, respectively.

https://doi.org/10.1371/journal.pone.0211510.g001
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when the calculated loss function on the evaluation set did not decrease after 500 iterations

(i.e. early stopping). Additionally, there was a grid search of the LSTM’s hyperparameters;

i.e. learning rate (0.1 or 0.01), number of hidden neurons (10, 20, or 30), and dropout (0 or

0.5) [60] to select the optimal set of hyperparameters. Due to the random initialization of

LSTMs, 50 runs for each model set-up were performed to assess the uncertainty of the model

outputs.

Fig 2. Flowchart of the proposed LSTM approach. Figure adapted from [61]. Each individual timestep is a monthly observation for the period 1982 to

2015. Landsat surface reflectances correspond to the seven spectral bands of the Landsat product; i.e. blue, green, red, near infrared, shortwave infrared

1, shortwave infrared 2, and thermal infrared. Climate corresponds to air temperature, precipitation, global radiation, and vapor pressure deficit. At

each time step, an LSTM layer containing a set of cells or hidden neurons (10, 20, or 30) processes information based on the input of the current and of

all previous observations. Predictions of net ecosystem exchange were performed at each monthly timestep by using information from both current and

previous observations. The loss function was only calculated when net ecosystem exchange observations were available; i.e. measurement periods of

LaThuile and FLUXNET2015 datasets.

https://doi.org/10.1371/journal.pone.0211510.g002

Table 1. Design of the factorial experiment. X means that the variant was used to study the respective topic of each row. LSTM = LSTM model using the full depth of the

Landsat time series and climate data; LSTMperm = LSTM model but the temporal patterns of both the predictive and the target variables were randomly permuted while

instantaneous relationships between predictive and target variables were kept; LSTMmsc = LSTM model but the Landsat time series for each band were replaced by their

mean seasonal cycle, while using the actual values of air temperature (Tair), precipitation (P), global radiation (Rg), and vapor pressure deficit (VPD); LSTMannual = LSTM
model but the Landsat time series for each band were replaced by their annual mean, while using the actual values of Tair, P, Rg, and VPD, RF = Random Forest model

using the actual values of the Landsat time series and climate data.

LSTM LSTMperm LSTMmsc LSTMannual RF

Temporal feature extraction/Memory effects X X X

Vegetation interannual seasonal variation X X

Vegetation interannual variability X X

Comparision to non-dynamic method X X

https://doi.org/10.1371/journal.pone.0211510.t001
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Experimental design

Model set-ups. In order to understand vegetation and climate memory effects on NEE, a

trained LSTM with monthly climatic data (i.e. Tair, P, Rg, and VPD) and monthly Landsat data

(i.e. blue, green, red, NIR, SWIR 1, SWIR 2, and TIR bands) was benchmarked against a series

of different model set-ups (Table 1 and Fig 3). A comparison of the following five distinct

experimental set-ups was performed: (1) LSTM model using the full depth of the Landsat time

series and climate data (hereafter LSTM); (2) LSTM model where the orders of the predictor-

target pairs were randomly permuted so that the instantaneous link between dependent and

independent variables were kept but the realistic temporal sequences were destroyed (hereafter

LSTMperm); (3) LSTM model where the Landsat time series for each band were replaced by

their mean seasonal cycle (i.e. mean of each month over the Landsat time series period) while

using the actual values of Tair, P, Rg, and VPD (hereafter LSTMmsc); (4) LSTM model where

the Landsat time series for each band were replaced by their annual mean (i.e. mean of the

monthly observations within each year over the Landsat time series period) while using the

actual values of Tair, P, Rg, and VPD (hereafter LSTMannual), and (5) a Random Forest (RF)

model [53, 54] using the actual values of the Landsat time series and climate data (hereafter

RF).

Comparing the LSTM with the LSTMmsc model set-ups served to assess the importance of

including and extracting information on interannual seasonal variation of vegetation to calcu-

late NEE for each forest site across the globe. Contrasting the LSTMannual with the LSTM
reflects lost in model fitness by not including the information contained in the monthly mean

seasonal cycle of vegetation. The differences between the results from the LSTM and the

LSTMperm as well as between the LSTM and the RF aimed to test the effects of extracting realis-

tic temporal dependencies in the observations for predicting net CO2 fluxes. The RF set-up

also provided a comparison to commonly used data-driven statistical modeling approaches for

NEE estimates [62, 63] (Table 1). The predictive variables used in the different model set-ups

are listed in Table 2.

Model training and evaluation. The performance of each model set-up was evaluated by

directly comparing model estimates with observed values of NEE for each site. These statistical

models were evaluated using a 10-fold cross-validation strategy in which entire sites were

assigned to each fold [63]. The training of each model set-up was done using data from nfold-1,

Fig 3. Illustration of the different Landsat time series temporal architectures of the different LSTM model set-ups for the SWIR band only for

the period 1990-2015. SWIR = Short Wave Infrared. SR = Surface Reflectance. The US-SO3 site where fire followed by regrowth was reported in 2003

is shown.

https://doi.org/10.1371/journal.pone.0211510.g003
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while predictions were made for the remaining fold, ensuring that the validation data were

independent of the training data. The statistics used to assess the capability of the statistical

models to estimate NEE were the coefficient of determination (R2), the NSE, the root mean

squared error (RMSE), and the mean absolute error (MAE) [64]. The predictive capacity of the

different algorithms was assessed for the seasonal cycle, the seasonal anomalies, the interan-

nual anomalies, and the across-site variability. The seasonal anomalies were computed as the

difference between the monthly NEE estimates of a considered month and those of the same

month averaged over the observation period for each site. The interannual anomalies were

computed as the difference between the annual NEE estimates of a considered year and the

annual averaged over the entire observation period for each site. Both seasonal and interannual

anomalies were calculated only for the sites with at least three years of complete observations

after the data quality check. Across scales, the statistical models were trained using monthly

time-series and the estimates were further aggregated to the corresponding scales, i.e. seasonal

cycle, seasonal and interannual anomalies, and across-site.

Results were analyzed on the global dataset as well as according to PFT, bioclimatic and,

forest age classes. PFT and climate classifications were found in the ancillary data files pro-

vided by the La Thuile or the FLUXNET2015 datasets https://fluxnet.fluxdata.org. Forest age

data were derived from a published dataset [65]. Forest age estimates were aggregated in six

classes: 0-10 years (n = 7 sites), 10-20 years (n = 8 sites), 20-50 years (n = 14 sites), 50-100

(n = 27 sites), 100-150 (n = 14 sites), and 150-�300 years (n = 15 sites).

Results and discussion

Performance of the Recurrent Neural Networks

The proposed approach was generally able to capture the seasonal cycle well for LSTM set-ups

(NSE = 0.66), but had moderate to poor predictive capacity to explain across-site variability

(NSE = 0.42), monthly anomalies (NSE = 0.07) or interannual anomalies (NSE = 0.07) (Fig 4).

However, the proposed approach achieved comparable predictive capacity than the most

recent NEE estimates based on FLUXNET data across scales [62, 63].

Such dynamic statistical modeling approach (i.e. LSTM) was expected to achieve a better

performance for predicting anomalies compared to [62] and [63] analysis. In fact, LSTMs are

theoretically able to automatically learn informative features [66, 67], and as such could cap-

ture interannual and seasonal fluctuations in the remote sensing and climate data related to

Table 2. List of predictors used in the different model set-ups. Tair = air temperature, P = precipitation, Rg = global

radiation, and VPD = vapor pressure deficit. LSTM = LSTM model using the full depth of the Landsat time series and

climate data; LSTMperm = LSTM model but the temporal patterns of both the predictive and the target variables were

randomly permuted while instantaneous relationships between predictive and target variables were kept; LSTMmsc =

LSTM model but the Landsat time series for each band were replaced by their mean seasonal cycle, while using the

actual values of air temperature (Tair), precipitation (P), global radiation (Rg), and vapor pressure deficit (VPD);

LSTMannual = LSTM model but the Landsat time series for each band were replaced by their annual mean, while using

the actual values of Tair, P, Rg, and VPD, RF = Random Forest model using the actual values of the Landsat time series

and climate data.

Model set-up Predictors

LSTM 7 Landsat bands + Tair + P + Rg + VPD

LSTMperm permuted [7 Landsat bands + Tair + P + Rg + VPD]

LSTMmsc 7 MSC Landsat bands + Tair + P + Rg + VPD

LSTMannual 7 annual mean Landsat bands + Tair + P + Rg + VPD

RF actual values of 7 Landsat bands + Tair + P + Rg +e VPD

https://doi.org/10.1371/journal.pone.0211510.t002
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specific ecosystem impact events (e.g. anthropogenic disturbances, seasonal droughts). How-

ever, this appeared not to be the case. We assume that this could be due to:

1. the fact that anomaly signals were relatively small (Fig 4b and 4d) compared to the low sig-

nal-to-noise ratio in the remote sensing data because of atmospheric contamination;

2. the non-availability of complete Landsat time series, and necessary gapfilling step;

3. the fact that the training of the statistical models was performed at monthly scale and not at

daily scale due to the temporal resolution of the Landsat data. Signatures of extreme events

are likely more apparent at daily time scale, therefore one could argue that the temporal

Fig 4. Scatterplots of observed data by eddy-covariance and the LSTM modeled fluxes for the seasonal cycle (Fig 4a), seasonal anomalies (Fig 4b), across-

site variability (Fig 4c), and interannual anomalies (Fig 4d). The modeled estimates are derived from the mean ensemble of the 50 model runs.

https://doi.org/10.1371/journal.pone.0211510.g004
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scale used in the presented study is not appropriate to capture well the anomalies in the

signals;

4. the limitations associated with the remote sensing signals in providing all necessary infor-

mation regarding vegetation structure and growth trajectory, while being insensitive to C

decomposition dynamics;

5. the fact that few disturbances events were observed during the observational period com-

pared to undisturbed sites or to sites where disturbances occurred a long time ago in which

no spectral recovery signals were captured during the training procedure (i.e. only 10% of

the observations in recently disturbed forests); and

6. the lack of information related to the spatial context (e.g. landscape patchiness, fractal

dimension) that could translate the development stage.

All these factors could suggest that few anomaly signals are captured during the training

process of the proposed approach. Furthermore, we cannot ignore the fact that there is a lack

of relevant information on the predictors used in this study to predict NEE variability across-

scales. For instance, extracting temporal variation in the Landsat data could have been a good

proxy for the age effects on NEE among sites, but this was not the case here (as discussed fur-

ther), likely due to missing information in the input variables for the heterotrophic respiration

component of NEE. The mismatch between the observed and predicted NEE at interannual

scales could also be related to the fact that the training procedure does not learn site-specific

characteristics due to the implemented cross-validation set-up (i.e. entire sites out cross-vali-

dation) [40], therefore limiting the capacity of a statistical model to predict NEE interannual

anomalies accurately. Furthermore, the cost function was performed on the monthly observa-

tions during the training/evaluation procedure, which can potentially limit the capacity of the

presented approach for calculating NEE signals realistically at annual scales. In addition, there

are few very young sites (< 20 years old) or sites where disturbances occurred during the

Landsat record in the training set, which can limit the ability of the proposed approach to have

good predictive capacity in young recently disturbed sites. Another source of uncertainty is

related to the mismatch between flux measurements and the Landsat time series cutouts

around each flux tower. To overcome the latter issue, integration of footprint analysis could

help to better describe the origin of the fluxes within the Landsat time series cutouts.

Differences in predictive capacity were apparent for different PFTs and climate levels

(Table 3, S2 and S3 Tables). The NSE for different PFTs and climate regions at the seasonal

scale ranged from 0.42 (i.e. evergreen forests) to 0.82 (i.e. deciduous forests), and from -0.0006

for the tropical forests to 0.68 for both temperate and boreal forests. The fact that the LSTM

showed poor agreement with observations in the tropics can be explained by the very small sig-

nal in the input data due to the lack of seasonal variation in terms of reflective, thermal, and

moisture properties [32]. In addition, the Landsat data tend to be very sparse in the tropics due

to frequent cloud coverage, leading to a high fraction of gap-filled data, thus a potentially poor

representation of the seasonal vegetation variation. The properties of the Landsat data might

also not be suitable to characterize seasonality in the tropics, therefore other remote sensing

products related to leaf development and demography (e.g. Multi-Angle Implementation of

Atmospheric Correction data product) [68] could be explored. However, such products were

not tested given their relatively short time series, although this shortcoming may be overcome

in the future. EC flux data also have their own limitations in the tropics, not only due to sparse

spatial coverage but also due to large gaps in data related to frequent rain events and severe

issues with the night-time fluxes due to low wind speed and tall canopies. The LSTM was able

to well predict NEE across-sites in evergreen forests (NSE = 0.43), while it showed poor
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agreement with observations in tropical regions (NSE = -0.15). One could assume that the low

number of tropical sites currently available in this dataset (n = 16 and n = 7) at the seasonal

scale and across-sites, respectively) might limit an LSTM to predict spatial NEE variabilities in

such an ecosystem and also lead to a systematically higher uncertainty across-scales compared

to other PFTs (Table 3).

Comparison of the different model set-ups

A comparison of the model performance was done between the different LSTM networks

along with the non-dynamic statistical RF model (Table 4, S4, S5 and S6 Tables). In general,

the performance metrics across the model set-ups differed. All model set-ups were capable of

well predicting the seasonal cycle, with the LSTM achieving particularly better model fitness

and lower errors (NSE = 0.66, RMSE = 1.12, and MAE = 0.81). Similarly, LSTM depicted better

agreement between observations and predictions across-sites (NSE = 0.42, RMSE = 0.63, and

MAE = 0.48). However, none of the presented model set-ups were able to successfully predict

the anomaly signals, with LSTM having rather similar performance and level of errors than the

other model set-ups for both seasonal (NSE = 0.07, RMSE = 0.61, and MAE = 0.31) and inter-

annual anomalies (NSE = 0.07, RMSE = 0.31, and MAE = 0.22). Still, this results supported the

importance of accounting for interannual and seasonal fluctuations of climate and vegetation

to estimate net CO2 fluxes, in particular at the seasonal scale and across-sites. This was evi-

denced by LSTMmsc, LSTMperm, LSTMannual, and the RF model set-ups, which depicted lower

predictive capacities and higher errors than the original LSTM. However, these comparisons

were done for the entire FLUXNET dataset, but the effects of memory were substantially dif-

ferent across-sites (S4 Fig).

Table 3. Nash-Sutcliffe modeling efficiency of the LSTM setup per vegetation type and climate region from the ensemble mean ±sd estimate of the 50 runs. Statistics

for the anomalies were not calculated in the arid and tropical climate (i.e. NA) because there was no site with at least 3 years of complete data after data quality control.

Savanna vegetation type includes both savanna and woody savanna sites.

Seasonal cycle Seasonal anomalies Across-sites Interannual anomalies

Deciduous forest 0.82 ±0.01 0.16 ±0.03 0.26 ±0.07 0.17 ±0.04

Evergreen forest 0.42 ±0.02 0.03 ±0.02 0.43 ±0.06 0.008 ±0.04

Mixed forest 0.63 ±0.03 0.01 ±0.02 0.40 ±0.19 0.08 ±0.04

Savanna 0.55 ±0.02 0.03 ±0.02 0.29 ±0.48 0.37 ±0.07

Arid 0.47 ±0.04 NA 0.15 ±0.75 NA

Boreal 0.68 ±0.01 0.14 ±0.03 0.33 ±0.07 -0.04 ±0.05

Temperate 0.68 ±0.01 0.04 ±0.02 0.29 ±0.07 0.09 ±0.03

Tropical -0.0006 ±0.12 NA -0.15 ±0.27 NA

https://doi.org/10.1371/journal.pone.0211510.t003

Table 4. Nash-Sutcliffe modeling efficiency of the proposed approach against the other model set-ups from the ensemble mean ±sd estimate of the 50 model runs.

LSTM = LSTM model using the full depth of the Landsat time series and climate data; LSTMperm = LSTM model but the temporal patterns of both the predictive and the

target variables were randomly permuted while instantaneous relationships between predictive and target variables were kept; LSTMmsc = LSTM model but the Landsat

time series for each band were replaced by their mean seasonal cycle, while using the actual values of air temperature (Tair), precipitation (P), global radiation (Rg), and

vapor pressure deficit (VPD); LSTMannual = LSTM model but the Landsat time series for each band were replaced by their annual mean, while using the actual values of

Tair, P, Rg, and VPD, RF = Random Forest model using the actual values of the Landsat time series and climate data.

Seasonal cycle Seasonal anomalies Across-sites Interannual anomalies

LSTM 0.66 ±0.01 0.07 ±0.01 0.42 ±0.05 0.07 ±0.03

LSTMmsc 0.64 ±0.009 0.05 ±0.008 0.39 ±0.04 0.02 ±0.01

LSTMannual 0.59 ±0.02 0.06 ±0.03 0.36 ±0.05 0.04 ±0.05

LSTMperm 0.61 ±0.01 0.008 ±0.02 0.38 ±0.05 0.08 ±0.02

RF 0.58 ±0.00004 -0.30 ±0.0006 0.38 ±0.0002 -0.04 ±0.0007

https://doi.org/10.1371/journal.pone.0211510.t004
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The fact that the LSTM network exploits the history of the predictor variables could explain

its overall better results in predicting CO2 fluxes compared to other model set-ups, despite the

differences being marginal. The CO2 fluxes are not only linearly related to the instantaneous

reflectance and meteorological conditions but also associated with the climate and vegetation

dynamics several months to years prior [6], which may affect non-observed ecosystem states

with direct consequences to C fluxes. To investigate this, an additional simulation experiment

was conducted to understand how many years, before predicting a specific year, the proposed

approach (i.e. LSTM) uses to achieve a better model performance (Fig 5). The LSTM model

trained before was used, but during the prediction, the actual values for predictors in yeari−n

(where n is a number of years ranging from one to five) were replaced by their MSC when pre-

dicting yeari. Hence, the interannual variations and seasonal deviations of yeari−n were not

included in the predictions of the LSTMs when calculating NEE for yeari. For both deciduous

and evergreen forests, there was a consistent increase in the mean absolute residuals from 0 to

1 years of altered forcings, while there were no substantial changes when the number of years

since alteration was� 1 year (Fig 5a and 5b). It is also interesting to see that altering only cli-

mate predictors has less of an effect on the deviations from the NEE estimates, compared to

the other two scenarios. For deciduous forests, capturing information from the current and

the previous years results in the highest differences in NEE estimates mainly during the grow-

ing season (April to September) (Fig 5c). On the other hand, altering the Landsat and climate

time series of the previous years seemed to mainly have the highest effects on the predicted

NEE from January to August-September. Overall, the magnitudes in the errors are substan-

tially higher for deciduous forests. Note that these findings do not mean that only previous-

year climate and vegetation memory effects are important for improving NEE estimates but

indicate that their significance in the proposed approach diminishes to further improve its pre-

dictive capacity.

This study confirms that changes in historical climate and vegetation dynamics play a mod-

erate role in shaping the temporal variability of ecosystem CO2 fluxes, particularly at the sea-

sonal scale (i.e. around 8% difference in model efficiency between LSTM and LSTMperm) and

across-sites (i.e. 10% difference in model efficiency between LSTM and LSTMperm) (Table 4

and Fig 5). However, these findings differ markedly between forest types (Figs 5 and 6). For

instance, NEE estimates calculated by LSTM and LSTMmsc for deciduous forests are rather

similar at the seasonal scale, suggesting that the interannual variation information carried by

the remote sensing data does not help to achieve better performance capacity in predicting

NEE at seasonal scale in such an ecosystem, while the interannual variation in climate is still

considered. On the other hand, the highest modeling efficiency was achieved for evergreen for-

ests using the LSTM model, suggesting that both interannual and seasonal fluctuations in vege-

tation are important drivers of NEE variabilities at the seasonal scale.

One outstanding result of this analysis is the importance of memory effect at the seasonal

scale (Table 4 and Fig 6). Such finding can be better explored using the NEE mean seasonal

variation residuals for deciduous and evergreen forests (Fig 7). For deciduous and evergreen

forests, it is important to extract realistic temporal vegetation and climate information when

predicting NEE as the LSTMperm model depicts the highest overall error in the residual sea-

sonal patterns compared to the other model set-ups. For deciduous forests, both the onset and

the peak of the growing season were better captured by LSTM and LSTMmsc models (Fig 7a).

This could suggest that the climatic conditions of the previous years (e.g. water limitations [33,

35], increased precipitation [34], or minimum air temperature during spring of the previous

year [36]) not only control NEE seasonal patterns in deciduous forests but also mean seasonal

vegetation fluctuations. It is therefore probable that seasonal leaf physiology due to leaf aging

also drives the residual seasonal patterns [69]. The LSTMannual model set-up revealed that
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Fig 5. Effects on predicting monthly NEE by altering n year in the predictors for deciduous and evergreen forests. Average of the absolute

residuals calculated between predicted monthly NEE with 0 year altered in the predictors against predicted monthly NEE with yeari−n altered in

the predictors for deciduous and evergreen forests (Fig 5a and b, respectively). The absolute residuals for the mean seasonal cycle were also

reported (Fig 5c and d for deciduous and evergreen forests, respectively). “1 year” means that only the last year was altered, “2 years” means

that the last two years were altered, and so on. Months for the sites located in the Southern hemisphere have been adjusted to match the

seasonal cycle of the sites in the Northern hemisphere.

https://doi.org/10.1371/journal.pone.0211510.g005
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capturing interannual variations in vegetation activities does not help in representing NEE

estimates at the seasonal scale. However, all the model set-ups showed rather similar errors

when representing the senescence phase in deciduous forests, suggesting that the processes

that control these dynamics are not expressed in any of the observational datasets used here.

Interestingly, LSTM, LSTMmsc, and LSTMannual model set-ups depicted relatively similar errors

over the course of the growing season for evergreen forests (Fig 7b). This means that both the

current climate conditions and the ones of the previous months or years control NEE seasonal

cycle in such an ecosystem. These findings confirmed the existence of different ecosystem

type-specific memory or lagged effects [33].

The LSTM model set-up outperformed the other models (i.e. LSTMperm, LSTMmsc,

LSTMannual, and RF) across sites, suggesting that it is able to better capture the complexity of

the relation between past dynamics and current functions of the forests across-space. One

hypothesis could be that net CO2 fluxes in recently disturbed forests are better predicted with a

method that captures disturbance regimes. However, this hypothesis could not be confirmed

since: (1) the LSTM model set-up did not outperform the other model set-ups for young forests

(i.e. 0-20 years old) and for recently disturbed forests (Fig 8); and (2) training an LSTM adding

forest age as predictor or training it only for young forests (forest age< 40 years) did not cor-

rect for the bias in young forests (Fig 8). However, it is not possible to be conclusive on the

ability of the LSTMs to predict young sites since: (1) there was only a small sample of young

forests and recently disturbed sites in this dataset; and that methodologically (2) no in-situ
proxies for productivity were used in the analysis (e.g. related gross primary productivity); and

(3) the LSTMs were trained with monthly observation. Therefore, it is very likely that the bet-

ter performance of the LSTM model set-up compared to the other model set-ups at the sea-

sonal cycle could explain its overall better capacity in explaining NEE spatial variation (e.g.

spring NEE accounts for most of the annual NEE in the temperate deciduous forests [36]).

Fig 6. Nash-Sutcliffe modeling efficiency comparison between the proposed LSTM-based models and the other model set-ups for (a) deciduous and

(b) evergreen forests. Nash-Sutcliffe modeling efficiency values have been calculated based on the mean ensemble ±sd of the 50 model runs. LSTM =

LSTM model using the full depth of the Landsat time series and climate data; LSTMperm = LSTM model but the temporal patterns of both the predictive

and the target variables were randomly permuted while instantaneous relationships between predictive and target variables were kept; LSTMmsc =

LSTM model but the Landsat time series for each band were replaced by their mean seasonal cycle, while using the actual values of air temperature

(Tair), precipitation (P), global radiation (Rg), and vapor pressure deficit (VPD); LSTMannual = LSTM model but the Landsat time series for each band

were replaced by their annual mean, while using the actual values of Tair, P, Rg, and VPD, RF = Random Forest model using the actual values of the

Landsat time series and climate data.

https://doi.org/10.1371/journal.pone.0211510.g006
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Conclusion

In this study, we present a novel framework for assessing the potential of the memory effects

of climate and vegetation on forests’ NEE using the Landsat satellite imagery and in-situ eddy

covariance observations. The results presented here for the whole FLUXNET dataset reveal a

variable memory effect on NEE across-scales, but that is mainly apparent at the seasonal scale

and across-sites. We also find that the effects of memory vary between FLUXNET sites sug-

gesting site-specific memory effects. Although instantaneous observations of the contempora-

neous vegetation states may already carry information from the past, current analysis suggests

that extracting antecedent observations of vegetation and climate are beneficial for estimating

NEE more realistically (the difference between LSTM and LSTMperm, as well as between LSTM
and RF). Such effects can emerge from the information contained in the course of the seasonal

cycle or from the effects of interannual variation on NEE. However, the close agreement

between LSTM and LSTMmsc suggests that either the effect is smeared out by the impact of

Fig 7. Mean seasonal variation of NEE residuals for LSTM, LSTMperm, LSTMmsc, and LSTMannual models for (a)

deciduous and (b) evergreen forests. NEE residuals = [NEE observedi,j − mean(NEE observedi)] − [NEE predictedi,j
− mean(NEE predictedi)], where i is a unique Fluxnet site and j is a monthly observation. Residual estimates have been

calculated based on the mean ensemble ±sd of the 50 model runs. LSTM = LSTM model using the full depth of the

Landsat time series and climate data; LSTMperm = LSTM model but the temporal patterns of both the predictive and

the target variables were randomly permuted while instantaneous relationships between predictive and target variables

were kept; LSTMmsc = LSTM model but the Landsat time series for each band were replaced by their mean seasonal

cycle, while using the actual values of air temperature (Tair), precipitation (P), global radiation (Rg), and vapor pressure

deficit (VPD); LSTMannual = LSTM model but the Landsat time series for each band were replaced by their annual

mean, while using the actual values of Tair, P, Rg, and VPD, RF = Random Forest model using the actual values of the

Landsat time series and climate data. Months for the sites located in the Southern hemisphere have been adjusted to

match the seasonal cycle of the sites in the Northern hemisphere.

https://doi.org/10.1371/journal.pone.0211510.g007
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instantaneous climate on NEE or the interannual variation’s memory effect in NEE is implic-

itly captured by this approach. The results are contingent on the length of observations and

few recently disturbed forests but do emphasize the possibility of dynamic statistical methods

that include memory effects to better estimate the contribution of forest ecosystems in the

global terrestrial C cycle, hence for further improving statistically-based prediction methods.
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https://doi.org/10.1371/journal.pone.0211510.g008
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S3 Fig. Performance of the gap-filling procedure for the differtent climate variables.
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(RMSE) is reported for Precip.

(PDF)

S4 Fig. Scatterplots of the coefficient of determination of the proposed approach against
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and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences. 2016; 13

(14):4291–4313. https://doi.org/10.5194/bg-13-4291-2016

63. Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, et al. Global patterns of land-

atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satel-

lite, and meteorological observations. Journal of Geophysical Research: Biogeosciences. 2011; 116(G3).

64. Omlin M, Reichert P. A comparison of techniques for the estimation of model prediction uncertainty.

Ecological Modelling. 1999; 115(1):45–59. https://doi.org/10.1016/S0304-3800(98)00174-4

Memory effects of climate and vegetation affecting global forests NEE

PLOS ONE | https://doi.org/10.1371/journal.pone.0211510 February 6, 2019 21 / 22

https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1071/BT07151
https://doi.org/10.1071/BT07151
https://doi.org/10.1175/1520-0477(2001)082%3C2415:FANTTS%3E2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082%3C2415:FANTTS%3E2.3.CO;2
https://doi.org/10.5194/bg-3-571-2006
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1016/j.rse.2014.12.014
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1002/qj.828
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1038/323533a0
https://doi.org/10.5194/bg-13-4291-2016
https://doi.org/10.1016/S0304-3800(98)00174-4
https://doi.org/10.1371/journal.pone.0211510


65. Besnard S, Carvalhais N, Arain A, Black A, de Bruin S, Buchmann N, et al. Quantifying the effect of for-

est age in annual net forest carbon balance. Environmental Research Letters. 2018; 13(12):124018.

https://doi.org/10.1088/1748-9326/aaeaeb

66. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436. https://doi.org/10.1038/

nature14539 PMID: 26017442

67. Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks. 2015; 61:85–117.

https://doi.org/10.1016/j.neunet.2014.09.003 PMID: 25462637

68. Wu J, Albert LP, Lopes AP, Restrepo-Coupe N, Hayek M, Wiedemann KT, et al. Leaf development and

demography explain photosynthetic seasonality in Amazon evergreen forests. Science. 2016; 351

(6276):972–976. https://doi.org/10.1126/science.aad5068 PMID: 26917771

69. Rodrı́guez-Calcerrada J, Limousin JM, Martin-StPaul NK, Jaeger C, Rambal S. Gas exchange and leaf

aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration.

Tree Physiology. 2012; 32(4):464–477. https://doi.org/10.1093/treephys/tps020 PMID: 22491489

Memory effects of climate and vegetation affecting global forests NEE

PLOS ONE | https://doi.org/10.1371/journal.pone.0211510 February 6, 2019 22 / 22

https://doi.org/10.1088/1748-9326/aaeaeb
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
https://doi.org/10.1126/science.aad5068
http://www.ncbi.nlm.nih.gov/pubmed/26917771
https://doi.org/10.1093/treephys/tps020
http://www.ncbi.nlm.nih.gov/pubmed/22491489
https://doi.org/10.1371/journal.pone.0211510

