Detecting Anomalies in Object Appearance and Motion Dynamics

by

Mazen Alotaibi

A PROJECT

submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science in Artificial Intelligence

Presented August 29, 2022
Commencement June 2023

ABSTRACT OF THE PROJECT OF

Mazen Alotaibi for the degree of Master of Science presented on August 29, 2022. Title:
Detecting Anomalies in Object A rance and Motion Dynami

Machine common sense remains a broad, potentially unbounded problem in Al. Our focus is
to move toward Al systems that can develop common-sense reasoning similar to humans to
detect anomalies. In particular, we study the problem of detecting the violation of
expectations when object appearance or motion dynamics change from simulated
experiments. We have developed a system of multiple components to solve the problem of
machine common sense. The system contains three main components: a two-stage tracker, a
role assigner, and a rule-based reasoning agent. We evaluate our system on scenes from the

DARPA Machine Common Sense, Passive Violation of Expectation task.

Corresponding e-mail address: alotaima@oregonstate.edu

© Copyright by Mazen Alotaibi
August 29, 2022

Detecting Anomalies in Object Appearance and
Motion Dynamics

Mazen Alotaibi Chanho Kim

Zeyad Shureih

Ashish Malik Jed Irvine

Oregon State University Oregon State University Oregon State University Oregon State University Oregon State University

Stefan Lee Fuxin Li

Oregon State University

Abstract—Machine common sense remains a broad, potentially
unbounded problem in AI. Our focus is to move toward Al
systems that can develop common-sense reasoning similar to
humans to detect anomalies. In particular, we study the problem
of detecting the violation of expectations when object appearance
or motion dynamics change from simulated experiments. We
have developed a system of multiple components to solve the
problem of machine common sense. The system contains three
main components: a two-stage tracker, a role assigner, and a
rule-based reasoning agent. We evaluate our system on scenes
from the DARPA Machine Common Sense, Passive Violation of
Expectation task.

I. INTRODUCTION

When an adult plays Peekaboo with an infant, although
the adult is in front of the infant and the adult’s body is
visible, the infant is surprised that you appeared when you
uncover your face. Children younger than four years old
can’t determine that objects can’t appear or disappear without
an explanation because they haven’t developed the cognitive
ability to understand that objects and people still exist even
when they can’t see or hear them. This is one of the types of
common sense reasoning, and it is called Object Permanence.
However, in humans, the cognitive ability to understand and
develop common sense reasoning is developed throughout
the person’s life. Despite impressive progress in artificial
intelligence in many domains, artificial intelligence systems
are still far from human performance regarding common sense
reasoning about objects in the world. Artificial Intelligence
systems don’t learn common sense reasoning automatically,
and they need to be forced to understand those concepts to
consider them.

An example of the importance of Common Sense developed
within Machines is in self-driving cars. Let us assume that
an Oregon State University student wants to leave campus to
go home after a long day of hard work. The student owns
a self-driving car that will always take them to their home
safely. Corvallis had heavy rain on that day, and the usual
route from the OSU campus to the student’s house was filled
with water, and the GPS and other indicators of the blocked
route weren’t updated for the self-driving car to be aware of
the flooding that blocked the road. The self-driving car has
an objective to reach the final destination. However, the route

Oregon State University

Alan Fern
Oregon State University

is blocked, and visual systems can observe this. The dilemma
for the self-driving car is whether it should continue its usual
route as it has never experienced this situation before, or
should it find a different, safer route? Although the developers
of the self-driving car can hard-code logic to solve a lot
of situations where a machine can encounter similar cases,
it would require a lot of engineering effort and might not
consider unseen and rare situations. Therefore, developing
common sense ability is essential for the machines to make
the right choices without being hard-coded to take them.

To build artificial intelligence systems to learn common
sense reasoning, we will need to define machine common
sense and quantify development progress. Machine Common
Sense is the ability of machines to understand their world,
behave reasonably in unforeseen situations, communicate
naturally with people, and learn from new experiences [1]. A
benchmark [2] was created to develop artificial intelligence
systems to quantify the progress of machine common sense
development. The benchmark measures the performance
of the intelligent agent perceiving the world without any
interaction on many common sense reasoning tasks, such as
understanding gravity force, object permanence, and other
cases. The benchmark expects the agent to detect anomalies
when objects violate expectations.

In this paper, we have presented an artificial intelligence
system to perceive the scene to solve machine common sense
tasks in the benchmark. The system contains three main
parts: a two-stage tracker to track objects in the scene, a role
assigner to label objects for their role in the video sequence,
and a rule-based reasoning agent to output the final prediction
to determine if the given video sequence violates a set of
expectations.

II. BACKGROUND

The benchmark [2] has the intelligent agent to perceive
the world, and the agent can’t interact with objects in the
world. The two major components are: how the agent can
track objects in the world and how it can reason that there is

a violation of expectations when it happens.

There are two types of Multi-Object Tracking algorithms
to track objects in a sequence of frames: Batch and Online
methods. Batch methods [3] [4] process past and future
frames to determine the object identities in the current
frame. Whereas Online methods [5] [6] [7] process past
frames without knowing future frames to determine the
object identities in the current frame. Online methods tend to
have lower performance in exchange for real-time tracking.
On the other hand, Batch methods are meant to maximize
performance but are slow.

For developing reasoning agents, there are two prior works
[8] [9] that utilized a physical simulation module that predicts
the future object states from current beliefs. For the first paper
[8], one of the solved tasks using their method was predicting
the future position of a set of stacked objects of whether they
will fall or not. The method estimates whether the stacked
objects would fall and in which direction they would fall.
The estimated values would be used as the input’s expected
behavior. If the simulation resulted in different values than
what has been estimated with a certain degree of freedom, the
method would raise a violation of expectations. For the other
paper [9], they solved the problem of estimating the motion
dynamics of objects in the scene that can be occluded for a
short or long time. Their method is based on developing object
beliefs of the object’s future position as the expected object
beliefs. The prior object beliefs will be updated if the observed
object position varies within a reasonable range. Otherwise, if
the observed object position varies a lot, the method would
raise a violation of expectations. Both methods rely on a
physical simulation module to estimate the future object states
based on current beliefs.

III. DATASET

The benchmark is defined as a task where a stationary
agent observes a simulated scene of two types of objects.
First, focus objects that have free motion, and the agent
will be tasked to track those objects because the change
of object appearance and motion dynamics occur on focus
objects. Second, environmental objects that occlude or support
focus objects. When a scene contains a focus object that
violates the scene type’s expectations, it is labeled as an
implausible scene. Otherwise, it is labeled as a plausible scene.

There are five types of scenes with their assigned expecta-
tions:

1) Object Permanence (OP): Focus objects can’t appear
or disappear from the scene without an explanation.

2) Gravity Support (GRAV): A dropped focus object
follows gravity.

3) Collisions (COLL): Focus objects can’t change their
motion or appearance without an explanation.

4) Shape Constancy (SC): Focus objects can’t change
their appearance.

5) Spatiotemporal Continuity (STC): A thrown focus
object needs to have a continuous motion.

The benchmark provides an Integrated Learning
Environment (ILE) that we utilize to generate data to
train and evaluate our system. As shown in Figure 2, the
inputs to the system are the following for every video
sequence: RGB frames, ground-truth segmentation masks,
and depth images. The expected output of our approach
is a binary classification of whether the video sequence is
plausible or not based on a set of expectations that the system
developed.

IV. APPROACH

For this section, we present our approach, which involves
five modules. The system is composed of multiple components
that are either algorithm, learning, or rule-based components,
as it is shown in Figure 3. First, Mask to 2dbox module
expects a segmentation mask as an input and outputs a set
of 2D bounding boxes. The module utilizes an algorithm to
convert the segmentation mask of every object in a scene into
2D bounding boxes for every object in the scene.

A. Tracker

To track objects in a given sequence of frames, we need
to utilize a tracking module, which takes the history of 2D
bounding boxes of all objects in the scene and the RGB
frames of the scene as an input and outputs a set of tracks for
every tracked object in the scene. For our Tracker module,
we implemented a Two-stage Tracker as it is shown in Figure
4.

1) First-stage of the tracker: It expects the history of
2D bounding boxes of all objects in the scene and the RGB
frames of the scene as an input and outputs a set of continuous
tracklets for every tracked object without fragments in the
scene. Tracklets are tracks with short lengths, and continuous
tracklets are short tracks without fragments in their tracks.
For example, as is shown in Figure 5, the first stage of the
tracker will construct two different tracklets for the same
object before and after occlusion. For the first stage of the
tracker, we utilized an out-of-the-box online tracker that
relied on motion and appearance cues. The tracker contains a
features extractor, ResNet50 [10], and Bilinear LSTM [5] as
recurrent network to learn the task of multi-object tracking.

One of the issues of using online trackers is that the
tracker would make mistakes when the new detection of an
object that is partially visible and has similar features to a
previous tracklet, so the tracker would merge both based on
appearance cues. However, when the object is fully visible
after it merges the partially visual detection with a tracklet,
the tracker will append the later detections to the tracklet
because they share the same motion cues. In other words, the
tracker would make a mistake due to the limited amount of

(@)

(b)

Fig. 1. Five types of Machine Common Sense scenes: a) Collision (COLL) b) Gravity Support (GRAV) c) Object Permanence (OP) d) Shape Constancy
(SC) e) Spatiotemporal Continuity (STC)

Fig. 2. An example of input passed to the system where the left image corresponds to an RGB frame, the middle image corresponds to a ground-truth
segmentation mask and the right image to a depth image.

I:I Algorithm [I ey
component

D Rule-base
component

Mask to o Track _| Role _ An‘?cl))dal .| Reasoning
2dbox racker Assigner Agent
Detector
SEG RGB Plausible

Depth

Y/N

Fig. 3. For every video, the system takes a sequence of RGB, segmentation masks, and depth information for every frame in a video. From left to right,
the system converts segmentation masks into 2D bounding boxes for every object in every frame, builds tracks for every object, assigns a role for whether a
track is a focus object or not, estimates the 3D position of the object, then predict if the scene is plausible or not.

D Learning
component
D Algorithm

2nd Stage
2D
Bounding —> 1st Candidates . ,
Boxes Stage pairing voting MR B fracks
RGB —>

Fig. 4. For every video, the tracker takes the history of 2D bounding boxes for all objects in the scene and the RGB frames. From left to right

DDDD.:.

= | o| O O O

10 1 12 13 14

Fig. 5. This is an example of the output of the first stage of the tracker, where
it creates two separate tracklets because of the occlusion. The red bounding
boxes are for before occlusion, and the blue ones are for after occlusion.

information visible to it, but when it has all of the required
information to correct its previous mistakes, it doesn’t. For
example, as shown in Figure 5, when the online tracker is
shown detection on frame 10, the tracker would match this
new detection with the tracklets created from 1 to 5 because
they share some motion and object appearance cues. However,
when the object is fully visible on frame 14, and it is visible
that the object shape is drastically different, the tracker won’t
correct the tracklet based on this disagreement because the
tracker relied on motion cues after the mistake was committed.

Although online trackers allow us to develop real-time
trackers, they tend to be less accurate, as shown before. In the
Machine Common Sense challenge, we care more about the
performance of the tracker than its speed. Therefore, we have
introduced a second stage of the tracker that will process the
entire video sequence and merge tracklets that were split due
to short or long occlusions.

2) Second-stage of the tracker: It expects a set of
continuous tracklets in the scene and the RGB frames of
the scene as an input and outputs a collection of tracks for
every tracked object in the scene. The second stage of the
tracker has three components: Candidates pairing, Voting,
and Merging.

First, the candidates pairing component creates a set of
candidate pairs where a pair is an excellent pair to be merged

according to simple rules. For a given potential pair, the first
tracklet is initialized before the second tracklet, and both
tracklets can’t coexist in the same frame simultaneously.

Second, the voting component computes a similarity score
module on multiple selected pairs of two different tracklets to
generate a set of similarity scores. If the average of the set of
similarity scores is above a threshold, both tracklets will be
considered potential merge candidates. We utilized a learnable
model for the similarity score module that takes two images
and outputs their similarity score. For the learn-able model
is Siamese Network [11] with ResNet18 [10], pre-trained on
ImageNet [12] and fine-tuned on Machine Common Sense
dataset, as its backbone.

Finally, the merging component merges potential merge
candidates based on simple rules. For given potential merge
candidates, those candidates shouldn’t coexist when a
chain of tracklets is merged, and if there is a coexist, the
module would be the best candidate based on the voting score.

B. Role Assigner and 3D Amodal Detector

In our reasoning agent module, the module depends on the
objects’ roles and their 3D position in the scene to classify if
the scene is plausible or implausible. Hence, we have Role
Assigner module to assign roles and 3D Amodal Detector
module to estimate the 3D position of every object in the
scene.

1) Role Assigner: It takes a set of tracks in the scene and
outputs a binary classification of whether the track is for a
focus object or not. We utilized a learnable model that relies
on the appearance cues of the objects for every track. The
learn-able model is composed of a ResNet18 [10], pre-trained
on ImageNet [12] and fine-tuned on Machine Common Sense
Dataset, as its backbone and multiple linear layers.

2) 3D Amodal Detector: It takes a set of tracks in the
scene and the depth information for every frame. The module
outputs the 3D position of every object in the scene in the
world coordinate. We utilized an out-of-the-box pre-trained
model, CenterTrack [13], to estimate the 3D position of the

objects in the scene.

C. Rule-based Reasoning Agent

We developed a simple algorithm for the reasoning agent
module that utilized assumptions to detect violation-of-
expectations that works well based on our experiments. The
module uses different assumptions for every scene type.
For each scene type, we will introduce the scene’s set of
expectations, a set of assumptions, and a set of rules to detect
violations of expectations.

1) Object Permanence (OP): The expectation for OP
scenes is focus object can’t appear or disappear from the
scene without an explanation. We formulated two assumptions
for focus objects: 1. they can only enter a scene from the
edges of the frame. 2) Once they leave the scene, they can’t
re-appear. We developed three rules to detect implausibility.
First, check if all focus objects entered the scene from any
of the sides of the frame. Second, check if the object left
the scene. If it did and there wasn’t any re-appearing of the
same object, this scene is plausible. Third, if the object didn’t
leave the scene, check if the object was in the last scene
and was expected to be behind an occluder wall. If it was,
then the scene is plausible. Otherwise, the scene is implausible.

2) Gravity Support (GRAV): The expectation for GRAV
scenes is that a dropped focus object follows gravity. We
formulated two assumptions for a fallen focus object: 1) has
only gravity force applied to it. 2) It is supported by the
support object if it lands on top of it and is well-balanced.
We developed a rule to detect plausibility. Given the first
position of the fallen focus object and the position of the
support object, estimate the last relative position of the fallen
object to set an expectation. In other words, based on the
first position of the fallen focus object and the position of
the support object, will the fallen focus object be on top
of the support object or the ground at the end of the video
sequence? If we expect the fallen focus object to be on top of
the support object, but it wasn’t, then we raise a violation of
expectation. Otherwise, it will raise that this scene is plausible.
On the other hand, if we expect the fallen focus object to
be on the ground, then we raise a violation of expectation
if the last position of the fallen focus object wasn’t on the floor.

3) Collisions (COLL): The expectation for the COLL
scene is that focus objects can’t change their motion dynamics
or object appearance without an explanation. We formulated
two assumptions for focus objects: 1) they can only enter
a scene from the edges of the frame. 2) Two focus objects
can only interact with each other if they intersect at a certain
point in time and space. We developed two rules to detect
plausibility. First, check if all focus objects entered the scene
from any of the sides of the frame. Second, check if two
objects share the same intersect at a certain point of time and
space. The scene is plausible if two cases occurred. First,

both objects share the same intersect at a certain point of
time and space, then interact. Second, they don’t share the
same intersect at a certain point of time and space, and they
don’t interact. Otherwise, the scene is implausible.

4) Shape Constancy (SC): The expectation for SC scenes
is that focus objects can’t change their object appearance.
We formulated two assumptions for focus objects: 1) they
can only enter a scene from the edges of the frame. 2)
they don’t change their object appearance. We developed a
single rule to detect implausibility. If any of the tracks was
initialized in the middle of the scene, this scene is implausible.

5) Spatiotemporal Continuity (STC): The expectation
for STC scenes is that a thrown focus object must have
continuous motion. We formulated two assumptions for focus
objects: 1) they can only enter a scene from the edges of the
frame. 2) they have continuous motion, meaning they don’t
have gaps without explanation. We developed three rules to
detect plausibility. First, check if all focus objects entered
the scene from any of the sides of the frame. Second, check
if there are fragments in the focus object tracks. If there
aren’t fragments, this scene is plausible. Third, if there are
fragments, check the start and end positions when the object
disappeared because it was occluded. The scene is plausible
if it was occluded throughout the entire fragment space. If it
wasn’t fully occluded throughout the fragment as the whole
space, the scene is implausible.

V. EVALUATION

We evaluated our components on unseen generated data
from the MCS program evaluation set. We randomly sampled
100 scenes of plausible and implausible scenes for each
scene type. In other words, for every scene, we have 50
randomly sampled scenes that are plausible and another 50
randomly sampled scenes that are implausible. We compared
every component against a baseline and the reasoning agent
component against a baseline with actual data input from the
system pipeline.

We didn’t evaluate two components: the Mask to 2dbbox
converter because it is a trivial task, and the 3D Amodal
Detector is an out-of-the-box model.

A. Tracker

We evaluated our tracker against a baseline that uses
ResNetl8, which was pre-trained on the ImageNet [12]
dataset but wasn’t fine-tuned on the Machine Common Sense
dataset as the backbone of the Siamese network in the second
stage. Because the baseline uses a model that wasn’t trained
for the given dataset, we normalized the extracted features for
both images from the backbone. We applied the dot product
of the normalized vectors.

GT Traj. gé’ H’ I;N Tr.zgked

Fig. 6. For cases (a) and (b), the tracker assigns a new identity to the same
track, which counts as an identity switch. However, for the case of (c), two
tracks overlap, so we don’t count them as an identity switch.

For the metrics, we utilize Number of Identity Switch
(IDSW) and Multiple Object Tracking Accuracy (MOTA) as
two metrics to compare both models [14]. IDSW measures
the number of times the tracker changes a track’s ID. In
Figure 6, (a) and (b) show two types of mistakes the tracker
could make when the tracker makes a single identity switch
by assigning a new identity (blue) for a track that had already
been assigned an identity (red). The difference between (a)
and (b) is that the tracker in (a) made the identity switch
without a fragment, whereas the tracker (b) made the identity
switch with a fragment. As for the last case (c), the IDSW
metric won’t consider it an identity switch because two tracks
overlap. Although we use ground truth segmentation masks,
which give us ground truth bounding boxes, we utilize MOTA
as it accounts for IDSW and deleted tracklets or detections. In
other words, the MOTA score helps us quantify the tracker’s
overall performance.

S, (FN, + FP; + IDSW,)

MOTA=1-
2., GTy
TABLE I
TRACKERS PERFORMANCE ON EVERY SCENE TYPE BASED ON IDSW AND
MOTA SCORE.
Baseline Ours

IDSW| | MOTAT | IDSW] | MOTAT
Collisions 0.1 0.9944 0.1 0.9944
Object Permanence 0.14 0.9966 0.18 0.9961
Shape Constancy 0.44 0.9867 0.29 0.9891
Spatiotemporal Continuity 0.0 0.9924 0.0 0.9924
Gravity Support 0.0 0.9998 0.0 0.9998
All 0.136 0.9939 0.114 0.9943

As shown in Table I, our tracker performed well overall.
However, for Object Permanence, the tracker made more
IDSW than the baseline, which reduced the MOTA score.
In Object Permanence scenes, objects appear and disappear
within implausible scenes. In case an object appears again
after leaving the scene, the tracker makes the mistake of
assigning the exact identity of the object even though the
object has already left the scene. Although the tracker failed
to split tracks, the reasoning agent has the mechanism to
raise a violation of expectations when this case happens. On
the other hand, our tracker outperformed the baseline for
Shape Constancy scenes. It means that the tracker managed
to distinguish between objects that change their shapes but

keep their colors. However, our tracker still made mistakes
when the object changed to a similar shape or changed its
scale.

B. Role Assigner

We evaluated our role assigner against the decision tree
model, which classifies roles based on the object’s area and
position in the frame. We evaluated every scene type based
on the Fl-score for focus objects as positive examples for the
metric.

As shown in Table II, our role assigner outperformed
the baseline in every scene type. Our role assigner made
mistakes in Shape Constancy and Gravity Support scenes.
For the Shape Constancy scenes, our role assigner made
mistakes when the occluder pole was small, and the assigner
misclassified the occluder pole as a focus object. The assigner
misclassified specific fallen objects for Gravity Support
scenes as environmental objects because their shapes seemed
similar to occluder walls.

C. Reasoning Agent

We evaluated our reasoning agent against a baseline
learnable model that was trained on plausible scenes,
as shown in Figure ??. For every timestep, the baseline
generates context for each focus object using a transformer
[15] based encoder, combines contextual information with
focus object information and feeds it to a Recurrent Neural
Network (RNN) [16], and generates N future step predictions.
We evaluated every scene type based on the F1 score for
implausible scenes as positive examples for the metric.

As shown in Table III, our reasoning agent’s overall
performance is better than the baseline model. However,
the baseline outperformed our reasoning agent on Collision
scenes, and this is due to the design of the rules for Collision
scenes. Our reasoning agent performed better than the
baseline model for the other types of scenes.

As shown in Table IV, our reasoning agent’s overall
performance is better than the baseline model. Our reasoning
agent performance when given actual tracks is similar when
given ground-truth tracks besides in two scene types. For
Collisions scenes, our reasoning agent wasn’t robust to noise
in the pipeline that it predicted more implausible scenes
than plausible ones. As for Object Permanence scenes, the
reduction in F1-score from 94% to 75% was due to the tracker.

VI. FUTURE WORK

Our approach has much room for improved improvements
from data generation to training models by considering cases
where they failed. We will introduce the problem, explain
the reason why the issue existed, and suggest solutions to

TABLE II
ROLE ASSIGNERS PERFORMANCE ON EVERY SCENE TYPE BASED ON F1-SCORE FOR FOCUS OBJECTS AS POSITIVE EXAMPLES.

Baseline Ours
Precision | Recall | Fl-score | Precision | Recall | Fl-score
Collisions 0.71 0.82 0.76 1.0 1.0 1.0
Object Permanence 0.6 1.0 0.75 1.0 1.0 1.0
Shape Constancy 0.47 1.0 0.64 1.0 0.98 0.99
Spatiotemporal Continuity 0.42 1.0 0.6 1.0 1.0 1.0
Gravity Support 1.0 0.75 0.86 1.0 0.96 0.98
All 0.72 0.99
TABLE III

REASONING AGENTS’ PERFORMANCE GIVEN GROUND TRUTH AS AN INPUT ON EVERY SCENE TYPE BASED ON F1-SCORE FOR IMPLAUSIBLE SCENES AS
POSITIVE EXAMPLES.

Baseline Ours
Precision | Recall | Fl-score | Precision | Recall | Fl-score
Collisions 0.54 1.0 0.70 0.29 0.16 0.21
Object Permanence 0.47 0.88 0.61 1.0 0.88 0.94
Shape Constancy 0.0 0.0 0.0 1.0 1.0 1.0
Spatiotemporal Continuity 0.56 1.0 0.72 1.0 0.84 0.91
Gravity Support 0.0 0.0 0.0 1.0 0.92 0.96
All 0.41 0.8
TABLE IV

REASONING AGENTS’ PERFORMANCE GIVEN ACTUAL INPUT FROM THE PIPELINE ON EVERY SCENE TYPE BASED ON F1-SCORE FOR IMPLAUSIBLE
SCENES AS POSITIVE EXAMPLES.

Baseline Ours
Precision | Recall | Fl-score | Precision | Recall | Fl-score
Collisions 0.5 1.0 0.67 0.45 0.64 0.53
Object Permanence 0.5 1.0 0.67 1.0 0.6 0.75
Shape Constancy 0.0 0.0 0.0 1.0 0.86 0.92
Spatiotemporal Continuity 0.55 1.0 0.7 1.0 0.84 0.91
Gravity Support 0.0 0.0 0.0 1.0 0.92 0.95
All 0.41 0.82

resolve the issue to improve the system’s overall performance
in upcoming work.

A. Data Generation

For training data, we needed to generate data using
configuration scripts with many knobs to change without any
reference point to determine if our data was decent or not.
Therefore, we needed to manually inspect the generated data
to determine if they were ready to be fed to our models to
be trained. However, we have many data to go through, and
data generation takes time.

We suggest that generating high-quality data will enhance
most learnable components’ performance. High-quality data
indicate the data is well-representative of the evaluation
data distribution, reduction of simulation errors, and many
variations in visual and motion cues.

B. Tracker

As for the tracker, we have room for improvement in both
the first and second stages of the tracker.

The first stage of the tracker made a single type of mistake.
When the object changes its color without any occlusion,
the tracker assigns the same object identity even though
the object changes its color drastically. The tracker couldn’t
segment the track into two different tracklets because the
first stage of the tracker relied on motion cues more than
appearance cues in the case.

To improve the first stage of the tracker, we have two
options. First, training the first-stage tracker on these cases
where the object changes its appearance without occlusion.
Second, introducing a module to scan the appearance of
objects in tracks to determine if the object changed its
appearance or not. If the object changes its appearance, the
module will split the track into two tracklets.

For the second stage of the tracker, the component failed
in two cases. The first case is when the focused object
changes to a similar shape and keeps the same color. The
component failed because it relied on color cues more than
object shape cues. This could be resolved by training on hard
examples where the object changes its shape to a similar
shape and keeps its color. The second case is when the object
changes its size. The component sometimes makes mistakes in

connecting those two tracklets, even though they are incredibly
different sizes. The component makes this mistake because
visual cues of the two objects, before and after occlusion,

are

resized to fixed image size, making the component

unaware of the change in object scale. We must consider
the object’s scale in our similarity scoring to resolve this issue.

C. Reasoning Agent

As we have seen in the rule-based reasoning agent, the
rules weren’t robust to noise in the pipeline when giving
ground truth data versus actual data. We suggest design rules
that are more robust to noise in the pipeline.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

REFERENCES

D. Gunning, “Machine common sense concept paper,” 2018.

R. Riochet, M. Y. Castro, M. Bernard, A. Lerer, R. Fergus,
V. Izard, and E. Dupoux, “Intphys: A framework and benchmark
for visual intuitive physics reasoning,” 2018. [Online]. Available:
https://arxiv.org/abs/1803.07616

K. Zhao, T. Imaseki, H. Mouri, E. Suzuki, and T. Matsukawa, “From
certain to uncertain: Toward optimal solution for offline multiple object
tracking,” in 2020 25th International Conference on Pattern Recognition
(ICPR), 2021, pp. 2506-2513.

D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with
deep regression networks,” in European Conference Computer Vision
(ECCV), 2016.

C. Kim, L. Fuxin, M. Alotaibi, and J. M. Rehg, “Discriminative
appearance modeling with multi-track pooling for real-time multi-object
tracking,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 9553-9562.

N. Aharon, R. Orfaig, and B.-Z. Bobrovsky, “Bot-sort: Robust
associations multi-pedestrian tracking,” 2022. [Online]. Available:
https://arxiv.org/abs/2206.14651

P. Chu, J. Wang, Q. You, H. Ling, and Z. Liu, “Transmot:
Spatial-temporal graph transformer for multiple object tracking,” 2021.
[Online]. Available: https://arxiv.org/abs/2104.00194

P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum,
“Simulation as an engine of physical scene understanding,”
Proceedings of the National Academy of Sciences, vol.
110, no. 45, pp. 18327-18332, 2013. [Online]. Available:
https://www.pnas.org/doi/abs/10.1073/pnas.1306572110

K. Smith, L. Mei, S. Yao, J. Wu, E. Spelke, J. Tenenbaum, and T. Ull-
man, “Modeling expectation violation in intuitive physics with coarse
probabilistic object representations,” Advances in neural information
processing systems, vol. 32, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural networks
for one-shot image recognition,” in ICML deep learning workshop,
vol. 2. Lille, 2015, p. 0.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.
X. Zhou, V. Koltun, and P. Krihenbiihl, “Tracking objects as points,”
ECcCV, 2020.

L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler,
“Motchallenge 2015: Towards a benchmark for multi-target tracking,”
2015. [Online]. Available: https://arxiv.org/abs/1504.01942

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.
[Online]. Available: https://arxiv.org/abs/1706.03762

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

