
MS Project

Satellite Data Ingestion Tool

Nimmi Kalinati

Department of Computer Science

Oregon State University

Corvallis, Oregon

October 2002

--------1: ---------------------------------

ABSTRACT

Satellite data ingestion tool is an automated database application for processing and archiving

the ocean and land data that is broadcasted by a remote sensing satellite. This Ingestion system

has a two-tier architecture, with data processing algorithm forming the first tier and the

database server forming the second tier. The raw satellite data is an HDF (Hierarchical Data

Format) file. An HDF reader has been developed that reads this satellite data file to extract the

required data. A program has been written, that converts HDF files into images. A database

schema has been developed in such a way that all important parameters of the satellite file can

be inserted into it along with the locations of data and image files.

This report consists of a detailed description of design and implementation of this ingestion

tool along with the design of the database schema.

2

ACKNOWLEDGEMENT

The project that I have presented here involves ingestion of satellite data and this would not

have been possible without Dr. Mark Abbott, who is the Principal Investigator. I am deeply

indebted to him for providing me with all the resources and an opportunity to work as a

graduate research assistant in the College of Oceanic and Atmospheric Sciences (COAS). I am

extremely thankful to my major professor Dr. Bose Bella for being very supportive and

providing me with invaluable guidance throughout my stay as a graduate student at Oregon

State University. Many thanks to Dr. Bruce D' Ambrosio for agreeing to be my minor

professor.

The most important part of this project was understanding ocean data. Curt V andetta and

Jasmine Nahomiak from COAS, were of utmost help in this regard. I am grateful to them for

being very patient with my queries and for their constant support in successfully completing

this project.

I would like to thank my friends for being highly understanding and motivating. Finally, a big

thanks to my family for being there for me all the time and for showering all the love.

3

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION 5
1.1 Background ... 5
1.2 Motivation .. 6

CHAPTER 2. SATELLITE DATA INGESTION TOOL. 9
2.1 Overview ... 9
2.2 Satellite File Format. ... 11
2.3 Requirement Analysis .. 11

2.3.1 Design Requirements .. 12
2.3.2 System Requirements .. 13

2.4 System Architecture ... ~ .. 15

CHAPTER 3. IMPLEMENTATION ... 17
3.1 MODIS Data ... 18
3.2 Data Processing and Ingestion ... 19

3.2.1 Data Processing .. 19
3.2.2 Ingestion .. 20

CHAPTER 4. CONCLUSION 31
4.1 Possible Enhancements ... 31
4.2 Future Work .. 33

REFERENCES 34

4

CHAPTER 1. INTRODUCTION

1.1 Background

The Earth Observing System (EOS) project, a part of the U.S Global Change Research

Program, collects data and analyzes it to develop computer models to study the global

ecosystem. The satellite data ingestion tool described in this report has been developed in

COAS (College of Oceanic and Atmospheric Sciences), which is one of the data analysis sites

for the EOS project. The data is collected either by deploying sensing instruments into the

world's oceans or by launching satellites into space. We are mainly concerned with the data

that is being collected by satellites. This remote sensing data comes to the college from two

sources; one, through the dish antenna installed in the college and two, from external research

agencies such as NASA's Goddard Distributed Active Archive Center (GDAAC).

Some years back, due to the unavailability of the kind of technology that is prevalent now, the

rate at which data was gathered was slow. Also there were no data centers and researchers had

to collect data by their own means. This left very few options for data sharing. But this

scenario changed considerably in recent years because, the data collection speed has been

constantly increasing due to technological advancements. Satellites have become one of the

most common and effective modes of gathering data to study the ecosystem. Since launching

and operating satellites are sophisticated and expensive affairs, sharing data has become a

must. Research dealing with such high loads of scientific data necessitates development of

scientific applications that automate the management, manipulation and analysis of these huge

data sets. The EOS-Data Information System aims at working towards this cause with the main

goal being design and development of information management and data exploration systems.

These systems aid in efficient storage and access to a wide range of data. I developed a

database backend by processing and inserting data gathered into a database. The rest of the

team members are involved with developing the visualizing tools for the archived data using

Active-X and XML technologies.

5

1. ------------------• ------------------------

Once the data is archived here at COAS, it is made available to the scientific community by

uploading it on the web. Researchers could then obtain the data from the web site using Ff P or

HTTP technologies. But this method is not without bottlenecks. With large volumes of data

coming in everyday, managing static web pages becomes cumbersome. Also, archiving the

data is a big problem that continues to exist. This project doesn ' t comply with the Distributed

Information System that the college is trying to build. And there are still other data sets which

have not been archived and need to be taken care of by this project.

The aim of this system was to design a tool that would automate the tasks of processing the

earth science and space data and insert it into appropriate tables in the database. It had to

accommodate multiple types of data sets to generate a large storehouse of data. It was to form a

strong backbone of a multi-tier distributed information system consisting of remote sensing

data.

The satellite data ingestion system has been developed using a two-tier architecture. The Java

application forms the first tier and the database server at the backend forms the second tier.

Since the implementation is in such a way that the application resides in the client machine, it

can be called a 'fat' client - 'thin' server architecture.

1.2 Motivation

In the past, data was available in magnetic tapes. It was loaded manually, processed using Perl

scripts and then ingested into SQL Server in batch mode, using 'bcp' (Bulk Copy Program)

utility. But this method was not sophisticated enough to handle high loads and varied formats

of remote sensing data that are now being collected through cutting edge data transmission

reception technology, such as the direct satellite broadcasting system.

Perl scripts were used with the data collected from the ocean sensors to order the column

formats, based on the corresponding table columns. Using 'bcp' utility, data files were then

inserted into the database. The image data was separately inserted using the 'text copy' utility.

6

------------------------• ------------------

The following are the requirements for using 'bcp ' utility:

► The data file should contain data in text-only format or a format previously generated by

'bcp' utility, such as native format.

► Destination must already exist.

► Columns in the table should be compatible with the fields of the data file being copied.

► Access permissions on source and destination tables should be set.

The 'bcp' utility, with such rigid requirements seemed fine for small ascii files with fixed

length data . But it was soon realized that satellite data files containing variable length image

and ascii data, with sizes that ranged from gigabytes to terabytes, could not be effectively

manipulated using this utility.

The disadvantages of adopting this command prompt utility to handle the ingestion of satellite

data has been listed below:

Data Size

The use of 'bcp' utility for even small ascii data file, requires much manual intervention to set

it in the format required by the table. With large volumes of data coming in at a rate that has

been increasing rapidly, using this utility will severely slow down the ingestion process.

File Format

The 'bcp' utility can work only if the data files can be represented in row-column format. But

the satellite data files are in a format called HDF (Hierarchical Data Format) which is not

understandable by this utility.

Content of Data

For some earlier satellite data sets, it was required that the data files and their image files be

inserted into the database. The data files could be stored in the database as character objects

and image files as binary objects. BLOB (Binary Large Object) and CLOB (Character Large

Object) are the data types in JDBC that support this kind of data. Both these data types are

capable of storing very large data in the corresponding formats. A logical pointer points to the

7

object in the database that the instance of the data type represents. This pointer is of 16-byte

size and it points to the data stored in a collection of 8 KB pages. These pages are not always

located next to each other and are ordered logically in a B-Tree structure. The image and data

files were converted into streams of data for convenience and then inserted into the database.

But, using bulk copy utility to insert data into these large object becomes a problem. This is

because it is not possible to insert an image or text stream in between columns of data and

delimit it with any terminator.

Metadata

The bulk copy utility requires that all the data to be inserted into the table be available in the

data file itself. Information such as when and where the data file was collected is present in the

form of metadata (description of data) in each file. But some data sets are not in self-describing

format. So for such data sets, information has to be gathered from the researcher and inserted

manually into the data files, which eventually increases the execution time.

Hence, the complexity and varied formats of data files, along with their massive sizes

necessitated the design and development of an efficient and robust ingestion tool.

8

CHAPTER 2. SATELLITE DATA INGESTION TOOL

2.1 Overview

There are several satellites that are being launched and controlled by NASA as part of its Earth

Observing System project. 'Terra' is one such satellite, which was launched in December 1999

to unravel the mysteries of climate and environmental changes. There are several instruments

onboard this satellite to measure various parameters of Earth. The Moderate Resolution

Imaging Spectroradiometer (MODIS), is the keystone instrument on Terra. It is an imaging

radiometer employing multiple in-track detectors, a cross-track scan mirror, collecting optics,

and a set of individual detector elements which will provide imagery of the Earth's surface and

cloud cover in 36 discrete spectral bands. Contiguous scan swaths of 2330 km in cross-track by

10 km in-track are acquired to provide 2-day repeat observations of the Earth, providing

scientists a nearly comprehensive global view. The data obtained, which is of the order of a

few tera bytes at one pass, is intended for the purpose of understanding the short term and long

term atmospheric trends, as well as, regional and global phenomena. The main goal of this

project has been creating a system to receive this volume of data from MODIS, organizing the

diverse data products, and then making them available to the research and scientific

community.

There are two phases involved in design and development of the automated satellite data

ingestion tool. One is the design and development of the ingestion procedures and the other is

the design of database schema.

1. Ingestion System

There are three factors that had a major influence on the design of the ingestion system:

1. Format of the data files, 2. Requirements from the scientists and 3. Geographic location of

the raw data. The main focus was to build a robust system that could handle a perpetual flow of

data in large volumes and seamlessly ingest them into the database as they are received. The

satellite data that is available is either collected through the dish antenna installed in Oregon

9

State University by Ocean Physics and Ecology Laboratory or from a data archiving center

called Goddard Distributed Data Active Archive Center (GDAAC). Data from both the sources

is visualized through high-resolution images. The system on the whole is a sophisticated one

with processing algorithms running in the background to ingest the data.

2. Database Schema

Designing of the database schema for this data accounted for a major portion of work in

developing this system. Database schemas were designed, based on the format of the data files

and the particular needs of the scientists who would be using this data. Database design is

represented using Entity Relationship diagram, under the "Implementation" topic in this report.

The database consists of a main table that contains common information about all the

transmission devices onboard a satellite. The other tables are the ones that store data that is

specific to each transmitting device. The initial idea was to ingest the image created for each

data file into the table along with the data file. This could have been done, by having a data

type called "image" in the table. JDBC (Java Database Connectivity) supports methods like

setBinaryStream. This method opens a Java class file as an InputStream object and uses that

inputstream to populate a column in the database. When a SQL INSERT statement is executed,

the bytes are read from the stream and stored in the image column of the row inserted into the

database. But this method could not be implemented due to two major reasons. Firstly, since

the image was to be made available on the web, the ITS server would query into the table, the

image from this column would be copied into ITS server bit by bit and then it would draw

image onto the user's monitor. All this would take several minutes and things would worsen if

the user had a slow speed connection. Secondly, the JDBC driver, MERANT's DataDirect

SequeLink driver, that we used did not support ingestion of data into "image" field of the

database. As an alternative to storing the data and image files directly into the database, the

paths where these files reside in the machine are put in the tables. As the next phase of this

project, the goal is to invoke the processing algorithms from different machines based on the

type of data set. A daemon process running on a machine will monitor the arrival of the data

set. On the arrival of data, based on the type of data set, the corresponding processing

algorithm will be triggered. The processing algorithm works on the data and populates the

appropriate table in the database. The main aim is to get the whole system working with much

less human intervention.

2.2 Satellite File Format

The EOS data arrives in a format called Hierarchical Data Format (HDF). The Hierarchical

Data Format is a multi-object file format for the transfer of graphical and numerical data in a

distributed environment. The National Center for Supercomputing Applications (NCSA) in

University of Illinois developed HDF to cater to the needs of diverse groups of scientists

working on projects in varied fields. For each data object in an HDF file, there is information

about the type, dimension and amount of data including its location in the file. Being "multi

object" means that it allows multiple types of data such as symbolic, numerical and graphical

data within one HDF file. NCSA HDF libraries provide command utilities to analyze the

structures of existing HDF files and display their contents on the user's screen. There are

several software tools existing, including Collage, IDL, Noesys, HDF Explorer etc. to view

these files. HDF was designed in such a way that it addressed many specifications of scientific

data, such as the following :

► Portability to multiple machines.

► Self documented.

► Capable of storing multiple data structure or types within the same file.

► Efficiency in storage and access of large data sets.

► Extensibility for future enhancements and compatibility with other standards.

2.3 Requirement Analysis

This section has the description of important high-level design and system requirements, which

are the basis for defining the architectural design of the ingestion tool.

11

2.3.1 Design Requirements

Extensibility

The system that we develop must be extensible so that in case a new data set arrives we should

be able to add new components to the existing system without much difficulty. The system

should be able to take care of new data types with as few changes as possible .

Adaptability

There has been a steady change in the format of data. The system should be able to

accommodate it with few changes and adapt to the existing database schema. This is a crucial

requirement since the distributed information system being developed relies on the database

and any significant changes in the existing schema will result in rewriting major portions of the

code.

Centralized Database Schema

A centralized approach has been followed in designing the existing schema and the system

being developed should follow the existing principles. Since there is a range of data sets

available, following these principles becomes difficult. The main reason behind creating such

a design is that it would reduce the number of tables containing the information and thus make

work easier for future developers of the information system.

Processing of Data

Before being ingested into the database, the satellite data needs to be processed using various

algorithms. The number of processing stages and intensity of processing may vary depending

on the amount of data and the computational complexity of the algorithm being used. The

system should provide software and hardware resource for efficient execution of such

processing tasks. The volume of satellite data is in the range of gigabytes and terabytes. Hence

the system should be robust enough to handle the pressure of the load.

12

Portability

The system should be portable to other environments in case of any future requirement that

requires it to be run on a different operating system. As two most popular platforms are Unix

and Windows, this tool should be able to be executed in both environments.

Performance

Performance of the system is a crucial factor, since there is going to be a continuous flow of

data from the satellite dish. The goal is to procure the received data and concurrently process

and ingest it into the database. The system should be able to handle fluctuations in the load.

The performance of the system should not degrade as the amount of data transfer increases.

2.3.2 System Requirements

The ingestion system developed was supposed to meet a few system requirements.

The main requirements being :

► It should be portable on two major platforms - Sun Spare and Windows NT.

► The system developed should be able to interact with the backend database.

► Database access over the network should not be a bottleneck.

► Manipulation of JPEG and HDF files.

Taking all the above criteria into consideration, Java emerged as a unanimous choice. This

application tool has been developed using Java 2 (Production Release) platform. It uses JDBC

to communicate with the database. Connectivity to MSSQL Server database is provided by

SequeLink JDBC driver.

JDBC

JDBC is an application programming interface for accessing virtually any kind of tabular data.

It consists of a set of classes and interfaces written in the Java programming language that

provide a standard API for tool/database developers to gain access to a wide range of

13

------• ------------------------------:e
'9 ----

databases, either directly or through middleware. JBDC can be used to connect to various kinds

of data sources by using appropriate drivers. Advantages of using JDBC are listed below :

► It makes the access of database over the network easier

► It can access multiple database servers within a single transaction.

► It allows connection pooling which results in performance enhancement. A connection

pool is a cache of database connections that is maintained in memory so that the

connections may be reused.

► It makes it easy to send SQL statements to relational database systems and supports all

dialects of SQL.

► It has updateable result set, which gives the ability to use Java programming language

commands rather than SQL.

SequeLink JDBC Driver

Connection to SQL server was obtained using MERANT's DataDirect SequeLink 5.0. This is a

middleware product that provides point-to-point connections from client to server using the

latest data access standards. It allows central configuration of the data access environment and

data access activity management. It has the following features:

Data Connectivity - SequeLink provides universal data connectivity for the latest JDBC

standards to a variety of data stores. Its component implementation allows one to manage one's

entire data access environment regardless of the underlying operating system on which the

SequeLink component runs. Also, SequeLink's client component is database independent and

so no extra client components are required to incorporate additional data store technologies in

data access infrastructure.

Interoperability - It allows one to leverage existing and evolving technologies by adhering to

industry standards. It allows use of Lightweight Directory Access Protocol (LDAP) for

centralized connection and configuration information and provides secure internet and intranet

communication.

14

------------------------------------,e i-----

Security - The messages between SequeLink middleware components that involve data

requests and data transmitted over the network, internet or intranet can be scrambled. It

supports authentication mechanisms provided by the database and/or the operating system on

which its components run. Also, it supports read-only data connections to keep the data in the

data store secure from updates.

Systems Management - SequeLink provides Reliability, Availability and Serviceability (RAS)

by providing dynamic service attributes.

Scalability - It provides superior performance and scalability through connection pooling at the

client through efficient use of server resources.

2.3 System Architecture

Java Application

JDBCAPI

JDBC Driver Manager

JDBC Driver API

SequeLink JDBC Driver

Tier One

Tier Two

Database Server

Figure 1: Two Tier Architecture

This satellite data ingestion tool has a two-tier architecture. The application forms the first tier

and the database server forms the second tier. The diagram (Fig. 1) shown above represents the

framework of this system. The JDBC architecture is based on a collection of Java interfaces

that together enable connection to the data sources, creation and execution of SQL statements

and retrieval and modification of data in a database. The command-line application developed

in Java, interacts with the database at the backend using JDBC APL JDBC API sends queries

to a database specific driver using JDBC Driver Manager. JDBC Driver Manager interacts with

the JDBC Driver using JDBC Driver API. The driver actually connects to the database and

returns the information from the query or performs the action specified by the query, the

communication being duplex with both the queries and the result sets travelling in both

directions.

Satellite Data Files

The data files received from the satellite are in a self-describing format called HDF

(Hierarchical Data Format). HDF is a physical file format that allows storage of many different

types of scientific data including images, multidimensional data arrays, record oriented data,

and point data.

The satellite data files collected,

► were processed using special libraries to produce level 3 files that have to be finally

ingested into the database.

► have metadata, describing their format and content.

► have a very high volume.

► have to be processed into "JPEG" images and then their locations have to be ingested into

the database as well.

The system extracts the useful and required information from the metadata, creates image files

and then ingests the information extracted along with locations of files and images into the

database.

16

------• ------------------------------------

CHAPTER3. IMPLEMENTATION

The satellite data ingestion system follows a two-tier architecture, with the command line

application developed in Java forming the first tier and MSSQL database server forming the

second tier. The pipeline involves data acquisition, processing, extraction of metadata and

finally ingestion into the database. This system ingests the Moderate Resolution Imaging

Spectroradiometer (MODIS) data, which will be discussed in detail in the following sections.

Use Case Representation of the Ingestion System

The use case described below showcases the functioning of the whole system in brief. A use

case is a collection of possible sequences of interactions between system under discussion and

its external actors, related to a particular goal.

USECASE#l Ingest satellite data

Goal in Context To ingest the satellite data into the database upon its arrival.

Scope & Level College of Oceanic and Atmospheric Sciences

Modis Data Ingestion Project

Preconditions Satellite dish collects real time data.

GDAAC data arrives in COAS.

Success End Data is archived in the database

Condition

Failed End Condition Data is lost or still in the parent directory in which it arrived

Primary, Database administrator and the agent (computer) acting for

Secondary Actors him

Trigger Arrival of satellite data

Description Step Action

1 Satellite data arrives.

17

--· --• -• --• -------· --------------------------

2 Invoke the processing algorithms.

3 Data is ingested into the database.

The above table depicts a set of paths called scenarios, that traverse an actor (an object external

to a system) from the trigger event, which is the start of the use case to the goal, which is the

success scenario. The database administrator primarily uses this system. The arrival of the

satellite data triggers the ingestion process. The final state is either a success or failure, based

on the completion of the ingestion process.

3.1 MODIS Data

MODIS data is available in different types, based on various research requirements. They are

primarily in three categories : Level 1, Level 2, and Level 3. Level 3 data is our main concern,

as that is the type of data that this ingestion system will be archiving.

Level 1 A and Level 1 B - This data consists of calibrated radiance and geolocation details

along with spatial resolution, temporal coverage, approximate file size in megabytes and the

transfer rate in files/time.

Level 2 - Each Level 2 granule represents five minutes of Terra viewing. This data consists of

ocean color products collected during the day and sea surface temperature products collected

both day and night. There are thirty six ocean color parameters and four sea surface

temperature parameters available.

Level 3 - This level of data is of two types, Level 3 binned data and Level 3 mapped data.

Level 3 binned products are global products. Spatial bins have 4.63 km spatial resolution in an

integerized sinusoidal equal area grid. Only bins with data values are present; land bins and

bins with no data are not in the files. This data is categorized as daily, weekly, monthly and

yearly, based on the duration in which it is collected. Level 3 mapped products are global

products as well. Bins for the entire globe are present in the data files, including fill values for

18

------• -----------------------------,. ------

land bins and bins with missing data. Spatial resolution varies per product: 4.63 km, 36 km, or

1 degree.

3.2 Data Processing and Ingestion

The Level 3 MODIS data, which is our primary interest, is obtained either by applying

processing algorithms on the raw satellite data collected by the dish antenna at Oregon State

University, or from GDAAC (Goddard Distributed Active Archive Center), NASA. When the

data arrives from the satellite, it is in digital form containing just strings of numbers. This data

has to be converted into a meaningful remote sensing data for any further use by the scientific

community.

3.2.1 Data Processing

The data processing algorithms were developed by RSMAS (Rosenstiel School of Marine and

Atmospheric Science), University of Miami. Figure 2 shown below represents the data

processing pipeline.

1
Level lA,
1B Data

Figure 2: Data Processing Pipeline

Level 2
Data

19

SQL
Database

T
Level 3

Data

------• -------------• ----------------------

Raw data is in original packets, as received from the satellite. This data which is at its original

resolution, time ordered, with duplicate packets removed, is reconstructed into unprocessed

instrument/payload data at full resolution with all communication artifacts like synchronization

frames, communication headers etc. removed and forms the Level lA data. This Level lA data

that have been processed to sensor units and radiometrically corrected and geolocated, forms

the Level lB data. Level 2 data comprises the products, ocean color and sea surface

temperature (SST), calculated from the Level lB data at the same resolution. Level 2 products

mapped on uniform space-time grid scales, usually with some completeness and consistency

form Level 3.

One important data processing aspect that had to be taken care of before ingestion, was the

date/time format of MOD IS data. This information is not explicitly present in the metadata that

is extracted. The only values available are, "Year", "DayofY ear" and "Millisecond". It was

very important to calculate accurate date and time when the image was scanned by the satellite

from this information, as queries to the data set tables are usually performed using time

periods. The DateAnalyzer class in the application takes care of this. Suppose the value of

"Year" is 2001, "DayofYear" is 56 and "Millisecond" is 43800000, the Calendar class in Java

takes "Year" and "DayofY ear" as parameters and returns the date. The "Millisecond" value is

divided by 1000 once and 60 twice. The integer portion of the result is the hour value. The

decimal portion is multiplied by 60 and the integer portion of the resultant is minutes. Seconds

is calculated in a similar fashion. In the example given here, the date/time value appears

eventually as 2001-2-25 12:09:59.

3.2.2 Ingestion

The Level 3 MODIS data that has to be ingested into the database, is in HDF format as

mentioned earlier. This data format cannot be unpacked easily by knowing byte ordering, word

locations etc. These files can be accessed only using HDF library subroutines and function

calls from FORTRAN or C. This ingestion system processes the satellite data files using

HDFv.4.2 'C' libraries developed by NCSA. Using these library functions, HDF files are read,

20

metadata is extracted and is dumped into a text file. This metadata consists of parameters that

describe the contents of the file. Some of the parameters are listed below.

• Product Name

• File Location

• Latitude

• Longitude

• Date Sampled

• Processing Time

• Algorithm ID used to process the file

Integration of C code with Java

The program written in C to extract the metadata had to be integrated into our ingestion tool,

which is a Java application. This was done using JNI (Java Native Interface) programming.

Here are the steps involved in implementing this under JDK.

1. Declaration of native method in a class.

public class NativeModis
{

public native void readModis(String fileName);

The native keyword alerts the compiler that the method will be defined externally.

2. Creation of C header file, NativeModis.h using javah utility.

#ifndef Included NativeModis

extern "C" {
#endif
/* Class:

* Method:
* Signature:
*/

NativeModis
readModis
(Ljava/lang/String;)V

JNIEXPORT void JNICALL Java NativeModis readModis
(JNIEnv *, jobject, jstring);

#ifdef cplusplus

21

}

3. Code implementation using function prototype from the header file.

JNIEXPORT void JNICALL
Java_NativeModis_readModis (JNIEnv *env, jobject obj, jstring

fileName)
{

C code goes here

J

4. Compilation of C code into dynamically loaded library.

5. Addition of System.loadLibrary method to ensure that virtual machine will load the

library prior to the first use of the class.

public class NativeModis
{

static
{

System. loadLibrary ("modis ") ;
}

Image Creation

JPEG images were created from the HDF files using Matlab version 6 software. For every

HDF file representing mean, three jpeg images are created. The first one is the biggest image

file (image.big.jpg), the second one represents an image which is smaller than the original one

for browsing purpose (image.jpg) and the third one is very small image which acts like a

thumbnail image (image.tn.jpg).

22

-------e -----------------------------------

Here are a few commands along with their description, used in Matlab in creation of image

files:

eppathnew='/home/modis/modiskl/enviprogs/';

coastfile=[eppathnew 'worldcoast.dat'];

eval(['load' coastfile]);

► 'eval' function evaluates the expression enclosed in brackets. 'load' command imports

ACII data file into workspace by reading its contents into a variable with the same name

as the file.

[data, slope, intercept, equation, name, nits]
readMODISHDF([indatapath file]);

► This statement is for getting data from the file.

[matlabeqn]=GUiscaleeqn(equation);

eval (matlabeqn);

finaldata=newdata;

► Here the data is scaled using scaling equation.

figure(99)

set(gcf, 'Visible', 'off')

axesm eqdcylin

colormap (njet)

setm (gca, 'maplonlimit ', [-180 180], 'maplatlimit', [-90 90])

plotm(worldcoast(:,2),worldcoast(:,1), 'LineStyle', '-'

, 'Color', 'w', 'Clipping', 'on');

drawnow;

eval(['print -djpeg70 -r70 'imagepath file(l:end-4) '.jpg']);

► This piece of code is for making an image. The function 'figure' creates a figure graphics

object and makes it visible by raising it above all the figures on the screen. 'axesm'

23

-------------------------• -----------------

creates a map axes. 'colormap' sets the colors used in creating the image. 'setm' sets

multiple properties at the same time. 'plotm' displays projected line objects on the

current map axes. 'drawnow' command completes pending drawing events.

eval(['print -djpeg70 -rl50 'imagepath file(l:end-4) '.big.jpg']);

clear file finaldata ilims name h;

► The 'eval' method uses 'print' command to save the image as 'imagename.big.jpg'.

'clear' commands clears the variables.

JDBC Operations

For making connection to a database, the corresponding database driver class has to be loaded.

Once the driver is loaded, it generates its own instance and registers that instance with the

'DriverManager'. Then the DriverManager creates a 'Connection' object. The function

'getConnection' takes the database URL (Universal Resource Locator), username and

password as its parameters and returns Connection object. The following piece of code shows

how this is implemented.

Class.forName(11com.merant.sequelink.jdbc.SequeLinkDriver 11).newinstance();

Connection connect=

DriverManager.getConnection(11jdbc:sequelink://SUGAR:19996;databaseName=

EOS_DB 11
, "kalinati", "*****");

Connect.close();

Once the connection to the database is obtained, a 'Statement' object is constructed to provide

a workspace to create an SQL query. Then, "Insert" statement is created and passed to the

'executeUpdate' statement which executes it.

Statement stmt = conn.createStatement();

String insertstmt = 11 INSERT INTO 11
;

stmt.executeUpdate(insertstmt);

As one of the measures to decrease the execution time, 'AutoCommit' feature is used in this

application. Normally, the connections to the database are set to "AutoCommit' mode by

24

J

--1-----------l-ie 1------:--,_
I -1.
,e ----------------

default, causing every transaction to be committed. This increases the execution time. SQL

Server maintains a transaction log for each database to recover transactions if required in the

future. A transaction log is a serial record of all changes that have occurred in the database

along with the transaction that caused the change. In our case, every transaction is committed

as soon as it is written into the log file. And once a transaction is committed, it is written to the

disk, which is a bottleneck in terms of execution time. To overcome this, we could commit a

batch of transactions rather than every single transaction. JDBC has a feature that allows the

'AutoCommit' mode to be set to true or false. This has been used in our application to achieve

better performance. The following code snippet shows how this has been achieved.

connect.setAutoCommit(false);

··················· (database update operations)

connect.commit();

connect.setAutoCommit(true);

Database Schema

The database schema has been developed based on the data file formats. It is designed in such

a way that it can accommodate data from all existing sensors and has a provision for including

data from new sensors in future as well. To identify the measurements, data regarding each file

needed to be stored . Hence along with the measurements, the metadata information about the

file is stored too. Since we are concerned with data collected by the sensor MODIS, our

discussion will be centered around the table "Modis" (named after the name of the sensor that

collects the data ingested into it) and "Sat_Images". Sat_Images is the main table that contains

identification information of the file, like the date and time it was sampled, sensor that

collected it, satellite on which the sensor was loaded etc.

The table below represents the existing database schema for the table Sat_lmages.

Column Name Datatype

Image_Name varchar

Date_Sampled datetime

25

East_Longitude float

W est_Longitude float

N orth_Latitude float

South_Latitude float

Version varchar

Satellite varchar

Instrument varchar

Parameter varchar

Spatial_Resolution varchar

Irnage_Size int

Image_Type varchar

Image_Path varchar

Satellite_Data_Size int

Satellite_Data_ Type varchar

Satellite _Data_Path varchar

Year int

Month smallint

Day smallint

Hour smallint

Temporal_Resolution varchar

"Irnage_Name" is the primary key, which identifies each sensor data row in the table shown

above uniquely.

Each sensor has its own set of parameters which have to be archived. Hence a separate table

schema, Modis, was designed to accommodate data pertaining to the MODIS data set alone.

Schema for this table is shown below.

I Column Name

Image_Name

I Datatype

varchar

26

Product_Source varchar

Product_Level varchar

Met_File _Path varchar

Met_File_ Type varchar

Met_File_Size int

Processing_ Time datetime

Thumbnail_Path varchar

Thumbnail_ Type varchar

Thumbnail_Size int

Browse_Image_Path varchar

Browse_Image_ Type varchar

Browse_Image_Size int

Product_Status varchar

Swath_Image_Path varchar

Swath_Image_Type varchar

Swath_Image_Size int

Swath_ Thumbnail_Path varchar

Swath_ Thumbnail_ Type varchar

Swath_ Thumbnail_Size int

Swath_Browse_Path varchar

Swath_Browse_ Type varchar

Swath_Browse_Size int

Image_Root_Name varchar

This table is joined to the main satellite table using the "Image_Name" as the foreign key.

The Entity Relationship (ER) diagram (Fig. 3) shown below represents the relationship

between the tables Sat_Images and Modis. The Modis table is a weak entity, which means that

it cannot exist without the main Sat_Images table. There is a one-to-one relationship between

these two tables meaning, for every entry in the Sat_Images table, there is an entry in the

Modis table as well.

27

e· -----------------------------------1e ------

Sat_Images

Modis

Figure 3: ER Diagram

Ingestion Sequence

The ingestion process takes place in a series of steps that include execution of several script

files and Java files. This is illustrated in the sequence diagram (Fig. 4) shown below. It shows

how the different classes in the application interact among themselves to accomplish the task

of satellite data ingestion.

28

r------------------------------- - - --- -- --- ---- ------ --

System
Admin

lngest
ModisData

Dynamic
-Insert

J

Execute
ingestion
program

.....
Construct

insert
statement _ f

""I

Read HDF file and
dump metadata into
text file

Native
Modis

FileReader Date
Analyzer

Read text file line by line

I
Figure 4: Sequence Diagram

.... I ...

,.,_
""'1111

Calculate

Date/time
Value

Obtain database connection

.....

Ingest the data into the database

29

,....

DBConn
-ection

Database

--------1: -----------------------------ie
I ---

Once the data arrives in the source directory, images are created using a shell script that runs

the Matlab program. Then as the next step, the Java application is executed, which extracts the

metadata from the HDF file and dumps it into a text file. This text file is then read line by line

and the values are ingested into the data base along with the locations of data files and image

files.

Description of the classes shown in sequence diagram is as follows:

► DBConnection: This class is responsible for openmg and closing the database

connections . It loads the appropriate database driver and creates the connection object

that could be used by other classes to communicate to the database.

► NativeModis: This class opens an HDF file and reads it using C routines and dumps the

required metadata into a text file. JNI technology is implemented in this class.

► Dynamic/nsert: This class creates Insert statements dynamically based on a database

table definition and initializes columns. The class also provides interfaces to represent the

column names and data types of columns of the table as required by the SQL server.

► FileReader: This class is responsible for reading the text file line by line and formatting

the values in such a way that they are in accordance with the column format in the tables.

► DateAnalyzer: This class calculates the accurate date and time values from the metadata.

This class had to be developed, as date/time values are not explicitly present and instead a

represented by the values "Year", "DayofY ear" and "Millisecond".

► IngestModisData: This is the main class that is finally responsible for data ingestion. It

uses all the classes described above to ultimately archive the satellite data.

30

------------,e -------· -----------------------

CHAPTER 4. CONCLUSION

The main goal of the EOSDIS project at College of Oceanic and Atmospheric Sciences, was to

provide a web-based tool for data management and exploration by the scientific community.

The satellite data ingestion tool, efficiently builds the database infrastructure by automating the

data ingestion process, and lays a strong foundation for the web-based tool. It has been

designed to operate under varying levels of load, including the real-time data gathered through

the dish antenna recently erected by the college.

This tool efficiently taps several features in Java language that aid in developing scientific

applications. Java Native Interface was one of them. HDF processing algorithms have been

developed using Native 'C' libraries. This native code was integrated into the Java application

using the JNI programming feature. Java Database Connectivity was another feature that was

well utilized in this system. The built-in support for database operations in JDBC utility has

simplified the task of building this data intensive database by many folds.

Some of the issues that this ingestion system tries to take care of are :

► Centralized database schema

► Sharing of data

► Extensibility to add new data sets

► Compatibility with the already existing database schema

► Effective archival of data products

4.1 Possible Enhancements

With a few enhancements, the current ingestion tool can be tuned to perform better. The

following are the factors that could be considered for this purpose.

31

--------------1-:e ----------------------------

The Java wnguage

Interpreted languages are typically slower than compiled languages. This might pose as a

disadvantage while using Java programming language, as the Java Virtual Machine interprets

byte codes. But the presence of some built-in features in it make the development of scientific

applications easier and overcomes this disadvantage described above. Moreover, database

applications have other important factors such as client, server and query performance which

can affect the performance more than the overhead from interpreting byte codes.

Database

There are a lot of performance issues while accessing databases. Poorly optimized queries,

network latency, disk latency and difference between static SQL, dynamic SQL and stored

procedures are some of them.

SQL update transactions are made individually in this project. But sending multiple update

statements to the database at a time as a unit, is more efficient than sending each of them

separately. A feature called 'batch updating' present in JDBC 2.0 does the work of sending

updates across the network in batches. By calling addBatch function, all the update statements

can be grouped. And once this is done, the whole batch can be sent to the database for

execution using executeBatch command, which will definitely reduce execution time.

This Java application connects to the database using JDBC driver manager. The JDBC driver

that is used for creating a database connection, needs to be registered with the JDBC driver

manager first. This is done using an appropriate static initializer with the driver class, using the

following statement:

Class.forName("MyJDBCDriverName").newlnstance();

In this application, "MyJDBCDriver~ame" is the SequeLink driver. This approach has a

drawback. The fact that the JDBC driver class name identifies a particular driver vendor,

renders it non-portable by making it specific to one product. More so, an application has to

32

----• --• -----------------------1• 1-----------

specify a JDBC URL while connecting to a database through the driver manager as shown

below.

Connection connect= DriverManager.getConnection(dbURL,userName,passwd);

This makes application not only specific to the driver but to a particular machine as well. So,

maintenance of the application becomes difficult as the computing environment changes. The

Java Naming and Directory Interface (JNDI) eliminates this problem by allowing to specify a

logical name to a particular data source, making deployment and management of the

application easier. But it could not be implemented in the ingestion project, as the SequeLink

database driver did not support this feature.

Image Creation

Currently, JPEG images are created from HDF files using a Matlab program. This program

creates images using a few other files as input that contain information like, source/destination,

HDF file paths, limits for color bar etc. Thus, the ingestion tool is dependent on other software

for image creation. The future versions of NCSA HDF libraries are supposed to encompass

this problem by possessing the capability to create images, removing the dependency on

external software.

4.2 Future Work

Presently, real-time data is being collected at COAS using dish antenna. This raises the need

for dynamic data processing and ingestion, due to the perpetual data flow. So, as the next

phase, this project aims at automating the whole pipeline - conversion of analog satellite

signals to digital format, production of various data products using a series of processing

algorithm and ingestion of the resultant data into the database.

The arrival of data has to be monitored using a daemon process. Once the data arrives, an

identity algorithm has to be executed, that identifies the category of the data set. Then, the

corresponding processing algorithm needs to be triggered to process the data. And finally, the

data should be ingested into the database. Work has to be initiated in the design of these

daemons and their communication protocol.

33

_j

-------• ----ie
ie -----------------------------

REFERENCES

1. Cay S. Horstmann, Gary Cornell. Core Java 2, Volume I-Fundamentals, Prentice Hall
1999.

2. Cay S. Horstmann, Gary Cornell. Core Java 2, Volume II-Advanced Features, Prentice
Hall 2000.

3. Ivor Horton. Beginning Java 2, Wrox Press 1999.

4. Seth white, Maydene Fisher, Rick Cattell, Graham Hamilton and Mark Hapner. JDBC
API Tutorial and Reference, Second Edition. Addison-Wesley 1999.

5. Date.C.J, An Introduction to Database Systems, Sixth Edition, Addison-Wesley.

6. The NCSA HDF Home Page - http://hdf.ncsa.uiuc.edu/

7. MODIS Ocean Data Home Page - http://modis-ocean.gsfc.nasa.gov/

34

