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I. Introduction 

Consider the following traffic control problem: Given 
a network of two-way streets in a city, under what circum­

stances can we convert each street into a one-way street 

in such a way that it is possible to travel from any loca­
tion to any other? Translating this problem into a graph 
theory problem: Can we give each edge of an undirected 
graph a direction (or an orientation), in such a way that 
in the resulting directed graph there is a directed path 
from each vertex u to every other vertex v? Restated, our 
question asks: under what circumstances does the graph 
have a strongly connected orientation? Robbins (9) proved 
that a graph has a strong orientation if and only if it 

is connected and has no bridge. A bridge in a connected 

graph is an edge whose removal results in a discon- . 
) nected graph ·. - Robbins' proof constructed a strong}.y _ con­

nected directed graph but did not consider the efficiency 
of the orientation. For example, Fig. l(a) shows an un­
directed, connected, bridgeless graph and Fig. l(b) is a 

strongly connected, out inefficient, orientation of (a). 

If a person at location "a" wants to go to location "r", 
he must travel in a roundabout way. This assignment 

_) 

(Fig. l(b)) meets the criteria, namely it gives a strongly 
connected orientation; but it does not give an efficient 
one. 
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(a) (b) 
Fig, 1 
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We will follow the standard graph-theoretical nota­
tion and terminology (see Harary (6) or Deo (J)). An 
undirected graph G=(V,E) consists of a set of objects 

V={v1 ,v 2 ,v 3 , ... ,vn} called vertices, and another set 
E={e 1 ,e 2 ,e 3 , ... ,em~ whose elements are called edges, such 

that each edge ek is identified with an unordered pair 

(vi,vj) of vertices. An edge is incident with both its 
end-vertices. A path pin an undirected graph G, is a 
sequence of vertices and edges, beginning and ending with 

vertices, such that each edge is incident with the ver­
tices preceding and following it and no vertex appears 

more than once in a path. A directed graph (or digraph 

for short) G consists of a set of vertices V={v{,v 2 ,v 3 , 

... ,vn}' a set of edges E={e 1,e 2 ,e 3 , ... ,~m}' and a 
mapping f that maps every edge onto somT ordered pair of 

) _ vertices _(u,v). _ An undirected graph G is connected if 
there is a path between every pair of vertices. Irt a 

digraph there are two different types of connectedness. 

A digraph is said to be strongly connected if there is 

at least one directed path from every vertex to every 

other vertex. A digraph is said to be weakly connected 

if its corresponding undirected graph i~ connected but 

G is not strongly connected. The number of incident 
edges directed out of vertex vis called the out-degree 

of v. The number of edges directed into the vertex v 

) 

is called th~ in-degree of vertex v. For any undirected 
graph G, we can assign each edge of G some arbitrary 

direction. The resulting digraph is called an orienta­
tion of G. From now on whenever we mention the term 
"orientation", it means a strongly connected orientation 

unless otherwise specified. In an undirected (res~. 
directed) graph G, the distance from vertex u to 
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vertex v, denoted by dist(u,v;G), is the number of edges 

in the shortest path (resp. directed path) from u to v. 
We also postulate dist(u,u;G)=O. The eccentricity of 

vertex v, E(v), in a graph G is the distance from v to 

the vertex farthest from v in G; that is, E(v)= 

maxldist(v,u;G): u belongs to G}. The diameter of a 
graph G is the maximal eccentricity in G (i.e., dia(G) 

=max{E(v): v belongs to G}); the radius of G is the 
minimal eccentricity of G (i.e., rad(G)=min{E(v), v be­

longs to G}). The diameter of an undirected graph G is at 
least the radius and at most twice the radius of G, Note 

-, 

that the diameter and the radius are defined only for 
connected undirected graphs and for strongly connected 
directed graphs. A minimal strongly connected graph is 
a strongly connected digraph such that if any edge is 

removed the remaining graph is not strongly connected. A 
supeffluous edge is a directed edge between -two distinct 

vertices such that if ~he edge is removed the remaining 
graph is still strongly connected. A certain class of 

problems is called NP-complete. It consists all the pro­
blems for which no polynomial-bounded algorithm has been 

discovered, nor has it been possible to show that poly­
nomial-bounded algorithms do not exist for these problems. 

J 
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II. Metrics 

Recall that the original problem was to find an effi­
cient conversion of the two-way streets into one-way 
streets so that it is still possible to travel between any 
two locations. In this section we will develop a reason­
able and easily computed measure for comparing two orien ­
tations of an undirected graph. Three possible metrics 
considered were the diameter, the sum of the eccentrici­
ties of all vertices, and the sum of all distances between 
pairs of vertices. We chose the latter. 

One naturally suggested measure is the diameter of 
the orientation. It would seem that the smaller the di­
ameter, the better the orientation. This does not follow 
because the diameter only indicates the greatest distance 
between a pair of vertices and not the number of pairs of · . 
vertices this distance apart. In an extreme case two 
orientations could have the same diameter, but in one 
orientation most of the vertex pairs are this distance 
apart and in the other orientation only one pair of ver­
tices is this distance apart. Hence the first orienta­
tion is much worse than the second. It is also possible 
that for two different orientations of the same graph, 
one has larger diameter but smaller average distance than 
the other. This is shown in Fig. 2. Thus we must con­
clude that the diameter is not a good measure . 

Another candidate for the measure is the sum of the 
eccentricities of all vertices. The eccentricity of a 
vertex vis the maximum distance from v to any other ver­
tex. This measure is like the diameter except it measures 
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the longest distance for each vertex instead of just one 

vertex. Fig. 2 shows two orientations, one with smaller 
sum of eccentricities but larger total sum of distances 
of all vertices than the other. This measure only gives 
an estimated value of the worst case for each vertex and 
is not a good measure. 

The last suggested measure is the sum of all dis­

tances between all pairs of vertices. This measure is 

easily computed from the distance matrix and if we di­

vided the total sum of all distances of all vertices by 

(n 2 ), n is the number of vertices in the graph, we will 

obtain the average distance between each pair of ver­
tices. Since an efficient orientation should have a 

short as possible distance between any pair of vertices, 
one with a smallest average distance would seem to be 
the -most efficient. Hence the smaller the sum-of all 
distances, the smaller the average. 

From a computation point of view, the diameter, the 
sum of eccentricities, and the sum of all distances can 
immediately be determined from the distance matrix. The 
(i,j) entry of the distance matrix gives the distance 

from vertex i to the vertex j. The distance matrix can 

be computed in O(n 3) time where n is the number of ver­

tices (Floyd (5)). Thus the sum of all distances is a 

reasonable and easily computed measure of the efficiency 

of an orientation. 
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diameter= 12 diameter= lJ 
sum of all distances=1972 sum of all distances=19J6 

) 
E(l)=ll E(11)=6 E(1)=12 E(ll)=lJ 
E (-2) =10 E(12)=7 E(2)=9 E(12)=10 
E{J)=9 E(1J)=8 E(J)=8 E(1J)=11 
E(4)=12 E(14)=11 E(4)=7 E(14)=10 
E(5)=11 E(15)=10 E(5)=8 E(15)=9 
E(6)=10 E(16)=9 E(6)=9 E(16)=8 
E(7)=9 E(17)=9 E(7)=7 E(17)=10 
E(8)=5 E(18)=11 E(8)=10 E(18)=11 
E(9)=8 E(19)=8 E(9)=11 E(19)=7 
E(10)=7 E(20)=8 E(10)=12 E(20)=7 

sum of eccentricities=179 sum of eccentricities=189 

(a) (b) 

Fig. 2 
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III. Initial orientation algorithm and heuristic 

Our orientation algorithm is very similar to many 
iterative numerical methods such as the Newton-Raphson 
method. These algorithms work as follows: first an 
initial guess of a solution is made. Then a loop where 
the process of obtaining a new and improved guess from 
the previous guess is repeated until the improvement is 
below a certain value. Since it has been proven that 
the numerical method will converge to the solution, once 
the loop stops we know that the guess is very close to 
the solution. 

Our orientation algorithm also has two parts: a 
good initial orientation and an iterative process in 
which the previous orientation is modified to obtain a 
_better orientation. One major -difference between our 
algorithm and the iterative numerical methods is that 
it has bee~ proven that the numerical method will con­
verge to the solution and our method only "converges" 
to a local minimum. The reason for this is that our 
algorithm would have to try all possible orientations 
in order to state that it converged to the minimum. To 
avoid having to try all possibilities, a heuristic is 
applied to the orientation to obtain a better orienta­
tion as computed by our measure, the sum of the dis­
tances of all pairs of vertices. Unlike the numerical 
method in which the modification of the guess yields a 
better guess, we cannot guarantee that the application 
of the heuristic will yield a better orientation. 
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The problem of finding the best orientation has been 

shown to be NP-complete (Chvatal (2)). Our algorithm, 
which is a combination of a good initial orientation and 
the iterative application of a heuristic, will lead to 

an orientation that is relatively close to the best ori­
entation in very few iterations. 

In this chapter we will develop an algorithm for 

finding a good initial orientation and a general heuristic 
for an efficient orientation. Our choice of algorithm is 
based on the comparison of several algorithms on the 
graphs in Fig. J. Each vertex in each of these graphs 

was used as the starting vertex for each algorithm. Our 

test data, although not representing random, undirected, 
connected, bridgeless graphs, were selected as difficult 
test cases for the algorithm tested. All of the re­

sulting orientations were compared -using the sum of all · 
distances measure developed in Chapter 2 (Table 1). Our · 
heuristic resulted from the observation that in the best 
orientations the in- and out-degree were equal or nearly 
equal. 

In general the orientation algorithms we tested were 

variations of the Depth-First Search that used by Roberts 

(10) to prove that an undirected graph has a strongly con­
nected orientation if and only if it has no bridges. The 
Depth-First Search (DFS) or backtracking on a graph was 

first formalized and used by Hopcroft and Tarjan (7) and 
was subsequently studied in some depth by Tarjan (11). 
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DATA 1 DATA 2 

. 

DATA J 

) DATA 4 

DATA 5 DATA 6 

Fig. J test graphs 
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DATA 7 

) 

DA'rA 8 DATA 9 

DATA 10 DATA 11 

J Fig. )-continue test graphs 

10 



) . 

_J 

Description of Depth-First Search (DFS) algorithm: 

Step 1. Pick any vertex as the initial starting ver­
tex and label it 1. 

Step 2. Randomly choose an adjacent, un-explored ver­
tex, label it 2, and orient the edge from 1 
to 2. 

Step J. Stand at the vertex v, labeled i, chosen by 

previous step, pick an adjacent, un-explored 
vertex v', assign next label, then direct the 
edge from v to v'. 

If there is no other adjacent, un-explored 
vertex, go back to the vertex labeled i-1. 

Step 4. Repeat previous step until all vertices have 

been traveled. 
Step 5. Orient ail remaining edges 

with a higher : label to the 
label, 

from the . vertex 
. . 

one with . a lower 

Note that if the undirected graph is discon­
nected then we will stop before we label 
all vertices. 

Selecting the next unvisited vertex and directing the 
remaining edges after all vertices have been visited are 
the two parts of the Depth-First Search algorithm that are 
candidates for modification. The algorithm (Roberts (10)) 

chose a randon unvisited vertex during its labeling phase 
and directed all of the remaining edges from a higher 
number vertex to a lower numbered one. Two modifications 
of the vertex labeling phase are to choose the vertex with 
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maximum or minimum degree instead of a random vertex; our 
modification of the directing all remaining edges phase 
is to attempt to balance the in- and out-degree of each 
vertex. Six algorithms that were all possible combina­

tions of the original DFS algorithm and our modifications 
were compared, 

Before we state our algorithms, we need some defini­
tions. 

(a) MAX(v)={u: u is a vertex of G such that u is 
adjacent to v and has largest vertex-
degree}, 

(b) BAL(v)=out-degree(v) - in-degree(v). 
Initially, BAL(v) is set to zero. 

(c) PASS(v) is the vertex-explored status; 

PASS(v)=O if vertex v has only in-edges or only 
) out-edges. 

_) 

· PASS(v)=l if vertex v has both in-edges and out­

edges. 

A. Modified Vertex-Degree Balance (MVDB) Algorithm 

(* Choose un-explored vertex with maximum degree during 
labeling process and dir~ct remaining edges accord­
ing to vertex degree*) 

Step 1. Choose a vertex v which has maximum degree 
as the initial starting vertex and label it 1. 

Step 2. Choose v'=MAX(v), label it 2, and orient the 
edge from v to v'. Set PASS(v)=l 

BAL(v)=BAL(v)+l 

BAL(v')=BAL(v')-1. 
Step J. Stand at the vertex k which just been labeled 

i, check for MAX(k). If there exists one, 

say k', label __ it i=l _and direct the edge 
from k to k'. Set PASS(k)=l, BAL(v) 
=BAL(v)+l and BAL(v')=BAL(v')-1. If 

12 



there is no adjacent, un-explored vertex then 
go back to previous labeled vertex. 

Step 4. Repeat step J until all vertices have been 
traveled. 

Step 5. Check the end-vertex v (one with BAL=-1 and 
PASS=O) 
i. if BAL(v)=-1 and PASS(v)=O and there is an 

undirected edge between v and the starting 

vertex (one that has label 1) then direct 
the edge from v to the starting vertex. 
BAL ( v) =BAL ( v) + 1 

PASS(v)=l 
ii. if BAL(v)=-1 and PASS(v)=O but there is no 

undirected edge between v and the starting 
vertex then we search for the vertex v' 
which has lowest label and adjacent to v 
(that ·is, ther _e is an undirected - edgE: be­
tween v and v') once we find v' then we 
direct the edge from v to v'. 
BAL(v)=BAL(v)+l 
PASS(v)=l 
BAL(v')=BAL(v')-1 
Repeat this step until all end-vertices have 

been adjusted. 
Step 6. Stand at the vertex k with highest label, 

check to see if there is an undirected edge 
incident to k. If there exists one which is 

incident to k and k' then 

13 
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i. if BAL(k)( BAL(k') then direct edge from k 

to k'. 
BAL( k) =BAL( k) +1 

BAL(k')=BAL(k')-1 
ii. if BAL( k) > BAL( k') then direct edge from 

k' to k. 

BAL(k)=BAL(k)-1 
BAL(k')=BAL(k')+l 

iii. if BAL(k)=BAL(k') then 
if label of k is higher than the label 

of k' then direct the edge from k to 
k'. 

BAL(k)=BAL(k)+l 
BAL(k')=BAL(k')-1 

else direct the edge from k' to k. 
BAL ( k) =BAL ( k ) -1 

BAL ( k; ·' ) = BAL ( k ' ) + 1 

If there is no undirected edge incident to k _ 
then we go to the vertex with label one less 
thank. 
Repeat this step until all remaining edges 
been oriented. 

Remark 1. During the labeling phase, if there are more 
than one vertex have same MAX value then we 
randomly choose next node. 

Remark · 2. Since the original undirected graph is 
bridgeless, each vertex must have at least 

two incident edges. 

14 



B. Modified Depth-First Search (MDFS) Algorithm 
(* Choose max-degree in labeling phase and orient 

remaining edges from higher label to lower*) 
Step 1. - Step 4, Same as the step 1 - · ,4 in MVDB 

algorithm. 
Step 5. Same as the step 5 in DFS algorithm. 

C. Depth -First Vertex Degree Balance (DVDB) algorithm 
(* Choose next vertex randomly in labeling phase and 

orient remaining edges according to vertex degree 
and vertex status*) 

Step 1, - Step 4. Similar to step 1 - 4 in DFS algo­
rithm, it also keep track of BAL­
and PASS-values, 

Step 5. - Step 6. Same as in MVDB algorithm. 

) D. Minimal Modified Vertex -Degree Balance · (MINMVDB) 

J 

Algori thrn 
( * Similar to MVDB algori th.rn. This algorithm choose 

the min-degree in the labeling phase and orient 
remaining edges according to the vertex degree and 
vertex status*) 

MIN(v)= u: u is a vertex of G such that u is adjacent 
to v and has minimal degree • 

Step 1. - Step 6. Same as in MVDB algorithm. 

E. Minimal Modified Depth-First Search (MINMDFS) , 

Algorithm 
(* Choose min-degree in the labeling phase and orient 

remaining edges from higher label to lower*) 

Step 1. - Step 6. Same as in MDFS algorithm. 

15 
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rhe DFS algorithn first appeared in Tarjan's "Depth­
First Search and Linear Graph Algorithms" (11), and it 

was used in the proof in Roberts (10) that the DFS algo­

rithm will always generate a strongly connected orienta­

tion. ~DFS algorithm and MINMDFS algorithm are special 

cases of DFS algorithm, so they will also generate a 

strongly connected orientation. rhe DVDB and f/IINMVDB 

algorith~s, however, will not always produce a strongly 

connected orientation. To illustrate the non-strongly 

connected case of DVDB algorithm, let us examine the 

graph in F ig. 4. 

(a) undirected 
graph 

1£. lb ----

_____ ,fl 

7 b 

(b) depth-first 
spanning tree 

I~ ----

(c) non-strongly connected orientation 
(by DVDB algorithm) 

Fig. 4 
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Fig, 4(a) is our test graph 4, it is connected and 

bridgeless. Fig, 4(b) shows the depth-first spanning ~ree 

generated by DVDB algorithm, note that this spanning tree 
was created by choosing next adjacent vertex randomly, 

Fig. 4(c) shows a completed orientation generated by DVDB 

algorithm, note that during the stage we orient the re­
maining edges, the DVDB algorit~~ step 5 will force the 

edge (2,9) directed from 2 to 9, this cause the orienta­
tion not strongly connected. 

Pig. 5 shows a non-strongly connected orientation 
generated by MINMVDB algorithm, again, Fig. 5(a) is an un­
directed, connected, bridgeless graph. Fig, 5(b) is the 

depth-first spanning tree generated by the MINMVDB algo­

rithm. Note that during the time we label all vertices, 
we choose MIN(v) to be the next point which creates a very 

long path and results in a non-strongly connected orienta­

tion. 
.,l. 

I - "-

I.: 6 5 

i i IC 

i.l-
I 

'1 

(a) undirected graph (b) spanning tree 

(c) orientation (by MINMVDB algorithm) 

Fig. 5 
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rable 1 . Sum of all distances of all vertices 

Data 

1 
2 

J 
4 

5 
6 

7 
8 

9 
10 

11 

DFS* MVDB 

65 
J48 
J85 

1988 
288 
288 

2958 
216 

1107 
236 
J4 

58 
J48 
JJ6 

1818 
290 

290 
2292 

216 
1025 

220 

JO 

Algorithms 
MDFS DVDB** MINMVDB** MIM'liDFS 

65 
368 
385 

2012 
290 

290 

2976 
216 

1049 
286 

J4 

58 

337 
337 

2240 

288 

290 
2267 

216 

992 
216 
JO 

~J 
J48 ' 
J6J 

1850 1 

288 

277 
2411 

216 

1044 
220 

JO 

66 
J60 

477 
2102 

288 
288 

3091 
216 

1129 
268 
J4 

* The DFS algorithm and DVDB algorithm were run over all .·. · 
vertices of -data as st::trting vertex · ( see appendix Bl_, .... :· .: . - ·-,. 
then we took the best value to compare with other Fou~ 

algorithms. 

** The DVDB algorithm and MINMVDB algorithm may generate 
a non-strongly connected orientation (see appendix B 
for detail list). 
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Table 1 shows the results from our six algorithms. 

Our program (Appendix A) was designed for CDC Cyber 720 

and the program needs little change from one algorithm to 
another. From Table 1 it seems the DVDB algorithm is the 

best one among these six algorithms, however, the DVDB 

algorithm sometimes produces non-strongly connected orien­

tation (Fig. 4), so it can not be chosen to generate our 

initial orientation. The DFS and DVDB algorithms were 

tested with every vertex as the starting point, this is 

because these two algorithms were required to use the 

random number generator and we wanted to see if we obtained 

different results if we used a different starting point. 

~e also found some interesting properties in Table 1. 

1. The DFS algorithm will generate an orientation 

which . has one ver ·tex (initial starting vertex) with a_ll 

but 6ne in-edge and some vertices (end v~rtex of each 

path) with all but one out-edge. This characteristic 

makes the orientation very undesirable, because it can 

lead to very long distances between vertices. 

2. The MINMVDB algorithm sometimes will also 

generate a non-strongly connected orientation. This 

is because during the time we generate the spanning 

tree, we are required to select an adjacent vertex with 

minimum degree which, in fact, will increase the length 

of path of the spanning tree. Then when we finish the 

spanning tree and try to orient those undirected edges, 

the step 4 of MINMVDB algorithm will make wrong deci­

sion and cause the orientation to be not strongly con­

nected (Fig. 5). 
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J. During the time when MVDB algorithm, or li1.DFS 
algorithm, or MINMDFS algorithm generates its spanning 
tree, if there are more than one vertex adjacent to 
vertex v and have same MAX(v) value (or MIN(v) value) 
it will choose next vertex randomly . This "random" 
choice will cause some different orientation. For ex ­

ample, the data 5 and data 6 (Peterson graph) have all 
vertices with same vertex-degree, so the way MVDB, 
MINMDFS, and MDFS algorithms generate the spanning tree 

will be the same as DFS and DVDB algorithms. 

·rhe DVDB and MINMVDB algorithms will not always 

generate strongly connected orientation, the MIWJIDFS 
algorithm seems to generate the worst orientation, the 
DFS and :,mFS algorithms will generate results worse than 

the MVDB algorithm. All these seem that _ the MVDB algo ­
rithm is the best algorithm a111ong all six algorithms . 

tested. ·rhe algorithm that attempted to balance the in ­

and out-degree generally produce better results than those 

that did not. This suggests that attempt to balance the 

in- and out-degree is a good general rule or heuristic for 

orienting a graph. 

20 
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IV. Iteration algorithm 

In this chapter we describe an iteration algorithm 

that obtains a good orientation. The algorithm uses the 

MVDB algorithm of Chapter J for an initial orientation. 

The iteration process involves applying a heuristic to 

the orientation to obtain a hopefully better orientation. 

In Chapter J we observed that in most good orientations, 

each vertex had approximately the same in- and out-degree. 

Attempting to balance the in- and out-degree is the 

heuristic used in our iteration algorithm. First we 

remove a maximal set of edges that still leaves the graph 

minimally strongly connected; then we re-insert the edges 

in the maximal set in such a way as to balance the ver­

tices. 

A minimally strongly connected graph is a digraph 
, 

such that if any edge is removed the resulting graph is 

not strongly connected. Fig. 8 shows a minimally ~trong­

ly connected graph. As we can see if any edge is removed 

the graph is not strongly connected. If the initial ori­

entation is a minimally strongly connected graph, we know 

we cannot improve it. But if the graph is not minimal, 

we can certainly rearrange some edges' direction and ba­

lance the vertex degree . 

Fig, 8 

21 



) 

Our algorithm for finding a minimally strongly con­

nected graph is similar to one in Hsu (8). It finds a 
set of superfluous edges, whose removal leaves the 
resulting graph strongly connected. 

Description of Minimally Strongly Connected (MSC) Method: 

Start at .the vertex vk which was last-visited during 
the labeling phase. 

a. Remove the out-edge which is incident with vk and 

vertex vj. 
b. Calculate the distance matrix. 

c. If the distance from vk to vj is equal to 999 
(that is the value we used in our program to in­

dicate no path between a certain pair of ver­

tices), then we put that edge back and check next 

out-edge. 

If the distance between vkand vj is not equal to 

999, we have found a superfluous edge. Record the 

edge, set BAL(vk)=BAL(vk)-1, BAL(vj)=BAL(vj)+l 
and then check for the next out-edge. 

d. If we have checked all out-edges then we go to 
next lower labeled vertex~ Go· to st~p a. 

After we obtain the minimally strongly connected 
graph, we are ~ow ready to put those removed edges 

back and in a manner that balances the vertex 
degree, 

Description of Re-insertion Method, 

a. Pick the edge (vk,vj) which was first removed dur­
ing the time we generated the minimally strongfy -

22 
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connected graph. 

b. Compare BAL(vk) to BAL(vj). 
If BAL(vk)> BAL(vj) then we put this edge back 

and direct it from vj to vk. Set 
BAL(vk)=BAL(vk)-1, BAL(v.)=BAL(v.)+1. Go to c. 

J . J 
If BAL(vk)<BAL(vj) then we put this edge back 

and direct it from vk to vj. Set 
BAL(vk)=BAL(vk)+l, BAL(vj)=BAL(vj)-1. Go to c. 

If BAL(vk)=BAL(vj) then we compute the eccentri­

cities of both vj and vk. 
If E(vk) >= E(vj) then we put this edge back 

and direct it from vk to v .. Set 
J -

BAL(vk)=BAL(vk)+l, BAL(v. )=BAL(v.)-1. Go 
. J J 

to C. 

Otherwise, put edge back and direct it from vj 

to vk ~ Set 1 
_ 

BAL(vk· )=BAL(vk)-1, BAL(v.)=BAL(v.)+1. 
. . J J 

c. Pick next edge which been removed by MSC algori-

thm, go to b. Repeat until all removed edges have 
been put back. 

Table 2 shows the initial orientations from MVDB 
algorithm and the results of five iterations of the com­
bination of MSC and Re-insert methods. As we can see 
from Table 2, four out of eleven orientations were im­
proved and the rest remained unchanged or oscillated. 
The iteration scheme did improve some but not all of the 
orientations. 

Since MSC method requires O(n5) run-time, where n 
is the number of vertices of the graph, and from the 
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Table 2 Iterative results (initial orientation generated by MVDB) 

Initial Iterations Final 
Data Orientation 1 2 3 4 5 Results 

1 58 58 58 58 58 58 58 
2 348 348 348 348 348 348 348 

3 336 341 336 336 336 336 336 
4 1818 1796 1818 1796 1818 1796 1796 

5 290 278 268 262 262 262 262 

N 
6 290 268 262 268 262 268 262 

~ 
7 2292 2239 2248 2239 2248 2239 2239 
8 216 216 216 216 216 216 216 

9 1025 967 967 967 967 967 967 
10 220 226 220 226 220 226 220 

11 30 JO JO JO JO JO JO 
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test results of Table 2 indicate that if an orientation 

can not be improved it will remain unchanged or oscil­
lated. This provides a stopping condition for our 

iteration algorithm. We will repeat the iteration until 

the orientation is worse than the previous one or until 
two consecutive iterations yield same value. We deecribe 

the iteration algorithm as following: 

Step 1. Apply MVDB algorithm to obtain an initial 
orientation. 

Step 2. Repeat 

(a) Apply MSC method to remove all super­

fluous edges and to obtain the mini­
mally strongly connected graph. 

(b) Apply Re-insert method to put those 

removed edges back into the graph. 
Until 

(a) The result is worse than the previous 
result. 

(b) The result oscillates over two con­
secutive iterations. 

Step J. Output the final orientation. 
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V. Summary 

We have developed an iteration algorithm for pro­
ducing an "efficient" graph orientation. This algorithm 

requires O(n5) run-time where n is the number of vertices 

of the given undirected graph. 

The iteration algorithm which uses MVDB algorithm to 
generate an initial orientation then applies MSC and 

Re-insert methods repeatedly to produce the final orien­
tation. It is very similar to iterative numerical methods . 
They both have an initial guess and a repeated process. 

However, unlike the numerical method which will converge 
to its solution, we cannot prove our algorithm will 
converge to the best orientation. Table 3 shows the 
results from our iteration algorithm by choosjng differ­
ent initial orientation. We can see that the initial ·· 
orientation generated by MVDB algorithm produces better 

results. 

For the future investigations we should consider the 

followings: 

1. Other measures of the efficiency of an orientation. 

2. Improvement of the MSC method. 
J. Other heuristics for re-inserting superfluous edges. 

4. Other stopping conditions. 

'rhe weighted graph which is not included in this paper 
may also use our iteration algorithm to generate an 

orientation. 
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Table J Total distances (with iteration method) 

Al gorithms 
Data DFS MVDB MDFS MINMDFS 

1 64 58 58 58 
2 J4J J48 J48 J48 
J J4J 336 358 364 
4 1878 1796 1924 1850 
5 262 262 262 268 
6 283 262 274 262 
7 2257 2239 2257 2472 
8 216 216 216 216 
9 966 967 995 975 

10 238 220 224 220 
11 JO JO JO JO 
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Appendix A 

Fortran program 

for graph orientation 



PROGRAM GRAPH(INPUT,OUTPUT) 

C 
C THIS PROGRA~S USE D[fFENENT ALGORITHMS TO FIND 
C THE STRONGLY CONNECTED ORIENTATION Of THE GIVEN GRAPH. 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C ,.. 

C 

THIS PROGRAM DESCRIBE MVDB(~ODifIED VERTEX-DEGREE BALANCE) ALGORITHM 
HOWEVER, CHANGE TO DfS, DVDB, OR MDfS ALGORITHM IS VERY EASY. 
(FOR HOW TO CHANGE TO OTHER ALGORITHM, PLEASE SEE CO~MENTS INSIDE 
THE PROGRAM.) 

SUBROUTINES USED. 
ORIENT(N,M,NUM,START,ADJACN) : THIS SUBROUTINE GENERATES THE 

INITIAL SPANNING TREE. 
VD8M(N,M,BAL,PASS,IN,START) : THIS SUBROUTINE DIRECTS THOSE 

UNDIRECfED EDGES AND COMPLETE THE ORIENTATION. 
DIR(PASS,BAL,~,I,J) : THIS SUBROUTINE DETERMINE THE EDGE 

<I,J> GOES FROM I TO J. (CALLED BY VDBM SUBROUTINE) 
COMPL(~,N) : THIS SUBROUTINt DO THE LAST STEP, COMPUTE THE 

DIRECTED DISTANCE MATRIX AND REPORT THE TOTAL SUM, 
DIA~ETER, AND RADIUS. 

DFS(M,N,IN) : THIS SUBROUTINE ORIENTS ?HE UN-DIRECTED EDGE 
FRO~ VERTEX ~ITH HIGHER LABEL TO THE ONE ~ITH 
LOwER LABEL. 

PATH(M,N) : THIS SUBROUTINE ACTUALLY CO~PUTE THE DISTANCE 
MATRIX. 

C VARIABLES USED. 
C 
C pEGREE(30) •••••••••• THE NUMBER OF EDGES ADJACENT TO EACH 
C VERTEX. (VERTEX DEGREE) 
C ADJACN(30,30) ••••••• ARRAY FOR THE ADJACENT VERTEX LABEL. 
C G(30,30) •••••••••••• THE ADJACENCY MATRIX Of THE GIVEN 
C UN-DIRECTED GRAPH. 
C START••••••••••••••• THE STARTING VERTEX. 
C 

C 
C 
C 

C 
C 

DIMENSION DEGREE(30),ADJACN(30,30),G(30,30) 
INTEGER ADJACN,G,DEGREE,START 

C. ••••• PROGRAM START. INITIALIZE VARIABLES. 
C FIRST READ IN THE NUMBER OF VERTICES THEN 
C READ IN THE V~RTEX•DEGREE AND THE LABEL Of ADJACENT 
C VERTICES. 
C 

ICOUNT=O 



r , ,. 
DO 20 I=l,30 

DO 10 J=l,30 
C 
C ••••• SET G(I,J)=999 TO INDICATE "NO EDGE BETWEEN VERTICES I AND J" • 

. C 
GCI,J)=999 
ADJACNCI,J)=O 

10 CONTINUE 
G(I,I)=O 

20 CONTINUE 
C 
C ••••• INPUT THE TOTAL NUMBER OF VERTICES AND ADJACENT LIST. 
C 

C 

READ *,N 
DO 50 K=l,N 

READ*,DEGREE(K) 
NN=DEGREE(K) 
READ*,CAOJACN(K,J),J=l,NN) 

C ••••• SET UP ADJACENCY MATRIX. 
C 
C 

C 
C 

DO 40 LL=l,NP-4 
G(K,ADJACN(K,LL))=l 

40 CONTINUE 
50 CONTINUE 

C ••••• FIND THE STARTING VERTEX. 
C 
C 

C 
C 

MAX=-999 
DO 60 I=l,N 

lf(DEGREE(I) .GT. MAX) MAX=I 
60 CONTINUE 

START=MAX 

C ••••• IF WE ~ANT TO USE DfS (OR DVDB) ALGORITHM THEN USE 
C START=IfIX(RANf(X)*N+l.O) 
C 
C ••••• CALL SUBROUTINE ORIENT TO GENERATE THE SPANNING TREE. 
C 
C 

CALL ORIENT(N,G;DEGREE,START,ADJACN) 
STOP 
END 



( 

SUBROUTINE ORIENT(N,M,NUM,START,ADJACN) 
C 

c-----------------------------------------------------------•-a••-----~ C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
~ 

C 

C 
C 

THIS SUBROUTINE GENERATES THE SPANNING TREE BY CHOOSING THE 
ADJACENT VERTEX WHO HAS MAXIMUM VERTEX- DEGREE. 

SU8ROUTINE USED, 
CHOOSE(I,NUM,ADJACN,CHOICE) CHOOSE THE NEXT VERTEX. 
VDBM(N,M,BAL, PASS,IN,START) : COMPLETE THE ORIENTATION. 

VARIABLES USED. 
M(30,30) •• •••••• THE ADJACENCY MATRIX, INPUT VALUE. 
N • , ••••••••••••• THE TOTAL NUMBER Of VERTICES. 
IN(30) •• ••• ••••• ARRAY FOR THE ORDER OF SPANNING TREE. 
START••••••••••• THE STARTING VERTEX. 
ADJACN ••••• ••••• ARRAY FOR THE ADJACENT VERTICES LABELS, 
PREV(30) •••••••• ARRAY FOR BACKTRAC~ING THE VERTICES ORDER. 
BAL(30) ••••••• •• ARRAY FOR lN OR OUT EDGES. 
PASS(30) •••••• •• ARRAY TO STORE THE STATUS OF VERTICES. 

PASS(I) =O MEANS THE VERTEX I HAS ONLY IN- EDGE 
OR OUT- EDGE, 
PASS(I)=l MEANS VERTEX I HAS BOTH IN• EDGE 
AND OUT- EDGE. 

CHOICE•• •••••••• THE NEXT VERTEX LABEL. 

DIMENSION M(30,30),IN( 30),NUM(30),PREV(30),BAL(30) 
INTEGER ADJACN(30,30),PREV,BAL,START,CHOICE,PASS(30) 

C 
C., ••• INITIALIZE THE VARIABLES. 
C 

ICOUNT=O 
DO 10 K=l,30 
PREV(K)=IN(K)=BAL(K) =PASS(K) =O 

10 CONTINUE 
IFIRST =l 

C 
C, •••• SET UP THE STARTING VERTEX. 
C 

!=START 
IN(IF'IRST) =START 

C 
C, ••• , IF NUM(I)=O MEANS NO UN- EXPLORED VERTEX ADJACENT TO VERTEX I. 
C GO BACK TO PREVIOUS VERTEX. 
C 

555 IF(NUM(I) .NE. 0) GO TO 1000 
I=PREV(I) 



( 

r 
C ••••• If WE STANDING AT THE STARTING VERTEX AND WE ALREADY TRAVELED 

r C ALL VERTICES, IT IS TIME TO STOP. 
C 

If((I .EO . START) .AND. (!COUNT .GE. (N- 1))) GO TO 999 
t GO TO 555 

1000 BAL(I) =BAL(l)+1 
PASS(I):1 

C 
c ••••• CHOOSE N~XT ADJACENT VERTEX. 
C 

CALL CHOOS£(I,NUM,ADJACN,CHOICE) 
C 
C • •••• If DfS OR DVDB ALGORITHM THEN USE 
C CHO!CE=IfIX(RANF (X) *NUM(I)+l.O) 
C 

C 

NEXT=ADJACN(I,CHOIC£) 
IfIRST =IFIRST+l . 

C., ••• RECORD THE ORDER. 
C 

IN(H'IRST) =NEXT 
C 
C 
c ••••• DELETE THE VERTEX WHICH ALREADY BEEN EXPLORED. 

100 2 

DO 1005 INDEX=1,N 
NN=NUM(INDEX) 
DO 1001 KK=l,NN 

If(ADJACN(INDEX,KK) .NE. I) GO TO 1001 
DO 1002 KKK=KK,NN 

ADJACN(INDEX,KKK) =ADJACN(INDEX,KKK+l) 
CONTINUE 
NUM(INDEX) =NUM(INDEX)• l 

1001 
100 5 

C 

CONTINUE 
CONTINUE 

C 
C, •••• ORIENT THE EDGE AND RECORD THE VERTEX•STATUS. 
C 

C 
C 

MC NEXT, I) =999 
BAL(NEXT)=BAL(NEXT) • l 

4000 PREV(NEXT)=I 
ICOUNT=ICOUNT+l 
!=NE XT 

C ••••• CHECK If THERE IS ANY UN- EXPLORED VERTEX. 
C 

IF(NUM{I) .NE. 0) GO TO 555 



C 
C ••••• IF NO MORE UN- EXPLORED VERTEX ADJACENT TO CURRENT VERTEX THEN 
C WE DELETE CURRENT VERTEX FROM ADJACENT-LIST AND GO BACK TO 
C PREVIOUS VERTEX. 
C 

610 DO 612 IJ =l,N 
INOEX2=NUM(IJ) 
DO 613 IK=1,IND£X2 

If(ADJACN(IJ,IK) .NE. I) GO TO 613 
DO 614 IL =IK,INDEX2 

ADJACN(IJ,IL)=ADJACN(IJ,IL+l) 
614 CONTINUE 

NUM(IJ)=NUM(IJ)•l 
613 CONTINUE 
612 CONTINUE 

I=PREV(I) 
GO TO 555 

C 
C 
C ••••• CALL SUBROUTINE VDBM TO FINISH THE ORIENTATION, 
C 

999 CALL VDBM(N,M,BAL,PASS,IN,START) 

C •• ••• If DFS OR MDfS ALGORITHM THEN USE 
C CALL DFS(M,N,IN) 
C 

RETURN 
ENO 
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THIS SUBROUTINECOMPARE VERTEX STATUS TO DETERMINE EDGE DIRECTION. 

SUBROUTINE VDBM(N,M,BAL,PASS,IN,START) 

THIS SBROUTINE ISCALLE OBY ORIENT ROUTINE. 
THE MAIN PURPOSE OF THISROUTINE IS TO DETERMINE THE DIRECTION OF 
EDGES AFTER WE OBTAIN THE SPANNING TREE. 

N : TOTAL NUMBEP OF VERTICES. 
M(30,30) : ADJACENCY MATRIX. 

BAL(V):(NUMBER Of OUT•EDGES OF V • NUMBER OF IN-EDGES OF V) 
PASS(30) : VERTEX STATUS, 

PASS8V)=O IF ~ERTEX HAS ONLY IN-EDGES, OR ONLY OUT•EDGES, 
OR NOT YET EXPLORED. 

=1 IF VERTEX HAS BOTH IN-EDGES AND OUT-EDGES. 
INC30) : LIST OF ORDER THAT VERTICES EXPLORED. 
START : THE INITIAL STARTING VERTEX. 
IM(30,30) : TEMPORARY SCRATCH ARRAY~ 

INTEGER M(l0,IM(30,30),30),BAL(30),PASSC30),IN(30),START 

00 10 K=1,N 
IF(M(K,START) .NE. 1 .OR. 

.OR. BALCK) .GE. 0) GO 
M(START,K):999 
BAC(K)=BALCIO+l 
BAL(START)=BAL(START)•1 
PASS(K):1 

MCSTART,K) 
TO 10 

1 .OR. PASS(K) .NE., 0 

10 CONTINUE 

*****CHECH OTH£R END•NODt. 

15 

DO 30 K=t,N 
KK=IN(N-K+1) 
IF(PASSCKK) .NE. 0) GO TO 30 
IFCBAL(KK)-· .GE. OJ . GO TO 30 
00 20 I=t,N 

II=IN(I) 
IF(M(KK,Il) .NE. 1 .oR. ~M(II,K~) .NE. 1) GO TO 20 

DO 15 IJ=1,N 
IF(IN(IJ) .EO. KK) KKI:IJ 
IrCINCIJ) .EQ. II) III=IJ 
CONTINUE 

IFCKKI .LT. III) GO TO 30 
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M(II,KK):999 
BAL(KK)=8AL(KK)+1 
BAL(II)=8AL(II)•1 
PASS(KK)=1 
l<K=II 
IF(KK .EQ. START) GO TO 30 

20 CONTINUE 
-- :ro---CONT I N"U E'" 

DO 70 I=1,N 
DO 60 J=I,N 

IF(M(I,J) 0 NE. 1 .OR. M(J,I) .NE . 1) GO TO 60 
IF(8AL(I) .GT. BAL(J)) GO TO 50 
IF(SAL(I) .EQ. BAL(J)) GO TO 40 

· cALL DIR(PASS,BAL,M,I,J) 
GO TO 60 

40 DO 45 K=1,N 
IF(IN(K) .Ea. I) KI=K 
IF(IN(K) .Ea. J) KJ=K 

45 CONTINUE 
-- --· IF ( Kr •·. LE • K J r GO TO 5 0 

CALL DIR(PASS,BAL,M,I,J) 
GO TO 60 

50 CALL DIR(PASS,BAL,~,J,I) 
60 CONTINUE 
70 CONTINUE 

••••• CALL SUBROUTINE 'COMPL' TOCOMPUTE THE DISTANCE BETWEEN ANY PAIR 
OF VERTICES, THE DIAMETER OF ORIENTATION, THE RADIUS OF ORIENTATION, 
ANO THE DISTANCE MATRIX. 

IF WE ARE USING THE ITERATIVE METHOD THEN WE SHOULD USE 
---- THE LOOP- 140 . ·-- -· · -- -

140 

120 

-rJO 

CALL COMPL(M,N) 

00 130 I=l,5 
Off 120 J::1,N" ... -· -

DO 120 K=l,N 
IM(J,K)=MCJ,K) 

CONTINUE 
CALL MEG(IM,N,IN) 
CALL COMPL(IM,N) 

CONTINUE" 

RETURN 
END 



C 
C 

C 
C SUBROUTINE DfS(M,N,IN) IS USED AFTER WE OBTAINED THE SPANNING 
C TREE, 
C 
C THE ~AIN PURPOSE OF THIS SUBROUTINE IS TO ORIENT THOSE UNDIRECTED 
C EDGE FROM VERTEX WITH HIGHER LABEL TO VERTEX WITH LOWER LABEL. 
C 

C 
C 

C 
SUBROUTINE DFS(M,N,IN) 

C.,, •• M(30,30) IS THE !~COMPLETED ADJACENT MATRIX, 
C N IS THE NUMBER Of VERTICES, 
C IN(30) IS THE LIST OF ORDER Of ORIENTED VERTICES. 
C 

DIMENSION M(30,30),IN(30) 
C 
c ••.•• SET UP VARIABLES, 

K=NN=N 
C 
C,, ••• ORIENTS THOSE UN-DIRECTED EDGES ACCORDING TO THE VERTEX LABEL, 
C 

DO 3 '1=1,N 
KK=IN(K) 
DO 2 J=l,NN 

If((M(KK,J) ,EQ, 1) ,AND, (M(J,KK) ,EQ, 1)) M(J,KK)=999 
2 CONTINUE 

K=K-1 
3 CONTINUE 

C 
C,,, •• ORIENTATION COMPLETE, CALL SUBROUTINE "CO~PL" TO COMPUTES THE 
C TOTAL DISTANCES, DIAMETER, RADIUS AND GENERATES THE DISTANCE MATRIX, 
C 

CALL COMPL(M,N) 
RETURN 
END 



r 

C 
C 

C 
C SUBROUTINE DIR(PASS,BAL,M,L1,L2) IS CALLED BY VDB~ SUBROUTINE 
C THE MAIN PURPOSE OF ,THIS SUBROUTINE IS TO ORIENT THE EDGE BETWEEN 
C VERTEX Ll AND VERTEX L2 ACCORDING TO THEIR STATUS. 
C 

C 
C 

C 
SUBROUTINE DIR(PASS,BAL,M,Ll,L2) 

C.,e•• WHEN THIS SUBROUTINE IS CALLED IT SHOULD ORIENT THE EDGE FROM Ll 
C TO L2 AND CHANGE THEIR STATUS~ 
C 

) 

INTEGER M(30,30),BAL(30),PASS(30) 
MCL2,L1)=999 
PASS(Ll)=l 
BAL(Ll)=BAL(Ll)+l 
BAL(L2)=BAL(L2)-1 
RETURN 
END 



.r 

r 

r J 

C 
C 

r c--------------------------------·--•w•-----------------------------~--C 
C SUBROUTINE PATH(M,N) USED TO COM~UTE THE DISTANCE BETwEEN ANY PAIR 

r C Of VERTICES.(IN OTHER ~ORDS, IT GE~ERATES THE DISTANCE MATRIX. 

) 

C 
C REMARK. THIS SUBROUTI~E IS BASE ON RGBERT W. FLOYD, SHORTEST PATH••-• 
C ALGORITHM 97. [ J 
C THIS ALGORITHM REQUIRE o(N*N*N) RUN-TIME. 
C 

c---------------------·---------------------------------------•w•------C 
C 

SUBROUTINE PATH(~,N) 
C 
C ••••• IF THERE IS NO PAIH FROM VERTEX I TO J THEN WE USE "999" TO 
C INDICATE THIS CASE 
C 

DIMENSION M(30,30) 
00 20 I=l,N 

00 30 J=l,N 
lf(~(J,I) .GE. 999) GO TO 30 
DO 40 K=l,N 

If(M(I,K) .GE. 999) GO TO 40 
IS=M(J,I)+~(I,K) 

, IF(IS .LT. M(J,K)) M(J,K)=IS 
40 CONTINUE 
30 CONTINUE 
20 CONTINUE 

RETURN 
END 



r 

C 
r C 

c----------·--------------------------------------------·-------------·-C 
r C SUBROUTINE CHOOSE(I,NUM,ADJACN,NCH) COMPARE THE VERTEX-DEGREE AND 

C CHOOSE THE ONE WITH MOST VERTEX•DEGREE AS THE NEXT POINT. 
C 

( c----------------------------------------------------------------------
,.. 

c 
C 

SUBROUTINE CHOOSE(I,NUM,ADJACN,NCH) 
C 
C ••••• ADJACN(30,30) : ARRAY Of ADJACE~T VERTEX LABELS. 
C NUM(30) : ARRAY Of VERTEX-DEGREE. 
C TEMP(30) : ARRAY Of TEMPORARY STORAGE AREA. 
C COUNT : COUNTER Of VERTICES WHICH HAS SAME VERTEX-DEGREE. 
C 

INTEGER ADJACN(30,30),NUM(30),TEMP(30),COUNT 
C 
C ••••• INITIALIZATION. 
C 

C 

DO 100 K=l,30 
100 TEMP(K)=O 

COUNT=l 
NO=NUM(I) 

c ••.•• INITIALIZE THE MAXIMUM VALUE. 
C I 

MAX=NUM(ADJACN(I,1)) 
C 

NCH=l' 
C 
C ••• ,. CHECK TO SEE HOW MANY UN-EXPLORED VERTEX ADJACENT TO VERTEX I. 
C 

IF(NO .Ea. 1) RETURN 
C 
C, •••• THERE ARE MORE THAN ONE UN-EXPLORED VERTICES ADJACENT TO I, WE 
C NEED TO FIND THE ONE WITH MOST VERTEX-DEGREE. 
C 

DO 3 J:2,NO 
IF(NUM(ADJACN(I,J))-MAX) 3,1,2 

1 TEMP(COUNT)=NCH 
COUNT=COUNT+.l 
NCH=J 
GO TO 3 

2 MAX=NUM(ADJACN(I,J)) 
COUNT=l 
NCH=J 
GO TO 3 

3 CONTINUE 
IF(COUNT .EO. 1) RETURN 

.... . , ......... , . . 



r 

r C 
c ••• • • IF MORE THAN ONE VERTICES HAS SAME MOST-DEGREE THAN WE RANDOMLY 
C CHOOSE ONE. 
C 

KILL=IFIXCRANF(X)*COUNT+1. 0) 
C 

r C., ••• IF THE RANDOM NUMBER EQUALS TO THE ONE LAST FOUND THEN RETURN. 

L 

C 
IF(KILL . EO. COUNT) RETURN 

C 
C ••••• ELSE FIND THE VERTEX FROM THE TEMPORARY STORAGE AREA. 
C 

) 

) 

NCH=TEMP(KILL) 
RETURN 
END 



r 

r 

r 

( 

) 

C 
C 

C 
C SUBROUTINE COMPL(M,N) IS USED ro COMP~TE THEDISTANCE BETWEEN ANY 
C PAIR OF VERTICES, THE DIAMETER OF ORIENTATION, THERADIUS OF 
C ORIENTATION, AND THE DISTANCE MATRIX. 
C 

c-------------------------------------·-------~-----------------·-------C 
C 

C 
SUBROUTINE COMPL(M,N) 

C ••••• MAXD(30) : MAXIMUM VALUE Of EACH ROW IN THE DISTANCE MATRIX. 
C IND(30) : INDEX FOR OUTPUT. 
C ISUM(30) : TOTAL SUM Of EACH ROW(COLUMN). 
C 
C 

DIMENSION MAXD(30) 
DIMENSION M(30,30),IN(30),I~D(30),ISUM(30) 

C 
C •• ~ •• INITIALIZATION. 
C 

C 

DO 10 I=1,N 
IND(I)=I 
ISUM(I)=O 

10 CONTINUE 
' 

C ••••• TITLE. 
C 

PRINT 11 
11 FORMAT(///,SX,10(1H*),' DIRECTED ADJACENT MATRIX ',10(1H*),/) 

PRINT 12,(IND(I),I=l,N) 
12 FORMATC//,11X,3014) 

PRINT 45 
C 
C 
C ••••• OUTPUT THE DIRECTED ADJACENCY ~ATRIX. 
C 

DO 13 I=1,N 
PRINT 50,I,(M(I,J),J=l,N) 

13 CONTINUE 
C 
C 
C ••••• COMPUTETHEDISTANCE BET~EEN ANY PAIR OF VERTICES. 
C 

CALL PATH(M,N) 



r 

C 
C 

r C ••••• COMPUTETHE TOTAL SUMS. 
C 

DO 20 I=l,N 
,·· · 0 0 1 5 J = 1 , N 

C 
C 

ISUM(I)=ISUM(l)+M(I,J) 
15 CONTINUE 
20 CONTINUE 

C ••• ,. TITLE. 
C 

PRINT 30 
30 FORMAT(///,10(1H*),' DISTANCE MATRIX AND SUM ',10(1H*),/) 

PRINT 40,(IND(K),K=l,N) 
40 FORMAT(//11X,30(I4)) 

PRINT 45 
45 FORMAT(2X,120(1H-),/) 

C 
C 
C ••••• OUTPUT THE DISTANCE MATRIX AND TOTAL SUMS • . 
C 

C 

DO 60 I=l,N 
PRINT 50,I,(M(I,J),J=l,N),ISUM(I) 

50 FORMAT(2X,I4,2X,1H:,2X,30(l4)) 
60 CONTINUE -

C ••••• COMPUTE THE COLUMN TOTAL AND THE GRAND TOTAL(TOTAL SUM). 
C 

ITOTAL=O 
DO 80' I=l,N 

IND(I)=O 
DO 75 K=l,N 

IND(I}=IND(I)+M(K,I) 
75 CONTINUE 

ITOTAL=ITOTAL+ISU~(l) 
80 CONTINUE 

C 
C ••••• PRINT COLUMN TOTALS AND GRAND TOTAL. 
C 

PRINT 85,(IND(K),K=l,N),ITOTAL 
85 FORMAT(11X,30(I4)) 

C 
C1

• • • • • COMPUTE THE DI AME TE R AND RAD I US • 
0 t FIRST GET THE MAXIMUM VALUES FOR EACH RO~. -c-

_) 

DO 101 II=l,N 
MAXD(II)=-999 
DO 102 JJ=l,N 

lf(M(Il,JJ).GT.MAXD(II))~AXD(II)=M(II,JJ) 
102 CONTINUE 
101 CONTINUE 



r 

( 

C 
r C ••••• GET DIAMETER AND RADIUS. 

C 
MAD=- 999 

r MIR=999 
DO 103 KK::1,N 

IF(MAXD(KK) .GT,MAD) M· D:: MAXD(KK) 
r IF(MAXD(KK),LT.MIR)MIR =MAXD(KK) 

L 

103 CONTINUE 
C 
C,, • •• OUTPUT DIAMETER AND RADIUS, 
C 

) 

J 

PRINT 105,MAD,MIR 
105 fORMAT(/,2X,'DIA ',IS,SX,'RAD ',15) 

88 RETURN 
END 



r 

,.- C 

r 

C 

C 
C 
C 

THIS SUBROUTINE fINDS THE MINl~AL STRONGLY CONNECTED DIGRAPH. 

( c----------------------------------------------------------------------
( 

C 
C 

C 
SUBROUTINE MEG(~,N,IN) 

C •••• ~(30,30) : DIRECTED ADJACENCY ~AT~IX. 
r C IN(30) : LIST OF ORDER OF VERTICES TRAVEL~D. 

C DIS(30,30) : TEMPORARY STOP.AGE AREA. 
C SP(30,30) : TEMPORARY STORAGE AREA. 

r C 

'-

L 

C 
C 

Dt~ENSION M(30,30),1N(30),DIS(30,30),SP(30,30) 
INTEGF:R DIS,SP 

C •••• I~ITIALIZE SP ARRAt. 
C 

C 
C 

DO 20 I=t,N 
DO 10 J:1., N 

SP(I,J):999 
10 CONTINUE 
20 CONTINUE 

C •••• ELIMINATr.S THE SUPERFLUOUS f.DGES. 
C THE IDEAL OF THIS .SUBROUTINE IS: IF REMOVAL OF EDGE CAUSE 
C THE GRAPH NOT STRONGLY CGNNECTED THEN ~E PUT THE EOG~ BACK, 
C OTHERWISE, ~E FOUND A SUPERFLUOUS EDGE. REMOVE ALL SUPERFLUOUS 
C EDGES, ~E wILL OBTAIN A MINI~AL STRONGLY co~~ECTED DIGRAPH. 
C 
C 

C 
C 

DO 80 ISA=l,N 
I=IN(N•ISA+l) 
DO 70 J=l,N 

C •••• WE START AT THE VERTEX ~HICH ~AS LAST VISITED. 
C 
C 
C 
C •••• IF M(I,J) = 1 THAT MEANS ~O EDGE GOES FROM VERTEX I TO VERTEX J 
C WE WILL NOT CONSIDER TH(S CASE. 
C 

C 
C 

IF(M(I,J) .NE. 1) GO TO 70 
SP(I,J):1 

C •••• GET A COPY Of CURR€NT ADJACENCY ~ATRIX Of THE DIGRAPH. 
C 

40 
50 

DO 50 K=l,N 
no 40 L=l,N 

n IS ( K , I, ) : ,_. ( K , L ) 
CONTINUE 

COIIJfI~Ut 

' ""*<t.'.' " , '·' "' r ,. 



) 

r 
DIS(I,J):999 

C 
( C 

( 

C •••• COMPUTE THE DISTANCE MATRIX. 
C 

CALL PATH(DIS,N) 
C 
C 

( C ••• e IF DIS(I,J) NOT EQUALS TO 999 THAT M~ANS ~E FOUND A SUPERFLUOUS EDGE. 
C 

60 
C 
C 

C • • • • , C 

• 
) 70 

80 

• C 
C 
C • • • e 

~ C 
C 
C 
C 

"'-

IF(DIS(I,J) .NE. 999) GO TO 60 
SP(I,J):999 
GO TO 70 
M(I,J):999 

CHECK DIS(J,I) TO ~AKE SURE IT IS A SUPERFLUOUS EDGEo 

IF(DIS(J,I) .NE. 9~9) GO TO 70 
SP(I,J):9990 
M(I,J)=l 

CON rINUE 
cowrr~wE 

AFTER Wf. OBTAINED THE MINI~AL STRONGLY CONNECTED DIGRAPH, 
WE CALL SUBROUTINE EDGE TO PUT THOS~ REMOVED EDGES BACK AND 
ADJUST THE DISTANCES BETWEE~ ALL PAIRS OF VERTICES. 

CALL EDGE(N,M,SR) 
RETURN 
END 



C 
C 

c--------------------------------------------------------------------------
C 
C 
C 
C 
C 

C 
C 

C 

SUBROUTINE EDGE(N,M,MS) WILL PUT THOSE ~EMOVED EDGES BACK TO THE 
MINIMAL STRONGLY CONNECTED DIGRAPH ACCORDING TO THE VERTEX STATUS 
ANO/OR THE DISTANCE BETWEEN EACH PAIR OF VERTICES. 

SUBROUTINE EDGE(N,M,MS) 

C •••• M(J0,30) : ADJACENT MATRIX Of THE MINIMAL STRONGLY CONNECTED DIGRAPH. 
C MS(30,30) : TEMPORAKY SCRATCH ARRAY. 
C MM(30,30) : TEMPORARY SCRATCH ARRAY. 
C ROW(30) : VERTEX STATUS(R0~(1):[NUMBER Of OUT•EDGES • NUMBER OF IN-EOG' 
C 
C 

DIMENSIO~ M(30,30),MS(30,30),~M(30,30),ROW(30) 
INTEGER ROW 

,. C 
C 
C •••• FIND THE VERTEX WITH ~OST UUT-DE,REEo 

r C 

) 

/ 
'· 

l. 

.. . 

.. 

DO 20 I=l,N 
R0W(I):0 
DO 10 J:1,N 

If(M(I,J) .NE. 1) GO TO 5 
RO\ri(I)=R0 .. (1)+1 

5 If(M(J,I) .NE. 1) GO TO 10 
ROW(I)=ROW(l)•l 

10 CONTINUE 
20 CONTINUE 

.. . . . . PUT THE REMOVED EDGE BACK • 

DO 40 1=1,N 

.. -.. .. . ., .. 
DO 30 J:1,N 

IF MS(I,J)=l INDICAfES WE FOUND A REMOVED EDGE • 

IF(MS(I,J) .NE. 1) GO TO 30 

COMPARE THE VERTEX STATUS IN ORDER TO DETERMINE THE DIRECTIONs 

IF(ROW(I) .GTG ROW(J)) GO TO 25 
If(ROW(I) .EQ. ROW(J)) GO TO 21 

· ROW(I):RO'tt(I)+l 
ROl'l(J):ROW(J)-1 
"1(1,J)=l 
MS(I,J):999 
MS(J,I):999 
M(J,I):999 
GO TO 30 



r 

r 

( 

( 

( 

) 

l. 

. . . . 
21 

~2 

23 

IF rwo VERTICES BOTH HAS SA~E VER1EX-STATUS THEN WE NEED TO 
CO~PUTE THE ECCt~TRICITI~S Of. THOSE VERTICES. 

DO 22 MK=l,N 
DO 22 Nl<=l,N 

MM(MK,NK):M(MK,NK) 
CONTINUE 
CALL PATl-i(i'IM,N) 

~AXI:•999 
MAXJ=-999 

DO 23 Kl<K=l,N 
lf("1AXI .LE. Mf-l(I,KKK . )) MAXI=Ml-1(1,KKK) 
IF(MAXJ .LE. :--1~(J,KKK)) "1AXJ:MM(J,Kl<K) 

CONT!~UE 

COMPARE THE ECCE~TRICTIES TO DlTERMINE THE ~DGE DIRECTION. 

IFCMAXI .GE. ~AXJ) GO TO 24 
ROw(J):RO~(J)+l 
ROW(I)=ROW(l)-1 
M(J,I):l 
~(I,J):999 
r-!S(I,J):999 
MS(J,1)=999 
GO TO 30 

24 . ROW(I)=ROw(I)+l 
ROw(J):RO•CJ)•l 
1-1(1,J)=l 
M(J,I):999 
MS(I,J):999 
MS(J,!)=999 
GO TO 30 

25 RO~(I):ROw(I)•l 
ROW(J):R0'4(J)+l 
14(1,J):999 
M(J,1):1 
MSCI,J):999 
MS(J,I):999 

30 CONTINUE 
40 CONTINUE 

RETURN 
END 



) 
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Appendix B 

Test results of DFS, DVDB, 

and ;11INMDFS algorithms 



Appendix B. Tables of tested results of DFS and DVDB algorithms . 

( 1) Total sum of DFS algorithm 
Starting Data 

vertex 1 2 3 4 5 6 7 8 9 10 11 -- --
1 66 350 409 2070 288 288 3230 216 1107 286 34 
2 66 375 443 2036 292 288 3195 216 1137 295 34 
3 66 375 431 1988 290 288 3138 216 1122 268 34 
4 65 375 396 2402 290 288 3153 216 1110 254 34 s 68 368 451 2012 290 288 3103 216 1183 236 34 
6 65 375 439 2272 288 292 3598 216 1035 241 
7 375 431 2202 288 290 3371 216 1129 255 
8 375 399 2206 290 292 3065 216 1213 236 
9 368 395 2288 292 288 3437 216 1183 275 

10 348 402 2206 290 290 3298 1125 252 
11 348 396 2044 3280 1149 
12 385 2030 3138 1234 
13 2232 3130 1193 
14 2298 3157 1183 
15 2094 3249 1215 
16 2604 3297 1175 
17 2106 3023 
18 2428 2958 
19 2064 3260 
20 2246 3220 
21 2964 
22 3153 
23 3160 
24 3486 

Best 
65 348 385 1988 288 288 2958 216 1035 236 34 value 

Note : These results were run over all eleven data and corresponded to every vertex as 
starting vertex . 



-

(2) Diameters of DFS algorithm 
Starting Data 

vertex 1 2 _3_ 4 _2._ 6 _7_ 8 _9_ 10 11 - -- --
1 5 7 7 13 9 9 20 6 13 7 4 
2 5 8 10 14 8 9 19 6 13 8 4 
3 5 8 8 12 8 9 15 6 12 9 4 
4 4 8 7 18 8 9 19 6 12 7 4 
5 5 7 10 12 8 9 17 6 13 6 4 
6 5 8 9 16 9 8 21 6 11 6 
7 8 9 16 9 8 21 6 13 8 
8 8 7 15 8 8 15 6 14 6 
9 8 6 14 8 9 19 6 13 9 

10 7 7 14 8 8 20 12 8 
11 7 7 14 21 13 
12 5 13 19 14 
13 14 18 13 
14 16 15 14 
15 14 16 12 
16 18 17 14 
17 14 16 
18 16 15 
19 14 19 
20 15 16 
21 15 
22 15 
23 20 
24 22 

Best 4 7 5 12 8 8 15 6 11 6 4 value 

Note: These results were run over all eleven data and corresponded to every vertex 
as starting vertex. 



- -
( 3) Total sum of DVDB algorithm 

Starting Data 
vertex 1 2 3 4 5 6 7 8 9 10 11 

1 58 337 369 * 290 290 2422 216 * 220 JO 
2 58 367 365 1798 292 292 2290 216 997 220 JO 
3 58 J48 * 1908 290 292 2348 216 992 216 JO 
4 58 348 343 1900 290 290 2365 216 1095 216 JO 
5 58 348 349 2010 290 292 2304 216 1021 226 JO 
6 58 368 * * 288 290 2428 216 1023 217 
7 J48 337 1848 288 290 2307 216 1061 222 
8 348 370 1800 290 292 2264 216 1041 232 
9 J48 * 2006 292 292 2380 216 1111 231 

10 J48 * 1884 290 290 2240 1023 216 
11 J48 * 2124 2351 1065 
12 J68 1830 2318 * 13 2012 2373 * 14 1834 2382 1108 
15 1916 2289 1047 
16 * 2337 1063 
17 * 2350 
18 1852 2307 
19 * 2316 
20 1878 2355 
21 2295 
22 2318 
23 2271 
24 2300 

Best 58 337 337 1798 288 290 2240 216 992 216 JO value 

*Anon-strongly connected orientation. 
Note: These results were run over all eleven data and corresponded to every vertex as 

starting vertex. 



(4) Diameters of DVDB algorithm 
Starting Data 

vertex 1 2 _i_ 4 _i_ 6 _7_ 8 _9 10 11 -
1 3 6 6 * 8 8 14 6 * 5 2 
2 3 8 6 11 8 9 12 6 10 5 2 
3 3 7 * 12 8 9 12 6 9 4 2 
4 3 7 5 11 8 8 14 6 12 4 2 
5 3 7 5 14 8 9 12 6 11 5 2 
6 3 8 * * 9 8 10 6 11 4 
7 7 4 11 9 8 10 6 11 5 
8 7 6 11 8 9 10 6 11 6 
9 7 * 13 8 9 11 6 13 6 

10 7 * 12 8 8 12 10 
11 7 * 14 12 11 
12 5 11 12 * 13 12 12 * 
14 11 10 11 
15 14 10 10 
16 . *- 13 11 
17 * 12 
18 12 12 
19 * 12 
20 11 13 
21 11 
22 11 
23 12 
24 13 

Best 
3 6 4 11 8 8 10 6 -9 4 2 value 

* A non-strongly connected orientation. 
Note: These results were run over all eleven data and corresponded to every vertex 

as starting vertex. 



(.5) Total sum of MINMDFS algorithm 
Starting Data 

vertex 1 2 3 4 .5 6 7 8 9 10 11 -- --
1 68 37.5 477 2202 288 288 3233 216 121.5 331 34 
2 68 368 48.5 2324 288 288 3197 216 1183 331 34 
3 66 368 48.5 2102 288 288 3224 216 1183 288 34 
4 68 361 48.5 2324 288 288 3092 216 1203 274 34 
.5 68 368 48.5 2200 288 288 3124 216 1201 268 34 
6 66 368 48.5 2266 288 288 3268 216 1201 270 
7 367 477 2324 288 288 3204 216 1129 277 
8 37.5 48.5 2322 288 288 3.594 216 1207 277 
9 361 485 2322 288 288 3124 216 1231 290 

10 360 48.5 2202 288 288 3144 1217 310 
11 382 477 2324 3224 1224 
12 485 2096 3197 1163 
13 2324 3233 1203 
14 2200 3197 1203 
15 2256 3290 1210 
16 2322 3479 1211 
17 2322 323.5 
18 2272 3348 
19 2400 3233 
20 2432 3208 
21 3091 
22 3479 
23 3271 
24 3227 

Best 66 360 477 2102 288 288 3091 216 1129 268 34 value 

Notes These results were run over all eleven data and corresponded to every vertex as 
starting vertex. 



( 6) Diameters of MINMDFS algorithm 
Starting Data 

vertex 1 2 3 4 5 6 7 8 9 10 11 - - - - -
1 5 8 11 16 9 9 23 6 15 9 4 
2 5 8 11 19 9 9 23 6 15 9 4 
3 5 8 11 16 9 9 23 6 15 9 4 
4 5 7 11 19 9 9 18 6 14 9 4 
5 5 7 11 16 9 9 18 6 14 9 4 
6 5 7 11 19 9·--. 9 20 6 15 9 
7 8 11 16 9 9 20 6 12 9 
8 8 11 16 9 9 23 6 15 9 
9 8 11 19 9 9 18 6 14 9 

10 8 11 16 9 9 18 15 9 
11 8 11 19 23 14 
12 11 16 23 14 
13 19 23 14 
14 16 23 14 
15 16 23 15 
16 16 23 15 
17 16 20 
18 19 19 
19 17 16 
20 18 20 
21 20 
22 23 
23 22 
24 22 

Best 5 7 11 16 9 9 16 6 12 9 4 value 

Notes These results were run over all eleven data and corresponded to every vertex 
as starting vertex. 




