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Abstract 

The SAOS Road Network Simulator (SARNS) is a graphical simulation program for 

transportation planning, implemented using the structural active-object system (SAOS) 

approach. A SAOS is an object-oriented concurrent system that consists of a collection 

of interacting structural active objects (SAOs), whose behaviors are determined by transi­

tion statements provided in their class definitions. Furthermore, SAOs can be structurally 

and hierarchically composed from their component SAOs, allowing various applications to 

be rapidly developed as SAOS programs. The active components used in transportation 

planning, such as vehicles and traffic signals, can be naturally modeled as SAOs. The 

typical composition of these components into a complete road network allows for the rapid 

prototyping of various road network configurations and vehicle generation scenarios. An 

interactive graphical user interface displaying the dynamic state of the simulation is an in­

herent part of a SARNS program. Such a graphical interface can be directly created from 

a design specification, either by hand or in the future by using a SAOS graphical editor. 

Key Words and Phrases: Transportation planning, computerized traffic simulation, 

object-oriented simulation, active-object systems, structural composition, hierarchical com­

position, rapid prototyping, graphical user interface 
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1 Introduction 

With current traffic overloading existing facilities, the need for efficient planning to meet this 

increasing demand has become critical. Unfortunately, before computer models were available, 

the only way to observe the effectiveness of a given road network configuration was to spend a 

large amount of money building it. The use of computer simulation in transportation planning 

has become an accurate and cost effective alternative for dealing with the need to locate 

new and improved streets to meet the demand. Computerized traffic simulation models have 

been generally accepted by transportation planners because they provide the opportunity to 

quickly evaluate multiple network alternatives, produce replicable results, and permit the use 

of sophisticated models [LEWl86]. 

The technology available for computerized traffic simulation has advanced substantially 

since the first models were introduced in the 1950s. Since then, programs have progressed 

from mainframe computers with no graphic capabilities to large, fast microcomputers and 

PCs with interactive graphics and menu systems [LEWI90]. Today many computer simulation 

models are available for analyzing the various operating environments of road networks. These 

operating environments include signalized intersections, arterial networks, freeway corridors, 

and rural highways. Both microscopic and macroscopic computer simulation models have been 

developed for each of these operating environments [DAY90]. 

Computer simulation of traffic networks has many known benefits [ROSS77, DAY90] but 

also has several drawbacks. The most significant of these drawbacks is that many current sim­

ulation models have extensive data input requirements. In addition, the large amount of data 

these models require is difficult or impossible to obtain, casting doubt on the validity of simu­

lation results. Despite the inclusion of graphical displays, network input and editing remained 

very tedious and time-consuming. This difficulty lead to the development of preprocessor 

programs to simplify the task of preparing and checking data inputs [DAY90]. 

In this paper, the SAOS Road Network Simulator (SARNS) is introduced. SARNS is a 

graphical simulation program utilizing an event-driven control mechanism in conjunction with 

a structural and hierarchical software construction methodology to model traffic on road net-
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works. SARNS takes advantage of the structural and hierarchical object composition available 

through the SAOS approach to create large microscopic arterial traffic simulations from smaller 

fundamental components. In the field of transportation planning, these components are well 

defined [HOR087], and their structural interconnectivity is well understood. In addition, the 

network application schema for a transportation network lends itself to hierarchical construc­

tion and composition [HOR087], making it an ideal application for a computer simulation like 

SARNS. 

The primary design goal for SARNS is the ease of simulating various scenarios in trans­

portation planning. SARNS uses triggered callback methods to encapsulate the control of the 

system within the individual active components. This unique approach, combined with the 

ability to use structural and hierarchical composition of component objects in forming com­

plete road network configurations, allows for rapid prototyping of network alternatives to meet 

the SARNS goal. 

SARNS provides support for the creation of new road networks or the modification of 

existing ones. It potentially eliminates much of the tedious data input existing in current 

traffic simulation systems. A graphical user interface ( GUI) is utilized to display the network 

configuration, giving users the ability to analyze traffic flow within the network, observe relative 

component loads, and detect gridlocks. The SAOS diagram created in the design phase is 

used as the basis for the simulator's user interface. A SAOS graphical editor can easily be 

constructed for use in conjunction with the GUI, allowing the network configuration to be 

edited while the simulator continues to run. 

The current implementation of SARNS is a prototype model, permitting users to define 

an arbitrary street network, including user-defined turning movements and vehicle generation 

volumes. Simulation components can be interactively selected via a pointing device to view 

their states as the simulation progresses. Signalized intersection control and mechanisms for 

automatic evaluation of network effectiveness are not yet supported, but are planned for future 

versions of the simulator. A robustly developed system will allow transportation engineers the 

benefits of computer simulation to investigate traffic flow alternatives without the tedium of 

many existing models. 
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The rest of this paper is organized as follows: Section 2 describes the SAOS approach that 

SARNS is based on. Section 3 introduces how vehicles may be constructed as active objects 

and move within the road segments of the simulation , Section 4 details the basic other com­

ponents and functionality of SARNS and describes how structural composition, hierarchical 

composition , and encapsulated control are utilized. Section 5 discusses the features and va­

lidity of the SARNS model while showing examples of how SARNS can be utilized to rapidly 

prototype a set of road network alternatives. Section 6 concludes the paper. 

2 The SAOS Approach 

Object-oriented programming (OOP) [GOLD80, MEYE88, STRO86] is making fundamen­

tal changes in software development. Such features as encapsulated classes, inheritance, and 

polymorphism provided by OOP allow us to implement highly modular reusable software com­

ponents. Furthermore, since objects which embody state and behavior resemble real-world 

objects better than traditional software modules, object-orientation provides a suitable frame­

work for software development [BOOC91, RUMB91]. 

A structural active-object system (SAOS) is an object-oriented concurrent system using 

transition (production) rules, equational assignment statements, and event routines for its be­

havior description. Production systems have been known to be suitable for various concurrent 

systems that require flexible synchronization [ZISM78]. The SAOS approach integrates object­

orientation and production rules. The key mechanism used by SAOSs is structural and hier­

archical composition of structural active objects (SAOs ). Structural/hierarchical composition 

allows SAOs to be constructed from their component SAOs like hardware objects. Note that 

hardware objects are active autonomous objects. Structural and hierarchical composition is 

universally used in the design and implementation of such complex electronic and mechanical 

devices as VLSI chips and automobiles. 

However, passive objects used in conventional OOP do not provide proper encapsulation 

or modularization of control when they are used to model active objects in the real world. A 

simple example is a (dumb) traffic signal that changes its state according to its own internal 
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timer. When a traffic signal is implemented as a passive object, another object must send the 

traffic signal a message to let it change its state. When a traffic signal is implemented as an 

active object, it can completely hide from the outside its capability to change states like a real 

traffic signal. 

The behavior of each SAO is determined in the transition statements provided in the class 

definition of that SAO. Each transition statement is a transition rule, which is a condition­

action pair, an equational assignment statement, or an event routine. Equational assignment 

statements maintain simple invariant relationships among SAO states. Event routines are 

activated by messages. Since behaviors of SAOs are determined by user-programmed transition 

statements, classes for new types of components can be easily added. 

The SAOS approach primarily uses structural composition of SAOs whereas conventional 

OOP uses procedural interfaces provided for passive objects. In order to support structural 

composition of SAOs, interface variables, which resemble terminals of hardware components, 

are used to interconnect SAOs. These interface variables are crucial for structural composition, 

through them each SAO can access, besides the state of that object, the states of the other 

objects known to it through its interface variables, thus realizing inter-object communication. 

We can establish interconnections among SAOs by binding objects to their interface vari­

ables. This binding is performed when a composite SAO is constructed from their component 

SAOs. In a sense, binding objects to interface variables is analogous to wiring VLSI chips. 

SAOs can be modularized in the same way as hardware objects are modularized. Structural 

composition of active objects with standardized interfaces provides the basis for realization of 

software ICs as espoused by Cox [COX87]. Since SAOs are software objects, they are more 

flexible than hardware objects. For example, such features as inheritance and polymorphism 

in the standard OOP can be used in defining SAOS classes. 

Besides modeling functionalities of components, SAOSs provide dynamic (animated) graph­

ical user-interfaces. A SAOS diagram, which graphically represents the structure of a SAOS 

as a collection of interconnected SAOs, can be made structurally similar to the system to be 

simulated. Therefore, a SAOS diagram can be used as the basis of a system design document, 
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actual executable code, and user interface. 

SAOS user-interfaces are supported by the Active Object User-Interface Management Sys­

tem (AOUIMS) [CHOI92], which can be used in conjunction with a SAOS graphical editor. 

AOUIMS allows us to create dynamic ( animated) graphical user interfaces by structural and 

hierarchical composition and to specify the behaviors of graphical objects by transition state­

ments. Low-level SAOs are textually coded, but their graphical representations can be added 

with small extra effort. High-level SAOs, which are executable, can be created directly as 

SAOS diagrams by graphical SAOS editors. It is also possible to generate textual representa­

tions from SAOS diagrams. 

The SAOS approach is a new programming paradigm for object-oriented concurrent sys­

tems. The approach is suitable for a system that consists of interconnected components in­

teracting with each other asynchronously. It can be applied to such diverse application areas 

as discrete simulation [CHOI91], process and manufacturing control [MINO93], hardware logic 

simulation, graphical user interfaces [CHOI92], graphical editors, and algorithm animation. 

For these applications, the SAOS approach provides a single framework that can be used 

throughout a software lifecycle including the analysis, design, implementation, test, operation, 

and maintenance stages. This paper demonstrates how the SAOS approach can be applied to 

transportation planning simulation. 

3 Traffic Simulation Using The SARNS Approach 

SARNS utilizes the four basic component types inherent to transportation planning: Vehicles, 

Terminals, (road) Segments, and Intersections. In this section, we show how a Vehicle can 

be modeled as an SAO. The corresponding movement of Vehicles within Segments is described 

by a simple example. 
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3.1 Vehicles as Structural Active Objects 

Vehicles are the most significant active object of the SAOS Road Network Simulator. In­

formation regarding the activity and efficiency of a particular simulation configuration can be 

acquired by observing the Vehicles as they appear to physically move within the confines of 

the Segments of the network. 

Time t Time t' 

d 

1 

1 

A B 

Figure 1: Vehicle Within A Road Segment 

Fig. 1 shows the movement of a single vehicle within a road segment. Fig. la shows vehicle 1 

within a road segment at time t. To move properly within a road segment and avoid collisions, 

the only essential information a vehicle in the real world needs to know outside of its internal 

state is the vehicle ahead of it and the state of the next component (intersection or terminal) 

that it will encounter. Since there are n:o vehicles ahead of vehicle 1, the distanced to the next 

component (the end of the segment) is used in determining how the vehicle will move in the 

next timestep. Fig. lb shows the new position of vehicle 1 at time t'. 

Fig. 2 shows the class definition of a Vehicle when modeled as a SAO. Note that the 

Vehicle need only be designed once. Once this component has been created, it can be du­

plicated to create an entire set of Vehicles upon demand [HORO87]. Fig. 3 gives the corre­

sponding class definition for a road Segment. 
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class Vehicle public Arc { 
public: 

ComType 
int 
VehState 
float 
float 
Vehicle* 
Segment* 
Intersection* 
Terminal* 
float 
Vehicle(); 

componentType; 
vehicleID; 
vehState; 
speed; 
acceleration; 
vehAhead; 
currentSeg; 
nextintersection; 
nextTerminal; 
ncDistance; 

virtual 
void 
void 

virtual void initialize(); 
Display_Instance(); 
vehicleSelected(); 

II Enumerated Type 
II Unique ID for vehicle instance 
II Enumerated Type 
II speed of vehicle movement 
II acceleration coefficient 
II Closest vehicle ahead 
II Segment the vehicle is currently in 
II Next intersection to stop at 
II Next terminal to stop at 
II Distance Remaining to next component 
II constructor 

II Method to display contents of instance 
II Method to display within control panel 

private: 
void 
float 
float 

runTimeChanged(); 
modifyAcceleration(float, 
modifyLocation(); 

float, float); 

}; I* Vehicle Class *I 

Figure 2: Vehicle Class. 

class Segment : public Line { 
public: 

}; 

ComType componentType; 
int segmentID; 
Float length; 
int speedLimit; 
void* source; 
void* dest; 
int turningPct; 
Float travelLength; 
Vehicle* lastCar; 
Segment(); 
void 
void 

I* 

initialize(); 
Display_Instance(); 

Segment Class *I 

II Enumerated Type 
II Unique key for a road segment instance 
II Travel length of the road segment 
II Segment speed limit 
II Component that feeds the segment. 
II Component the segment empties into. 
II Percent of vehicles routed to this segment 
II Distance a vehicle travels on the segment 
II Most recent car to enter the segment 
II Constructor 

II Method is display contents of instance 

Figure 3: Segment Class. 
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Vehicle Class. When modeling a vehicle as a SAO, only the essential information should 

be encapsulated into its class definition. Each Vehicle in the simulation maintains 

its own internal state, consisting of the Vehicle location, speed, and acceleration. As 

with real-world vehicles, the only external information a Vehicle must keep track of 

to travel within a road segment is the location/status of the next component and the 

location/status of the Vehicle directly ahead of it (if any). Thus to avoid collisions and 

properly travel within a Segment, a Vehicle also maintains a pointer to both to the 

Vehicle directly ahead of it and the component (Intersection or Terminal) at the end 

of the segment. 

A Vehicle proceeds along a Segment using these parameters. In each timestep, a 

Vehicle may do one of the following: 

1. Be generated by a source Terminal and enter the configuration. 

2. Be routed to a sink Terminal and exit the simulation. 

3. Proceed along a Segment, optionally accelerating or decelerating while avoiding 

collisions with other Vehicles. 

4. Enter an Intersection to be routed to the next Segment. 

Segment Class. The class definition for the Segment class is shown in Fig. 3. Instances of this 

class connect Intersections and Terminals. Vehicles travel within these components 

throughout the simulation. A Segment may be one of three types: EntrySegs connect 

source Terminals to Intersections, ExitSegs connect Intersections to sink Terminals, 

and TravelSegs connect two Intersections. Segments are unidirectional, meaning that 

Vehicles travel from the source components to destination components but not the 

reverse. 

A Segment must know its type, the source and destination components which it con-

. nects, and the length ( distance) between those components. In addition, it must know 

the percentage of Vehicles which enter the Segment from the source component, the 

start location for Vehicles entering the Segment, the travel length to the destination 

component, and the speed limit for Vehicles traveling within it. Lastly, a Segment must 
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keep track of the last Vehicle to enter it. When a new Vehicle enters the Segment, this 

lastCar value can be used to determine the vehAhead value for the new Vehicle. 

The functionality for a Segment is encapsulated in it's method definitions. Segments have 

two external interface variables used for the structural composition of complete network 

configurations . As might be expected, these interface variables are the pointers to the 

source and destination components that the Segment instance connects. 

3.2 Simulating Vehicle Movement in SARNS 

A Vehicle spends a majority of its time moving within the Segments of the simulation. When 

a Vehicle enters a Segment, its id is used to set lastCar, replacing the previous lastCar. 

This previous lastCar value is used to set vehAhead for the new Vehicle. 

if (vehAhead != NULL) 
if ((vehAhead -> myVisible) -- FALSE) 

if (vehAhead != NULL) { 
float xdelta = xRel - (vehAhead->xRel); 
float ydelta = yRel - (vehAhead->yRel); 

vehAhead = NULL; 

float distance= (sqrt((xdelta * xdelta) + (ydelta * ydelta))); 

acceleration= modifyAcceleration(distance, speed, (vehAhead -> speed)); 
speed= speed+ acceleration; 

}; 

Figure 4: Initial Vehicle Movement Code Fragment. 

Fig. 4 shows the initial code fragment for a Vehicle moving within a Segment. To prevent 

collisions, the vehAhead pointer is first checked . If this pointer is not NULL, its value is used 

to check if the Vehicle ahead has left the Segment in the last timestep . If the Vehicle ahead 

has left the Segment, vehAhead is reset to NULL. 

If vehAhead remains not NULL, there is a Vehicle ahead of the current Vehicle to be 

J considered for collision avoidance. The distance to the Vehicle ahead is used as a parameter in 

modifying the current Vehicle's speed and acceleration. The value of ncDistance ( distance 
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to the next component) is ignored in these computations, since the Vehicle pointed to by 

vehAhead must be closer to the current Vehicle than the next component. 

If vehAhead is NULL, there is no Vehicle ahead of the current one. In this case, the 

distance to the next component (ncDistance) is checked to see if the Vehicle has reached the 

end of the Segment. If so, the Vehicle exits the Segment and is routed to next Intersection 

or Terminal. If the current Vehicle is also the last car to enter the Segment, lastCar is set to 

NULL. If the Vehicle remains in the Segment, the Vehicle acceleration, speed, and location 

are modified as before. Fig. 5 shows the code fragment for this case. 

if (ncDistance <= VehicleGap) 
{ 

// At Intersection or Terminal 

} 

if (((nextintersection) ->blocked)== FALSE) 
{ 

((nextintersection) -> currentVehicle) = this; 

// Give to intersection 

((nextintersection) ->blocked)= TRUE; // Set Trigger Variable 
if ((currentSeg->lastCar)->vehicleID == vehicleID) // Is this the 

{ currentSeg->lastCar = NULL; currentSeg =NULL;} // last car? 
} 

return; // Don't modify acceleration 

acceleration= modifyAcceleration(ncDistance, speed, O); 
speed= speed+ acceleration; 

Figure 5: Vehicle Movement Code Fragment - No Vehicle Ahead. 

Figure 6 visually details the process of vehicle movement when more that one Vehicle 

is within a Segment. Figure 6a shows the Segment when a second Vehicle (2) enters the 

simulation behind the initial Vehicle (1). In this case, the distance d2 to Vehicle 1 is used 

in determining how Vehicle 2 will move in the next timestep . 

Figure 6b shows the Segment after Vehicle 1 has exited. In this case, Vehicle 1 is 

determined to no longer be ahead of Vehicle 2. Thus vehAhead for Vehicle 2 becomes 

NULL and it's associated value is no longer considered in the movement of Vehicle 2. The 

distance to the end of the segment ( ds') is sufficient for this purpose. 

14 
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Figure 6: Second Vehicle Within Road Segment 

4 Simple Traffic Network Simulation 

In this section, the remaining components and functionality of the SAOS Road Network Sim­

ulator are introduced by another simple example. The key features of the SAOS approach as 

they apply to SARNS will briefly be discussed here. 

4.1 Sample Network Configuration 

A SARNS network configuration takes the form of a bidirectional graph consisting of nodes 

(Intersections and Terminals) and links (Segments). Transportation networks can be en­

tirely represented using only these two fundamental graphical elements [HOR087]. 

Fig. 7. shows the resulting SARNS simulation derived from the network components de­

fined in Fig. 9. This sample road network configuration consists of six Terminals and two 

Intersections, all connected via road Segments. 

Traffic fl.ow within SARNS proceeds from the source Terminals to the sink Terminals. 

\ Each source Terminal waits a defined period of time and then generates a Vehicle. It 
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Figure 7: Sample Network Configuration 

passes that Vehicle to it's adjacent Intersection through a connecting road Segment. The 

Intersection routes the Vehicle to another Segment towards either another Intersection 

or a sink Terminal. When a Vehicle is routed to a road Segment, the simulated Vehicle 

appears within the Segment. When a Vehicle is routed to a sink Terminal, it exits the 

simulation. 

class TranSim public TopLevel { 
public: 

NetWindov netWindov; 
ControlPanel controlPanel; 
TranSim(char*); 
void initialize(); 
void setWindovSize(); // callback function to set vindov size 

}; I* TranSim Class - TopLevel Class *I 

Figure 8: Transportation Simulation Main Class. 

Fig. 8 shows the class definition for the SARNS simulator main program. As with other 

SAOS programs, this main program takes the form of a top-level class definition. In the case of 

SARNS, this top-level component consists of a graphical window encompassing the netWindov 

and control panel sub-components. 
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l The netWindow displays the road network configuration currently being simulated. Indi­

vidual components within the simulation can be selected via a pointing device such as a mouse. 

When a component is selected in this manner, a set of instance variables for the component is 

displayed in the control panel. The simulation can be paused or run continuously, allowing 

the user to view the interaction of traffic within a varied range of road network configurations 

and vehicle generation scenarios. 

class NetWindow: public Rectangle { 
public: 

}; 

Intersect_List * 
SourceTerm_List * 
SinkTerm_List * 
Segment_List * 
Segment_List * 
Segment_List * 
NetWindow(); 
void 
void 
void 
Intersect_List * 
SourceTerm_List * 
SinkTerm_List * 
Segment_List * 

Segment_List * 

intList; 
sourceList; 
sinkList; 
entrySegList; 
exitSegList; 
travelSegList; 

initialize(); 
Display-Instance(); 
insertVehicle(Vehicle *); 
readintersectEntries(Intersect_List *); 
readSourceTermEntries(SourceTerm_List *); 
readSinkTermEntries(SinkTerm_List *); 
readEntrySegEntries(Segment_List *• 

Intersect_List *• SourceTerm_List *); 
readExitSegEntries(Segment_List *• 

Segment_List * 
I* NetWindow 

Intersect_List *• SinkTerm_List *); 
readTravelSegEntries(Segment_List *• Intersect_List *); 

Class *I 

Figure 9: Simulator Network Window. 

Simulator Network Window Class. Fig. 9. shows the class definition for the SARNS 

NetWindow class. The netWindow is the generic class which defines the set of compo­

nents used in the simulation . This class definition is the same for all possible road 

configurations, including Fig. 7. The methods of this class read a set of auxiliary text 

· files which contain the specification for the configuration currently being simulated. 

Once the set of simulator components has been declared through the netWindow meth­

ods, structural composition is utilized to connect the component instances through their 
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individual interface variables. These same interface variables are used to set up triggers 

which encapsulate the control of the system. 

The components defined here and their connections defined in the auxiliary text files can 

be quickly modified to allow the rapid prototyping of multiple road network configura­

tions. The Vehicle class is not included in the netWindoY class definition, since Vehicle 

instances are created dynamically within individual runs of the simulator and thus the 

number of Vehicles is not known at initialization time. 

A discussion of how the components are connected through their interface variables, the 

use of triggered callback methods to encapsulate control, and how the use of SARNS 

provides the potential for the rapid prototyping of a number of possible road network 

configurations is deferred to later sections. 

To complete the description of network simulator, we must of course define the classes for 

the remaining component objects used by the system. 

class Terminal: public Rectangle { 
public: 

ComType componentType; 
Vehicle* currentVehicle; 
Int blocked; 
int termID; 
int vehicleCount; 
Segment* port; 
int vehiclesPerHour; 
int minGenerationinterval; 
int generationRange; 
Terminal(); 
virtual virtual void initialize(); 
void terminalSelected(); 
void Display_Instance(); 

}; I* Terminal Class *I 

II Enumerated Type 
II Most recently created vehicle 
II TRUE if occupied by a vehicle 
II Unique instance identification number 
II# that have gone through the terminal 
II Segment the terminal is connected to 
II Number of vehicles generated per hour 
II Minimum Interval betYeen generations 
II Range of randomness in interval 
II Constructor 

II Method to display contents of instance 
II Method to display Yithin control panel 

Figure 10: Terminal Class. 

Terminal Class. The class definition for the Terminal class is shown in Fig. 10. Terminals 

are the endpoints of the ·simulation. A Terminal instance may be either a source 
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class Intersection public Arc { 
public: 

}; 

MyTimer 
ComType 
int 
Int 

tm; 
componentType; 
intID; 
blocked; 

Vehicle* currentVehicle; 
int vehicleCount; 
Segment_List * toPorts; 
Segment_List * fromPorts; 
Intersection(); 
void initialize(); 
int Check_Data(); 
void Display_Instance(); 
void intersectSelected(); 
void Start_Routing(); 
void Finish_Routing(); 

II Measures duration of vehicle blockage 
II Enumerated Type 
II Unique instance identification number 
II TRUE if occupied by a vehicle 

II# that have gone through the intersection 
II connections vehicles can be routed to 
II connections vehicles can be received from 

II Method to display contents of instance 
II Method to display vithin control panel 

int sendToSegment(Segment II Routes 'currentVehicle' to Segment 
I* Intersection Class *I 

Figure 11: Intersection Class. 

Terminal or a sink Terminal. Vehicles enter the simulation via source Terminals 

and leave via sink Terminals. Source Terminals are responsible for producing Vehicles 

at defined intervals and introducing these same Vehicles into the simulation. Sink 

Terminals have the corresponding task of removing vehicles from the simulation that 

have been routed to them. A Terminal should keep track of its location, the Segment 

to which it is attached, and the number of Vehicles that have passed through it. It 

should also know if it is currently occupied (blocked) by a Vehicle and the identity of 

said Vehicle. 

The functionality for a Terminal instance is encapsulated in its method definitions. 

Terminals have a single external interface variable for structural composition which is a 

pointer to the Segment to which the Terminal is attached. 

Intersection Class . An Intersection, whose class definition is shown in Fig. 11, exists 

where two or more Segments cross. Vehicles are routed at an Intersection according 

to the turning movements of the associated Segments. An Intersection should know its 
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location, the components (segments) to which it is attached, and the number of Vehicles 

that have passed though it. Similar to Terminals in the routing of Vehicles, it should 

also know if it is currently occupied (blocked) by a Vehicle and the identity of this 

Vehicle. 

As with the other simulator components, the functionality of an Intersection instance 

is encapsulated in its method definition. Different from the other components are an 

Intersection's external interface variables. Since structural composition can be used 

to construct arbitrary network configurations, any single Intersection instance may 

have an arbitrary number of Segments which connect to it. Thus, the interface variables 

for an Intersection take the form of a linked list of these Segment instances. 

4.2 Creating Complete Networks Through Structural Composition 

As mentioned previously, to simply declare the set of simulator components in the SARNS 

main program is not enough to form a functional simulation. Structural composition must be 

utilized to connect the appropriate components through their interface variables. 

Segment 
Intersection 
Intersection 

aTravelSeg; 
intersect!; 
intersect2; 

aTravelSeg->source = &intersect!; 
aTravelSeg->dest = &intersect2; 
intersect1->toPorts) = add(&aTravelSeg); 
intersect2->fromPorts) = add(&aTravelSeg); 

// add to list of toPorts 
// add to list of fromPorts 

Figure 12: Sample Segment to Intersection Connection 

Sample Connection. In Fig. 12, aTravelSeg is a travel segment with intersect 1 as its 

source and intersect2 as its destination. This code fragment is an example of struc­

tural composition, setting the interface variable values for each component. The travel 

segment's source pointer is set to intersect!, while the destination pointer is set to 

intersect2. The travel segment is also added to intersect 1 's list of segments that can 

be routed to, and intersect2's list of segments that can be routed from. 
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Structural composition via interface variables for Source Terminal to Intersection con­

nections (entrySegs) and Intersection to Sink Terminal connections ( e.xitSegs) is done 

similarly; thus allowing each component instance in the simulation to know which other 

component instances it is connected to. It is through these interface variables that a com­

ponent can access the states of other components, making inter-object communication 

throughout the simulation a reality. 

4.3 Trigger Setup For Localized Control 

Control in a conventional object-oriented program is passed by messages or procedure calls. 

In both of these cases, methods or procedures can be activated only by explicit external 

stimulations, which eventually must come from a main program. In a SAOS such as SARNS, 

control is localized within an individual simulation object. Thus the simulation program itself 

does not control the sequence of events (such as through a main program). Instead each 

component implements its own portion of control to initiate its operations. These operations 

are written as callback methods which are executed whenever certain activation events occur. 

Int blocked; // TRUE if occupied by a vehicle 

Figure 13: Condition Variable for Intersection Class. 

PROC pf1 = PROC (&(Intersection::Start_Routing)); 
blocked.tl.addTE((AObject *) this, pf1, ''Start_Routing()''); 

Figure 14: Trigger Setup for Start Routing() Method. 

In SAOS, events which trigger callback methods are controlled through condition variables. 

The type Int designates a condition variable for an integer. Fig. 13 shows a fragment of 

the Intersection class definition in which the blocked instance variable is designated as a 

condition variable of type Int. A condition variable maintains a list of pointers to functions, 

called a trigger list. Whenever the value of a condition variable is updated, the functions 

pointed to by the elements of the trigger list are executed. In the case of an Intersection, 
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the method Start Routing() is activated whenever the blocked condition variable is updated. 

Fig. 14. shows the code fragment required to set up this trigger. 

(dest -> currentVehicle) = currentVehicle; 
(dest ->blocked)= TRUE; 

Figure 15: Code Fragment to Trigger Start Routing Method. 

Interface variables are an essential part of encapsulating control within a component. 

Rather than explicitly calling a method for another component, components can trigger the 

callback methods of the components that they are connected to through their interface vari­

ables. Thus, when a Vehicle arrives at the end of a road Segment having an Intersection as 

it's destination, the vehicle can be passed to that Intersection using a code fragment similar 

to Fig. 15. By modifying the blocked condition variable, a message is effectively sent to the 

Intersection, asking it to route the current vehicle. 

This section has briefly introduced the basic components and functionality of the SAOS 

Road Network Simulator. Note that much larger road network configurations than this simple 

example can be created easily using structural composition through interface variables, while 

encapsulation of control allows all functionality for SARNS to be handled either directly or 

indirectly through triggered callback methods. These concepts are put together in the next 

section to show how SARNS can be used to rapidly prototype multiple road network scenarios. 

5 Discussion 

In this section, examples are shown which detail how SARNS can be utilized to rapidly pro­

totype a set of road network alternatives. In addition, the current features of the simulation 

system are discussed, together with a description of future work planned for SARNS. 

22 

) 



, ) 5.1 Rapid Prototyping of Network Alternatives 

For any given transportation application, there are only a few component types. Once de­

fined, these components can be repeated hundreds or even thousands of times to produce all 

the component instances in an entire network. In SARNS, the specifications for the entities 

which comprise a given road network configuration are read in from external files, giving the 

application source code independence from the individual configuration of the network. These 

features, combined with the structural and hierarchical object composition available through 

the SAOS approach, allow for rapid prototyping of road network scenarios. 
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Figure 16: City Center Network 

City Center Network . A complex road network configuration consisting of approximately 

200 components is represented in Fig. 16. This network is a modest representation of the 

city center street grid for Corvallis Oregon. As is shown by the backup of vehicles, the 

network at times is saturated, resulting in unreasonable delay times for commuters. City 

\planners considered the alternatives of building an arterial to bypass the downtown grid 

and relieve congestion, while at the same time pursuing the development of a downtown 

convention center which could significantly increase traffic loads in the area. 
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Figure 17: City Center Network With Bypass 
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Figure 18: City Center Network With Conference Center 
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Figure 19: City Center Network With Bypass And Conference Center 

Figs. 17 - 19 detail how the options considered by the city's planners can be modeled using 

SARNS. Adaptation of the network to include the bypass as shown in Fig. 17 requires minor 

modification/addition of only 12 lines of the original simulation's configuration files. Fig. 18 

shows the network when the proposed conference center is included (lower, right corner of the 

main grid, a vehicle exiting the center is highlighted). This adaptation of the network again 

requires minor modification/addition of only 12 lines of the original simulation's configuration 

files. Adaptation of the network to include both proposed additions as shown in Fig. 19 requires 

both modifications above, that is, the changing of only 24 lines in the simulation's configuration 

files. 

It is important to note that SARNS was not available when these modifications where 

being considered, thus the application of SARNS to the previous set of configurations is only 

an exercise . The simplicity of the modifications required nonetheless shows that significant 

road network alternatives can be rapidly prototyped using SARNS. 
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5.2 Current Features of SARNS 

SARNS has the ability to rapidly prototype road network configurations; however, as a usable 

transportation planning tool, the current version of SARNS lacks some important features. For 

example, signalized intersection control is not supported, and a statistical package to evaluate 

methods of effectiveness (MO Es) automatically for the network is also missing. 

Accurate data and figures from other research were used whenever possible in determining 

the values of variables used in the simulation. Values used for the maximum acceleration of 

a vehicle in one timestep (taken from [DAY90]) are an example of this. However, there is no 

way to validate the model without performing comparative analysis in the field. It should be 

noted that the current version of SARNS is a prototype. As such, validation of the SARNS 

model goes beyond the curr~nt scope of the project within which it was designed. 

The graphics in SARNS are rudimentary at best; however, the accuracy of the visual 

representation for transportation networks is not of paramount importance. A visually accurate 

drawing is impossible to produce for some networks and impractical for others. The graphics 

need only be sufficiently informative so that the user can readily identify what each component 

is supposed to be [HORO87]. 

SARNS Vehicle generation volumes are specified in terms of the number of vehicles per 

hour (VPH) to be generated by a source Terminal. This volume is used to seed a random 

number generator according to which the interval between Vehicles is determined. This 

approach differs greatly from most other simulators which usually assume a method based on 

a probability distribution. It should be noted, however, that this assumption is often violated 

in real life [COHE77]. Given this tradeoff, the VPH method was judged easier to implement. 

Turning movement percentages are attached to each road Segment in the simulation. A 

Vehicle is routed to a Segment according to these turning percentages. Most other simula­

tion ~odels also use turning percentages to route vehicles within the simulation. A typical 

alternative is to utilize an origin-destination (OD) matrix which defines the origin and desti­

nation nodes for every Vehicle in the simulation. However, (OD) matrices are rarely available 

[SHEF87], while turning percentages are a standard part of traffic counts and are easily acces-
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sible by traffic engineers [ROSS77). 

The largest drawback of the SARNS prototype is the lack of intersection control. This 

feature can be implemented with little difficulty; however, due to time considerations, was 

not included in the current version of the system. Regardless, SARNS has the potential to 

overcome this deficiency in over-capacity situations, where traffic signals effectively become 

useless and transportation engineers become more concerned with bottlenecks and maximizing 

traffic flow than signal optimization. Such situations include emergencies ( such as natural 

disasters), special event overflow, and rush-hour simulation. 

5.3 Future Work 

Several additions to SARNS would add to its robustness, making it potentially suitable for 

actual application in the field. These future additions include specific traffic simulation-oriented 

features such as: 

1. Signalized intersections, including non-actuated, semi-actuated, and actuated options . 

2. A range of green time options. 

3. Turning pockets and lanes. 

4. A statistical package allowing for the automatic collection of MOE data. 

Past adding specific traffic simulation functionality, the inclusion of a SAOS editor is the 

most significant feature to be added to the SAOS Road Network Simulator. This is because the 

most time consuming part of creating a SARNS network configuration is the task of specifying 

the coordinates necessary to layout the components. Currently this must be initially done 

by hand. A SAOS editor can complement the existing GUI and be used to construct the 

component-declarations part of a SAO class on the display screen, including the locations and 

interconnections of components. 

J The creation of a SAOS editor for SARNS has the following advantages that will further 

enhance the ability of SARNS to rapidly prototype various road network configurations: 
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1. A top-level SAOS program can be automatically generated from the network created by 

the editor. 

2. This network is used as part of the user interface for the running simulation. 

3. This network can be edited while the simulation is running. 

6 Conclusions 

In a society where more and more traffic is overloading existing road systems, the use of com­

puters to facilitate efficient design and modification of transportation systems has effectively 

replaced traditional pen and paper methods. The SAOS Road Network Simulator (SARNS) 

is a graphical simulation program utilizing event-driven control mechanisms in conjunction 

with structural and hierarchical software construction methodology to model road network 

alternatives. 

SARNS utilizes the SAOS features of structural and hierarchical object composition and 

encapsulated control to create a system in which complete road network configurations are 

created from a small set of structural active objects (SAOs ). These SAOs are connected via 

interface variables to form a larger interconnected simulation system. SARNS encapsulates 

the functionality and control of the system within the individual active components using 

condition variables and triggered callback methods. Whenever the value of a component's 

condition variable is assigned, the corresponding callback method is executed. 

The SARNS graphical user interface (GUI) allows the user to test a scenario, quickly es­

tablish the validity of a proposed road network configuration, and locate further enhancements 

to the network. A SARNS graphical editor can be constructed for use in conjunction with 

the GUI, potentially eliminating the tedious data input existing in current traffic simulation 

systems. 

The features of SARNS give it the ability to rapidly prototype road network configurations. 

When robustly developed, SARNS has the potential to be a valuable tool for transportation 
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J engineers to use in investigating network alternatives without wasting valuable resources in the 

field. The functionality of SARNS makes it very useful in a variety of situations, including: 

) 

1. Adding road Segments, Intersections, and Vehicle sources to model new development 

and growth. 

2. Modifying signal timings and intersection controls to experiment with traffic flow control 

alternatives. 

3. Increasing traffic volumes in the simulation to model increased load on the network due 

to rush hour conditions or new growth. 
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