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Abstract
written in the style of A Silence of Three Parts from The Kingkiller Chronicle by Patrick Rothfuss

I had to write again. My research lay in science, and it was a science of three parts.

The first part made a careful, introductory chapter, begged for by things that were lacking. It summarizes the

von Neumann measurement model, derived from the Stern-Gerlach experiment, and it explains how weak values

arise from weak interactions between quantum systems and von Neumann probes. If there had been more literature

about the error of the weak value approximation and how to bound it, then perhaps I would have read myself into

a satisfied sleep and never written this chapter. If there had been talk of operator norms . . . but no, of course there

was not. In fact, the focus of the literature was elsewhere, and so I had to provide these things; now the first

chapter remains.

In the course of my research, a method came to my attention, which sought to justify the role of the weak value

in approximating the effect of a weak interaction. This method, feedback compensation, estimates the effect of the

interaction and applies it in reverse to attempt to reset the probe state. Weak values (at least, their real parts)

were found to be the optimal estimates of interactions, providing the ideal amount of compensation to reset probes.

After explaining how others found this, I added a specific application to the nested Mach-Zehnder interferometer

as a proof-of-concept, along with some interpretational caveats. In doing this, I added a second, more tangible

chapter to the first. They made a dynamic duo of sorts, a partnership.

The third part was not a common thing to be familiar with. If you worked in quantum cosmology, you would be

keenly aware of the need to generalize the Copenhagen interpretation, and might then know about the consistent

histories formalism. It comes from the need to determine when probabilities should be assigned to the outcomes of

a quantum system, even in the absence of classical measurements.

Consistent histories has been used by others to look at the odd implications of weak values, and a condition

relating the consistency of a family of histories to the strangeness of weak values has been derived before, suggesting

an incompatibility between non-sharp weak values and consistent families.

My research comes to an end with my extension to this third part (not counting appendices). I deem this

appropriate, as it is the most niche science of the three. I mixed weak values and consistent histories while

including a weakly coupled probe in the composite system, and accounted for its end state while reasoning about

the viable histories of the system. It is the patient, late-hour science of a man who is waiting to graduate.

Key Words: consistent histories, feedback compensation, Mach-Zehnder interferometer, path detection, weak mea-

surement, weak values
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Chapter 1

The Weak Value Approximation

Abstract

The concept of weak measurements is explained, starting from a baseline of the von Neumann measurement model,

based on the Stern-Gerlach experiment. From there, a description of how weak values appear in the von Neumann

probe is provided. The chapter is concluded with an investigation of what conditions are sufficient to bound the

error of the weak value approximation, conducted with a level of care not found in the literature.

1.1 Von Neumann Measurements

The von Neumann measurement model was first put forth in [1] (which was translated as [2]). However, for a

clearer walkthrough of the process, I turned to the work of Pier Mello [3]. Conceptually, the model is based on the

Stern-Gerlach experiment. Consider, if you will, taking a particle with spin state |ψ(0)
spin〉 and position state |χ(0)〉,

which together give us the overall initial system state |Ψ(0)〉 = |ψ(0)
spin〉 ⊗ |χ(0)〉. The spin part is the “system” that

we seek to measure, while the position will act as the “probe” we will couple to the system.

In Fig. 1.1, we establish the setup of the Stern-Gerlach experiment. We have our particle (which we will take

to be spin-1
2 ) traveling along the y-axis. Two magnets establish a non-uniform magnetic field in the path of the

particle, and we take Mello’s assumptions:

1. ~B = 0 outside of the gap between the magnets;

2. Bz is the only component of any significance;

3. Bz(z) = B′(z)z within the gap;

4. translational motion in the y-direction can be simulated with a time-dependent interaction which acts only

during the time when the particle is in the gap; and

5. the x degree of freedom can be ignored.
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1. WEAK VALUES 1.1 VON NEUMANN MEASUREMENTS

x

y

z

y(t1 + τ/2)y(t1)y(t1 − τ/2)

|ψ(0)
spin〉

|+〉z

|−〉z

Figure 1.1: Stern-Gerlach Experiment Diagram The spin- 1
2 particle enters from the left with initial spin

state |ψ(0)
spin〉 and travels along the y-axis. It enters the gap between the two magnets (the gray polyhedrons) at

t1 − τ/2, and leaves at time t1 + τ/2. The non-uniform magnetic field within the gap interacts with the magnetic
moment of the particle, causing it to be deflected up if its state is |+〉z, or down if its state is |−〉z. If the initial
state was a superposition of the two spin states, the particle path will be a superposition of these two trajectories.

This gives the model Hamiltonian

Ĥ(t) =
p̂2
z

2m
− ~µ · ~Bθt1,τ (t)

=
p̂2
z

2m
− [µBB

′
z(0)τ ]

θt1,τ (t)

τ
σ̂z ẑ

=
p̂2
z

2m
− εg(t)σ̂z ẑ,

(1.1)

where ε = µBB
′
z(0)τ and g(t) =

θt1,τ (t)

τ . The function θt1,τ is an indicator function, which is of unit value when

the particle is in the gap:

θt1,τ (t) =


1, |t− t1| < τ

2 ;

0, otherwise.
(1.2)

This simulates the interaction, as we desired in assumption 4. Furthermore, note that∫ ∞
0

g(t)dt = 1, (1.3)

with the strong assumption that τ � t1. As such, we can make the approximation g(t) ≈ δ(t− t1) and rewrite the

Hamiltonian as

Ĥ(t) =
p̂2
z

2m
− εδ(t− t1)σ̂z ẑ

= Ĥ0 + V̂ (t),

(1.4)

where we have identified Ĥ0 =
p̂2
z

2m as the kinetic energy operator for the variable z, and V̂ (t) is the interaction itself.

By expressing the interaction in the interaction picture and solving the Schrödinger equation, Mello demonstrates

that the evolution operator taking the particle to t > t1 is

U(t, 0) = e−iĤ0(t−t1)/~eiεσ̂z ẑ/~e−iĤ0t1/~. (1.5)

That particular calculation I shall not replicate, for I have reproduced enough of Mello’s work already.
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1. WEAK VALUES 1.1 VON NEUMANN MEASUREMENTS

Ultimately, this means that the final state of the overall system is

|Ψ(t)〉 = U(t, 0) |Ψ(0)〉

= e−iĤ0(t−t1)/~eiεσ̂z ẑ/~e−iĤ0t1/~ |ψ(0)
spin〉 |χ(0)〉

= e−iĤ0(t−t1)/~eiεσ̂z ẑ/~

[ ∑
σ=±1

P σ̂zσ

]
|ψ(0)
spin〉 e

−iĤ0t1/~ |χ(0)〉

=
∑
σ=±1

P σ̂zσ |ψ
(0)
spin〉 e

−iĤ0(t−t1)/~eiεσẑ/~ |χ(t1)〉 .

(1.6)

As such, the spin state component P σ̂zσ |ψ
(0)
spin〉 has become entangled with the position component eiεσẑ/~ |χ(t1)〉.

The operator σ̂z is a Pauli matrix, which Mello terms the “observable for the system proper,” and ẑ and p̂z are

the position and momentum operators, which are termed the “probe canonical variables.” As such, we consider

eiεσẑ/~ |χ(t1)〉 to be the probe state, and we can measure the probe state (in either the position or the momentum

basis) to gain information about the spin state.

In the physical Stern-Gerlach experiment, we would certainly measure the state of the particle by recording

its vertical position upon colliding with a detector screen. However, that involves evolving the position state in

time; without time evolution, the two trajectories will never diverge. However, if we examine the momentum of

the particle, we need not bother ourselves with how the position evolves in time. Let us suppose that Ĥ0 = 0, and

take our position state to be a Gaussian with standard deviation ∆ centered at z = 0:

|χ(0)〉 =

∫ ∞
−∞

dz
1

4
√

2π∆2
e−z

2/4∆2

|z〉 =

∫ ∞
−∞

dpz
1

4
√

2π(~/2∆)2
e−p

2
z/4(~/2∆)2

|pz〉 . (1.7)

With Ĥ0 = 0, we have U(t, 0) = eiεσ̂z ẑ/~, which means

|Ψ(t)〉 = eiεσ̂z ẑ/~ |Ψ(0)〉

=
∑
σ=±1

P σ̂zσ |ψ
(0)
spin〉 e

iεσẑ/~ |χ(0)〉 .
(1.8)

This gives us the final probe state

eiεσẑ/~ |χ(0)〉 = eiεσẑ/~
∫ ∞
−∞

dz
1

4
√

2π∆2
e−z

2/4∆2

|z〉

=

∫ ∞
−∞

dz
1

4
√

2π∆2
e−(z2/4∆2)+iεσz/~ |z〉 .

(1.9)

This makes more sense in the momentum basis, so let us insert the identity:

eiεσẑ/~ |χ(0)〉 =

∫ ∞
−∞

dz
1

4
√

2π∆2
e−(z2/4∆2)+iεσz/~

∫ ∞
−∞

dpz |pz〉 〈pz|z〉

=

∫ ∞
−∞

dz
1

4
√

2π∆2
e−(z2/4∆2)+iεσz/~

∫ ∞
−∞

dpz
1√
2π~

e−ipzz/~ |pz〉

=

∫ ∞
−∞

dpz

∫ ∞
−∞

dz
1

4
√

2π∆2
√

2π~
exp

[
− z2

4∆2
− i

~
(pz − εσ) z

]
|pz〉 .

(1.10)
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1. WEAK VALUES 1.1 VON NEUMANN MEASUREMENTS

To go further, we will need to complete the square:

eiεσẑ/~ |χ(0)〉 =

∫ ∞
−∞

dpz

∫ ∞
−∞

dz
1

4
√

2π∆2
√

2π~
exp

[
− z2

4∆2
− 2

iz

2∆

∆

~
(pz − εσ) +

∆2(pz − εσ)2

~2
− ∆2(pz − εσ)2

~2

]
|pz〉

=
1√
π

∫ ∞
−∞

dpz
1

4
√

2π(~/2∆)2
e−(pz−εσ)2/4(~/2∆)2

∫ ∞
−∞

dz

2∆
exp

{[
∆(pz − εσ)

~
− i z

2∆

]2
}
|pz〉 .

(1.11)

At this dramatic juncture, we make the change of variables iz′ = −i z2∆ + ∆(pz−εσ)
~ , which leads us to

eiεσẑ/~ |χ(0)〉 =
1√
π

∫ ∞
−∞

dpz
1

4
√

2π(~/2∆)2
e−(pz−εσ)2/4(~/2∆)2

∫ −∞−i∆(pz−εσ)/~

∞−i∆(pz−εσ)/~
(−dz′)e−z

′2
|pz〉

=
1√
π

∫ ∞
−∞

dpz
1

4
√

2π(~/2∆)2
e−(pz−εσ)2/4(~/2∆)2

∫ ∞−i∆(pz−εσ)/~

−∞−i∆(pz−εσ)/~
dz′e−z

′2
|pz〉

=

∫ ∞
−∞

dpz
1

4
√

2π(~/2∆)2
e−(pz−εσ)2/4(~/2∆)2

|pz〉 .

(1.12)

As we can see, the center of the Gaussian has been shifted by εσ, so the momentum wave function entangled with

the spin-up state will have an average momentum of ε, while the momentum wave function entangled with the

spin-down state will have an average momentum of −ε.

Let us specify that |ψ(0)
spin〉 = α |+〉z + β |−〉z (where α2 + β2 = 1). This turns our final state given in Eqn. 1.8

into

|Ψ(t)〉 = α |+〉z e
iεẑ/~ |χ(0)〉+ β |−〉z e

−iεẑ/~ |χ(0)〉 . (1.13)

Thus, the probability density function to find the particle in the state |σ〉 ⊗ |pz〉 is

φ(σ, pz) = 〈Ψ(t)| [|σ〉 〈σ| ⊗ |pz〉 〈pz|] |Ψ(t)〉

=


α2√

2π(~/2∆)2
e−(pz−ε)2/2(~/2∆)2

, σ = +1;

β2√
2π(~/2∆)2

e−(pz+ε)2/2(~/2∆)2

, σ = −1.

(1.14)

Our desire is to use the momentum information (the probe state) to figure out the spin, so we should endeavor to

find the conditional probability P(σ|pz). This function should satisfy φ(σ, pz) = P(σ|pz)φpz (pz), so we can find

it by determining the marginal probability density function φpz (pz), which is

φpz (pz) = φ(+1, pz) + φ(−1, pz) =
α2√

2π(~/2∆)2
e−(pz−ε)2/2(~/2∆)2

+
β2√

2π(~/2∆)2
e−(pz+ε)2/2(~/2∆)2

. (1.15)

This gives us the conditional probability

P(σ|pz) =
φ(σ, pz)

φpz (pz)
=


α2e−(pz−ε)2/2(~/2∆)2

α2e−(pz−ε)2/2(~/2∆)2+β2e−(pz+ε)2/2(~/2∆)2
, σ = +1;

β2e−(pz+ε)2/2(~/2∆)2

α2e−(pz−ε)2/2(~/2∆)2+β2e−(pz+ε)2/2(~/2∆)2
, σ = −1.

=


α2

α2+β2e−2pzε/(~/2∆)2
, σ = +1;

β2

β2+α2e2pzε/(~/2∆)2
, σ = −1.

(1.16)
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1. WEAK VALUES 1.2 EXTRACTING WEAK VALUES

If ∆ → ∞ (which makes for a very wide position Gaussian, but a very sharp distribution in momentum space),

then our exponentials e±2pzε/(~/2∆)2

either explode to infinity or shrink to zero depending on the sign of pz. In

fact, if pz = 0, the exponentials are 1, and we gain no information about our system for any value of ∆ (and the

result is the same as the ∆ ≈ 0 case below). Rather, if we assume pz > 0, then

P(σ|pz) ≈


1, σ = +1;

0, σ = −1,

(1.17)

whereas if pz < 0, then

P(σ|pz) ≈


0, σ = +1;

1, σ = −1.

(1.18)

That is, with the peaks in momentum space highly localized around their new centers at ±ε, the final momentum

of the particle is highly correlated with the spin of the particle, so if pz > 0, we know that the particle is spin up,

and if pz < 0, we know that the particle is spin down. This is a conventional strong measurement, as the probe

gives us perfect information about the system.

If instead ∆ ≈ 0 (which makes for a very sharp position Gaussian, but a wide distribution in momentum space),

then the exponentials in the denominators of Eqn. 1.16 will approach 1, meaning

P(σ|pz) ≈


α2, σ = +1;

β2, σ = −1.

(1.19)

This is so, because the momentum wave function is so delocalized that it is hard to distinguish a Gaussian centered

at +ε from one centered at −ε. The momentum of the particle after the interaction is barely correlated with the

spin of the particle, so the spin probabilities depend on the initial state, rather than the measured momentum.

This makes such a measurement weak, as it provides very little information about the system state.

This setup can be generalized beyond measuring spin, and we may make the probe more abstract than the

physical position of the particle. To do so, we define the probe canonical position and momentum as q̂ and p̂,

respectively, and define the inital probe state

|Q〉 =

∫ ∞
−∞

dq
1

4
√

2π∆2
e−q

2/4∆2

|q〉 =

∫ ∞
−∞

dp
1

4
√

2π(~/2∆)2
e−p

2/4(~/2∆)2

|p〉 . (1.20)

We then define the interaction Hamiltonian to be V̂ (t) = −εδ(t− t1)Âq̂, where Â is the observable for the system

proper. The results of our Stern-Gerlach experiment example extend naturally to this more general system.

1.2 Extracting Weak Values

Suppose our system proper begins in state |ψ(0)〉, and we make a final measurement that discovers the system is

in state |φ(t2)〉. We also have an additional degree of freedom in the form of the probe, which begins in state |Q〉,

5



1. WEAK VALUES 1.2 EXTRACTING WEAK VALUES

as given in Eqn. 1.20. The Hamiltonian for the combined system is

Ĥ(t) = Ĥsys − εδ(t− t1)Âq̂, (1.21)

where Ĥsys is the Hamiltonian governing the evolution of the system proper, and Â is an observable for the system

proper. As such, for the combined system, we have evolve from t = 0 to t = t2 by the evolution operator

U(t2, 0) = e−iĤsys(t2−t1)/~eiεÂq̂/~e−iĤsyst1/~. (1.22)

At the time of the final measurement, the projection postulate dictates that our combined system, before renor-

malization, is in the state

|φ(t2)〉 〈φ(t2)|U(t2, 0)|ψ(0)〉 |Q〉 = |φ(t2)〉 〈φ(t2)|e−iĤsys(t2−t1)/~eiεÂq̂/~e−iĤsyst1/~|ψ(0)〉 |Q〉 . (1.23)

To be compact in our notation, let us define |ψ(t1)〉 = e−iĤsyst1/~ |ψ(0)〉 and |φ(t1)〉 = e−iĤsys(t1−t2)/~ |φ(t2)〉,

which gives us the state

|φ(t2)〉 〈φ(t1)|eiεÂq̂/~|ψ(t1)〉 |Q〉 . (1.24)

We then expand the exponential to get

|φ(t2)〉 〈φ(t1)|
∞∑
j=0

1

j!

(
iεq̂

~

)j
Âj |ψ(t1)〉 |Q〉 = |φ(t2)〉 〈φ(t1)|ψ(t1)〉

∞∑
j=0

1

j!

(
iεq̂

~

)j 〈φ(t1)|Âj |ψ(t1)〉
〈φ(t1)|ψ(t1)〉

|Q〉 . (1.25)

We compact our notation yet again by defining what Aharonov and Vaidman in [4] call the “weak value” of an

observable Â:

Aw =
〈φ(t1)|Â|ψ(t1)〉
〈φ(t1)|ψ(t1)〉

. (1.26)

However, in our current state, we have instead the weak value of Âj , giving us

|φ(t2)〉 〈φ(t1)|ψ(t1)〉
∞∑
j=0

1

j!

(
iεq̂

~

)j
(Âj)w |Q〉 = |φ(t2)〉 〈φ(t1)|ψ(t1)〉

∞∑
j=0

1

j!

(
iεAw q̂

~

)j
|Q〉

+ |φ(t2)〉 〈φ(t1)|ψ(t1)〉
∞∑
j=2

1

j!

(
iεq̂

~

)j [
(Âj)w −Ajw

]
|Q〉 .

(1.27)

Note that two terms of zero value have been removed from the second sum. However, that is not enough, as we

want to dispense with the second term of Eqn. 1.27 entirely (see Section 1.3). That would leave us with the final

normalized state
〈φ(t1)|ψ(t1)〉
| 〈φ(t1)|ψ(t1)〉 |

|φ(t2)〉 eiεAw q̂/~ |Q〉 . (1.28)

Note that the operator eiεAw q̂/~ will shift the momentum state of the probe by εAw, giving us the final probe state∫ ∞
−∞

dp
1

4
√

2π(~/2∆)2
e−(p−εAw)2/4(~/2∆)2

|p〉 , (1.29)

which can subsequently be measured projectively to deduce information about the system proper.

6



1. WEAK VALUES 1.3 ERROR BOUNDS ON EQUATION 1.27

The approximation of Eqn. 1.28 is achieved by manipulation of the coupling constant ε and the probe state

width ∆. Having a very small ∆ means our final probe state will be very wide. For a sufficiently small εAw, we

will see a large overlap with the Gaussian momentum state centered at the origin, making them hard to distinguish

after a single measurement. By taking the measurement on many identical systems, eventually the distribution of

results may have enough data to extract a clear average momentum, thus revealing the weak value of the observable

the probe coupled to.

1.3 Error Bounds on Equation 1.27

The literature prefers to focus on the implications of the weak value approximation, rather than the math that

supposedly validates the approximation itself. I, however, wish to put this math on center stage, and with greater

care, provide a partial validation of the approximation.

In order to get to Eqn. 1.28, we must ensure that the second term of Eqn. 1.27 is small in size. Its norm is∣∣∣∣∣∣
∣∣∣∣∣∣|φ(t2)〉 〈φ(t1)|ψ(t1)〉

∞∑
j=2

1

j!

(
iεq̂

~

)j [
(Âj)w −Ajw

]
|Q〉

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ | 〈φ(t1)|ψ(t1)〉 |

∞∑
j=2

1

j!

( ε
~

)j ∣∣∣(Âj)w −Ajw∣∣∣ ∣∣∣∣|φ(t2)〉 q̂j |Q〉
∣∣∣∣ .

(1.30)

The crucial norm of |φ(t2)〉 q̂j |Q〉 can be worked on to obtain

∣∣∣∣|φ(t2)〉 q̂j |Q〉
∣∣∣∣ =

√
〈φ(t2)|φ(t2)〉 〈Q|q̂2j |Q〉

=

√∫ ∞
−∞

dq

∫ ∞
−∞

dq′
q′2j√
2π∆2

exp

(
−q2 − q′2

4∆2

)
〈q|q′〉

=

√∫ ∞
−∞

dq
q2j

√
2π∆2

exp

(
−q2

2∆2

)

=

√
2

∫ ∞
0

dq
q2j

√
2π∆2

exp

(
−q2

2∆2

)
.

(1.31)

We then make the substitution x = q2

2∆2 to obtain

∣∣∣∣q̂j |Q〉∣∣∣∣ =

√
2

∫ ∞
0

dx
∆2(2∆2x)

2j−1
2

√
2π∆2

e−x

=

√
(
√

2∆)2j

√
π

∫ ∞
0

dxx(j+ 1
2 )−1e−x.

(1.32)

We desire this form, because the gamma function is defined by Γ(j) =
∫∞

0
dxxj−1e−x [5], so that integral is

Γ
(
j + 1

2

)
. Since Γ

(
j + 1

2

)
= (2j−1)!!

2j
√
π [6] (see Appendix A.1), we find

∣∣∣∣q̂j |Q〉∣∣∣∣ = ∆j
√

(2j − 1)!!, (1.33)
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1. WEAK VALUES 1.3 ERROR BOUNDS ON EQUATION 1.27

which means∣∣∣∣∣∣
∣∣∣∣∣∣|φ(t2)〉 〈φ(t1)|ψ(t1)〉

∞∑
j=2

1

j!

(
iεq̂

~

)j [
(Âj)w −Ajw

]
|Q〉

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ | 〈φ(t1)|ψ(t1)〉 |

∞∑
j=2

√
(2j − 1)!!

j!

(
ε∆

~

)j ∣∣∣(Âj)w −Ajw∣∣∣ .
(1.34)

As such, if we wish to make the approximation that takes us to Eqn. 1.28, we need to make the right hand side of

Eqn. 1.34 negligibly small, which requires us to bound the sum. We can determine ∆, as we control the preparation

of the probe state, and we have control over the coupling strength ε, as we control the experimental setup. As such,

the only two factors of concern are
√

(2j−1)!!

j! and
∣∣∣(Âj)w −Ajw∣∣∣.

Regarding the former, it can be shown (in Appendix A.2) that, for any a ≥ 1 there exists a natural number

k such that
√

(2j−1)!!

j! < a−j for all j ≥ k. This is an exceptional decay, stronger than any exponential growth,

so as long as
∣∣∣(Âj)w −Ajw∣∣∣ does not grow at a more than exponential rate, the right hand side of Eqn. 1.34 will

converge. For now, let it suffice that
√

(2j−1)!!

j! ≤ 1 for all j ∈ N.

Ultimately, we need more than just convergence, which requires us to know how
∣∣∣(Âj)w −Ajw∣∣∣ behaves. There

are levels of complexity to this, the simplest being if either |ψ(t1)〉 or |φ(t1)〉 is an eigenvector of Â. In this case,

Aw is simply the associated eigenvalue (unless of course |ψ(t1)〉 and |φ(t1)〉 are orthogonal, in which case the probe

state is not shifted). The weak value (Âj)w is this eigenvalue to the jth power, so
∣∣∣(Âj)w −Ajw∣∣∣ = 0, and no

approximation is necessary.

Increasing the complexity, let us consider bounded operators. The operator norm is defined by ||Â||op =

sup|||ψ〉||≤1 ||Â |ψ〉 || ([7] page 167), and thus ||Â |ψ〉 || ≤ ||Â||op|| |ψ〉 ||. This adds the convenience that ||Ân |ψ〉 || ≤

||A||op||Ân−1 |ψ〉 || ≤ · · · ≤ ||Â||nop|| |ψ〉 ||. As such, we can apply the Cauchy-Schwarz-Bunyakovsky (CSB) inequality

to the absolute value of the weak value of Ân to find

∣∣∣(Ân)w

∣∣∣ =

∣∣∣∣∣ 〈φ(t1)|Ân|ψ(t1)〉
〈φ(t1)|ψ(t1)〉

∣∣∣∣∣ ≤ || |φ(t1)〉 || ||Ân |ψ(t1)〉 ||
| 〈φ(t1)|ψ(t1)〉 |

≤ ||Â||nop
|| |φ(t1)〉 || || |ψ(t1)〉 ||
| 〈φ(t1)|ψ(t1)〉 |

. (1.35)

As a result, ∣∣∣(Âj)w −Ajw∣∣∣ ≤ ∣∣∣(Âj)w∣∣∣+ |Aw|j

≤ ||Â||jop
|| |φ(t1)〉 || || |ψ(t1)〉 ||
| 〈φ(t1)|ψ(t1)〉 |

+ ||Â||jop
(
|| |φ(t1)〉 || || |ψ(t1)〉 ||
| 〈φ(t1)|ψ(t1)〉 |

)j
=

(
1

| 〈φ(t1)|ψ(t1)〉 |
+

1

| 〈φ(t1)|ψ(t1)〉 |j

)
||Â||jop,

(1.36)

and since | 〈φ(t1)|ψ(t1)〉 | ≤ 1 we know that 1
|〈φ(t1)|ψ(t1)〉| ≤

1
|〈φ(t1)|ψ(t1)〉|j for all j ∈ N. This allows us to implement

the (very loose, but conveniently simple) bound

∣∣∣(Âj)w −Ajw∣∣∣ ≤ 2

(
||Â||op

| 〈φ(t1)|ψ(t1)〉 |

)j
. (1.37)
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1. WEAK VALUES 1.3 ERROR BOUNDS ON EQUATION 1.27

With this, Eqn. 1.34 becomes∣∣∣∣∣∣
∣∣∣∣∣∣|φ(t2)〉 〈φ(t1)|ψ(t1)〉

∞∑
j=2

1

j!

(
iεq̂

~

)j [
(Âj)w −Ajw

]
|Q〉

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 2

∞∑
j=2

(
ε∆

~
||Â||op

| 〈φ(t1)|ψ(t1)〉 |

)j
, (1.38)

thus, we have a geometric series, which we can shrink as much as we need. Let r = ε∆
~

||Â||op
|〈φ(t1)|ψ(t1)〉| < 1, and note

that
∞∑
j=2

rj =

∞∑
j=0

rj − 1− r =
1

1− r
− 1− r2

1− r
=

r2

1− r
. (1.39)

We want to make 2
∑∞
j=2 r

j � 1, so this requires r2

1−r �
1
2 , or in other words, r2 + 1

2r −
1
2 � 0. This is achieved

when r � 1
2 , which tells us that we must choose ε and ∆ such that

ε∆� | 〈φ(t1)|ψ(t1)〉 |
||Â||op

~
2
. (1.40)

Next, we have to deal with unbounded operators, which is a more complicated notion. Here, we have to use

more knowledge about the input and output states, |ψ(t1)〉 and |φ(t1)〉, which in turn divides into two cases: states

with compact support in the state space and states without.

Let us assume without loss of generality that |ψ(t1)〉 has compact support, particularly when represented in the

eigenvalue spectrum of Â, denoted sp(Â). Thus,

|ψ(t1)〉 =

∫
a∈sp(Â)

da ψ(a) |a〉 , (1.41)

and let supp(ψ(a)) = {a ∈ sp(Â) : ψ(a) 6= 0} be the support of the wave function ψ(a). It follows that

Ân |ψ(t1)〉 =

∫
a∈sp(Â)

da ψ(a)an |a〉 . (1.42)

Since supp(ψ(a)) is compact, we can define amax = sup{|a| : a ∈ supp(ψ(a))}, which will be a finite quantity, and

thus

||Ân |ψ(t1)〉 ||2 =

∣∣∣∣∣
∣∣∣∣∣
∫
a∈sp(Â)

da ψ(a)an |a〉

∣∣∣∣∣
∣∣∣∣∣
2

=

∫
a′∈sp(Â)

da′
∫
a∈sp(Â)

da ψ∗(a′)ψ(a)a′nan 〈a′|a〉

=

∫
a∈sp(Â)

da |ψ(a)|2a2n

≤ a2n
max

∫
a∈sp(Â)

da |ψ(a)|2

= a2n
max|| |ψ(t1)〉 ||2.

(1.43)

As such, ||Ân |ψ(t1)〉 || ≤ anmax|| |ψ(t1)〉 ||, and so∣∣∣(Âj)w −Ajw∣∣∣ ≤ ( 1

| 〈φ(t1)|ψ(t1)〉 |
+

1

| 〈φ(t1)|ψ(t1)〉 |j

)
ajmax. (1.44)

9



1. WEAK VALUES 1.3 ERROR BOUNDS ON EQUATION 1.27

This allows us to bound our error effectively by choosing ε and ∆ such that

ε∆� | 〈φ(t1)|ψ(t1)〉 |
amax

~
2
. (1.45)

Without compact support, I am unable to conjure such sweeping generalizations. It would be nice if normal-

ization of our states kept the growth of (Âj)w in check, but the right observable can put that in jeopardy. For

instance, suppose |ψ(t1)〉 is a Gaussian in position space, much like our probe state |Q〉:

|ψ(t1)〉 =

∫ ∞
−∞

dx
1

4
√

2π
e−x

2/4 |x〉 . (1.46)

If we operate on this with the observable eX̂
2/4, then eX̂

2/4 |ψ(t1)〉 is no longer normalizable. Now, just because∣∣∣∣∣∣eX̂2/4 |ψ(t1)〉
∣∣∣∣∣∣ is infinite does not mean that |φ(t1)〉 won’t keep

(
eX̂

2/4
)
w

finite, but losing the bound provided

by CSB is not promising.

We can add assumptions to try and bound |(Âj)w|. The simplest is to assume |Aw| <∞, which is only natural—

if it weren’t true, the approximation we want to reach in Eqn. 1.28 would be utter nonsense! We may also claim

the stronger assumption that 〈Â〉 and ∆Â are both finite, which is also reasonable. Presumably, the initial state of

the system |ψ(t0)〉 was set up with sensible statistics, and thus defined expectation value and standard deviation.

This in turn tells us (via CSB) that | 〈φ(t1)|Â|ψ(t1)〉 | ≤ 〈ψ(t1)|Â2|ψ(t1)〉, which allows us to bound |Aw|. Similarly,

if we could bound 〈ψ(t1)|Â2j |ψ(t1)〉, then we will have a bound for |(Âj)w|. We know from Eqn. 1.43 that

〈ψ(t1)|Â2n|ψ(t1)〉 =

∫
a∈sp(Â)

da |ψ(a)|2a2n, (1.47)

so we need |ψ(a)|2 to decay faster than any degree of polynomial just to keep the expression finite. We need a more

specific function to make the expression bounded in a useful way, but this gives us a fair test bed.

In their work on the matter, Aharonov and Vaidman came up with the condition

(2∆)j
Γ(j/2)

(j − 2)!

∣∣∣(Âj)w −Ajw∣∣∣� 1. (1.48)

Due to notation differences (their use of natural units, and writing the probe state in function notation), my

expression was not going to look the same as theirs, but exactly how they came up with their version is still a bit

arcane. They do not provide a calculation demonstrating the emergence of this condition, and attempts to work

from Eqn. 1.27 to Eqn. 1.48 (or in reverse) do not appear to end up in the right place. Not to mention, their

condition is not stated particularly carefully; just making each term of an infinite sum very small is not sufficient

to make the sum itself small, especially in the absence of a discussion of the growth of the terms.
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Chapter 2

Optimal Estimates of Probe Interactions in the

Nested Mach-Zehnder Interferometer

Abstract

The feedback compensation method effectively attempts to correct for the disturbance an auxiliary qubit experi-

ences in a weak interaction with a quantum system. Optimally estimating the required amount of compensation

allows the disturbance to be minimized, suggesting that the estimate characterizes the weak interaction to a good

approximation. The weak value of the system observable to which the qubit is coupled naturally arises operationally

as this optimal estimate (at least, the real part of the weak value does), which dispels concern that weak values

only arise as a result of averaging over ensembles. However, by my understanding, it does not dispel the ability to

ascribe weak values to interference effects, leaving that avenue of explanation open. I also show that the method

continues to hold up in the specific situation of the nested Mach-Zehnder interferometer, demonstrating that weak

values do characterize its weak interactions. Still, it is an approximation, and it does not necessarily necessitate

the contentious interpretation of a discontinuous trajectory.

2.1 The Feedback Signal

Consider a quantum system with observable Â, which interacts with an auxiliary qubit (which we shall call the

‘probe’ for forthcoming reasons) via the interaction potential

V̂ (t) = εδ(t− t1)Â⊗ σ̂z, (2.1)

where ε is a parameter controlling the strength of the system-probe coupling, σ̂z is the Pauli operator diagonal in

the computational basis {|+〉z , |−〉z}, and t1 is the time at which the interaction occurs. The delta function can

be thought of as a limit of the function θt1,τ (t)

τ as the duration of the interaction τ goes to zero, as was discussed

11



2. OPTIMAL ESTIMATES 2.2 OPTIMAL ESTIMATES

in Section 1.1. Clearly, V (t) must be an energy, but σ̂z is unitless—perhaps it arose from the spin operator Ŝz, but

the factor of ~
2 was absorbed into ε. As a direct result, εÂ possesses the dimensions of angular momentum, and thus

εÂ
τ is the average rate of change in angular momentum during the interaction—a torque. The interaction potential

can be seen as exerting a torque on the qubit probe state. The question is, how do we estimate this torque?

The interaction potential leads (via calculations in the interaction picture, as demonstrated for a similar system

in [3]) to the unitary operator

ÛSP = e−i
ε
~ Â⊗σ̂z . (2.2)

If we knew the value of the total change in the qubit’s angular momentum—it is proportional to ε, so let us call it

εA—we could apply the unitary operator

ÛZ = ei
ε
~Aσ̂z , (2.3)

which would turn the qubit back to its original state. Rather than presupposing knowledge of A, we can use this

compensation scheme to find the change in angular momentum. If we try different values of A and find the correct

one, the lack of disturbance in the qubit probe would indicate our success.

We will need information to make our estimations of A. One valuable piece of information is the initial state of

the system, represented by the density operator ρ̂S , and we can gain another piece by measuring the system after

the probe interaction. The most general measurement is represented by the POVM with operators {ÊS(m)}m, each

keyed to an outcome indexed by m. Our estimation of A is a function of these outcomes: A(m). Now, depending

on what our measurement outcome is, we apply the operator

ÛZ(m) = ei
ε
~A(m)σ̂z , (2.4)

which should compensate for the change in angular momentum to a degree dependent upon our choice of estimation

A(m). For the best sensitivity to this operation [8], we initially set the probe in the state |+〉x = 1√
2
(|+〉z + |−〉z).

This gives us the initial expectation value of 〈σ̂x〉 (in) = 1, and any deviation from this at the end (quantified by

1−〈σ̂x〉 (out)) will indicate how well our compensation (based on feedback from the measurement) worked to reset

the probe. The feedback compensation scheme is laid out in circuit form in Fig. 2.1.

2.2 Optimal Estimates

Any function A of the outcome m serves as an estimate of the change in angular momentum, so we desire the best

function for making this estimate, which would be the function that minimizes 1 − 〈σ̂x〉 (out). Over the course of

12
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t0

Input ρ̂S

Probe Qubit |+〉x

t1

Â

σ̂z

ÛSP

t2

Outcome

ÊS(m)

Feedback
−A(m)

ÛZ(m) 1− 〈σ̂x〉 (out)

Figure 2.1: Feedback Compensation Setup This is a modification of Fig. 1 from [8]. After the system
and probe are initialized at t0 in the composite state ρ̂S ⊗ |+〉x x〈+|, they are entangled at t1 by the unitary
operation ÛSP = e−i

ε
~ Â⊗σ̂z before a POVM with operators {ÊS(m)}m occurs at t2, the result of which is m. The

estimation A(m) is made based on this outcome, and fed back into the probe qubit via the unitary operation
ÛZ(m) = ei

ε
~A(m)σ̂z . Ultimately, the probe is measured in the Hadamard basis, and the deviation of its expectation

value from that of its original state is calculated.

the feedback compensation protocol, the system evolves in the following manner:

ρ̂0 = ρ̂S ⊗ |+〉x x〈+|; (2.5)

ρ̂1 = ÛSP ρ̂S ⊗ |+〉x x〈+|Û
†
SP

=
1

2

∑
j=±1

∑
k=±1

e−i
ε
~ Âj ρ̂S ⊗ |j〉z z〈k|e

i ε~ Âk;

(2.6)

ρ̂2 =
∑
m

ÛZ(m)

√
ÊS(m)ÛSP ρ̂S ⊗ |+〉x x〈+|Û

†
SP

√
ÊS(m)ÛZ(m)†

=
1

2

∑
m

∑
j=±1

∑
k=±1

√
ÊS(m)e−i

ε
~ [Â−A(m)]j ρ̂S ⊗ |j〉z z〈k|e

i ε~ [Â−A(m)]k

√
ÊS(m).

(2.7)

Taking the expectation value of σ̂x at the end nets us

〈σ̂x〉 (out) = Tr{ρ̂2σ̂x}

=
1

2

∑
m

∑
j=±1

∑
k=±1

Tr
{√

ÊS(m)e−i
ε
~ [Â−A(m)]j ρ̂Se

i ε~ [Â−A(m)]k

√
ÊS(m)

}
z〈k|σ̂x|j〉z

=
1

2

∑
m

∑
j=±1

∑
k=±1

Tr
{
e−i

ε
~ [Â−A(m)]j ρ̂Se

i ε~ [Â−A(m)]kÊS(m)
}
δk,−j

=
1

2

∑
m

∑
k=±1

Tr
{
ei
ε
~ [Â−A(m)]kρ̂Se

i ε~ [Â−A(m)]kÊS(m)
}

(2.8)

Expanding this to the second order in ε brings us

〈σ̂x〉 (out) ≈
1

2

∑
m

∑
k=±1

Tr
{[

1 + i
ε

~
[Â−A(m)]k − ε2

2~2
[Â−A(m)]2k2

]
ρ̂S

[
1 + i

ε

~
[Â−A(m)]k − ε2

2~2
[Â−A(m)]2k2

]
ÊS(m)

}

≈ 1− ε2

~2

∑
m

Tr
{

1

2
[Â−A(m)]2ρ̂SÊS(m) + [Â−A(m)]ρ̂S [Â−A(m)]ÊS(m) +

1

2
ρ̂S [Â−A(m)]2ÊS(m)

}
.

(2.9)
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To consolidate terms and push beyond this, we need to expand the terms with [Â−A(m)]2 in them:∑
m

Tr
{

[Â−A(m)]2ρ̂SÊS(m) + ρ̂S [Â−A(m)]2ÊS(m)
}

=
∑
m

Tr
{

[Â2 − 2ÂA(m) +A2(m)]ρ̂SÊS(m)

+ρ̂S [Â2 − 2ÂA(m) +A2(m)]ÊS(m)
}

=
∑
m

Tr
{
Â2ρ̂SÊS(m) + ρ̂SÂ

2ÊS(m)
}

+ 2
∑
m

Tr
{[
−Âρ̂SA(m)−A(m)ρ̂SÂ+A(m)ρ̂SA(m)

]
ÊS(m)

}
= 2Tr

{
Âρ̂SÂ

}
+ 2

∑
m

Tr
{[
−Âρ̂SA(m)−A(m)ρ̂SÂ+A(m)ρ̂SA(m)

]
ÊS(m)

}
− 2

∑
m

Tr
{[
Âρ̂SÂ− Âρ̂SA(m)−A(m)ρ̂SÂ+A(m)ρ̂SA(m)

]
ÊS(m)

}
+ 2

∑
m

Tr
{

[Â−A(m)]ρ̂S [Â−A(m)]ÊS(m)
}
.

(2.10)

As such,

〈σ̂x〉 (out) ≈ 1− 2
ε2

~2

∑
m

Tr
{

[Â−A(m)]ρ̂S [Â−A(m)]ÊS(m)
}
. (2.11)

We now see that 1 − 〈σ̂x〉 (out) is proportional to the quantity
∑
m Tr

{
[Â−A(m)]ρ̂S [Â−A(m)]ÊS(m)

}
, which

is a generalization of the square of the statistical deviation of Â from the estimate [9]. This can be seen as a

generalized version of Ozawa’s measurement accuracy [8, 10]. It is worth noting that, without measurement and

feedback compensation, the place of this statistical deviation is taken by the mean of the square of Â, which is the

standard deviation of an observable of zero mean:

〈σ̂x〉 (out) = Tr{ρ̂1σ̂x}

=
1

2

∑
j=±1

∑
k=±1

Tr
{
e−i

ε
~ Âj ρ̂Se

i ε~ Âk
}
z〈k|σ̂x|j〉z

=
1

2

∑
k=±1

Tr
{
ei
ε
~ Âkρ̂Se

i ε~ Âk
}

≈ 1− 2
ε2

~2
Tr
{
Â2ρ̂S

}
= 1− 2

ε2

~2
〈Â2〉

= 1− 2
ε2

~2
(∆Â)2 if 〈Â〉 = 0.

(2.12)

Returning to
∑
m Tr

{
[Â−A(m)]ρ̂S [Â−A(m)]ÊS(m)

}
, we want to minimize this quantity to reduce the dis-

turbance of the probe state. For this, we will want to expand:∑
m

Tr
{

[Â−A(m)]ρ̂S [Â−A(m)]ÊS(m)
}

= 〈Â2〉+
∑
m

(
−A(m)Tr

{
ρ̂S [ÊS(m)Â+ ÂÊS(m)]

}
+A2(m)Tr

{
ρ̂SÊS(m)

})
.

(2.13)
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It is spatially convenient to define the quantity Aopt(m|ρ̂S) (mimicking the notation of [9]) as

Aopt(m|ρ̂S) =
Tr
{
ρ̂S [ÊS(m)Â+ ÂÊS(m)]

}
2Tr

{
ρ̂SÊS(m)

} , (2.14)

where “opt” stands for "optimal estimate," for reasons to follow immediately. Our expression is now∑
m

Tr
{

[Â−A(m)]ρ̂S [Â−A(m)]ÊS(m)
}

= 〈Â2〉+
∑
m

Tr
{
ρ̂SÊS(m)

}(
−A(m)2Aopt(m|ρ̂S) +A2(m)

)
= 〈Â2〉+

∑
m

Tr
{
ρ̂SÊS(m)

}[
(A(m)−Aopt(m|ρ̂S))

2 −A2
opt(m|ρ̂S)

]
,

(2.15)

which allows us to see that A(m) = Aopt(m|ρ̂S) minimizes the disturbance of the probe state.

When the system is in a pure state ρ̂S = |ψ〉 〈ψ| and the final measurement is projective (ÊS(m) = |m〉 〈m|),

the optimal estimate is the real component of the weak value associated with the observable [4]:

Aopt(m|ψ) =
Tr
{
|ψ〉 〈ψ| [|m〉 〈m| Â+ Â |m〉 〈m|]

}
2Tr {|ψ〉 〈ψ|m〉 〈m|}

=
1

2

(
〈m|Â|ψ〉
〈m|ψ〉

+
〈ψ|Â|m〉
〈ψ|m〉

)
=

1

2
(Aw +A∗w) = Re{Aw}.

(2.16)

Moreover, if the weak value is real then the disturbance to the probe state when A(m) = Aopt(m|ψ) is found to be

zero: ∑
m

Tr
{

[Â−A(m)]ρ̂S [Â−A(m)]ÊS(m)
}

= 〈Â2〉 −
∑
m

Tr
{
ρ̂SÊS(m)

}
A2
opt(m| |ψ〉)

= 〈Â2〉 −
∑
m

| 〈m|ψ〉 |2 〈ψ|Â|m〉
〈ψ|m〉

〈m|Â|ψ〉
〈m|ψ〉

= 〈Â2〉 − 〈Â2〉

= 0.

(2.17)

We can see that the best estimate of the change in angular momentum due to the weak interaction is proportional

to Aopt(m|ρ̂S), and for Aopt(m|ρ̂S) = Aw ∈ R, the compensation is perfect to second order. A further possible

interpretation is that the observable Â is behaving as though it took the value Aw during the weak interaction, which

leads to the contentious conclusion (adopted by [4] and many others in a particle presence context [11, 12, 13, 14])

that Â actually takes the value Aw, which is not necessarily one of its eigenvalues—nor necessarily even within the

bounds of its eigenvalue spectrum!

When an observable Â is acted on a state |ψ〉, the outcome of this action is most naturally characterized in the

eigenbasis {|a〉}a:

Â |ψ〉 =
∑
a

Â |a〉 〈a|ψ〉 =
∑
a

a 〈a|ψ〉 |a〉 . (2.18)

However, we could just as well characterize it in some other orthonormal basis, such as {|m′〉}m′ :

Â |ψ〉 =
∑
m′

Â |m′〉 〈m′|ψ〉 . (2.19)
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This second way gives one interesting view of a weak value:

Aw =
〈m|Â|ψ〉
〈m|ψ〉

=
∑
m′

〈m|Â|m′〉 〈m
′|ψ〉

〈m|ψ〉
. (2.20)

In this way, a weak value captures matrix elements of Â in the basis {|m′〉}m′ along row m, weighted by their

contribution to |ψ〉 and normalized by the contribution of the postselection |m〉. Note that the implicit assumption

〈m|ψ〉 6= 0 ensures that 〈m|Â|m〉 is a term of the sum. When the postselection is done in the eigenbasis {|a〉}a,

which diagonalizes Â, we have 〈a|Â|a′〉 = aδa,a′ , leading to Aw = a.

It would appear that postselection in another basis causes the weak value to incorporate more than is captured

by a single eigenvalue, but why this is the case is part of a contentious interpretational topic. Hofmann [8] presents

the results of feedback compensation as an additional tool for trying to divine the nature of the weak value. In

particular, compensation helps to allay concerns that the weak value arises from a statistical average of outcomes.

When compensation is perfect, there is only one outcome for the auxiliary qubit, given a particular postselection

(as 〈σ̂x〉 = 1 means P+ = 1 and P− = 0).

Additionally, the feedback compensation setting allows for weak values to be operationally defined, independent

of one’s assumptions about quantum measurement physics. This specific rationale is used by Hofmann to criticize

arguments that ascribe the appearance of weak values to interference phenomena. That being said, one need

not go farther than Hofmann’s assumptions about the nature of the weak interaction (being in the unitary form

e−i
ε
~ Â⊗σ̂z ) to see interference. Consider the weakly coupled system and qubit, with its state grouped by the

contributing eigenstates of the observable Â:

e−i
ε
~ Â⊗σ̂z |ψ〉 |+〉x =

∑
a

|a〉 〈a|ψ〉 ei ε~aσ̂z |+〉x . (2.21)

We can instead group the states by the eigenstates of an observable M̂ to be used in postselection:

e−i
ε
~ Â⊗σ̂z |ψ〉 |+〉x =

∑
m,a

|m〉 〈m|a〉 〈a|ψ〉 e−i ε~aσ̂z |+〉x . (2.22)

We can see at this stage that the factor 〈m|a〉 bundles together the eigenvectors of Â by their presence in |m〉,

while the term 〈a|ψ〉 weights each eigenvector by its amplitude in |ψ〉. For a weak enough interaction (using the

principle of a simplified derivation of weak values [15]; see my examination of its applicability in Section B.2), we
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can approximate the exponential as linear, giving us

e−i
ε
~ Â⊗σ̂z |ψ〉 |+〉x ≈

∑
m,a

|m〉 〈m|a〉 〈a|ψ〉
(

1− i ε
~
aσ̂z

)
|+〉x

=
∑
m

|m〉

[
〈m|ψ〉 − i ε

~
〈m|

(∑
a

a |a〉 〈a|

)
|ψ〉 σ̂z

]
|+〉x

=
∑
m

|m〉
[
〈m|ψ〉 − i ε

~
〈m|Â|ψ〉 σ̂z

]
|+〉x

=
∑
m

|m〉 〈m|ψ〉
[
1− i ε

~
Aw(m|ψ)σ̂z

]
|+〉x

≈
∑
m

〈m|ψ〉 |m〉 e−i ε~Aw(m|ψ)σ̂z |+〉x .

(2.23)

In wave mechanics, interference happens when the individual contributions of waves in a superposition are added

together. Similarly, the eigenstates of Â found in superposition in a postselected state |m〉 all add up to create the

ultimate effect of rotating the qubit with e−i
ε
~Aw(m|ψ)σ̂z , which is also an expression of interference.

2.3 Application: Nested Mach-Zehnder Interferometer

The nested Mach-Zehnder interferometer (setup depicted in Fig. 2.2) is a prime example of the strangeness that

accompanies the interpretation of weak values. Using the criterion (espoused in this situation by [11, 12, 13]) that

a particle is present where the weak value of its position projector is nonzero (and absent when this weak value is

zero), and setting up weak probes (auxiliary qubits) in arms A, B, C, D, and E, one would conclude (see Eqns.

C.45–C.50 and C.59–C.64) that a particle (entering from S) that ends up being detected in exit channel F or G

was in paths A,B, and C, but not in D or E. This suggests that the particle somehow was present in the inner

interferometer (B and C) without entering (D) or leaving (E)—a discontinuous trajectory.

This bizarre assertion is generally shown by calculating the forward-propagating particle state (Eqns. C.29–

C.36) and the backward-propagating state of the particular postselection (Eqns. C.37–C.44 for F , C.51–C.58 for

G, and C.65–C.72 for H) as though there were no disturbance from the probes. It is generally assumed that the

interactions are weak enough to allow this, but it can come across as careless, particularly when ignoring the effects

of multiple probes on each other (see Appendix B). By applying the feedback compensation method and minimizing

the effect on the auxiliary qubits, I calculated the estimates characterizing the interactions with the weak probes

without ignoring all but one of them at a time.

Using five probes, the most direct comparison to the original method would be to define the observable σ̂x,D ⊗

σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E (where each operator is indexed by the arm of the interferometer its target qubit is

meant to interact with) and minimize the quantity 1− 〈σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E〉 (out). The gory details

are left to Appendix C, but the ultimate result is that the optimal estimates are those expected from the weak

17



2. OPTIMAL ESTIMATES 2.3 NESTED MZI
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Figure 2.2: Feedback Compensation for the Nested Mach-Zehnder Interferometer A quantum particle
enters the interferometer at t0 through channel S, with all ancillary qubits in state |+〉x. Horizontal and vertical
solid lines denote paths through the interferometer setup. Slanted solid lines indicate beam splitters, while thin,
slanted rectangles indicate mirrors. Slanted dashed lines indicate lines of simultaneity (thus the horizontal and
vertical dimensions are not drawn to scale). Note that the time step from t7 to t8 is not characterized by unitary
evolution. At the boxes labeled F̂ , Ĝ, and Ĥ, the particle’s presence in the associated arm of the interferometer is
projectively measured and subject to a unitary feedback operation. Paths are denoted by the mirror they bounce
off of (D, A, B, C, E), the final, non-ancillary measurement they are subject to (F , G, H), or a free letter (S, R,
Q) if they represent entrance channels. Path labels do not transfer through beam splitters. At the boxes labeled
σ̂x, the ancillary qubits are measured projectively in the Hadamard basis.

value approach, as given in Table 2.1. In the case of optimal compensation, the disturbance is reduced to zero (see

Eqn. C.23), which is what we expected of real weak values in the simplified case (Eqn. 2.17).

Post Dopt Aopt Bopt Copt Eopt

F 0 1 − β2

2α2
β2

2α2 0
G 0 1 1

2 − 1
2 0

H 1 0 1
2

1
2 0

Table 2.1: Optimal Estimates for 5 Probes Taking these quantities to be the estimates
D(·), A(·), B(·), C(·), E(·) for a given postselection will minimize the disturbance in the qubits captured by
Eqn. C.22. These match the weak values derived in Eqns. C.45–C.50, C.59–C.64, and C.73–C.78.

This method also supports an alternative version of the setup proposed by Griffiths [16], who suggested replacing

the probes in the arms B and C with a single probe W that measured the projector Ŵ = B̂ + Ĉ—it checks if the

particle is in the inner interferometer without determining which arm it is in. When this probe is used, the optimal

estimate of the interaction in the inner interferometer vanishes for the postselections F and G, which means the

particle presence criterion would suggest that the particle behaved more intuitively, being only in A for its entire

trip through the interferometer. It only passes through the inner interferometer on its way to H, which is what the

tuning of the interferometer was designed to accomplish. The estimates for the other probes do not change (see
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Table 2.2).

Post Dopt Aopt Wopt Eopt

F 0 1 0 0
G 0 1 0 0
H 1 0 1 0

Table 2.2: Optimal Estimates for 4 Probes Taking these quantities to be the estimates D(·), A(·), W (·), E(·)
for a given postselection will minimize the disturbance in the qubits captured by Eqn. C.28. These match the weak
values derived in Eqns. C.49, C.63, and C.77.

Compared to the state of the five probe system at t7 (Eqn. C.15), the state of the four probe system (Eqn.

C.26) is far simpler, allowing easy calculation of the probabilities for the different postselection outcomes:

P ′
F = | 〈F7|ψ′7〉 |2 = α4, (2.24)

P ′
G = | 〈G7|ψ′7〉 |2 = α2β2, (2.25)

P ′
H = | 〈H7|ψ′7〉 |2 = β2. (2.26)

In contrast, the probabilities for the postselection outcomes under the five probe setup (deduced from Table 2.3)

are

PF ≈ α4 +
β4

2

ε2

~2
, (2.27)

PG ≈ α2β2 +
α2β2

2

ε2

~2
, (2.28)

PH ≈ β2 − β2

2

ε2

~2
. (2.29)

It would appear that a little bit of probability has been stolen from H and split between F and G, which suggests

the possible interpretation that actually distinguishing the B and C paths leads to diverting particles that would

have gone on to H.

Now, one may justifiably wonder at my choice to ensure that 〈σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E〉 (out) = 1,

as the operator has a larger eigenspace for the eigenvalue 1 than just the state |+〉x,D |+〉x,A |+〉x,B |+〉x,C |+〉x,E .

Indeed, if any two or any four of the constituent qubit states are |−〉x instead of |+〉x, then the outcome of the

measurement is still 1, which calls into question my findings!

To address the issue, I went ahead and calculated the full probability distribution for the measurement of the

output channel and the qubit states (Eqns. C.84, C.85, and C.86), and found that my earlier optimal estimates

still held true. As can be seen in Table 2.3, applying no compensation leads to only single-qubit flips.

Of course, examination of my calculations will reveal that I did all of my work out to second order in ε, as

before, and double-qubit flips are all fourth order effects. As such, if significant disturbance must mark passage

through the inner interferometer for the particle to reach F or G, then detection of passage through D or E is

such an unlikely event, that the disturbance of the particle’s passage is best estimated as negligible. If a higher
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Post (·) Compensation P(·)+++++ P(·)−++++ P(·)+−+++ P(·)++−++ P(·)+++−+

F Optimal α4 + β4

2
ε2

~2 0 0 0 0

F None α4
(

1− ε2

~2

)
0 α4 ε2

~2
β4

4
ε2

~2
β4

4
ε2

~2

G Optimal α2β2
(

1 + 1
2
ε2

~2

)
0 0 0 0

G None α2β2
(

1− 3
2
ε2

~2

)
0 α2β2 ε2

~2
α2β2

2
ε2

~2
α2β2

2
ε2

~2

H Optimal β2
(

1− 1
2
ε2

~2

)
0 0 0 0

H None β2
(

1− 5
2
ε2

~2

)
β2 ε2

~2 0 β2

2
ε2

~2
β2

2
ε2

~2

Table 2.3: Probabilities With and Without Compensation The probability P(·)jklmn of finding the system
in the state |(·)7〉 |j〉x,D |k〉x,A |l〉x,B |m〉x,C |n〉x,E with or without optimal compensation (as given in Table 2.1).
Probabilities not listed on this table are all zero.

order in ε were accepted in the calculations, perhaps corrections to the estimations would be seen that would lead

to nonzero compensation being needed in D and E.

To low orders, however, there is no flaw in the use of weak values as optimal estimates characterizing weak

interactions in the nested Mach-Zehnder interferometer setup. Indeed, if one takes the probe states entangled with

output |F7〉 (see the first term of Eqn. C.15) and expands the exponentials to create superpositions of flipped and

unflipped qubit states (done in Eqn. C.89), one will see that the resultant state matches the similarly treated pure

state with each qubit evolved based on the associated weak value (Eqn. C.90). This suggests, for a weak enough

interaction, that weak values are not found as the result of statistical averaging of results—at least, to a good

approximation.
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Chapter 3

Consistently Weak—Interrogating Weak

Measurement with Consistent Histories

Abstract

Consistent histories, a formalism generalizing the Copenhagen interpretation, has been used to examine the eccen-

tricities of weak values, and conditions have been derived showing an incompatibility of strange weak values with

consistent families of histories for a quantum system. Herein is briefly laid out the consistent histories formalism,

as well as a restatement of prior small results mixing the theory of weak values with consistent histories. Following

that, I construct a modest extension, presenting a mixture of weak values and consistent histories that includes

a weakly coupled probe in a composite system and accounts for its end state when reasoning about the viable

histories of the system.

3.1 Introductory Remarks

Applying consistent histories to the task of understanding weak values has been done before. Kastner [17] demon-

strated that strange weak values of projection operators lead to inconsistent families of histories, and Griffiths made

mention of this as well on the 10th page of his dive into the nested Mach-Zehnder interferometer [16]. A focus

on projectors is reasonable for consistent histories, but it doesn’t fully address the entire gamut of weak values—a

gamut that includes weak values of more general observables. As such, I intend to press through calculations of

consistency with an additional term for the weak probe, and see what obtaining a particular weak value implies.

There are many great resources for understanding consistent histories, including Griffiths himself [18], which

cleaves closer to Kastner’s use of the approach. Another extensive source that uses notation I prefer was written

by Hartle [19] (although I do trade my definition of the class operator Ĉh with that of its adjoint, which I learned
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from [20, 21]). By far, the presentation closest to how I approach weak values in this work was written by some

screwball who couldn’t take scientific writing seriously [22].

3.2 Consistent Histories in Brief

The purpose of consistent histories is to generalize the standard Copenhagen interpretation to a state where rules

exist to determine when the outcomes of a quantum system can appropriately be assigned probabilities. The

Copenhagen interpretation by itself requires the notion of measurements in order to assign probabilities, limiting

its application to a universe containing a classical realm of measurement apparatuses and researchers that interact

with quantum systems to cause state collapse. In the early universe, before the emergence of the classical domain,

the Copenhagen interpretation cannot really be applied, hence the rise of consistent histories out of the needs of

quantum cosmologists.

The main object with which a consistent historian works is a history, which is a time-ordered set of projectors

for a quantum system. Each projector corresponds to a value or set of values for an observable of the system, thus

the history specifies what values the system’s observables take at each accounted-for time. Generally, one works

with coarse-grained histories, which specify values of observables for only a subset of important times1. Consider

the coarse-grained history

h = {P̂ Âa (t1), P̂ B̂b (t2), P̂ Ĉc (t3)}, (3.1)

which indicates that the observable Â of our system takes value a at time t1, B̂ takes value b at t2, and Ĉ takes

value c at t3. The values of observables are not specified between the indicated times, hence its coarseness. This

is not the only history of the system, but simply a single branch of possible events among possibly many others,

specifying different outcomes for the observables (see Fig. 3.1).

Once we have gathered the full set of histories for a system, we must make sure the set is exhaustive—containing

all possible histories the system could experience—and exclusive—containing only distinct histories—before we can

begin calculations to assign probabilities to each history. Consider the outcomes of the system depicted in Fig. 3.1,

grouped by time of applicability and represented by the associated projector:{
{P̂ Âa (t1), P̂ Âa′ (t1), P̂ Âa′′(t1)}, {P̂ B̂b (t2), P̂ B̂b′ (t2)}, {P̂ Ĉc (t3), P̂ Ĉc′ (t3)}

}
. (3.2)

For the set of histories for this system to be exclusive and exhaustive, I should be able to select one outcome for

each time, say a′ at t1, b′ at t2 and c′ at t3, and have a history in the set which represents it. That is to say, if the

history

h′ = {P̂ Âa′ (t1), P̂ B̂b′ (t2), P̂ Ĉc′ (t3)} (3.3)

were not in the set, I would not have an exhaustive family.
1By contrast, a fine-grained history would specify the values of observables at every instant, but such a history would be more

exact than we need for most practical purposes, and indeed too exact for the theory to assign a probability to it.
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Figure 3.1: Branching Histories Here, we illustrate a set of histories in which an observable Â (which can have
the value a, a′, or a′′) is considered at time t1, an observable B̂ (which can have the value b or b′) is considered at
time t2, and an observable Ĉ (which can have the value c or c′) is considered at time t3. Each path—or branch—
represents a history in the set. The dark branch is the particular history h, wherein Â takes value a at t1, B̂ takes
value b at t2, and Ĉ takes value c at t3. Later, we will learn that being able to meaninfully assign probabilities to
histories in a set such as this depends on whether or not the discrete branches evince quantum interference. This
figure is reproduced from [22] by the reflexive property of permission.

As an exclusive and exhaustive family accounts for all outcomes of an observable at a time, we can sum over

all of the available projection operators for that time to attain the identity. For the example given by Fig. 3.1, we

have

Î = P̂ Âa + P̂ Âa′ + P̂ Âa′′ , (3.4)

Î = P̂ B̂b + P̂ B̂b′ , (3.5)

Î = P̂ Ĉc + P̂ Ĉc′ . (3.6)

We can coarse-grain over a collection of outcomes by performing this addition, which creates a new family of

histories. For example, consider a family that selects outcomes from the set

{
{P̂ Âa (t1), P̂ Âa′ (t1) + P̂ Âa′′(t1)}, {P̂ B̂b (t2), P̂ B̂b′ (t2)}, {P̂ Ĉc (t3), P̂ Ĉc′ (t3)}

}
. (3.7)

Histories in this family can specify that Â takes the value a, or that it takes one of the two values a′ or a′′, without

making a distinction. We could also consider the family selecting from

{
{Î(t1)}, {P̂ B̂b (t2), P̂ B̂b′ (t2)}, {P̂ Ĉc (t3), P̂ Ĉc′ (t3)}

}
, (3.8)

where histories do not specify the value of Â at time t1 at all. This could be represented by removing the time

t1 from the set entirely, which is the sort of coarse-graining already done in the family from Fig. 3.1, where the

outcomes from the times between t0, t1, t2, and t3 are not specified.

There are further representations of histories beyond sets of projections. First, we can express a history as a

class operator, which is the time-ordered product of the projectors in the history. The class operator for our history
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h is

Ĉh = P̂ Âa (t1)P̂ B̂b (t2)P̂ Ĉc (t3). (3.9)

The class operator can be applied subsequently to the creation of the branch wave function, which is the wave

function of the system acted on by all of the projectors, achieved by applying the Hermitian adjoint of the class

operator. For our history h, the branch wave function is

|ψh〉 = Ĉ†h |ψ〉 = P̂ Ĉc (t3)P̂ B̂b (t2)P̂ Âa (t1) |ψ〉 . (3.10)

The times listed are not just labels; consistent histories operates in the Heisenberg picture, so time dependence is

centered in the operators, rather than in the wave function. As such, we can also express our history as

|ψh〉 = Û†(t3, t0)P̂ Ĉc Û(t3, t0)Û†(t2, t0)P̂ B̂b Û(t2, t0)Û†(t1, t0)P̂ Âa Û(t1, t0) |ψ〉

= Û(t0, t3)P̂ Ĉc Û(t3, t2)P̂Bb Û(t2, t1)P̂ Âa Û(t1, t0) |ψ〉 ,
(3.11)

in which we can see the state evolving from |ψ〉 at t0 until t1, where it meets the first projector specifying a value

of one of the system’s observables, then evolving to t2, where it meets the next projector, then evolving to t3,

where it meets the final projector. The apparent backward evolution Û(t0, t3) at the end is an artifact of using the

Heisenberg picture, and the arbitrary global phase it imparts will cancel in our subsequent calculations, with no

effect on our results.

The final object to construct is the decoherence functional, which contains the information of whether our

histories can be assigned probabilities, and what those probabilities are when they exist. For histories h and h′

that can be expressed as branch wave functions (ones with pure initial states |ψ〉), the decoherence functional is

simply an inner product:

d(h, h′) = 〈ψh′ |ψh〉 = 〈ψ|Ĉh′Ĉ†h|ψ〉 . (3.12)

For an exhaustive and exclusive set of histories {h}, the decoherence functional is normalized:

∑
h,h′∈{h}

d(h, h′) = 1. (3.13)

There are a few subtly different choices of consistency conditions, but I shall go with the simple “medium decoher-

ence” condition: d(h, h′) = 0 when h 6= h′ [21]. When this is satisfied, the decoherence functional is diagonalized,

and we say the family {h} is consistent. In this situation, the diagonal entries are all that remain, and are still

normalized. For our particular example history h, we have

d(h, h) = 〈ψh|ψh〉 = 〈ψ|ĈhĈ†h|ψ〉 = 〈ψ|P̂ Âa (t1)P̂ B̂b (t2)P̂ Ĉc (t3)P̂ Ĉc (t3)P̂ B̂b (t2)P̂ Âa (t1)|ψ〉 , (3.14)

which is the von Neumann-Lüders rule for the probability of a particular sequence of measurement outcomes (a the

result of measuring Â at t1, b the result of measuring B̂ at t2, and c the result of measuring Ĉ at t3) given the initial
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state |ψ〉 [23, 24] (for a simplified derivation of the two-measurement case from the Born rule, see [22]). However,

we have not actually insisted on measurements taking place to get this result from the decoherence functional.

This is where we see the power of the formalism. The von Neumann-Lüders rule may be able to calculate a

probability, but it does not in and of itself determine whether it is appropriate to calculate a particular probability

for a given system. The decoherence functional, when diagonal, lets us know that probabilities may be assigned,

and what the probability P(h) is for each history h:

d(h, h′) = δh,h′P(h). (3.15)

If this condition is not satisfied, the entire decoherence functional will remain normalized, but the diagonal elements

may not, and will not be probabilities. The von Neumann-Lüders rule-like expressions are still calculable, but they

do not reflect the outcomes of the system.

As an example, we can examine the double-slit experiment. We start with a quantum system in state |ψ〉 at

time t0, pass the system through a screen with two thin, parallel slits in it at time t1, and then have it collide

with a final screen at t2 to measure its final position (see Fig. 3.2). For a particular end position yf on the final

screen, there are two histories we could establish, the first being hu = {P̂ Ŷ∆u(t1), P̂ Ŷyf (t2)}, which specifies that the

system passes through ∆u, the region of the upper slit, before reaching the final position. The second history

is hl = {P̂ Ŷ∆l(t1), P̂ Ŷyf (t2)}, which specifies that the system passes through ∆l, the region of the lower slit, before

reaching the final position. We may attempt to calculate the probability of both with the von Neumann-Lüders

rule, obtaining Phu = 〈ψ|P̂ Ŷ∆u(t1)P̂ Ŷyf (t2)P̂ Ŷyf (t2)P̂ Ŷ∆u(t1)|ψ〉 and Phl = 〈ψ|P̂ Ŷ∆l(t1)P̂ Ŷyf (t2)P̂ Ŷyf (t2)P̂ Ŷ∆l(t1)|ψ〉. If we

wanted to find the total probability of reaching the end position, Pyf , we would be sorely tempted to just add

the probabilities of these two histories, but we must be careful to determine if that is appropriate. The sum

Phu + Phl would be the probability density arising from a superposition of single-slit patterns from each of the

slits, but we know for a fact that the interference pattern of a double-slit experiment does not arise in this way. Let

hyf = hu + hl = {P̂ Ŷ∆u(t1) + P̂ Ŷ∆l(t1), P̂ Ŷyf (t2)} be the history specifying that the system passes through the slits at

t1 without specifying either slit in particular. If we calculate Phyf
via the von Neumann-Lüders rule, we will get a

more complicated interference pattern, and see (in Fig. 3.2) that Phyf
= Phu+hl 6= Phu + Phl . The decoherence

functional would have warned us of this, as d(hu, hl) 6= 0, which tells us that the family consisting of {hu, hl} is

inconsistent. We must coarse grain to the family {hyf } to get consistency and thus be able to assign probabilities

to outcomes.

3.3 Weak Values and the Consistency Condition

Say we are given a quantum system in initial state |ψ(t0)〉 at time t0 that is postselected at time t2 to be in the final

state |φ(t2)〉, thus its history includes the projector
[
|φ(t2)〉 〈φ(t2)|

]
(t2). At the intermediate time t1, we want to

know if the system is in some subspace Λ of the eigenspace of the observable Â, so we specify the history further by
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t2

y = 0

yf

U(t1, t2)

P̂ Ŷyf
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Figure 3.2: Double-Slit Probability Distributions In this figure, the x-axis is horizontal, and the y-axis
is vertical. The incident wave function |ψ〉 passes through two slits at time t1 and reaches height yf on the
detector screen at time t2. The intervening moments during which the system undergoes unitary time evolution
are marked by the associated propagators (U(t0, t1) and U(t1, t2)). On the right, two probability distributions are
depicted: the sum of the probabilities for the individual histories hu and hl, which consists of two overlapping
single-slit probability distributions, and the probability distribution of the history hyf , which demonstrates the
typical double-slit interference pattern. Clearly, the two are not the same, but the von Neumann-Lüders rule allows
us to calculate either. The advantage of the decoherence functional is that it would evaluate the consistency of
the families to tell us whether or not it would be appropriate to assign a probability distribution to the associated
histories. This figure is modified from Figs. 2.1, 4.2(a), and 4.4(b) of [22] by the reflexive property of permission.

inserting the projector P̂ ÂΛ (t1). If h = {P̂ ÂΛ (t1),
[
|φ(t2)〉 〈φ(t2)|

]
(t2)}, then let h′ = {P̂ ÂΛ′(t1),

[
|φ(t2)〉 〈φ(t2)|

]
(t2)}

be another history in the family, where P̂ ÂΛ′ = Î − P̂ ÂΛ . Using the decoherence functional to check consistency, we

obtain

d(h, h′) = 〈ψ(t0)|P̂ ÂΛ′(t1)
[
|φ(t2)〉 〈φ(t2)|

]
(t2)P̂ ÂΛ (t1)|ψ(t0)〉

= 〈ψ(t0)|Û†(t1, t0)P̂ ÂΛ′Û(t1, t0)Û†(t2, t0) |φ(t2)〉 〈φ(t2)| Û(t2, t0)Û†(t1, t0)P̂ ÂΛ Û(t1, t0)|ψ(t0)〉

= 〈ψ(t0)|Û†(t1, t0)P̂ ÂΛ′Û(t1, t2) |φ(t2)〉 〈φ(t2)| Û†(t1, t2)P̂ ÂΛ Û(t1, t0)|ψ(t0)〉

= 〈ψ(t1)|P̂ ÂΛ′ |φ(t1)〉 〈φ(t1)| P̂ ÂΛ |ψ(t1)〉

= | 〈φ(t1)|ψ(t1)〉 |2 〈ψ(t1)|P̂ ÂΛ′ |φ(t1)〉
〈ψ(t1)|φ(t1)〉

〈φ(t1)|P̂ ÂΛ |ψ(t1)〉
〈φ(t1)|ψ(t1)〉

= | 〈φ(t1)|ψ(t1)〉 |2(P̂ ÂΛ′)
∗
w(P̂ ÂΛ )w.

(3.16)

If the family is to be consistent, we must have

| 〈φ(t1)|ψ(t1)〉 |2(P̂ ÂΛ′)
∗
w(P̂ ÂΛ )w = 0, (3.17)

which is Kastner’s result [17], written in the dialect I am familiar with. Assuming 〈φ(t1)|ψ(t1)〉 6= 0 (otherwise,

the postselected outcome would not happen), we can see that either (P̂ ÂΛ′)
∗
w or (P̂ ÂΛ )w must be zero. However, we

also know that Î = P̂ ÂΛ′ + P̂ ÂΛ , so the linearity of weak values tells us that 1 = (Î)w = (P̂ ÂΛ′)w + (P̂ ÂΛ )w. As such, if

either (P̂ ÂΛ′)w or (P̂ ÂΛ )w is zero, then the other must be equal to 1. In the case of unsharp or strange weak values

for P̂ ÂΛ (those not landing in its eigenvalue spectrum), we know that neither (P̂ ÂΛ′)w nor (P̂ ÂΛ )w is equal to 1 or 0,
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and the history will be inconsistent.

In the particular case of Vaidman’s weak trace criterion for particle presence [11], a particle is defined to be

present in a location when the weak value of the projection operator specifying that location is nonzero. Unsharp and

strange weak values for particle presence are thus included among the possibilities (not to mention experimentally

observed in practice [13]), and so might be seen in the consistent histories approach when building histories with the

particle location projectors. This would appear to proscribe the use of consistent histories in examining questions

of particle presence in these special situations (or to suggest that the weak trace criterion is off its rocker, depending

on which you like more).

Before we write off a union of these two approaches, citing irreconcilable differences, there are two things to

consider. First, projectors are a small subset of observables that one can find weak values for, which begs the

question, where would the weak values of general observables fit into consistent histories? Second, while the

projectors used in consistent histories may need to have sharp weak values to work in a consistent family, the weak

values observed in theoretical treatments [4] and experiments are found in the state of the probes. Why should we

leave the probes out of our system when we apply the consistent histories formalism?

3.4 Weak Probes and the Consistency Condition

With these questions before me, I set myself to the task of addressing the associated deficiencies, and devised a

way to extend Kastner’s result. To demonstrate, let us construct a new system, with some simplifications. First,

the propagators will be taken to be identities, with the exception of Û(t1, t0), which will incorporate an interaction

between the system proper that we are examining and the auxiliary probe that is incorporated into the composite

system. This means that, except for the probe-system interaction, the times at which projectors are applied in the

histories are just for ordering, and do not result in evolution of the system state.

We begin in the initial composite state |ψ〉 |+〉x, where |ψ〉 is the system proper, and |+〉x is a qubit probe

initially in the spin-up state. The probe evolution will be governed by the unitary operator e−i
ε
~ Â⊗σ̂z , which

entangles the system and probe by rotating the qubit by some amount that depends on the value of the observable

Â. At the final time t2, we postselect the composite system to be in a state |φ, s〉 = |φ〉 |s〉x, where s = ±. At the

intermediate time t1, we specify that the state of the system proper is in either the subspace Λ or the subspace Λ′,

which will be represented in the history by either P̂Λ or P̂Λ′ , respectively. This time, Λ and Λ′ do not necessarily

span the entire state space, so P̂Λ + P̂Λ′ 6= Î, but they will remain mutually orthogonal. Note also that I have not

indicated what observable to associate these projectors with, simply because it need not necessarily be Â. Properly,

these projectors should be written in the form P̂ ⊗ Î to make clear that they operate on the system and not the

probe, but this level of care will be sacrificed for the sake of reducing notational clutter. With these definitions and
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foibles out of the way, we can now work with the following histories:

hs = {P̂Λ(t1),
[
|φ, s〉 〈φ, s|

]
(t2)}, h′s = {P̂Λ′(t1),

[
|φ, s〉 〈φ, s|

]
(t2)}, (h+h′)s = {P̂Λ(t1)+P̂Λ′(t1),

[
|φ, s〉 〈φ, s|

]
(t2)},

(3.18)

where {h+, h−, h′+, h′−} forms one family, and {(h+h′)+, (h+h′)−} forms another which is more coarsely grained.

In this particular situation, I will specify a few further properties of our particular intermediate projectors.

First and foremost, while P̂Λ + P̂Λ′ need not be the projector for the entire system state space (also known as the

identity), we do want it to be expansive enough that inserting it in the middle of 〈φ|ψ〉 has no effect on the inner

product. For the purposes of this demonstration, we will accomplish this in the following way:

〈φ|P̂Λ|ψ〉 = 〈φ|ψ〉 , 〈φ|P̂Λ′ |ψ〉 = 0. (3.19)

This specifies that PΛ does not exclude any states within |ψ〉 or |φ〉 which are necessary parts of their mutual

overlap in forming the inner product 〈φ|ψ〉. In contrast, PΛ′ applied to the preselection state or the postselection

state makes it orthogonal to the other state, eliminating the inner product. It is worth noting that PΛ′ does not

necessarily remove all overlap between the two states, as there could be component states within both |ψ〉 and |φ〉

which cancel out in the inner product, and thus could be left untouched.

In addition, we want P̂Λ + P̂Λ′ to have no effect on 〈φ|Â|ψ〉 when inserted before the operator, that way the

weak value will go undisturbed:

Aw =
〈φ|Â|ψ〉
〈φ|ψ〉

=
〈φ|
[
P̂Λ + P̂Λ′

]
Â|ψ〉

〈φ|
[
P̂Λ + P̂Λ′

]
|ψ〉

. (3.20)

As a result of these properties, we find that the branch wave function for (h+ h′)s is

|ψ(h+h′)s〉 = |φ, s〉 〈φ, s|
[
P̂Λ + P̂Λ′

]
e−i

ε
~ Â⊗σ̂z |ψ〉 |+〉x

≈ |φ, s〉 x〈s|
(
〈φ|
[
P̂Λ + P̂Λ′

]
|ψ〉 − i ε

~
〈φ|
[
P̂Λ + P̂Λ′

]
Â|ψ〉 σ̂z

)
|+〉x

≈ |φ, s〉 〈φ|ψ〉 x〈s|e
−i ε~Awσ̂z |+〉x,

(3.21)

which gives us a consistent family (since 〈φ,+|φ,−〉 = 〈φ|φ〉 x〈+|−〉x = 0) in which the probe state is rotated by

an amount specified by the weak value of Â.

Alternatively, if we calculate the branch wave functions for hs and h′s, we get

|ψhs〉 = |φ, s〉 〈φ, s| P̂Λe
−i ε~ Â⊗σ̂z |ψ〉 |+〉x

≈ |φ, s〉 〈φ|ψ〉 x〈s|e
−i ε~ (P̂ΛÂ)wσ̂z |+〉x

= |φ, s〉 〈φ|ψ〉
(

cos
[ ε
~

(P̂ΛÂ)w

]
δs,+ − i sin

[ ε
~

(P̂ΛÂ)w

]
δs,−

)
,

(3.22)

|ψh′s〉 = |φ, s〉 〈φ, s| P̂Λ′e
−i ε~ Â⊗σ̂z |ψ〉 |+〉x

≈ |φ, s〉
(
−i ε

~
〈φ|P̂Λ′Â|ψ〉 δs,−

)
.

(3.23)
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If we want this family to be consistent, then the only fly in the ointment is this off-diagonal term of the decoherence

functional:

d(h−, h′−) = 〈ψh′−|ψh−〉 = i
ε

~
〈ψ|ÂP̂Λ′ |φ〉 〈φ|ψ〉

(
−i sin

[ ε
~

(P̂ΛÂ)w

])
≈ ε2

~2
〈ψ|ÂP̂Λ′ |φ〉 〈φ|P̂ΛÂ|ψ〉 .

(3.24)

Since we are taking the probe coupling ε to be very weak, we could gain approximate decoherence by assuming the

smallness of ε2 makes this entirely negligible. In turn, this would eliminate the following outcomes:

Ph′− = d(h′−, h′−) = 〈ψh′−|ψh′−〉 ≈
ε2

~2
| 〈φ|P̂Λ′Â|ψ〉 |2, (3.25)

Ph− = d(h−, h−) = 〈ψh−|ψh−〉 ≈
ε2

~2
| 〈φ|P̂ΛÂ|ψ〉 |2. (3.26)

The only remaining history (of those ending in the postselected state |φ〉), would be h+, with probability

Ph+ = d(h+, h+) = 〈ψh+|ψh+〉 ≈ | 〈φ|ψ〉 |2 cos2
[ ε
~

(P̂ΛÂ)w

]
≈ | 〈φ|ψ〉 |2. (3.27)

We can see the Born rule emerging here, with the probability depending only on the initial and final states, as

though the weak probe were not there. However, in this history, the weak probe is there, and its state has been

rotated by (P̂ΛÂ)w, rather than Aw. Since the probe state is approximately pure after postselection, we can expect

to see measurement outcomes of the probe state that reflect this new weak value, rather than the one we anticipate

seeing from our further coarse-grained family. As such, it would appear to be imprudent to neglect the ε2 terms,

leaving this family inconsistent.

Another resolution to this would be to have a situation in which (P̂Λ′Â)w = 0. This would mean that (P̂ΛÂ)w =

Aw, and we can confidently assign zero probability to the system state being in Λ′ at the intermediate time. This

gives us some idea of the minimum state space the system could occupy during the weak measurement. It must

be large enough to encompass all basis states that contribute to both |ψ〉 and |φ〉, except those states that don’t

ultimately contribute to both 〈φ|ψ〉 and 〈φ|Â|ψ〉.

As an example, consider a system in initial state

|ψ〉 =
1√
3

(|2〉+ |2′〉+ |3〉) , (3.28)

which is postselected in the final state

|φ〉 =
1√
3

(|2〉 − |2′〉+ |3〉) , (3.29)

where the numbered states |n〉 are elements of an orthonormal basis. We will weakly measure the observable N̂ ,

the number operator, which acts on the basis states of the system in the following manner: N̂ |n〉 = n |n〉. The

states |2〉 and |2′〉 are degenerate in the eigenvalue 2, such that N̂ |2〉 = 2 |2〉 and N̂ |2′〉 = 2 |2′〉. We can see that

〈φ|ψ〉 = 1
3 , and 〈φ|N̂ |ψ〉 = 1, so Nw = 3. If we are curious to know whether the system proper is in one of the three

29



3. CONSISTENTLY WEAK 3.4 WEAK PROBES AND CONSISTENCY

states |2〉 , |2′〉 , or |3〉 at the time of our weak measurement, it makes sense to calculate histories which specify

these basis states. In terms of their branch wave functions, these histories are

|ψh3s〉 = |φ, s〉 〈φ, s| |3〉 〈3|e−i ε~ N̂⊗σ̂z |ψ〉 |+〉x

= |φ, s〉 〈φ|3〉 〈3|ψ〉 x〈s|e
−i ε~ 3σ̂z |+〉x

= |φ, s〉 1

3 x〈s|e
−i ε~ 3σ̂z |+〉x,

(3.30)

|ψh2s〉 = |φ, s〉 〈φ, s| |2〉 〈2|e−i ε~ N̂⊗σ̂z |ψ〉 |+〉x

= |φ, s〉 〈φ|2〉 〈2|ψ〉 x〈s|e
−i ε~ 2σ̂z |+〉x

= |φ, s〉 1

3 x〈s|e
−i ε~ 2σ̂z |+〉x,

(3.31)

|ψh2′s〉 = |φ, s〉 〈φ, s| |2′〉 〈2′|e−i ε~ N̂⊗σ̂z |ψ〉 |+〉x

= |φ, s〉 〈φ|2′〉 〈2′|ψ〉 x〈s|e
−i ε~ 2σ̂z |+〉x

= |φ, s〉 −1

3 x〈s|e
−i ε~ 2σ̂z |+〉x.

(3.32)

At this stage, we can already see that there is a problem, as none of these branch wave functions are orthogonal

(for those sharing the same value of s). However, if we coarse-grain over the last two histories—specifying that the

system proper is in the space of the span of |2〉 and |2′〉 at the intermediate time, but not specifying which state in

particular—we obtain the new history

|ψh2+2′s〉 = |φ, s〉 〈φ, s|
[
|2〉 〈2|+ |2′〉 〈2′|

]
e−i

ε
~ N̂⊗σ̂z |ψ〉 |+〉x = |ψh2s〉+ |ψh2′s〉 = 0. (3.33)

Now, the subfamily {h3±, h2+2′±} is consistent, with only h3± as possible outcomes, both of which leave the probe

in the output state with the desired weak value presented. This demonstrates that, though all three basis states

contribute to the initial and postselected states, only |3〉 has a nonzero contribution to both 〈φ|ψ〉 and 〈φ|N̂ |ψ〉, so

only it is predicted in the subfamily of histories at the intermediate time.

There are a few shortcomings to this approach. First, while I can confidently specify that the system state

was not in the subspace projected onto by
[
|2〉 〈2| + |2′〉 〈2′|

]
at the intermediate time, I cannot technically say

that the system state was not in the subspace projected onto by |2〉 〈2| or that projected onto by |2′〉 〈2′|, as I

cannot calculate those probabilities. It seems intuitive to think so, but it is a level of description that the consistent

histories formalism deems inappropriate [16].

More importantly, this perpetuates a rather annoying habit of weak value theorists in only handling one weak

probe at a time. This particular example is arranged as a version of the three-box paradox [16, 18, 25], which is

physically realized in the nested Mach-Zehnder interferometer setup of [11, 13, 16]. However, in those experiments

and theoretical treatments, the observables are projectors onto the three boxes (which would be |2〉 〈2| , |2′〉 〈2′|,

and |3〉 〈3| in this example), not the number operator I defined above. To properly examine that situation, I would

need at least three auxiliary qubits, each one coupled to one of these boxes. This more intensive calculation could

provide an interesting perspective on the question of particle presence in the nested interferometer setup.

30



3. CONSISTENTLY WEAK 3.4 WEAK PROBES AND CONSISTENCY

It is also worth noting that I have only played with projectors in a particular basis. The consistent histories

formalism may tell us whether a particular family of histories can have probabilities assigned to it, but when there

are multiple consistent families, there is no rule that favors one over another. Two consistent families which share

one or more histories will never assign them different probabilities, but the unicity of reality—the idea that there

is one unique and true state of a system, or indeed the entire world, at any given time—is not enforced in a reality

described by Hilbert space [16]. As such, there could be other consistent families which obtain the same probe

state, but predict different intermediate states for the system proper. This can be seen to some degree in the given

example, as we could create an even coarser-grained family of histories {h2+2′+3±} with branch wave functions

|ψh2+2′+3s〉 = |φ, s〉 〈φ, s|
[
|2〉 〈2|+ |2′〉 〈2′|+ |3〉 〈3|

]
e−i

ε
~ N̂⊗σ̂z |ψ〉 |+〉x = |ψh2s〉+ |ψh2′s〉+ |ψh3s〉 = |ψh3s〉 . (3.34)

This would tell us with certainty that the system proper, when postselected in the state |φ〉, is in some state in the

span of |2〉 , |2′〉, and |3〉. Our earlier description was more specific, but other than the intuitive logic that being

certainly in the state |3〉 means being certainly in the above span (thus favoring the more specific view), there

is no mathematical rule that advances one or the other as the true family to use. Other families with stranger

combinations of basis states could provide a picture even further removed from the one painted by {h3±, h2+2±}

than that painted by {h2+2′+3±}.
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Appendix A

Lemmas for Chapter 1

A.1 Proof of Γ
(
j + 1

2

)
= (2j−1)!!

2j

√
π

While the claim Γ
(
j + 1

2

)
= (2j−1)!!

2j
√
π for j ∈ N is provided by [6], the proof is omitted, likely due to its elementary

nature. Those familiar with the gamma function know that Γ(x + 1) = xΓ(x) (which is shown by integration by

parts), so once the base case, Γ(1 + 1
2 ) =

√
π

2 , is proved, Γ
(
j + 1

2

)
= (2j−1)!!

2j
√
π follows immediately by induction.

In particular,

Γ
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3

2
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(
j +

1

2

)
Γ

(
j +

1

2

)
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2j + 1

2

(2j − 1)!!

2j
√
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(2j + 1)!!

2j+1

√
π. (A.1)

The base case is also simple, requiring a little substitution and some knowledge of Gaussian integrals. We start

with

Γ

(
3

2

)
=

∫ ∞
0

dx
√
xe−x, (A.2)

and make the substitution z2 = x, which gives us

Γ

(
3

2

)
= 2

∫ ∞
0

dz z2e−z
2

=

[
− ∂

∂t

∫ ∞
−∞

dz e−tz
2

]
t=1

=

[
− ∂

∂t

√
π

t

]
t=1

=

[√
π

2
t−3/2

]
t=1

=

√
π

2
.

(A.3)

A.2 Limiting Behavior of
√

(2j−1)!!

j!

To prove that, for any a ≥ 1 there exists a natural number k such that
√

(2j−1)!!

j! < a−j for all j ≥ k, we start

with a much simpler fact: for any a, there exists k ∈ N such that k ≥ 2e16a2. Now, for all j ≥ k, we know that
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A. LEMMAS A.2 LIMITING BEHAVIOR OF
√

(2j−1)!!

j!

j ≥ 2e16a2, and we can multiply both sides by j2 (and play a bit with the right hand side) to get

j3 ≥ e16 a
2

2
(2j)2. (A.4)

If we take the logarithm of both sides, then

3 ln j ≥ 16 + ln
a2

2
+ 2 ln 2j. (A.5)

We can then multiply by j to get

3j ln j ≥ 16j + j ln
a2

2
+ 2j ln 2j. (A.6)

Now we can subtract 42j from each side to get

3j ln j − 42j ≥ −26j + j ln
a2

2
+ 2j ln 2j. (A.7)

Next, we have two more inequalities to work with. The first is a comparison of constants: 3 ln
√

2π > ln
√

2π+ 1
2 ln 2.

Second, we know that 3
2 ln j ≥ 1

2 ln j for all j ≥ 1. As such, we can add these to our expression to get

3j ln j − 42j + 3 ln
√

2π +
3

2
ln j ≥ −26j + j ln

a2

2
+ 2j ln 2j + ln

√
2π +

1

2
ln 2j. (A.8)

Why is this important? Well, the factorial is bounded in the following manner [26]:

√
2πn

(n
e

)n 1

e12n+1
< n! <

√
2πn

(n
e

)n 1

e12n
. (A.9)

As such, it follows that

ln(j!)3 > 3 ln
√

2π + 3j ln j +
3

2
ln j − 39j − 3;

ln

(
a2

2

)j
(2j)! < j ln

a2

2
+ ln
√

2π + 2j ln 2j +
1

2
ln 2j − 26j.

(A.10)

As such,

ln(j!)3 > 3 ln
√

2π + 3j ln j +
3

2
ln j − 39j − 3

≥ 3 ln
√

2π + 3j ln j +
3

2
ln j − 39j − 3j

= 3 ln
√

2π + 3j ln j +
3

2
ln j − 42j

≥ j ln
a2

2
+ ln

√
2π + 2j ln 2j +

1

2
ln 2j − 26j

> ln

(
a2

2

)j
(2j)!.

(A.11)
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A. LEMMAS A.2 LIMITING BEHAVIOR OF
√

(2j−1)!!

j!

Exponentiating both sides gives us

(j!)3 >

(
a2

2

)j
(2j)!, (A.12)

and since j! = (2j)!!
2j , we can divide our expression by this to obtain

(j!)2 > a2j(2j − 1)!!, (A.13)

And then we can take the square root and rearrange to find that√
(2j − 1)!!

j!
< a−j . (A.14)

Thus, for any a ≥ 1, we can select k ∈ N such that Eqn. A.14 holds for all j ≥ k, with the easiest way to find this

k being to choose it such that k ≥ 2e16a2 (a number well over 17 million).

Of course, less extreme upper bounds on
√

(2j−1)!!

j! require less extreme lower bounds on k. In particular, assume

that there exists j ∈ N such that j! ≥
√

(2j − 1)!!. It follows that

(j + 1)! = (j + 1)j! ≥ (j + 1)
√

(2j − 1)!! =
j + 1√
2j + 1

√
(2j + 1)!!, (A.15)

and since (j + 1)2 ≥ 2j + 1 for all j ∈ N, we know j+1√
2j+1

≥ 1, and thus

(j + 1)! ≥
√

(2j + 1)!!. (A.16)

Since 1! =
√

(2 · 1− 1)!!, we know by induction that j! ≥
√

(2j − 1)!! for all j ∈ N. Thus,
√

(2j−1)!!

j! ≤ 1 for all

j, which means we could omit this factor from each term of our sum in Eqn. 1.34 and still have an expression

bounding the error in our weak value approximation.
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Appendix B

Difficulties with Weak Values Taken in Sequence

B.1 False Starts

While feedback compensation has allowed us to see that weak values are the optimal estimates for weak interactions

taken in sequence for the nested Mach-Zehnder interferometer setup (see Chapter 2), it is worth noting that this

does not come out of an Eqn. 1.27-like calculation in a clean manner. Let us add a second probe, |Q′〉 (with

canonical variables q′ and p′), and a new interaction to our Hamiltonian from Eqn. 1.21:

Ĥ(t) = Ĥsys − εδ(t− t1)Âq̂ − εδ(t− t2)B̂q̂′. (B.1)

Evolving to t3 is accomplished by the operator

U(t3, 0) = e−iĤsys(t3−t2)/~eiεB̂q̂
′/~e−iĤsys(t2−t1)/~eiεÂq̂/~e−iĤsyst1/~. (B.2)

In turn, the unnormalized state after the final measurement (postselected to be |φ(t3)〉) is

|φ(t3)〉 〈φ(t2)| eiεB̂q̂
′/~e−iĤsys(t2−t1)/~eiεÂq̂/~ |ψ(t1)〉 |Q〉 |Q′〉 . (B.3)

The question is, how do we approach the approximation? Work by Vaidman (such as [11, 12]) and colleagues (such

as [13]) seems to assume the approximation can be made for one probe while ignoring the presumably negligible

effects of the other. This leaves us in what I find to be the rather dissatisfying situation of not actually deriving

the approximation directly from a starting point such as Eqn. B.3. That being said, how would we even do this?

It would be a lot simpler if Hsys = 0, which would simplify Eqn. B.3 to

|φ(t3)〉 〈φ(t3)| eiεB̂q̂
′/~eiεÂq̂/~ |ψ(t0)〉 |Q〉 |Q′〉 . (B.4)

Before (Eqn. 1.26), I was very careful to define weak values with respect to pre- and postselected states that had

been evolved to the same time—the time of the interaction. Here, with Hsys = 0, these states don’t change in time.

Without e−iĤsys(t2−t1)/~, there isn’t even a distinction between which interaction, eiεB̂q̂
′/~ or eiεÂq̂/~, happens first.
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B. SEQUENTIAL DIFFICULTIES B.1 FALSE STARTS

It is possible to claim

|φ(t3)〉 〈φ(t3)| eiεB̂q̂
′/~eiεÂq̂/~ |ψ(t0)〉 |Q〉 |Q′〉 ≈ |φ(t3)〉 〈φ(t3)|ψ(t0)〉 eiε(B̂q̂

′+Âq̂)w/~ |Q〉 |Q′〉 , (B.5)

and by the linearity of weak values,

(B̂q̂′ + Âq̂)w =
〈φ(t3)|(B̂q̂′ + Âq̂)|ψ(t0)〉

〈φ(t3)|ψ(t0)〉
=
〈φ(t3)|B̂|ψ(t0)〉
〈φ(t3)|ψ(t0)〉

q̂′ +
〈φ(t3)|Â|ψ(t0)〉
〈φ(t3)|ψ(t0)〉

q̂ = Bw q̂
′ +Aw q̂. (B.6)

As such,

|φ(t3)〉 〈φ(t3)| eiεB̂q̂
′/~eiεÂq̂/~ |ψ(t0)〉 |Q〉 |Q′〉 ≈ |φ(t3)〉 〈φ(t3)|ψ(t0)〉 eiεAw q̂/~ |Q〉 eiεBw q̂

′/~ |Q′〉 . (B.7)

This is tenable, but if Hsys 6= 0, then we are stuck with Eqn. B.3, and no clear way to handle the core operator on

the probe states:

〈φ(t2)| eiεB̂q̂
′/~e−iĤsys(t2−t1)/~eiεÂq̂/~ |ψ(t1)〉 . (B.8)

In order to obtain Bw = 〈φ(t2)|B̂|ψ(t2)〉
〈φ(t2)|ψ(t2)〉 or Aw = 〈φ(t1)|Â|ψ(t1)〉

〈φ(t1)|ψ(t1)〉 , we somehow need to manufacture |ψ(t2)〉 〈φ(t1)| in

the middle in place of e−iĤsys(t2−t1)/~. Exactly how this would be accomplished appears mystifying. The most

natural suggestion would be to insert identities: (I − |ψ(t2)〉 〈ψ(t2)|+ |ψ(t2)〉 〈ψ(t2)|) to the left of e−iĤsys(t2−t1)/~

and (I − |φ(t1)〉 〈φ(t1)|+ |φ(t1)〉 〈φ(t1)|) to the right. Ultimately, this is equivalent to:

〈φ(t2)| eiεB̂q̂
′/~(I − |ψ(t2)〉 〈ψ(t2)|+ |ψ(t2)〉 〈ψ(t2)|)e−iĤsys(t2−t1)/~(I − |φ(t1)〉 〈φ(t1)|+ |φ(t1)〉 〈φ(t1)|)eiεÂq̂/~ |ψ(t1)〉

= 〈φ(t2)| eiεB̂q̂
′/~ |ψ(t2)〉 〈ψ(t2)|φ(t2)〉 〈φ(t1)| eiεÂq̂/~ |ψ(t1)〉

+ 〈φ(t2)| eiεB̂q̂
′/~
[
e−iĤsys(t2−t1)/~ − |ψ(t2)〉 〈ψ(t2)|φ(t2)〉 〈φ(t1)|

]
eiεÂq̂/~ |ψ(t1)〉 .

(B.9)

Now, we can take the first term and make the approximation that gives us weak values, but we have the additional

task of proving the second term is negligible.

A seemingly simpler task would be to insert similar identities in reverse order. Let {|ψ(t1)〉} ∪ {|ψj〉}j∈Λ and

{|φ(t2)〉}∪{|φk〉}k∈Λ be orthonormal bases (with Λ an indexing set of the required cardinality for the Hilbert space)

and use them to make identities:

〈φ(t2)| eiεB̂q̂
′/~

(
|φ(t2)〉 〈φ(t2)|+

∑
k

|φk〉 〈φk|

)
e−iĤsys(t2−t1)/~

|ψ(t1)〉 〈ψ(t1)|+
∑
j

|ψj〉 〈ψj |

 eiεÂq̂/~ |ψ(t1)〉

= 〈φ(t2)| eiεB̂q̂
′/~ |φ(t2)〉 〈φ(t2)|ψ(t2)〉 〈ψ(t1)| eiεÂq̂/~ |ψ(t1)〉

+
∑
j

〈φ(t2)| eiεB̂q̂
′/~ |φ(t2)〉 〈φ(t1)|ψj〉 〈ψj | eiεÂq̂/~ |ψ(t1)〉+

∑
k

〈φ(t2)| eiεB̂q̂
′/~ |φk〉 〈φk|ψ(t2)〉 〈ψ(t1)| eiεÂq̂/~ |ψ(t1)〉

+
∑
k

∑
j

〈φ(t2)| eiεB̂q̂
′/~ |φk〉 〈φk|e−iĤsys(t2−t1)/~|ψj〉 〈ψj | eiεÂq̂/~ |ψ(t1)〉 .

(B.10)
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B. SEQUENTIAL DIFFICULTIES B.2 FIRST-ORDER APPROXIMATION

There are two problems with this. First, we shouldn’t make the weak value approximation using orthogonal pre-

and postselections, as their inner product being zero makes the weak value undefined (see the result in Eqn. 3.23).

If we choose to make the approximation anyway (neglecting terms of the exponentiated operators’ sum forms

which are first or higher order in ε), orthogonality makes all of the terms in the sums of Eqn. B.10 go away, which

appears rather convenient. However, the one term left will have expectation values of observables, rather than the

weak values. Based on these difficulties, sequences of weak interactions do not seem to lend themselves to direct

approximations in the way single weak interactions do.

B.2 First-Order Approximation of the Exponential

Let us return to Eqn. B.8, and suppose we can approximate eiεÔ ≈ 1 + iεÔ [15] (which is a big ask, considering

the trouble we had to go through in Section 1.3). This would give us

〈φ(t2)| eiεB̂q̂
′/~e−iĤsys(t2−t1)/~eiεÂq̂/~ |ψ(t1)〉 ≈ 〈φ(t2)|

(
1 + iεB̂q̂′/~

)
e−iĤsys(t2−t1)/~

(
1 + iεÂq̂/~

)
|ψ(t1)〉

= 〈φ(t2)| e−iĤsys(t2−t1)/~ |ψ(t1)〉+ iε
q̂

~
〈φ(t2)| e−iĤsys(t2−t1)/~Â |ψ(t1)〉

+ iε
q̂′

~
〈φ(t2)| B̂e−iĤsys(t2−t1)/~ |ψ(t1)〉 − ε2 q̂

′q̂

~2
〈φ(t2)| B̂e−iĤsys(t2−t1)/~Â |ψ(t1)〉 .

(B.11)

If we discard the second order term (and allow the system proper’s state to evolve so we can get rid of the remaining

exponential), we get

〈φ(t2)| eiεB̂q̂
′/~e−iĤsys(t2−t1)/~eiεÂq̂/~ |ψ(t1)〉 ≈ 〈φ(t2)|ψ(t2)〉+ iε

q̂

~
〈φ(t1)|Â|ψ(t1)〉+ iε

q̂′

~
〈φ(t2)|B̂|ψ(t2)〉

= 〈φ(t2)|ψ(t2)〉+ iε
q̂

~
〈φ(t1)|ψ(t1)〉Aw + iε

q̂′

~
〈φ(t2)|ψ(t2)〉Bw.

(B.12)

This may look problematic at first glance, but we are saved by the fact that 〈φ(t1)|ψ(t1)〉 = 〈φ(t2)|ψ(t2)〉, leaving

us with

〈φ(t2)| eiεB̂q̂
′/~e−iĤsys(t2−t1)/~eiεÂq̂/~ |ψ(t1)〉 ≈ 〈φ(t2)|ψ(t2)〉

(
1 + iε

q̂

~
Aw + iε

q̂′

~
Bw

)
≈ 〈φ(t2)|ψ(t2)〉 eiε(Aw q̂+Bw q̂

′)/~.

(B.13)

This get us to the desired form, but we should note that we went straight from eiεÔ =
∑∞
j=0

(iεÔ)j

j! to truncating

higher-order terms. In Section 1.3, we actually operated the terms of the sum on states to get numbers (weak

values), and demonstrated that those were not growing too quickly to make the terms of the sum small. The claim

eiεÔ ≈ 1 + iεÔ is a much stronger statement if not qualified with assumptions about the states in play, but it can

be shown in certain cases, such as for a bounded operator:

∣∣∣∣∣∣eiεÔ − (1 + iεÔ)
∣∣∣∣∣∣
op

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑
j=2

(iεÔ)j

j!

∣∣∣∣∣∣
∣∣∣∣∣∣
op

≤
∞∑
j=2

(ε||Ô||op)j

j!
≤
∞∑
j=2

(ε||Ô||op)j = ε2||Ô||2op
∞∑
j=0

(ε||Ô||op)j . (B.14)
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B. SEQUENTIAL DIFFICULTIES B.2 FIRST-ORDER APPROXIMATION

This expression is not hard to control, and can be made infinitesimally small with the proper choice of ε. For

an unbounded operator, however, we need information about the states, and eiεÔ ≈ 1 + iεÔ is too cavalier of a

statement.

If a state being operated on—say |ψ〉—has compact support, then we can show that eiεÔ |ψ〉 ≈
(

1 + iεÔ
)
|ψ〉:

∣∣∣∣∣∣eiεÔ |ψ〉 − (1 + iεÔ) |ψ〉
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑
j=2

(iεÔ)j

j!
|ψ〉

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∞∑
j=2

εj ||Ôj |ψ〉 ||
j!

≤
∞∑
j=2

(εomax)j || |ψ〉 || = ε2o2
max

∞∑
j=0

(εomax)j ,

(B.15)

where omax is defined analogously to amax in Section 1.3. This is sufficient to claim that there is an ε small enough

that we can make the approximation. To apply this to the weak value approximation, we do require that the

composite system state has compact support at the time of each weak interaction. This suggests that, while we

can appeal to the conditions from Section 1.3, at least a little more care is needed when handling sequential weak

measurements.
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Appendix C

Calculations for the Nested Mach-Zehnder

Interferometer

C.1 Unitary Operators and Evolved States

The first step in calculating the outcomes of the nested Mach-Zehnder interferometer with feedback compensation

is to establish the unitary operators that govern time evolution. Based on the model established by Griffiths [16]

and utilizing a five probe setup, I devised the following:

U10 = [α |A1〉+ β |D1〉] 〈S0|+ [−β |A1〉+ α |D1〉] 〈R0|+ |Q1〉 〈Q0| , (C.1)

U21 = |A2〉 〈A1|+ |D2〉 〈D1| e−i
ε
~ D̂1⊗σ̂z,D + |Q2〉 〈Q1| , (C.2)

U32 = |A3〉 〈A2|+
1√
2

[|B3〉+ |C3〉] 〈D2|+
1√
2

[|B3〉 − |C3〉] 〈Q2| , (C.3)

U43 = |A4〉 〈A3| e−i
ε
~ Â3⊗σ̂z,A + |B4〉 〈B3| e−i

ε
~ B̂3⊗σ̂z,B + |C4〉 〈C3| e−i

ε
~ Ĉ3⊗σ̂z,C , (C.4)

U54 = |A5〉 〈A4|+
1√
2

[− |E5〉+ |H5〉] 〈B4|+
1√
2

[|E5〉+ |H5〉] 〈C4| , (C.5)

U65 = |A6〉 〈A5|+ |E6〉 〈E5| e−i
ε
~ Ê5⊗σ̂z,E + |H6〉 〈H5| , (C.6)

U76 = [α |F7〉+ β |G7〉] 〈A6|+ [β |F7〉 − α |G7〉] 〈E6|+ |H7〉 〈H6| . (C.7)

The notational convention used is that Utt′ evolves a state from time t′ to t, and a particle in a particular arm at

a particular time is indicated by a state ket with the path label and a subscript to indicate the moment in time,

for example: |B3〉. The projector associated with a path is indicated similarly, but with a hat instead of a ket

enclosure, for example: B̂3 = |B3〉 〈B3|.

Note that the steps from odd times to even times do not change the path the particle occupies (that is, not

the letter, only the number), but they do include transitions across mirrors, where the probe interactions occur.

Transitions from even to odd times all include transitions across beam splitters along at least some of the paths.
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C. MZI CALCULATIONS C.1 OPERATORS AND STATES

Applying these operators to a particle entering from path S gives the following states from t0 to t7:

|ψ0〉 = |S0〉 |+〉x,D |+〉x,A |+〉x,B |+〉x,C |+〉x,E , (C.8)

|ψ1〉 =
[
α |A1〉+ β |D1〉

]
|+〉x,D |+〉x,A |+〉x,B |+〉x,C |+〉x,E , (C.9)

|ψ2〉 = α |A2〉 |+〉x,D |+〉x,A |+〉x,B |+〉x,C |+〉x,E

+ β |D2〉 e−i
ε
~ σ̂z,D |+〉x,D |+〉x,A |+〉x,B |+〉x,C |+〉x,E ,

(C.10)

|ψ3〉 = α |A3〉 |+〉x,D |+〉x,A |+〉x,B |+〉x,C |+〉x,E

+
β√
2

[
|B3〉+ |C3〉

]
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A |+〉x,B |+〉x,C |+〉x,E ,

(C.11)

|ψ4〉 = α |A4〉 |+〉x,D e
−i ε~ σ̂z,A |+〉x,A |+〉x,B |+〉x,C |+〉x,E

+
β√
2
|B4〉 e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A e

−i ε~ σ̂z,B |+〉x,B |+〉x,C |+〉x,E

+
β√
2
|C4〉 e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A |+〉x,B e

−i ε~ σ̂z,C |+〉x,C |+〉x,E ,

(C.12)

|ψ5〉 = α |A5〉 |+〉x,D e
−i ε~ σ̂z,A |+〉x,A |+〉x,B |+〉x,C |+〉x,E

+
β

2

[
− |E5〉+ |H5〉

]
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A e

−i ε~ σ̂z,B |+〉x,B |+〉x,C |+〉x,E

+
β

2

[
|E5〉+ |H5〉

]
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A |+〉x,B e

−i ε~ σ̂z,C |+〉x,C |+〉x,E ,

(C.13)

|ψ6〉 = α |A6〉 |+〉x,D e
−i ε~ σ̂z,A |+〉x,A |+〉x,B |+〉x,C |+〉x,E

+
β

2
|E6〉

[
−e−i ε~ σ̂z,D |+〉x,D |+〉x,A e

−i ε~ σ̂z,B |+〉x,B |+〉x,C e
−i ε~ σ̂z,E |+〉x,E

+e−i
ε
~ σ̂z,D |+〉x,D |+〉x,A |+〉x,B e

−i ε~ σ̂z,C |+〉x,C e
−i ε~ σ̂z,E |+〉x,E

]
+
β

2
|H6〉

[
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A e

−i ε~ σ̂z,B |+〉x,B |+〉x,C |+〉x,E

+e−i
ε
~ σ̂z,D |+〉x,D |+〉x,A |+〉x,B e

−i ε~ σ̂z,C |+〉x,C |+〉x,E
]
,

(C.14)

|ψ7〉 = |F7〉
[
α2 |+〉x,D e

−i ε~ σ̂z,A |+〉x,A |+〉x,B |+〉x,C |+〉x,E

− β2

2
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A e

−i ε~ σ̂z,B |+〉x,B |+〉x,C e
−i ε~ σ̂z,E |+〉x,E

+
β2

2
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A |+〉x,B e

−i ε~ σ̂z,C |+〉x,C e
−i ε~ σ̂z,E |+〉x,E

]
+ |G7〉

[
αβ |+〉x,D e

−i ε~ σ̂z,A |+〉x,A |+〉x,B |+〉x,C |+〉x,E

+
αβ

2
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A e

−i ε~ σ̂z,B |+〉x,B |+〉x,C e
−i ε~ σ̂z,E |+〉x,E

− αβ

2
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A |+〉x,B e

−i ε~ σ̂z,C |+〉x,C e
−i ε~ σ̂z,E |+〉x,E

]
+ |H7〉

[
β

2
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A e

−i ε~ σ̂z,B |+〉x,B |+〉x,C |+〉x,E

+
β

2
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A |+〉x,B e

−i ε~ σ̂z,C |+〉x,C |+〉x,E

]
.

(C.15)
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Subsequent to the seventh step, a projective measurement is performed on paths F , G, and H, which leads to

non-unitary state collapse. It is after that point that the feedback compensation is applied, depending on which

path the particle is found to be in. This requires a transition from the pure state |ψ7〉 to the mixed state represented

by the density operator

ρ̂8 = |F7〉 〈F7| ⊗
[
α2ei

ε
~D(F )σ̂z,D |+〉x,D e

−i ε~ [1−A(F )]σ̂z,A |+〉x,A e
i ε~B(F )σ̂z,B |+〉x,B e

i ε~C(F )σ̂z,C |+〉x,C e
i ε~E(F )σ̂z,E |+〉x,E

− β2

2
e−i

ε
~ [1−D(F )]σ̂z,D |+〉x,D e

i ε~A(F )σ̂z,A |+〉x,A e
−i ε~ [1−B(F )]σ̂z,B |+〉x,B e

i ε~C(F )σ̂z,C |+〉x,C e
−i ε~ [1−E(F )]σ̂z,E |+〉x,E

+
β2

2
e−i

ε
~ [1−D(F )]σ̂z,D |+〉x,D e

i ε~A(F )σ̂z,A |+〉x,A e
i ε~B(F )σ̂z,B |+〉x,B e

−i ε~ [1−C(F )]σ̂z,C |+〉x,C e
−i ε~ [1−E(F )]σ̂z,E |+〉x,E

]
×
[
α2

x,D〈+|e
−i ε~D(F )σ̂z,D

x,A〈+|e
i ε~ [1−A(F )]σ̂z,A

x,B〈+|e
−i ε~B(F )σ̂z,B

x,C〈+|e
−i ε~C(F )σ̂z,C

x,E〈+|e
−i ε~E(F )σ̂z,E

− β2

2 x,D〈+|e
i ε~ [1−D(F )]σ̂z,D

x,A〈+|e
−i ε~A(F )σ̂z,A

x,B〈+|e
i ε~ [1−B(F )]σ̂z,B

x,C〈+|e
−i ε~C(F )σ̂z,C

x,E〈+|e
i ε~ [1−E(F )]σ̂z,E

+
β2

2 x,D〈+|e
i ε~ [1−D(F )]σ̂z,D

x,A〈+|e
−i ε~A(F )σ̂z,A

x,B〈+|e
−i ε~B(F )σ̂z,B

x,C〈+|e
i ε~ [1−C(F )]σ̂z,C

x,E〈+|e
i ε~ [1−E(F )]σ̂z,E

]
+ |G7〉 〈G7| ⊗

[
αβei

ε
~D(G)σ̂z,D |+〉x,D e

−i ε~ [1−A(G)]σ̂z,A |+〉x,A e
i ε~B(G)σ̂z,B |+〉x,B e

i ε~C(G)σ̂z,C |+〉x,C e
i ε~E(G)σ̂z,E |+〉x,E

+
αβ

2
e−i

ε
~ [1−D(G)]σ̂z,D |+〉x,D e

i ε~A(G)σ̂z,A |+〉x,A e
−i ε~ [1−B(G)]σ̂z,B |+〉x,B e

i ε~C(G)σ̂z,C |+〉x,C e
−i ε~ [1−E(G)]σ̂z,E |+〉x,E

− αβ

2
e−i

ε
~ [1−D(G)]σ̂z,D |+〉x,D e

i ε~A(G)σ̂z,A |+〉x,A e
i ε~B(G)σ̂z,B |+〉x,B e

−i ε~ [1−C(G)]σ̂z,C |+〉x,C e
−i ε~ [1−E(G)]σ̂z,E |+〉x,E

]
×
[
αβ x,D〈+|e

−i ε~D(G)σ̂z,D
x,A〈+|e

i ε~ [1−A(G)]σ̂z,A
x,B〈+|e

−i ε~B(G)σ̂z,B
x,C〈+|e

−i ε~C(G)σ̂z,C
x,E〈+|e

−i ε~E(G)σ̂z,E

+
αβ

2 x,D〈+|e
i ε~ [1−D(G)]σ̂z,D

x,A〈+|e
−i ε~A(G)σ̂z,A

x,B〈+|e
i ε~ [1−B(G)]σ̂z,B

x,C〈+|e
−i ε~C(G)σ̂z,C

x,E〈+|e
i ε~ [1−E(G)]σ̂z,E

− αβ

2 x,D〈+|e
i ε~ [1−D(G)]σ̂z,D

x,A〈+|e
−i ε~A(G)σ̂z,A

x,B〈+|e
−i ε~B(G)σ̂z,B

x,C〈+|e
i ε~ [1−C(G)]σ̂z,C

x,E〈+|e
i ε~ [1−E(G)]σ̂z,E

]
+ |H7〉 〈H7|⊗

[
β

2
e−i

ε
~ [1−D(H)]σ̂z,D |+〉x,D e

i ε~A(H)σ̂z,A |+〉x,A e
−i ε~ [1−B(H)]σ̂z,B |+〉x,B e

i ε~C(H)σ̂z,C |+〉x,C e
i ε~E(H)σ̂z,E |+〉x,E

+
β

2
e−i

ε
~ [1−D(H)]σ̂z,D |+〉x,D e

i ε~A(H)σ̂z,A |+〉x,A e
i ε~B(H)σ̂z,B |+〉x,B e

−i ε~ [1−C(H)]σ̂z,C |+〉x,C e
i ε~E(H)σ̂z,E |+〉x,E

]
×
[
β

2 x,D〈+|e
i ε~ [1−D(H)]σ̂z,D

x,A〈+|e
−i ε~A(H)σ̂z,A

x,B〈+|e
i ε~ [1−B(H)]σ̂z,B

x,C〈+|e
−i ε~C(H)σ̂z,C

x,E〈+|e
−i ε~E(H)σ̂z,E

+
β

2 x,D〈+|e
i ε~ [1−D(H)]σ̂z,D

x,A〈+|e
−i ε~A(H)σ̂z,A

x,B〈+|e
−i ε~B(H)σ̂z,B

x,C〈+|e
i ε~ [1−C(H)]σ̂z,C

x,E〈+|e
−i ε~E(H)σ̂z,E

]
.

(C.16)

C.2 Quantifying the Disturbance

To find out 1 − 〈σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E〉 (out), we need to calculate the expectation value as the trace

Tr{Î ⊗ σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E ρ̂8}. There will be a lot of inner products with exponentials and Pauli

operators in them, so it helps to perform the calculations in general and apply the forms to the big calculation.

The variable Œ is the operator estimate used in the feedback compensation (A(F ) or C(G), for example), and the
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inner products it appears in are

x〈+|e
−i ε~Œ σ̂z σ̂xe

i ε~Œ σ̂z |+〉x ≈ x〈+|
[
1− i ε

~
Œ σ̂z −

ε2

2~2
Œ 2

]
σ̂x

[
1 + i

ε

~
Œ σ̂z −

ε2

2~2
Œ 2

]
|+〉x

≈ 1 + i
ε

~
Œ x〈+|σ̂xσ̂z |+〉x −

ε2

2~2
Œ 2 − i ε

~
Œ x〈+|σ̂zσ̂x |+〉x

+
ε2

~2
Œ 2

x〈+|σ̂zσ̂xσ̂z |+〉x −
ε2

2~2
Œ 2

= 1− 2
ε2

~2
Œ 2,

(C.17)

x〈+|e
i ε~

[
1−Œ

]
σ̂z σ̂xe

−i ε~
[
1−Œ

]
σ̂z |+〉x ≈ 1− 2

ε2

~2

[
1−Œ

]2
, (C.18)

x〈+|e
−i ε~Œ σ̂z σ̂xe

−i ε~
[
1−Œ

]
σ̂z |+〉x ≈ x〈+|

[
1− i ε

~
Œ σ̂z −

ε2

2~2
Œ 2

]
σ̂x

[
1− i ε

~
[
1−Œ

]
σ̂z −

ε2

2~2

[
1−Œ

]2] |+〉x
≈ 1− i ε

~
[
1−Œ

]
x〈+|σ̂xσ̂z |+〉x −

ε2

2~2

[
1−Œ

]2 − i ε
~
Œ x〈+|σ̂zσ̂x |+〉x

− ε2

~2

[
1−Œ

]
Œ x〈+|σ̂zσ̂xσ̂z |+〉x −

ε2

2~2
Œ 2

= 1− 2
ε2

~2

[
1

2
−Œ

]2

,

(C.19)

x〈+|e
i ε~

[
1−Œ

]
σ̂z σ̂xe

i ε~Œ σ̂z |+〉x ≈ 1− 2
ε2

~2

[
1

2
−Œ

]2

. (C.20)

As we can see, the inner product of two probe states is almost 1, less a term on the order of ε2. Two matching states

(where either neither probe experienced a weak interaction, or both did) lead to this perturbation from unity being

proportional to either Œ 2 or
[
1−Œ

]2, while a mismatched pair of states leads to a perturbation proportional to[
1
2 −Œ

]2.
The procedure for the requisite calculation is as follows. First, we use Eqns. C.17–C.20 to approximate all of

the inner products presented. Second, we distribute all of the products of these approximated inner products and

keep only second order terms. In so doing, the multiplication becomes addition, and no cross terms with products

of estimates for different probes are present. There are a lot of terms to handle, and while my preparatory work

makes the calculation a little less tedious, it doesn’t save much space for the two-page monster of an expression

that is
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Tr{Î ⊗ σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E ρ̂8}

=
[
α2

x,D〈+|e
−i ε~D(F )σ̂z,D

x,A〈+|e
i ε~ [1−A(F )]σ̂z,A

x,B〈+|e
−i ε~B(F )σ̂z,B

x,C〈+|e
−i ε~C(F )σ̂z,C

x,E〈+|e
−i ε~E(F )σ̂z,E

− β2

2 x,D〈+|e
i ε~ [1−D(F )]σ̂z,D

x,A〈+|e
−i ε~A(F )σ̂z,A

x,B〈+|e
i ε~ [1−B(F )]σ̂z,B

x,C〈+|e
−i ε~C(F )σ̂z,C

x,E〈+|e
i ε~ [1−E(F )]σ̂z,E

+
β2

2 x,D〈+|e
i ε~ [1−D(F )]σ̂z,D

x,A〈+|e
−i ε~A(F )σ̂z,A

x,B〈+|e
−i ε~B(F )σ̂z,B

x,C〈+|e
i ε~ [1−C(F )]σ̂z,C

x,E〈+|e
i ε~ [1−E(F )]σ̂z,E

]
× σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E

×
[
α2ei

ε
~D(F )σ̂z,D |+〉x,D e

−i ε~ [1−A(F )]σ̂z,A |+〉x,A e
i ε~B(F )σ̂z,B |+〉x,B e

i ε~C(F )σ̂z,C |+〉x,C e
i ε~E(F )σ̂z,E |+〉x,E

− β2

2
e−i

ε
~ [1−D(F )]σ̂z,D |+〉x,D e

i ε~A(F )σ̂z,A |+〉x,A e
−i ε~ [1−B(F )]σ̂z,B |+〉x,B e

i ε~C(F )σ̂z,C |+〉x,C e
−i ε~ [1−E(F )]σ̂z,E |+〉x,E

+
β2

2
e−i

ε
~ [1−D(F )]σ̂z,D |+〉x,D e

i ε~A(F )σ̂z,A |+〉x,A e
i ε~B(F )σ̂z,B |+〉x,B e

−i ε~ [1−C(F )]σ̂z,C |+〉x,C e
−i ε~ [1−E(F )]σ̂z,E |+〉x,E

]
+
[
αβ x,D〈+|e

−i ε~D(G)σ̂z,D
x,A〈+|e

i ε~ [1−A(G)]σ̂z,A
x,B〈+|e

−i ε~B(G)σ̂z,B
x,C〈+|e

−i ε~C(G)σ̂z,C
x,E〈+|e

−i ε~E(G)σ̂z,E

+
αβ

2 x,D〈+|e
i ε~ [1−D(G)]σ̂z,D

x,A〈+|e
−i ε~A(G)σ̂z,A

x,B〈+|e
i ε~ [1−B(G)]σ̂z,B

x,C〈+|e
−i ε~C(G)σ̂z,C

x,E〈+|e
i ε~ [1−E(G)]σ̂z,E

− αβ

2 x,D〈+|e
i ε~ [1−D(G)]σ̂z,D

x,A〈+|e
−i ε~A(G)σ̂z,A

x,B〈+|e
−i ε~B(G)σ̂z,B

x,C〈+|e
i ε~ [1−C(G)]σ̂z,C

x,E〈+|e
i ε~ [1−E(G)]σ̂z,E

]
× σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E

×
[
αβei

ε
~D(G)σ̂z,D |+〉x,D e

−i ε~ [1−A(G)]σ̂z,A |+〉x,A e
i ε~B(G)σ̂z,B |+〉x,B e

i ε~C(G)σ̂z,C |+〉x,C e
i ε~E(G)σ̂z,E |+〉x,E

+
αβ

2
e−i

ε
~ [1−D(G)]σ̂z,D |+〉x,D e

i ε~A(G)σ̂z,A |+〉x,A e
−i ε~ [1−B(G)]σ̂z,B |+〉x,B e

i ε~C(G)σ̂z,C |+〉x,C e
−i ε~ [1−E(G)]σ̂z,E |+〉x,E

− αβ

2
e−i

ε
~ [1−D(G)]σ̂z,D |+〉x,D e

i ε~A(G)σ̂z,A |+〉x,A e
i ε~B(G)σ̂z,B |+〉x,B e

−i ε~ [1−C(G)]σ̂z,C |+〉x,C e
−i ε~ [1−E(G)]σ̂z,E |+〉x,E

]
+

[
β

2 x,D〈+|e
i ε~ [1−D(H)]σ̂z,D

x,A〈+|e
−i ε~A(H)σ̂z,A

x,B〈+|e
i ε~ [1−B(H)]σ̂z,B

x,C〈+|e
−i ε~C(H)σ̂z,C

x,E〈+|e
−i ε~E(H)σ̂z,E

+
β

2 x,D〈+|e
i ε~ [1−D(H)]σ̂z,D

x,A〈+|e
−i ε~A(H)σ̂z,A

x,B〈+|e
−i ε~B(H)σ̂z,B

x,C〈+|e
i ε~ [1−C(H)]σ̂z,C

x,E〈+|e
−i ε~E(H)σ̂z,E

]
× σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E

×
[
β

2
e−i

ε
~ [1−D(H)]σ̂z,D |+〉x,D e

i ε~A(H)σ̂z,A |+〉x,A e
−i ε~ [1−B(H)]σ̂z,B |+〉x,B e

i ε~C(H)σ̂z,C |+〉x,C e
i ε~E(H)σ̂z,E |+〉x,E

+
β

2
e−i

ε
~ [1−D(H)]σ̂z,D |+〉x,D e

i ε~A(H)σ̂z,A |+〉x,A e
i ε~B(H)σ̂z,B |+〉x,B e

−i ε~ [1−C(H)]σ̂z,C |+〉x,C e
i ε~E(H)σ̂z,E |+〉x,E

]
≈ α4

(
1− 2

ε2

~2
D2(F )

)(
1− 2

ε2

~2

[
1−A(F )

]2)(
1− 2

ε2

~2
B2(F )

)(
1− 2

ε2

~2
C2(F )

)(
1− 2

ε2

~2
E2(F )

)
+ α2β2

(
1− 2

ε2

~2

[
1

2
−D(F )

]2
)(

1− 2
ε2

~2

[
1

2
−A(F )

]2
)[(

1− 2
ε2

~2
B2(F )

)(
1− 2

ε2

~2

[
1

2
− C(F )

]2
)

−

(
1− 2

ε2

~2

[
1

2
−B(F )

]2
)(

1− 2
ε2

~2
C2(F )

)](
1− 2

ε2

~2

[
1

2
− E(F )

]2
)

(C.21)
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+
β4

4

(
1− 2

ε2

~2
[1−D(F )]

2

)(
1− 2

ε2

~2
A2(F )

)
×
[(

1− 2
ε2

~2

[
1−B(F )

]2)(
1− 2

ε2

~2
C2(F )

)
+

(
1− 2

ε2

~2
B2(F )

)(
1− 2

ε2

~2

[
1− C(F )

]2)
−2

(
1− 2

ε2

~2

[
1

2
−B(F )

]2
)(

1− 2
ε2

~2

[
1

2
− C(F )

]2
)](

1− 2
ε2

~2
[1− E(F )]

2

)
+ α2β2

{(
1− 2

ε2

~2
D2(G)

)(
1− 2

ε2

~2

[
1−A(G)

]2)(
1− 2

ε2

~2
B2(G)

)(
1− 2

ε2

~2
C2(G)

)(
1− 2

ε2

~2
E2(G)

)
+

(
1− 2

ε2

~2

[
1

2
−D(G)

]2
)(

1− 2
ε2

~2

[
1

2
−A(G)

]2
)[(

1− 2
ε2

~2

[
1

2
−B(G)

]2
)(

1− 2
ε2

~2
C2(G)

)

−
(

1− 2
ε2

~2
B2(G)

)(
1− 2

ε2

~2

[
1

2
− C(G)

]2
)](

1− 2
ε2

~2

[
1

2
− E(G)

]2
)

+
1

4

(
1− 2

ε2

~2
[1−D(G)]

2

)(
1− 2

ε2

~2
A2(G)

)
×
[(

1− 2
ε2

~2

[
1−B(G)

]2)(
1− 2

ε2

~2
C2(G)

)
+

(
1− 2

ε2

~2
B2(G)

)(
1− 2

ε2

~2

[
1− C(G)

]2)
−2

(
1− 2

ε2

~2

[
1

2
−B(G)

]2
)(

1− 2
ε2

~2

[
1

2
− C(G)

]2
)](

1− 2
ε2

~2
[1− E(G)]

2

)}

+
β2

4

(
1− 2

ε2

~2
[1−D(H)]

2

)(
1− 2

ε2

~2
A2(H)

)
×

[(
1− 2

ε2

~2

[
1−B(H)

]2)(
1− 2

ε2

~2
C2(H)

)
+ 2

(
1− 2

ε2

~2

[
1

2
−B(H)

]2
)(

1− 2
ε2

~2

[
1

2
− C(H)

]2
)

+

(
1− 2

ε2

~2
B2(H)

)(
1− 2

ε2

~2

[
1− C(H)

]2)](
1− 2

ε2

~2
E2(H)

)
≈ α4

(
1− 2

ε2

~2
D2(F )− 2

ε2

~2

[
1−A(F )

]2 − 2
ε2

~2
B2(F )− 2

ε2

~2
C2(F )− 2

ε2

~2
E2(F )

)
− 2

ε2

~2
α2β2

(
B2(F ) +

[
1

2
− C(F )

]2

−
[

1

2
−B(F )

]2

− C2(F )

)

− 2
ε2

~2

β4

4

([
1−B(F )

]2
+ C2(F ) +B2(F ) +

[
1− C(F )

]2 − 2

[
1

2
−B(F )

]2

− 2

[
1

2
− C(F )

]2
)

+ α2β2

{(
1− 2

ε2

~2
D2(G)− 2

ε2

~2

[
1−A(G)

]2 − 2
ε2

~2
B2(G)− 2

ε2

~2
C2(G)− 2

ε2

~2
E2(G)

)
− 2

ε2

~2

([
1

2
−B(G)

]2

+ C2(G)−B2(G)−
[

1

2
− C(G)

]2
)

−2
ε2

~2

1

4

([
1−B(G)

]2
+ C2(G) +B2(G) +

[
1− C(G)

]2 − 2

[
1

2
−B(G)

]2

− 2

[
1

2
− C(G)

]2
)}

+ β2

{
1− 2

ε2

~2
[1−D(H)]

2 − 2
ε2

~2
A2(H)− 2

ε2

~2
E2(H)

−2
ε2

~2

1

4

([
1−B(H)

]2
+ C2(H) + 2

[
1

2
−B(H)

]2

+ 2

[
1

2
− C(H)

]2

+B2(H) +
[
1− C(H)

]2)}
.

Moving on, we can now calculate 1 − 〈σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E〉 (out), but let us also rescale it to avoid

overuse of the factor 2 ε
2

~2 . To see the best minimization scheme, we must group all of the B and C terms (the real
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troublemakers). With this intent, I present

~2

2ε2

(
1− Tr{Î ⊗ σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E ρ̂8}

)
≈ α4

(
D2(F ) +

[
1−A(F )

]2
+B2(F ) + C2(F ) + E2(F )

)
+ α2β2

(
B2(F ) +

[
1

2
− C(F )

]2

−
[

1

2
−B(F )

]2

− C2(F )

)

+
β4

4

([
1−B(F )

]2
+ C2(F ) +B2(F ) +

[
1− C(F )

]2 − 2

[
1

2
−B(F )

]2

− 2

[
1

2
− C(F )

]2
)

+ α2β2

{(
D2(G) +

[
1−A(G)

]2
+B2(G) + C2(G) + E2(G)

)
+

([
1

2
−B(G)

]2

+ C2(G)−B2(G)−
[

1

2
− C(G)

]2
)

+
1

4

([
1−B(G)

]2
+ C2(G) +B2(G) +

[
1− C(G)

]2 − 2

[
1

2
−B(G)

]2

− 2

[
1

2
− C(G)

]2
)}

+ β2

{
[1−D(H)]

2
+A2(H) + E2(H)

+
1

4

([
1−B(H)

]2
+ C2(H) + 2

[
1

2
−B(H)

]2

+ 2

[
1

2
− C(H)

]2

+B2(H) +
[
1− C(H)

]2)}

= α4
(
D2(F ) +

[
1−A(F )

]2
+B2(F ) + C2(F ) + E2(F )

)
− α2β2 (C(F )−B(F )) +

β4

4

(
1

2
+

1

2

)
+ α2β2

{(
D2(G) +

[
1−A(G)

]2
+B2(G) + C2(G) + E2(G) + C(G)−B(G)

)
+

1

4

(
1

2
+

1

2

)}
+ β2

{
[1−D(H)]

2
+A2(H) + E2(H) +

1

4

(
3

2
− 4B(H) + 4B2(H) +

3

2
− 4C(H) + 4C2(H)

)}
= α4

(
D2(F ) +

[
1−A(F )

]2
+ E2(G) +

[
β2

2α2
+B(F )

]2

− 1

8

β4

α4
+

[
β2

2α2
− C(F )

]2

− 1

8

β4

α4

)

+ α2β2

(
D2(G) +

[
1−A(G)

]2
+ E2(G) +

[
1

2
−B(G)

]2

− 1

8
+

[
1

2
+ C(G)

]2

− 1

8

)

+ β2

(
[1−D(H)]

2
+A2(H) + E2(H) +

[
1

2
−B(G)

]2

+
1

8
+

[
1

2
− C(G)

]2

+
1

8

)
.

(C.22)

Taking the optimal estimates presented in Table 2.1 minimizes the disturbance in the qubits. The terms left behind

in the case of optimal compensation are

α4

(
−1

8

β4

α4
− 1

8

β4

α4

)
+ α2β2

(
−1

8
− 1

8

)
+ β2

(
1

8
+

1

8

)
=

1

4

(
−β4 − α2β2 + β2

)
= 0. (C.23)

This suggests perfect compensation for the weak interactions.

C.3 An Alternative Proposal

If we instead wish to experiment with the four probe setup (replacing B and C with the W probe that detects

presence in the inner interferometer without distinguishing the arms), we make some simple adjustments, starting

with the initial state

|ψ′0〉 = |S0〉 |+〉x,D |+〉x,A |+〉x,W |+〉x,E . (C.24)
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We also need a new unitary operator evolving from t3 to t4, which captures the new probe interaction. This is

given by

U ′43 = |A4〉 〈A3| e−i
ε
~ Â3⊗σ̂z,A + |B4〉 〈B3| e−i

ε
~ B̂3⊗σ̂z,W + |C4〉 〈C3| e−i

ε
~ Ĉ3⊗σ̂z,W . (C.25)

This leads to a far simpler pure state at t7, as well as a nicer density operator at t8:

|ψ′7〉 = |F7〉α2 |+〉x,D e
−i ε~ σ̂z,A |+〉x,A |+〉x,W |+〉x,E

+ |G7〉αβ |+〉x,D e
−i ε~ σ̂z,A |+〉x,A |+〉x,W |+〉x,E

+ |H7〉βe−i
ε
~ σ̂z,D |+〉x,D |+〉x,A e

−i ε~ σ̂z,W |+〉x,W |+〉x,E ,

(C.26)

ρ̂′8 = α4 |F7〉 〈F7| ⊗ ei
ε
~D(F )σ̂z,D |+〉x,D x,D〈+|e

−i ε~D(F )σ̂z,D ⊗ e−i ε~ [1−A(F )]σ̂z,A |+〉x,A x,A〈+|e
i ε~ [1−A(F )]σ̂z,A

⊗ ei ε~W (F )σ̂z,W |+〉x,W x,W 〈+|e
−i ε~W (F )σ̂z,W ⊗ ei ε~E(F )σ̂z,E |+〉x,E x,E〈+|e

−i ε~E(F )σ̂z,E

+ α2β2 |G7〉 〈G7| ⊗ ei
ε
~D(F )σ̂z,D |+〉x,D x,D〈+|e

−i ε~D(F )σ̂z,D ⊗ e−i ε~ [1−A(F )]σ̂z,A |+〉x,A x,A〈+|e
i ε~ [1−A(F )]σ̂z,A

⊗ ei ε~W (F )σ̂z,W |+〉x,W x,W 〈+|e
−i ε~W (F )σ̂z,W ⊗ ei ε~E(F )σ̂z,E |+〉x,E x,E〈+|e

−i ε~E(F )σ̂z,E

+ β2 |H7〉 〈H7| ⊗ e−i
ε
~ [1−D(F )]σ̂z,D |+〉x,D x,D〈+|e

i ε~ [1−D(F )]σ̂z,D ⊗ ei ε~A(F )σ̂z,A |+〉x,A x,A〈+|e
−i ε~A(F )σ̂z,A

⊗ e−i ε~ [1−W (F )]σ̂z,W |+〉x,W x,W 〈+|e
i ε~ [1−W (F )]σ̂z,W ⊗ ei ε~E(F )σ̂z,E |+〉x,E x,E〈+|e

−i ε~E(F )σ̂z,E .

(C.27)

This in turn leads to a far simpler expectation value for the qubit probes:

Tr{Î ⊗ σ̂x,D ⊗ σ̂x,A ⊗ σ̂x,W ⊗ σ̂x,E ρ̂′8}

= α4
x,D〈+|e

−i ε~D(F )σ̂z,D σ̂x,De
i ε~D(F )σ̂z,D |+〉x,D x,A〈+|e

i ε~ [1−A(F )]σ̂z,A σ̂x,Ae
−i ε~ [1−A(F )]σ̂z,A |+〉x,A

× x,W 〈+|e
−i ε~W (F )σ̂z,W σ̂x,W e

i ε~W (F )σ̂z,W |+〉x,W x,E〈+|e
−i ε~E(F )σ̂z,E σ̂x,Ee

i ε~E(F )σ̂z,E |+〉x,E

+ α2β2
x,D〈+|e

−i ε~D(G)σ̂z,D σ̂x,De
i ε~D(G)σ̂z,D |+〉x,D x,A〈+|e

i ε~ [1−A(G)]σ̂z,A σ̂x,Ae
−i ε~ [1−A(G)]σ̂z,A |+〉x,A

× x,W 〈+|e
−i ε~W (G)σ̂z,W σ̂x,W e

i ε~W (G)σ̂z,W |+〉x,W x,E〈+|e
−i ε~E(G)σ̂z,E σ̂x,Ee

i ε~E(G)σ̂z,E |+〉x,E

+ β2
x,D〈+|e

i ε~ [1−D(H)]σ̂z,D σ̂x,De
−i ε~ [1−D(H)]σ̂z,D |+〉x,D x,A〈+|e

−i ε~A(H)σ̂z,A σ̂x,Ae
i ε~A(H)σ̂z,A |+〉x,A

× x,W 〈+|e
i ε~ [1−W (H)]σ̂z,W σ̂x,W e

−i ε~ [1−W (H)]σ̂z,W |+〉x,W x,E〈+|e
−i ε~E(H)σ̂z,E σ̂x,Ee

i ε~E(H)σ̂z,E |+〉x,E

≈ α4

(
1− 2

ε2

~2
D2(F )

)(
1− 2

ε2

~2

[
1−A(F )

]2)(
1− 2

ε2

~2
W 2(F )

)(
1− 2

ε2

~2
E2(F )

)
+ α2β2

(
1− 2

ε2

~2
D2(G)

)(
1− 2

ε2

~2

[
1−A(G)

]2)(
1− 2

ε2

~2
W 2(G)

)(
1− 2

ε2

~2
E2(G)

)
+ β2

(
1− 2

ε2

~2

[
1−D(H)

]2)(
1− 2

ε2

~2
A2(H)

)(
1− 2

ε2

~2

[
1−W (H)

]2)(
1− 2

ε2

~2
E2(H)

)
≈ 1− 2

ε2

~2

[
α4
(
D2(F ) +

[
1−A(F )

]2
+W 2(F ) + E2(F )

)
+ α2β2

(
D2(G) +

[
1−A(G)

]2
+W 2(G) + E2(G)

)
+β2

([
1−D(H)

]2
+A2(H) +

[
1−W (H)

]2
+ E2(H)

)]
.

(C.28)

The estimates which minimize the disturbance of the probes are given in Table 2.2.
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C.4 Calculating Weak Values

Without probe interactions (ε = 0), the system state evolves in the following manner:

|ψ0〉 = |S0〉 , (C.29)

|ψ1〉 = α |A1〉+ β |D1〉 , (C.30)

|ψ2〉 = α |A2〉+ β |D2〉 , (C.31)

|ψ3〉 = α |A3〉+
β√
2

[
|B3〉+ |C3〉

]
, (C.32)

|ψ4〉 = α |A4〉+
β√
2

[
|B4〉+ |C4〉

]
, (C.33)

|ψ5〉 = α |A5〉+ β |H5〉 , (C.34)

|ψ6〉 = α |A6〉+ β |H6〉 , (C.35)

|ψ7〉 = α2 |F7〉+ αβ |G7〉+ β |H7〉 . (C.36)

If we postselect for a particle that exits through path F , backward evolution of this final state (again, without

probes) gives us

|φ7〉 = |F7〉 , (C.37)

|φ6〉 = α |A6〉+ β |E6〉 , (C.38)

|φ5〉 = α |A5〉+ β |E5〉 , (C.39)

|φ4〉 = α |A4〉+
β√
2

[
− |B4〉+ |C4〉

]
, (C.40)

|φ3〉 = α |A3〉+
β√
2

[
− |B3〉+ |C3〉

]
, (C.41)

|φ2〉 = α |A2〉 − β |Q2〉 , (C.42)

|φ1〉 = α |A1〉 − β |Q1〉 , (C.43)

|φ0〉 = α2 |S0〉 − αβ |R0〉 − β |Q0〉 . (C.44)
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In turn, these allow us to derive the weak values for the path projectors given outcome F :

Dw =
〈φ1|D̂1|ψ1〉
〈φ1|ψ1〉

= 0, (C.45)

Aw =
〈φ3|Â3|ψ3〉
〈φ3|ψ3〉

= 1, (C.46)

Bw =
〈φ3|B̂3|ψ3〉
〈φ3|ψ3〉

= − β2

2α2
, (C.47)

Cw =
〈φ3|Ĉ3|ψ3〉
〈φ3|ψ3〉

=
β2

2α2
, (C.48)

Ww = (B̂ + Ĉ)w = Bw + Cw = 0, (C.49)

Ew =
〈φ5|Ê5|ψ5〉
〈φ5|ψ5〉

= 0. (C.50)

Similarly, postselecting for a particle that exits through path G gives us the backward-evolved states

|φ′7〉 = |G7〉 , (C.51)

|φ′6〉 = β |A6〉 − α |E6〉 , (C.52)

|φ′5〉 = β |A5〉 − α |E5〉 , (C.53)

|φ′4〉 = β |A4〉+
α√
2

[
|B4〉 − |C4〉

]
, (C.54)

|φ′3〉 = β |A3〉+
α√
2

[
|B3〉 − |C3〉

]
, (C.55)

|φ′2〉 = β |A2〉+ α |Q2〉 , (C.56)

|φ′1〉 = β |A1〉+ α |Q1〉 , (C.57)

|φ′0〉 = αβ |S0〉 − β2 |R0〉+ α |Q0〉 , (C.58)

and the associated path projector weak values

Dw =
〈φ′1|D̂1|ψ1〉
〈φ′1|ψ1〉

= 0, (C.59)

Aw =
〈φ′3|Â3|ψ3〉
〈φ′3|ψ3〉

= 1, (C.60)

Bw =
〈φ′3|B̂3|ψ3〉
〈φ′3|ψ3〉

=
1

2
, (C.61)

Cw =
〈φ′3|Ĉ3|ψ3〉
〈φ′3|ψ3〉

= −1

2
, (C.62)

Ww = (B̂ + Ĉ)w = Bw + Cw = 0, (C.63)

Ew =
〈φ′5|Ê5|ψ5〉
〈φ′5|ψ5〉

= 0. (C.64)
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Finally, for an H postselection, the backward-evolved states are

|φ′′7〉 = |H7〉 , (C.65)

|φ′′6〉 = |H6〉 , (C.66)

|φ′′5〉 = |H5〉 , (C.67)

|φ′′4〉 =
1√
2

[
|B4〉+ |C4〉

]
, (C.68)

|φ′′3〉 =
1√
2

[
|B3〉+ |C3〉

]
, (C.69)

|φ′′2〉 = |D2〉 , (C.70)

|φ′′1〉 = |D1〉 , (C.71)

|φ′′0〉 = β |S0〉+ α |R0〉 , (C.72)

and the associated weak values are

Dw =
〈φ′′1 |D̂1|ψ1〉
〈φ′′1 |ψ1〉

= 1, (C.73)

Aw =
〈φ′′3 |Â3|ψ3〉
〈φ′′3 |ψ3〉

= 0, (C.74)

Bw =
〈φ′′3 |B̂3|ψ3〉
〈φ′′3 |ψ3〉

=
1

2
, (C.75)

Cw =
〈φ′′3 |Ĉ3|ψ3〉
〈φ′′3 |ψ3〉

=
1

2
, (C.76)

Ww = (B̂ + Ĉ)w = Bw + Cw = 1, (C.77)

Ew =
〈φ′′5 |Ê5|ψ5〉
〈φ′′5 |ψ5〉

= 0. (C.78)

Comparing these to Tables 2.1 and 2.2 shows us that the weak values are still the best estimates characterizing the

weak interactions.
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C.5 We Want More: A Probability Distribution

When we want to be sure about the possible outcomes, we need to calculate the probability distribution, which is a

process similar to calculating Tr{Î⊗ σ̂x,D⊗ σ̂x,A⊗ σ̂x,B ⊗ σ̂x,C ⊗ σ̂x,E ρ̂8}, except each σ̂x is replaced by a projector

onto the Hadamard basis of the qubit. As before, it pays to do some preparatory work:

x〈+|e
−i ε~Œ σ̂z |j〉x x〈j|e

i ε~Œ σ̂z |+〉x = x〈+|
[
cos
( ε
~
Œ
)
− i sin

( ε
~
Œ
)
σ̂z

]
|j〉x x〈j|

[
cos
( ε
~
Œ
)

+ i sin
( ε
~
Œ
)
σ̂z

]
|+〉x

= cos2
( ε
~
Œ
)
δ+j + i cos

( ε
~
Œ
)

sin
( ε
~
Œ
)
δ+jδ−j

− i sin
( ε
~
Œ
)

cos
( ε
~
Œ
)
δ−jδ+j + sin2

( ε
~
Œ
)
δ−j

≈
(

1− ε2

~2
Œ 2

)
δ+j +

ε2

~2
Œ 2δ−j

= δ+j + (−1)δ+j
ε2

~2
Œ 2,

(C.79)

x〈+|e
i ε~

[
1−Œ

]
σ̂z |j〉x x〈j|e

−i ε~
[
1−Œ

]
σ̂z |+〉x = δ+j + (−1)δ+j

ε2

~2

[
1−Œ

]2
, (C.80)

x〈+|e
i ε~

[
1−Œ

]
σ̂z |j〉x x〈j|e

i ε~Œ σ̂z |+〉x = cos
( ε
~
[
1−Œ

])
cos
( ε
~
Œ
)
δ+j − sin

( ε
~
[
1−Œ

])
sin
( ε
~
Œ
)
δ−j

≈
(

1− ε2

2~2

[
1− 2Œ + 2Œ 2

])
δ+j −

ε2

~2

[
1−Œ

]
Œδ−j

= δ+j

(
1− ε2

2~2

)
+ (−1)δ−j

ε2

~2

[
1−Œ

]
Œ .

(C.81)

It also pays to define some new notation to compact expressions. We need the following devices to compact five

Kronecker deltas into one messy symbol, and to compact an expression of four delta functions and a varying sign:

∆jklmn = δ+jδ+kδ+lδ+mδ+n, (C.82)

∆±njklm = (−1)δ±nδ+jδ+kδ+lδ+m. (C.83)
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Using this notation, our general inner products, and our methodology from the earlier enormous calculation,

all outcomes associated with path F are found to have probabilities

PF,j,k,l,m,n = Tr{|F7〉 〈F7| ⊗ |j〉x,D x,D〈j| ⊗ |k〉x,A x,A〈k| ⊗ |l〉x,B x,B〈l| ⊗ |m〉x,C x,C〈m| ⊗ |n〉x,E x,E〈n|ρ̂8}

≈ α4

(
δ+j + (−1)δ+j

ε2

~2
D2(F )

)(
δ+k + (−1)δ+k

ε2

~2

[
1−A(F )

]2)(
δ+l + (−1)δ+l

ε2

~2
B2(F )

)
×
(
δ+m + (−1)δ+m

ε2

~2
C2(F )

)(
δ+n + (−1)δ+n

ε2

~2
E2(F )

)
+ α2β2

(
δ+j

(
1− ε2

2~2

)
+ (−1)δ−j

ε2

~2

[
1−D(F )

]
D(F )

)(
δ+k

(
1− ε2

2~2

)
+ (−1)δ−k

ε2

~2

[
1−A(F )

]
A(F )

)
×
[
−
(
δ+l

(
1− ε2

2~2

)
+ (−1)δ−l

ε2

~2

[
1−B(F )

]
B(F )

)(
δ+m + (−1)δ+m

ε2

~2
C2(F )

)
+

(
δ+l + (−1)δ+l

ε2

~2
B2(F )

)(
δ+m

(
1− ε2

2~2

)
+ (−1)δ−m

ε2

~2

[
1− C(F )

]
C(F )

)]
×
(
δ+n

(
1− ε2

2~2

)
+ (−1)δ−n

ε2

~2

[
1− E(F )

]
E(F )

)
+
β4

4

(
δ+j + (−1)δ+j

ε2

~2

[
1−D(F )

]2)(
δ+k + (−1)δ+k

ε2

~2
A2(F )

)
×
[(
δ+l + (−1)δ+l

ε2

~2

[
1−B(F )

]2)(
δ+m + (−1)δ+m

ε2

~2
C2(F )

)
− 2

(
δ+l

(
1− ε2

2~2

)
+ (−1)δ−l

ε2

~2

[
1−B(F )

]
B(F )

)(
δ+m

(
1− ε2

2~2

)
+ (−1)δ−m

ε2

~2

[
1− C(F )

]
C(F )

)
+

(
δ+l + (−1)δ+l

ε2

~2
B2(F )

)(
δ+m + (−1)δ+m

ε2

~2

[
1− C(F )

]2)]
×
(
δ+n + (−1)δ+n

ε2

~2

[
1− E(F )

]2)
≈ α4

{
∆jklmn +

ε2

~2

[
D2(F )∆+j

klmn +
[
1−A(F )

]2
∆+k
jlmn +B2(F )∆+l

jkmn + C2(F )∆+m
jkln + E2(F )∆+n

jklm

]}
+ α2β2 ε

2

~2

[[
1−B(F )

]
B(F )∆+l

jkmn + C2(F )∆−mjkln +B2(F )∆+l
jkmn +

[
1− C(F )

]
C(F )∆−mjkln

]
+
β4

4

ε2

~2

[
2∆jklmn +

[
1−B(F )

]2
∆+l
jkmn + C2(F )∆+m

jkln + 2
[
1−B(F )

]
B(F )∆+l

jkmn

+2
[
1− C(F )

]
C(F )∆+m

jkln +B2(F )∆+l
jkmn +

[
1− C(F )

]2
∆+m
jkln

]
= α4

{
∆jklmn +

ε2

~2

[
D2(F )∆+j

klmn +
[
1−A(F )

]2
∆+k
jlmn +B2(F )∆+l

jkmn + C2(F )∆+m
jkln + E2(F )∆+n

jklm

]}
+ α2β2 ε

2

~2

[
B(F )∆+l

jkmn + C(F )∆−mjkln

]
+
β4

4

ε2

~2

[
2∆jklmn + ∆+l

jkmn + ∆+m
jkln

]
=

(
α4 +

β4

2

ε2

~2

)
∆jklmn + α4 ε

2

~2

{
D2(F )∆+j

klmn +
[
1−A(F )

]2
∆+k
jlmn + E2(F )∆+n

jklm

+

[
β2

2α2
+B(F )

]2

∆+l
jkmn +

[
β2

2α2
− C(F )

]2

∆+m
jkln

}
.

(C.84)
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The probabilities for outcomes associated with path G are

PG,j,k,l,m,n = Tr{|G7〉 〈G7| ⊗ |j〉x,D x,D〈j| ⊗ |k〉x,A x,A〈k| ⊗ |l〉x,B x,B〈l| ⊗ |m〉x,C x,C〈m| ⊗ |n〉x,E x,E〈n|ρ̂8}

≈ α2β2

{(
δ+j + (−1)δ+j

ε2

~2
D2(G)

)(
δ+k + (−1)δ+k

ε2

~2

[
1−A(G)

]2)(
δ+l + (−1)δ+l

ε2

~2
B2(G)

)
×
(
δ+m + (−1)δ+m

ε2

~2
C2(G)

)(
δ+n + (−1)δ+n

ε2

~2
E2(G)

)
+

(
δ+j

(
1− ε2

2~2

)
+ (−1)δ−j

ε2

~2

[
1−D(G)

]
D(G)

)(
δ+k

(
1− ε2

2~2

)
+ (−1)δ−k

ε2

~2

[
1−A(G)

]
A(G)

)
×
[(
δ+l

(
1− ε2

2~2

)
+ (−1)δ−l

ε2

~2

[
1−B(G)

]
B(G)

)(
δ+m + (−1)δ+m

ε2

~2
C2(G)

)
−
(
δ+l + (−1)δ+l

ε2

~2
B2(G)

)(
δ+m

(
1− ε2

2~2

)
+ (−1)δ−m

ε2

~2

[
1− C(G)

]
C(G)

)]
×
(
δ+n

(
1− ε2

2~2

)
+ (−1)δ−n

ε2

~2

[
1− E(G)

]
E(G)

)
+

1

4

(
δ+j + (−1)δ+j

ε2

~2

[
1−D(G)

]2)(
δ+k + (−1)δ+k

ε2

~2
A2(G)

)
×
[(
δ+l + (−1)δ+l

ε2

~2

[
1−B(G)

]2)(
δ+m + (−1)δ+m

ε2

~2
C2(G)

)
− 2

(
δ+l

(
1− ε2

2~2

)
+ (−1)δ−l

ε2

~2

[
1−B(G)

]
B(G)

)(
δ+m

(
1− ε2

2~2

)
+ (−1)δ−m

ε2

~2

[
1− C(G)

]
C(G)

)
+

(
δ+l + (−1)δ+l

ε2

~2
B2(G)

)(
δ+m + (−1)δ+m

ε2

~2

[
1− C(G)

]2)]
×
(
δ+n + (−1)δ+n

ε2

~2

[
1− E(G)

]2)}
≈ α2β2

{
∆jklmn +

ε2

~2

[
D2(G)∆+j

klmn +
[
1−A(G)

]2
∆+k
jlmn +B2(G)∆+l

jkmn + C2(G)∆+m
jkln + E2(G)∆+n

jklm

−
[
1−B(G)

]
B(G)∆+l

jkmn + C2(G)∆+m
jkln −B

2(G)∆+l
jkmn +

[
1− C(G)

]
C(G)∆+m

jkln

+
1

4

(
2∆jklmn +

[
1−B(G)

]2
∆+l
jkmn + C2(G)∆+m

jkln + 2
[
1−B(G)

]
B(G)∆+l

jkmn

+2
[
1− C(G)

]
C(G)∆+m

jkln +B2(G)∆+l
jkmn +

[
1− C(G)

]2
∆+m
jkln

)]}
= α2β2

{(
1 +

ε2

2~2

)
∆jklmn +

ε2

~2

[
D2(G)∆+j

klmn +
[
1−A(G)

]2
∆+k
jlmn + E2(G)∆+n

jklm

+

[
1

2
−B(G)

]2

∆+l
jkmn +

[
1

2
+ C(G)

]2

∆+m
jkln

]}
.

(C.85)
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Finally, the probabilities for outcomes associated with path H are

PH,j,k,l,m,n = Tr{|H7〉 〈H7| ⊗ |j〉x,D x,D〈j| ⊗ |k〉x,A x,A〈k| ⊗ |l〉x,B x,B〈l| ⊗ |m〉x,C x,C〈m| ⊗ |n〉x,E x,E〈n|ρ̂8}

≈ β2

4

(
δ+j + (−1)δ+j

ε2

~2

[
1−D(H)

]2)(
δ+k + (−1)δ+k

ε2

~2
A2(H)

)
×
[(
δ+l + (−1)δ+l

ε2

~2

[
1−B(H)

]2)(
δ+m + (−1)δ+m

ε2

~2
C2(H)

)
+ 2

(
δ+l

(
1− ε2

2~2

)
+ (−1)δ−l

ε2

~2

[
1−B(H)

]
B(H)

)(
δ+m

(
1− ε2

2~2

)
+ (−1)δ−m

ε2

~2

[
1− C(H)

]
C(H)

)
+

(
δ+l + (−1)δ+l

ε2

~2
B2(H)

)(
δ+m + (−1)δ+m

ε2

~2

[
1− C(H)

]2)]
×
(
δ+n + (−1)δ+n

ε2

~2

[
1− E(H)

]2)
≈ β2

{(
1− ε2

2~2

)
∆jklmn +

ε2

~2

[[
1−D(H)

]2
∆+j
klmn +A2(H)∆+k

jlmn + E2(H)∆+n
jklm

+
1

4

([
1−B(H)

]2
∆+l
jkmn + C2(H)∆+m

jkln − 2
[
1−B(H)

]
B(H)∆+l

jkmn

−2
[
1− C(H)

]
C(H)∆+m

jkln +B2(H)∆+l
jkmn +

[
1− C(H)

]2
∆+m
jkln

)]}
= β2

{(
1− ε2

2~2

)
∆jklmn +

ε2

~2

[[
1−D(H)

]2
∆+j
klmn +A2(H)∆+k

jlmn + E2(H)∆+n
jklm

+

[
1

2
−B(H)

]2

∆+l
jkmn +

[
1

2
− C(H)

]2

∆+m
jkln

]}
.

(C.86)

These probabilities (both compensated and uncompensated) are stated in Table 2.3, which clearly demonstrates

how optimal compensation greatly simplifies these probabilities.

C.6 Probe State Comparison

Finally, it pays to take a look at how similar certain probe states are. For this, we will need to define a little more

notation for compactness. Let

|o〉 = |+〉x,D |+〉x,A |+〉x,B |+〉x,C |+〉x,E . (C.87)

If instead of o, I put the the lowercase version of a letter associated with a probe, then the state represents one

with that probe state made down rather than up. For example, if the A probe is in the state |−〉x,A, we have

|a〉 = |+〉x,D |−〉x,A |+〉x,B |+〉x,C |+〉x,E . (C.88)

If there is more than one letter in the ket in place of o, then there are multiple inverted probes in the state. This

notation was used by Griffiths [16].

From Eqn. C.15, we take the probe states entangled with the outcome |F7〉 and calculate the effects of the weak

interactions to second order, expressing probe states altered by the weak interactions as superpositions of up and
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down states. Grouping by probe states using the notation we just established, we find

α2 |+〉x,D e
−i ε~ σ̂z,A |+〉x,A |+〉x,B |+〉x,C |+〉x,E

− β2

2
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A e

−i ε~ σ̂z,B |+〉x,B |+〉x,C e
−i ε~ σ̂z,E |+〉x,E

+
β2

2
e−i

ε
~ σ̂z,D |+〉x,D |+〉x,A |+〉x,B e

−i ε~ σ̂z,C |+〉x,C e
−i ε~ σ̂z,E |+〉x,E

≈ α2 |+〉x,D

(
1− ε2

2~2
− i ε

~
σ̂z,A

)
|+〉x,A |+〉x,B |+〉x,C |+〉x,E

+
β2

2

(
1− ε2

2~2
− i ε

~
σ̂z,D

)
|+〉x,D |+〉x,A

[
−
(

1− ε2

2~2
− i ε

~
σ̂z,B

)
|+〉x,B |+〉x,C

+ |+〉x,B

(
1− ε2

2~2
− i ε

~
σ̂z,C

)
|+〉x,C

](
1− ε2

2~2
− i ε

~
σ̂z,E

)
|+〉x,E

= α2 |+〉x,D

(
1− ε2

2~2
− i ε

~
σ̂z,A

)
|+〉x,A |+〉x,B |+〉x,C |+〉x,E

+
β2

2

(
1− ε2

2~2
− i ε

~
σ̂z,D

)
|+〉x,D |+〉x,A i

ε

~

[
|−〉x,B |+〉x,C − |+〉x,B |−〉x,C

](
1− ε2

2~2
− i ε

~
σ̂z,E

)
|+〉x,E

≈ α2

{(
1− ε2

2~2

)
|o〉 − i ε

~
|a〉+

β2

2α2

[
i
ε

~
(|b〉 − |c〉) +

ε2

~2
(|be〉 − |ce〉+ |db〉 − |dc〉)

]}
.

(C.89)

If the weak interactions were characterized by the associated weak values, then we would expect the probes state

to have only one term, which would be |+〉x,D |+〉x,A |+〉x,B |+〉x,C |+〉x,E acted upon by the unitary operator

e−i
ε
~ σ̂z,A+i ε~

β2

2α2 σ̂z,B−i ε~
β2

2α2 σ̂z,C . We would also want to scale it by
√
α4 + β4

2
ε2

~2 to give the outcome |F7〉 the proper

probability. Expressing and grouping the probe states as in Eqn. C.89 gives us√
α4 +

β4

2

ε2

~2
|+〉x,D e

−i ε~ σ̂z,A |+〉x,A e
+i ε~

β2

2α2 σ̂z,B |+〉x,B e
−i ε~

β2

2α2 σ̂z,C |+〉x,C |+〉x,E

≈ α2

√
1 +

β4

2α4

ε2

~2
+

β8

16α8

ε4

~4
|+〉x,D

(
1− ε2

2~2
− i ε

~
σ̂z,A

)
|+〉x,A

×
(

1− β4

4α4

ε2

2~2
+ i

β2

2α2

ε

~
σ̂z,B

)
|+〉x,B

(
1− β4

4α4

ε2

2~2
− i β

2

2α2

ε

~
σ̂z,C

)
|+〉x,C |+〉x,E

=

(
α2 +

β4

4α2

ε2

~2

)
|+〉x,D

[(
1− ε2

2~2

)
|+〉x,A − i

ε

~
|−〉x,A

] [(
1− β4

4α4

ε2

2~2

)
|+〉x,B + i

β2

2α2

ε

~
|−〉x,B

]
×
[(

1− β4

4α4

ε2

2~2

)
|+〉x,C − i

β2

2α2

ε

~
|−〉x,C

]
|+〉x,E

≈ α2

{(
1− ε2

2~2

)
|o〉 − i ε

~
|a〉+ i

ε

~
β2

2α2
(|b〉 − |c〉) +

ε2

~2

(
β2

2α2
(|ab〉 − |ac〉) +

β4

4α4
|bc〉
)}

.

(C.90)

We can see that the two equations match to first order (a little better, given the match at the |o〉 term).

As long as we are using Griffiths’ notation, it is worth rewriting Eqn. C.15 with it. To do this, we will expand

the exponential as

e−i
ε
~ σ̂z = cos

( ε
~

)
Î − i sin

( ε
~

)
σ̂x, (C.91)

and let η = −i sin
(
ε
~
)
and ζ = cos

(
ε
~
)
. These are not the same η and ζ Griffiths defined, but they will provide the
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same |+〉x → ζ |+〉x + η |−〉x probe interaction that Griffiths used. With this, we obtain

|ψ7〉 = |F7〉
[
α2 |+〉x,D

(
ζ |+〉x,A + η |−〉x,A

)
|+〉x,B |+〉x,C |+〉x,E

− β2

2

(
ζ |+〉x,D + η |−〉x,D

)
|+〉x,A

(
ζ |+〉x,B + η |−〉x,B

)
|+〉x,C

(
ζ |+〉x,E + η |−〉x,E

)
+
β2

2

(
ζ |+〉x,D + η |−〉x,D

)
|+〉x,A |+〉x,B

(
ζ |+〉x,C + η |−〉x,C

)(
ζ |+〉x,E + η |−〉x,E

)]
+ |G7〉

[
αβ |+〉x,D

(
ζ |+〉x,A + η |−〉x,A

)
|+〉x,B |+〉x,C |+〉x,E

+
αβ

2

(
ζ |+〉x,D + η |−〉x,D

)
|+〉x,A

(
ζ |+〉x,B + η |−〉x,B

)
|+〉x,C

(
ζ |+〉x,E + η |−〉x,E

)
− αβ

2

(
ζ |+〉x,D + η |−〉x,D

)
|+〉x,A |+〉x,B

(
ζ |+〉x,C + η |−〉x,C

)(
ζ |+〉x,E + η |−〉x,E

)]
+ |H7〉

[
β

2

(
ζ |+〉x,D + η |−〉x,D

)
|+〉x,A

(
ζ |+〉x,B + η |−〉x,B

)
|+〉x,C |+〉x,E

+
β

2

(
ζ |+〉x,D + η |−〉x,D

)
|+〉x,A |+〉x,B

(
ζ |+〉x,C + η |−〉x,C

)
|+〉x,E

]
= |F7〉

[
α2 (ζ |o〉+ η |a〉)− β2

2

(
ζ3 |o〉+ ζ2η (|d〉+ |b〉+ |e〉) + ζη2 (|db〉+ |de〉+ |be〉) + η3 |dbe〉

)
+
β2

2

(
ζ3 |o〉+ ζ2η (|d〉+ |c〉+ |e〉) + ζη2 (|dc〉+ |de〉+ |ce〉) + η3 |dce〉

)]
+ |G7〉αβ

[
ζ |o〉+ η |a〉+

1

2

(
ζ3 |o〉+ ζ2η (|d〉+ |b〉+ |e〉) + ζη2 (|db〉+ |de〉+ |be〉) + η3 |dbe〉

)
− 1

2

(
ζ3 |o〉+ ζ2η (|d〉+ |c〉+ |e〉) + ζη2 (|dc〉+ |de〉+ |ce〉) + η3 |dce〉

)]
+ |H7〉

β

2

[
ζ2 |o〉+ ζη (|d〉+ |b〉) + η2 |db〉+ ζ2 |o〉+ ζη (|d〉+ |c〉) + η2 |dc〉

]
=
[
ζα (α |F7〉+ β |G7〉) + ζ2β |H7〉

]
|o〉+ ζηβ |H7〉 |d〉+ ηα [α |F7〉+ β |G7〉] |a〉

+
1

2
ζηβ [ζ (−β |F7〉+ α |G7〉) + |H7〉] |b〉+

1

2
ζηβ [ζ (β |F7〉 − α |G7〉) + |H7〉] |c〉

+
1

2
η2β [ζ (−β |F7〉+ α |G7〉) + |H7〉] |db〉+

1

2
η2β [ζ (β |F7〉 − α |G7〉) + |H7〉] |dc〉

+
1

2
ζη2β [−β |F7〉+ α |G7〉] |be〉+

1

2
ζη2β [β |F7〉 − α |G7〉] |ce〉

+
1

2
η3β [−β |F7〉+ α |G7〉] |dbe〉+

1

2
η3β [β |F7〉 − α |G7〉] |dce〉 .

(C.92)

In Griffiths’ work, he designated |Φκ〉 as the system state entangled to a particular probe state |κ〉. For example,

|Φbe〉 = 1
2ζη

2β [−β |F7〉+ α |G7〉]. According to my calculation, |Φdbe〉 = − |Φdce〉 = η
ζ |Φ

be〉, while Griffiths had

−ηζ |Φ
be〉 at the end in his Eqn. 33. This isn’t the only place I disagreed with him; my Eqn. C.43 does not match

Griffiths’ Eqn. 5, and the difference is demonstrable—evolving his |φ1〉 forward in time does not lead to |φ7〉 = |F7〉.

I believe both sign disagreements are simple typos, with no bearing on his findings.

57



List of Figures

1.1 Stern-Gerlach Experiment Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Feedback Compensation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Feedback Compensation for the Nested Mach-Zehnder Interferometer . . . . . . . . . . . . . . . . . . . 18

3.1 Branching Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Double-Slit Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

58



Bibliography

[1] J. von Neumann, Mathematische Grundlagen der Quantenmechanik. Springer, 1932.

[2] J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton University Press, Feb. 2018.

[3] P. A. Mello, “The von Neumann Model of Measurement in Quantum Mechanics,” in AIP Conference Proceed-

ings, vol. 1575, pp. 136–165, AIP Publishing LLC, Nov. 2014.

[4] Y. Aharonov and L. Vaidman, “Properties of a quantum system during the time interval between two mea-

surements,” Phys. Rev. A, vol. 41, pp. 11–20, Jan. 1990.

[5] M. L. Boas, Mathematical Methods in the Physical Sciences. John Wiley & Sons, Inc., 3rd ed., 2006.

[6] E. W. Weisstein, “Gamma function.” MathWorld–A Wolfram Web Resource.

https://mathworld.wolfram.com/GammaFunction.html.

[7] S. Axler, Measure, Integration & Real Analysis. Springer, 2020.

[8] H. F. Hofmann, “Direct evaluation of measurement uncertainties by feedback compensation of decoherence,”

Physical Review Research, vol. 3, p. l012011, Feb. 2021.

[9] M. J. W. Hall, “Prior information: How to circumvent the standard joint-measurement uncertainty relation,”

Physical Review A, vol. 69, p. 052113, May 2004.

[10] M. Ozawa, “Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance

in measurement,” Physical Review A, vol. 67, p. 042105, Apr. 2003.

[11] L. Vaidman, “Past of a quantum particle,” Phys. Rev. A, vol. 87, p. 052104, May 2013.

[12] L. Vaidman, “Tracing the past of a quantum particle,” Phys. Rev. A, vol. 89, p. 024102, Feb. 2014.

[13] A. Danan, D. Farfurnik, S. Bar-Ad, and L. Vaidman, “Asking photons where they have been,” Phys. Rev.

Lett., vol. 111, p. 240402, Dec. 2013.

[14] H. Lemmel, N. Geerits, A. Danner, Y. Hasegawa, H. F. Hofmann, and S. Sponar, “Quantifying the presence

of a neutron in the paths of an interferometer,” Feb. 2022.

59



.

[15] J. R. Hance, J. Rarity, and J. Ladyman, “Do weak values show the past of a quantum particle?,” Sept. 2021.

[16] R. B. Griffiths, “Particle path through a nested Mach-Zehnder interferometer,” Physical Review A, vol. 94,

p. 032115, Sept. 2016.

[17] R. E. Kastner, “Weak values and consistent histories in quantum theory,” 2003.

[18] R. B. Griffiths, Consistent Quantum Theory. Cambridge University Press, 2002.

[19] J. B. Hartle, “Spacetime quantum mechanics and the quantum mechanics of spacetime,” Apr. 1993.

[20] D. A. Craig and P. Singh, “Consistent probabilities in wheeler-DeWitt quantum cosmology,” Physical Review

D, vol. 82, p. 123526, Dec. 2010.

[21] D. A. Craig, “The consistent histories approach to loop quantum cosmology,” International Journal of Modern

Physics D, vol. 25, p. 1642009, July 2016.

[22] B. N. Bauml, “Consistent Histories Formulation of the Double-Slit Experiment,” Apr. 2020.

[23] K. A. Kirkpatrick, “Translation of Lueders’ "Uber die Zustandsanderung durch den Messprozess",” Ann. Phys.

(Leipzig) 15, No. 9, 663 - 670 (2006), Feb. 2004.

[24] G. Lüders, “Über die Zustandsänderung durch den Meßprozeß,” Annalen der Physik, vol. 443, no. 5-8, pp. 322–

328, 1950.

[25] Y. Aharonov and L. Vaidman, “Complete description of a quantum system at a given time,” Journal of Physics

A: Mathematical and General, vol. 24, pp. 2315–2328, May 1991.

[26] H. Robbins, “A Remark on Stirling’s Formula,” The American Mathematical Monthly, vol. 62, p. 26, Jan.

1955.

60


	The Weak Value Approximation
	Von Neumann Measurements
	Extracting Weak Values
	Error Bounds on Equation 1.27 

	Optimal Estimates of Probe Interactions in the Nested Mach-Zehnder Interferometer
	The Feedback Signal
	Optimal Estimates
	Application: Nested Mach-Zehnder Interferometer

	Consistently Weak—Interrogating Weak Measurement with Consistent Histories
	Introductory Remarks 
	Consistent Histories in Brief 
	Weak Values and the Consistency Condition 
	Weak Probes and the Consistency Condition 

	Lemmas for Chapter 1
	Proof of  (j+12) = (2j-1)!!2j 
	Limiting Behavior of (2j-1)!!j!

	Difficulties with Weak Values Taken in Sequence 
	False Starts
	First-Order Approximation of the Exponential

	Calculations for the Nested Mach-Zehnder Interferometer
	Unitary Operators and Evolved States
	Quantifying the Disturbance
	An Alternative Proposal
	Calculating Weak Values
	We Want More: A Probability Distribution
	Probe State Comparison

	List of Figures
	Bibliography

