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1 Introduction

Reinforcement learning has made impressive strides in solving problems in challenging

domains such as robotic manipulation [16], simulated locomotion [19], robotic soccer

[44], and games such as those on the ATARI system [30]. But as problems become

increasingly complex, our ability to describe success to reinforcement learning agents

with good dense rewards becomes limited. This causes many problems to be defined

with goal oriented feedback, often producing very sparse reward signals.

When trying to learn from a sparse reward signal, it greatly reduces the amount of

feedback agents receive for a given amount of time interacting with the environment.

This means agents have less useful experiences to learn from, and at bare minimum

learning is slowed greatly. In many cases, the lack of feedback makes it so hard to

distinguish between effective actions that learning does not take place at all. Even if

success is stumbled upon, that sole success signal for a potentially very long trajectory

does incredibly little to inform the agent what actions were relevant to achieving that

success.

In order to combat problems with sparse rewards, multiple techniques have been

leveraged. Multi-reward techniques use additional rewards alongside the true system

reward to attempt to reshape how learning is achieved. For example, hierarchical

reinforcement learning defines different rewards for different parts of a policy hierarchy,

then ultimately uses the true reward to evaluate this structure holistically. Intrinsic

reward systems add a dense reward to the sparse reward, often to better encourage

guided exploration in an attempt to better stumble upon good actions. There are other

techniques that do not rely on multiple rewards as well, such as simply changing the

reward to a shaped one, utilizing transfer learning, or imitation learning.

A key insight is that these techniques mentioned are orthogonal: multi-reward

schemes can receive further benefits by applying other techniques. Intrinsic rewards

can be used alongside reward shaping, imitation learning can be utilized alongside

hierarchical reinforcement learning, etc.

In this document, we will explore various multi-reward strategies and alternative

solutions to sparse rewards. Building off this foundation, we discuss three combinations

of multi-reward techniques alongside other sparse reward methods that would expand

on the current state-of-the-art.

1. Competitive Strategies and Evolutionary Reinforcement Learning
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2. Imitation Learning and Policy Combination

3. Temporally Abstracted Multi-Fitness Learning and Reward Shaping

Each of these combinations enable a different approach to solving a sparse reward

problem. In order to show how they could be utilized in practice, we describe the appli-

cation of these techniques to a challenging, sparsely rewarded underwater manipulation

problem.

2 Background

2.1 Reinforcement Learning

Reinforcement learning is a particular branch of machine learning where an agent (or a

group of agents) repeatedly interacts with the world while receiving feedback about how

successful their interaction(s) were. The goal of this learning is to determine a policy

for what action an agent should take when in a certain state. As opposed to supervised

learning, there is no ”correct” action that the user can provide to the agent to learn

from. Instead, the agent receives feedback about how good or bad their performance

is, with learning encouraging behaviors found to be good and discouraging behaviors

found to be bad. This requires alternative learning setups and specialized algorithms

to take this feedback and produce effective policies for agents to perform in different

environments.

A typical reinforcement learning problem can be described as a Markov Decision

Process (MDP). An MDP has a corresponding set of states the agent can be in, S,

actions the agent can take, A, transition function describing the probability taking

action a while in state s will lead to state s′, T (s, a, s′), and reward function describing

feedback for performing a given action and/or achieving a certain state, R(s, a, s′). An

agent has a policy that uses the current state to determine an action to take, and upon

taking that action, receives a reward and an updated state. This process continues in

a loop, with the agent using some reinforcement learning method to update its policy

over time in an attempt to maximize the reward received by the agent.

A key function in many reinforcement learning algorithms is that of a value func-

tion. A value function provides each state, or (state, action) pair, with a numerical

representation of the expected reward. Most reinforcement learning algorithms use
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discounting, meaning that the value is equal to the current reward, plus future rewards

discounted by γ for each time step away the future rewards are.

V (st) = E[
∞∑
k=0

γkR(st+k)] (1)

Q(st, at) = E[
∞∑
k=0

γkR(st+k, at+k)] (2)

Depending on the domain, these functions can be represented in a tabular format with

discretely separated values, or with function approximation (usually neural networks)

to enable working in continuous/complex domains.

Learning this value function gives an estimate of which states and actions provide

the agent with higher long term rewards. Lower values of γ effectively shorten the time

span considered for future returns, while larger values of γ do the opposite. As the

agent acts through the environment, the value function will be continually updated.

The value of a given state often depends on the actions taken by the agent afterwards, so

as the agent adapts, the value function necessarily changes. Different algorithms apply

these functions differently. Discrete action domains can take these value functions and

directly produce a policy by taking the action with the highest expected value. For

continuous action domains, these value functions can be used to inform updates to

a policy function with gradient based optimization. This is the basis of actor-critic

methods. The actor is the policy that tells agents what actions to take, while the critic

learns a value function to inform how good or bad the actions of the actor take.

Many different components affect the process of reinforcement learning, but the

key aspect of reinforcement learning that we will be exploring is variations on rewards.

Most reinforcement learning problems have one ”true” reward that informs the progress

of the agent towards achieving the desired goal. However, there are many problems

that are reasonably represented as the combination of objectives, meaning an agent

can have multiple reward feedback signals that it simultaneously wants to optimize.

This introduction of multiple rewards can more fully define the goals of a problem, but

it requires alternative ways of examining the desired solution. Alternatively, multiple

rewards can be used in a context where there is only one reward signal that holistically

determines agent performance. In this case, additional rewards are used as guidance

tools to ease the difficulty of learning with only the true reward.

Sometimes a reward is only received after a long sequence of actions or after a
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many agents coordinate a complex joint action between them. When the feedback

rarely changes or is only received after long time scales, this reward is referred to as

sparse. Sparse rewards are inherently more challenging to learn for multiple reasons.

First, since long sequences of actions lead up to the reception of a reward, it is difficult

to assign credit to any particular actions taken by an agent. What ones were beneficial

and contributed and what ones were extra noise of a floundering agent? Second, since

it takes more actions in the environment to receive useful feedback, it is challenging to

remain sample efficient. Most (s, a, s′, r) samples will effectively convey no information,

requiring more interaction with the environment than what would be needed if a dense

reward was used. Finally, an agent needs to be able to stumble upon the goal at some

point to learn at all. If the reward is sparse enough, an agent’s exploration strategy

may simply never discover the reward at all.

2.2 Evolutionary Algorithms

Traditional reinforcement learning attempts to learn a solution by utilizing evaluations

provided at a state, or (state, action), level. It attempts to learn a policy by exploring

the environment, learning which states and actions in particular correspond to good

results, then better learning how to place the agent in situations which it can repeat

those good states and actions. This enables very directed feedback and the utilization of

gradient based optimization in the case of function approximation, generally speeding

up learning. But this also means they are susceptible to getting stuck in local minima,

they may not best optimize the true objective, and are especially poor at learning when

rewards are sparse.

An alternative approach to reinforcement learning agents is to use evolutionary

algorithms to directly learn policies evaluated on the system objective. Evolutionary

algorithms (EAs) are a family of population based optimization methods with a few

core features. Optimization begins by initializing a population of n different policies. k

new policies are then produced by copying a parent policy from the current population

and randomly mutating it to produce an offspring policy. Random mutation simply

means to modify the policy in some way. A simple and common example is random

noise addition to the parameters of neural networks. The networks are the population

of policies, and when one is mutated, a certain portion of the neural network weights

have Gaussian random noise added to their current value.

Each policy is then evaluated on the system. This requires a setup of the problem
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in a way that episodic feedback can be provided to the learning agent. Using the

feedback from these evaluations, policies with better scores are kept, and policies with

worse scores are discarded, bringing the total population back down to n policies.

It is worth noting that sometimes worse policies will be randomly kept, providing a

mechanism to preserve diversity in the population; having a population based strategy

is not very effective if all individuals in the population converge to the same space.

The entire process then repeats - mutation, evaluation, selection - until the learning

is stopped. This allows a series of small mutations to be collectively applied over the

long term to make larger changes to the overall policy.

Evolutionary algorithms perform a random, population based search in the policy

space and only utilize an episodic reward instead of discounted rewards from each time

step. This relative lack of guidance in the search, mixed with the longer time scales

for feedback, means that evolutionary algorithms are generally slower than traditional

reinforcement learning. However, being population based reduces the likelihood of

getting stuck in local optimum and overall stabilizes the optimization process towards

finding a global optimum. The ability to provide direct feedback to how a policy does

on the whole, instead of state by state, allows feedback to be defined more towards

holistic success instead of dense rewards that will hopefully be associated with success.

Furthermore, the algorithm being designed to receive feedback on longer time scales

make it a good tool for learning a large number of sparse reward problems.

2.3 Evolutionary Reinforcement Learning

Instead of relying on just traditional reinforcement learning methods or evolutionary

algorithms, it is possible to utilize both simultaneously achieve the best of both meth-

ods.Evolutionary Reinforcement Learning (ERL) utilizes an evolutionary algorithm

alongside a gradient based reinforcement learner to maximize an episodic reward [19].

The base of ERL is a standard evolutionary algorithm.

1. Policies within the evolutionary population are randomly mutated to produce

offspring policies

2. Both parent and offspring policies are evaluated on the goal task

3. Better performing policies are kept and the process repeats
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But here’s where it differs: as the population is evaluated on the goal task, ex-

periences are stored in a replay buffer. These experiences are then used to update a

gradient based learner that is simultaneously attempting to solve the same problem.

Periodically, this gradient based learner is inserted into the evolutionary population in

an attempt to join that population’s evolutionary cycle. The gradient learner’s policy

is evaluated alongside the parent and offspring policies from the base evolutionary algo-

rithm. If the gradient based learner has been successfully learning the true task, then it

will receive a favorable score, be selected to remain in the population, and additionally

evolved in the evolutionary algorithm. If not, evolution continues as normal unhin-

dered, simply rejecting the gradient based learner’s policy. This formulation enables

speedup from gradient based techniques to be implemented alongside the stability of

EAs. Experiences from the EA are transferred to the gradient learner that it would

not have access to if learning alone, and the gradient learner policy is transferred into

the evolutionary population to enable faster learning than would be possible with a

standard EA.

This approach of transferring between evolutionary and gradient based learners

can be expanded in a number of ways. Collaborative ERL has multiple gradient based

learners, each with different discount values [21]. This provides policies that effectively

optimize over different timescales, and at different points in the optimization process

may receive more or less success on the overall system objective. Multiagent ERL eval-

uates and learns teams of policies rather than individual policies [20]. Each agent has

their own replay buffer that experiences are stored in order to maintain agent diversity,

but the overall process remains the same, simply operating at a team level. Further

modifications can be made to ERL: one can use different numbers of gradient based

learners with various reward schemes, alternative means of transferring knowledge from

the evolutionary algorithm to the gradient based learners such as having a gradient

policy occasionally overtaken by the best of the evolutionary algorithm, or simply mod-

ify the EA or gradient learners themselves to use more state-of-the-art optimization

methods. ERL is a baseline guide for how two different optimization methods can work

in tandem to effectively learn complex tasks.
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3 Using Multiple Rewards

While most reinforcement learning problems are defined with a single reward, that

limitation is by no means a requirement. We will begin by going over learning problems

that have multiple rewards. This includes problems where each reward represents an

objective to achieve, as well as problems that utilize additional rewards alongside the

main reward of the learning problem in order to improve learning.

3.1 Multi-Objective Learning

The first application of multiple rewards we will explore is the use in which these

rewards each correspond to an separate objective that we wish to maximize. For a

given reinforcement learning environment, we no longer receive a single scalar reward,

r, but a vector valued reward, ~r, where each element of this vectors represent an

evaluation for a different objective of the problem. We now have a multi-objective

optimization problem, and the type of solution presented depends on how one wishes

to approach the problem.

There are two broad categories of learning under a multi-objective framework. The

first is the most straightforward: simply apply a scalarization to the reward vector. If

we scalarize the reward, then we effectively have reduced the problem to single objective

learning, allowing us to utilize whatever out-of-the-box single objective learner we

wish. For example, the most common scalarization function is a linear weighting

of the objectives. Given a weight vector, ~w, we define a scalar reward r = ~w · ~r.
However, learning the value function for this reward may be more challenging than

simply learning the value functions for each objective and scalarizing afterwards (V =

~w·~V), as the aggregation effectively eliminates certain information about the objectives

achieved. Learning the individual value functions also enables the weight vector to

change at any point, including after learning [33]. It’s for these reasons that most

who apply scalarization do so in this way instead of learning a singular value function.

Even so, linear scalarization often fails to truly capture designer preferences due to

its simplicity. There are many multi-objective problem setups where disproportionate

success in one objective with little to no success in the others may result in a high

linear scalarization value, but to a human designer would be completely unacceptable.

Nonlinear scalarization functions have been used, but are not methods that have seen

widely generalizable success [46]. Nonlinear scalarization is effectively heuristic in
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nature, requiring good domain knowledge to avoid producing values that may lead to

nonconvergence or suboptimal solutions [46].

Alternatively, we can apply methods to learn a number of Pareto optimal policies.

Pareto optimality is the truest form of optimality a solution can achieve in a multi-

objective context, since there is no single optimal solution. A Pareto optimal solution is

a solution that exists such that any other solution that provides an improvement to any

objective compared to this Pareto optimal solution must perform worse on some other

objective. The set of solutions to a multi-objective optimization problem is known as

the Pareto front. Given this, instead of learning a single policy, we can apply methods

to learn a number of policies that exist on the Pareto front. One method is to find

a convex hull of Q-values assuming linear scalarization [26][4]. This learns regions in

the ~w space where different policies result in a maximization of the linearly weighted

Q-value for a given state and action.

One can also use evolutionary algorithms to evolve a set of policies on the Pareto

front. There are many evolutionary algorithms geared towards multi-objective op-

timization (such as NSGA2 [12]) that have seen good success. [48] combines these

evolutionary methods with gradient-guided local search operations to speed up the

convergence of evolution. Regardless of how they are obtained, after a Pareto optimal

set of policies is learned, singular decisions must still be made. In order to do so, policy

evaluation can again be reduced via some scalarization function, or alternatively hand

picked by the user.

Finally, others have turned single reward problems into multi-objective problems

in an effort to speed up learning. [7] modifies a single reward MDP to become a

multi-objective MDP with m different rewards. Each reward consist of the sum of the

original MDP’s rewards plus a unique potential based reward [34]. The use of potential

based rewards ensures that each of the rewards in the multi-objective MDP has the

same optimal solution: the solution to the original single reward MDP. Information

from these multiple shaping values can then be used to inform the learning process. [7]

only use linear scalarization (effectively reducing back to a single objective MDP with

additional potential based rewards), but they conjecture that disagreement between

objectives could be used in ensemble systems or adaptive objective selection.
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Figure 1: Example HRL structure. This is a basic example of a common HRL structure
with two levels of hierarchy. A root policy determines what lower level policy to activate
given the state, then follows the actions prescribed by the lower level policy. In this
case, policy A is chosen and produces the desired action.

3.2 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning attempts to improve reinforcement learning’s abil-

ity to solve problems by breaking up policies into some form of a hierarchy. The

essential idea is that difficult problems are easier to solve in segments when possible,

and that decision making in the real world is often directed through a hierarchy. For

example, a basketball player makes decisions to dribble, pass, shoot, and steal in their

effort to win the game. The particular muscle contractions that must be made to

perform those skills have already been learned, and those skills are applied when the

decision to make a higher level play is made.

One of the most widely used frameworks in HRL is the options framework proposed

by Sutton et al. [52]. Options are effectively high-level actions an agent can choose

to take instead of directly controlling low level decisions. When an agent chooses to

execute an option, the option has its own policy that determines which actions to take

(which may be primitive actions or the selection of other options) until it terminates,

returning control up the chain of command. A key point of options is this ability to

temporally abstract; within this framework, decisions made by the agent can apply
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over different timescales. Options can only be active for a few timesteps, or they can

proceed for an extended period of time. This leaves a large amount of room for the

designer to choose definitions of options that will best enable learning solutions and

executing them well. An option is formally defined with a policy, π, an initiation

set, I, and a termination set, β. The policy determine what actions the agent takes

while the option is active, the initiation set defines the states where an option can

be initiated, and the termination set is a stochastic function that determines when

the option terminates, after which the agent picks a new action or option to execute.

A typical method of employing options is a two level hierarchy, in which a top level

policy chooses an option to follow, that option is followed until completion, and then

the top level policy picks a new option to follow. Originally, options were designer

defined policies, but much recent work has option policies learned [1][17]. The use

of multiple rewards evolves naturally from this formulation: each option has its own

policy, therefore each option can be trained with its own reward to solve a given task.

Once these options are learned, the top level policy can be trained to pick between

these options at the appropriate times. Work is even being done to discover options

without defining reward functions for each individual option [27].

Alternative hierarchical formulations include the Hierarchy of Abstract Machines

(HAMs), has a similar structure to options, but the lower level policies are partially

specified and limited [38]. Options typically have access to all lower level actions along-

side possible other options, which can keep the search space for the learning problem

large even with hierarchy. Using lower level policies with limitations means the search

space for finding good policies is reduced comparatively. The MAX-Q formulation [13]

attempts to learn value functions for an entire hierarchy simultaneously, while still

using individual so-called ”pseudo-rewards” to guide the behavior of lower level func-

tions. After having learned these value functions, the maximum value at each layer

of hierarchy is propagated from the bottom to the top, informing what decision will

provide the learner with the highest value action.

Another HRL model is that of FeUdal Networks [11][58] consist of a hierarchy

between a manager and worker networks. The manager passes a goal to the worker

that then takes appropriate actions to accomplish that goal. The manager is rewarded

via the environment while the worker is rewarded by reaching the goals provided to

it, regardless of the reward received by the environment. This means that the worker

learns how to accomplish any goal given to it via the manager, regardless of if that
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choice of goal was ultimately a good one. The manager then needs to learn what goals

are good when, allowing these two components to operate at different granularity. This

is just one case of this general model of abstraction; [22][44] also provide goals to a

lower level controller, rewarding the lower level policy for accomplishing goals and the

higher level policy for being rewarded by the environment.

HRL can also be merged with transfer and imitation learning. For example, [53]

uses different tasks and environments to develop a set of skills as options. These options

are then inserted into a learner in a different environment where the learner can selec-

tively choose which skills are relevant to its current task. [23] learn an imitation task

while using a hierarchical structure. In this framework, experts for a high level policy

generating subgoals and for low level policies achieving those subgoals are intelligently

queried. If the task is successful, no guidance is needed. If improper subgoals were

selected, you only need to query the high level expert. Finally, if correct subgoals are

selected, but not executed properly, the low level expert can guide the subgoal policy

execution to improve. Generally speaking, HRL is not mutually exclusive with other

forms of learning. HRL mainly describes that a task can be broken down for learning

in a hierarchical way, and realistically most problems can be formed this way.

Finally, all of the methods listed before use gradient optimization to find optimal

policies. Evolutionary algorithms are an alternative optimization framework that have

shown success is various learning architectures, and HRL is no different. [60][64] both

use evolutionary algorithms to develop hierarchical policies. Lower level skills are

defined by rewards for achieving these subgoals, and a policy for each of these subgoals

is evolved. Once the lower level policies are learned, the higher level policy that chooses

between these skills is evolved.

3.3 Intrinsic Rewards

Many methods add rewards to the problem being solved to further improve the quality

of policy found. One such class is known as rewards for exploration, curiosity driven

rewards, or intrinsic motivation. In this context, we will refer to these rewards as

intrinsic rewards, while the ”true” reward of the system will be known as the extrinsic

reward.

A key aspect of a reinforcement learning agents job is that it must explore the

environment in a way that it properly learns about how to achieve the goal it hopes to.

Random exploration may not lead to the actions we wish to observe, causing learning
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to stagnate. This problem created the desire for alternative means of achieving proper

exploration, one of which was the use of intrinsic rewards. Intrinsic rewards are a class

of rewards that are not inherently linked to the solution of the problem, but help guide

the agent to perform new actions that it would not otherwise. The rewards are intrinsic

in that they are not motivated by the reward of the actual system feedback, so they

are internal to the agent. The system feedback is then an extrinsic reward provided

from a source external to the agent.

Some of the most simple approaches to intrinsic rewards are count-based [50][35][5].

In a tabular setting, an agent can simply keep track of how many times it has visited

a state. With this value known, upon visiting a state, the learner can add an intrinsic

reward that decreases the more the learner visits that state. Continuous domains

cannot use count based intrinsic rewards without some modifications, since there is an

infinite number of states reachable. Because of this the idea of psuedo-counts can be

used to estimate true counts in these domains. This is done by examining the changes

in a probability density function with the expectation that the changes represent an

increase of 1 in the psuedo-count for that state. With this derivation a pseudo-count

can be found for any state provided in a continuous space.

More complex notions of intrinsic rewards exist, such as those based on prediction

errors of neural networks. One strategy is to have a predictor attempting to learn the

dynamics of the system and using the error of this predictor as an intrinsic reward

[49]. The error for this predictor will be high for states and actions that have rarely

been visited and low for parts of the system where it has learned the dynamics well.

This encourages the system to explore to previously unexperienced parts of the system.

An alternative prediction based strategy works by using a randomly initialized neural

network as the training target, and having a predictor network attempting to learn

the output of this random network [8]. This prevents the problem of dynamics based

predictors in that generalization of the random network by the predictor should never

be able to be achieved (since there is no pattern to learn), further encouraging hard

exploration of the state space.

In an evolutionary algorithm setting, novelty of individual policies in the population

can be rewarded to encourage variation in the behaviors found [9]. Using a behavior

characterization metric b(π), the novelty of a given policy, π, can be measured as

its distance from its k-closest neighbors. The behavior characterization and distance

metrics used are ultimately up to the designer, but the point is that larger dispari-
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ties in behaviors of policies are rewarded and further perpetuated in the evolutionary

algorithm.

Alternatively, intrinsic reward functions themselves can just be learned without

begin explicitly specified. [65] derive an approximate gradient for a parameterized

intrinsic reward that attempts to maximize the resulting return of the environment’s

extrinsic reward. This provides the learner with an additional reward that is designed

specifically to improve the performance of the learning agent, not simply to enable the

agent to achieve better exploration.

Lastly, there are some methods that modify replay values to provide an intrinsic

reward after the fact. Hindsight Experience Replay (HER) [2], puts a twist on the

common paradigm of experience replay [24]. Experience replay enables the reuse of

prior interactions with the environment by storing (s, a, s′, r) tuples in a buffer which is

then periodically sampled from to update the value functions and policy of the learning

algorithm. The idea is that the underlying MDP of the problem does not change as

the learning process continues and the policy improves, so each tuple still contains

accurate information. Replaying experiences reduces learning time by allowing policies

to receive more updates for less actual interaction with the environment. HER has

two key modifications to a standard reinforcement learning algorithm using experience

replay. First, the goal of the system (such as a desired position for the agent) is

appended to the state, so there needs to be some way to represent the desired result of

the agent acting in the environment. Second, for some of the experiences replayed to the

learning algorithm, the goal is modified from what it actually was when the trajectory

was produced. This also changes the reward labels for the tuples of the trajectory being

replayed. One simple but effective example of utilizing this scheme is to make achieving

some distance from the final state in a trajectory the goal. Now all trajectories can

provide some amount of positive reinforcement to the learning algorithm, even if the

agent fully fails to stumbled upon the desired behavior to reach the actual goal. This

is particularly effective in sparse reward systems that can contain multiple rewards,

but can be applied to densely rewarded systems and can even be effective when there

is only a single true goal. Note that a mix of modified and unmodified experiences are

provided to the learning algorithm. If only the modified tuples are provided, then the

algorithm will only attempt to reinforcement achieving states that have already been

reached.

Competitive Experience Replay [25] relabels rewards to encourage exploration using
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a pair of policies. These two policies, πA and πB, will perform individual rollouts in the

environment, producing a trajectory of (s, a, s′, r) tuples for each policy. πA’s tuples

have their reward penalized if the state is within δ of any state achieved by πB in their

rollout, while πB’s rewards are increased for achieving states within δ of states that πA

traversed. This results in πA being pushed to achieve new states other than what πB

reaches. But since πB is encouraged to find states that πA reaches, πB will gravitate

towards πA and continually push it to explore the state space. The training is done

with two policies, but πB is simply a tool for learning. πA is the resulting policy to be

used for evaluation.

[55] employ a similar competitive scheme for exploration in what they call sibling

rivalry. Sibling rivalry works with a single stochastic policy that produces two rollouts

at a time, each attempting to achieve the same desired goal. The terminal state for

each of the rollouts then becomes an ”anti-goal” for the other agent. The rewards for

the agents are then modified such that if the agent is not at the goal, then they are

penalized for being closer to the anti-goal and rewarded for being closer to the real goal.

Unless a rollout reaches the actual goal, only the rollout that lands farther away from

the goal is used in policy updates. This is to avoid convergence to local maxima, and

once the policy learns to reach the global maxima, those trajectories will be included

for policy updates.

3.4 Policy Combination

Recent work has gone towards methods that combine the actions of separate policies to

produce results that neither policy could achieve independently. Each of the separate

policies has its own value function associated with it having learned to optimize its

own reward. [10][54] provide general ways of composing a single control signal from

multiple control laws.

[3][16] produce a single policy by different methods of combining value functions.

[56] performs recombination of a multi-reward problem after building that multi-reward

problem from a single reward problem, hoping to better represent the problem than

can be in a single aggregated reward value. The key aspect of all of these methods is

that the resulting policies are more than just the sum of their parts, as opposed to the

linearization discussed in the multi-objective section of this document.
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4 Learning with Sparse Rewards

This next section will discuss methods particularly tailored to alleviated issues encoun-

tered when learning on problems with sparse rewards. I will first note that many of the

methods in the previous section are often applied in response to problems with sparse

rewards, namely HRL and intrinsic rewards. The problem segmentation provided by

HRL helps reduce the search space for good policies while intrinsic rewards explicitly

help guide the agent(s) to explore in a way where the sparse reward will eventually be

experienced.

4.1 Reward Shaping

One of the simplest methods for dealing with sparse rewards is to simply design a

shaped reward that you use instead. Using knowledge about how the agent will inter-

act with the world and the desired goal, system designers can produce any arbitrary

function for the reward in an attempt to enable learning a solution that maximizes the

true reward. One key problem with this approach is that the hand designed reward

function may not guide the agent to the truly desired behavior. The optimal policy for

the shaped reward and the system reward are likely to not be the same, or the partic-

ular definition of the reward can lend itself towards finding local optima. Furthermore,

shaped rewards are very sensitive, and especially if you are attempting to combine met-

rics with a weighting of some kind, the numerical scale of these metrics will commonly

affect the outcome of learning. [40] use a hand-shaped reward for learning to ride a

simulated bicycle where they have negative rewards for falling, positive rewards for

reaching the goal, and a variable reward for orienting the bike towards the goal. The

authors determine that the orientation reward needs to be very small in scale, because

even though this means learning is slow, larger values simply fail to place enough im-

portance on staying upright. While unrestricted shaped rewards have clear drawbacks,

they are commonly useful in practice due to their simplicity of implementation and

their ability to inject expert knowledge into the learning system [29][14]. With that

said, there is a class of shaped rewards that are guaranteed to preserve the optimal

solution for a given MDP: potential-based reward shaping.

Potential-based reward shaping is one commonly used method to speed up learning

that provably results in the true objective still being optimized [34]. To do this, we

define a potential as a function of agent state, Φ(s). Assuming an infinite time horizon
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problem, a discount rate, γ, a system reward, r, and consecutive states, s and s′, the

reward provided to an agent using potential based reward shaping is as follows.

Rshaped = r + γΦ(s′)− Φ(s) (3)

Using a difference of potentials prevents the agent being rewarded by completing

cycles, as the value of Φ does not change based on the path taken to get to a certain

state. This means that the difference will be 0, and traversing a loop will not be

needlessly rewarded. Furthermore, it is the only form of reward shaping that guarantees

to not alter the global optimum of the MDP, regardless of the structure of the MDP’s

reward and transition functions [34]. While adding a potential based reward does not

modify he global optimum of the system, the potential function itself still needs to be

chosen in such a way that learning is sped up, rather than hindered. An ideal potential

increases along the path the agent needs to take to reach the goal. In many problems,

this is rather simple. For example, in navigation tasks, the negative of a distance metric

to the goal would provide a potential that increases as the agent gets closer to where

we want it to be. Unfortunately, not all problems have such simple formulations, so

work is being put into avoiding having a human having to make that design decision

at all.

If the domain is too complex or expert knowledge lacking, learning an appropriate

potential based reward is another option [15][28][63]. For a discrete 2D navigation

task with obstacles, [15] use value iteration over the presently known model of the

environment to produce the potential. This begins with a model that assumes state

transitions occur exactly as desired and there are no obstacles. The value function

learned from this is used as a potential while the agent attempts to learn the solution

to the problem. As the model of the environment is refined, the potential is updated

again by learning a value function to reflect the latest knowledge of the environment.

[28] produce a potential over states by reducing the underlying MDP to an abstract

MDP. This abstract MDP operates on a reduced state and action space, where all

states map to an abstract state, z(s), and the actions available are a limited number of

options. This abstract MDP is then solved exactly, and its value function is utilized as

the potential for learning the solution to the true MDP.

The last two examples apply learning potentials in discrete domains, but there is

work that attempts to learn a potential in continuous space. For instance, [63] learn

a potential that continually attempts to match a weighted sum of rewards rewards
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provided by the system over a given period. This provides the system with a potential

that tends towards a dense representation of the overall system rewards. Furthermore,

their formulation enables use with continuous space reinforcement learning and function

approximation methods.

4.2 Transfer and Curriculum Learning

If one does not wish to modify the reward function itself to better learn a sparse

reward, there are other choices. One such choice is transfer learning. Transfer learning

is a broad class of learning where some information is learned via one tasks, then this

information is transferred somehow . The items transferred can be entire policies,

representation changes that capture more important information about the problem,

or simply information about the problem or model involved.

One of the most straightforward transfer learning methods is sequential curriculum

learning [32]. If a task is deemed too challenging to learn outright, curriculum learning’s

approach is to then formulate a series of tasks that build up to the final task. By

providing the learner with sequentially more difficult tasks, we can avoid learning

the hard problem outright, utilizing the knowledge gained by successfully completing

earlier tasks. The simplest form of a curriculum has tasks with identical state and

action spaces, but more different tasks and therefore rewards. A policy is first learned

to complete the easiest of the tasks using whatever method is appropriate. Once this

policy is learned, it becomes the initial policy for the next task, instead of the task

starting from a random initialization. This cycle can then continue from the easiest to

the hardest tasks. While this is the most straightforward application of transfer and

curricula, there are other complexities that can be included. State and action spaces

may not be identical across tasks, or the information transferred may not be entire

policies and instead be other items such as samples, options, or encodings [32].

Hand designed, sequential curricula are the most frequently applied versions of

curriculum learning, but there is recent work towards the automation of curriculum

generation [32]. For example, [31] creates an automatic curriculum that adjusts based

on agent capability. Given a set of source tasks, the algorithm iterates through them,

determining which ones are solvable at the agents current point in the curriculum, and

which ones are not. By automatically determining which tasks are solvable at a given

point in time for the agent, the algorithm automatically determines when different

source tasks will be able to effectively provide information to the agent.
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Alternatively, transfer of information can occur between two different optimization

methods for the same goal. [18] has multiple learners attempting to solve a sparse

reward problem. One of the learners is learning off of nothing but the sparse reward

of the system, while other learners are learning from dense, shaped rewards. To allow

some of the information provided to the system via the shaped reward to improve

the learning for the sparse reward, the agents learning from the dense rewards are

periodically queried to help guide the sparse reward learning agent. That is, these

guiding agents suggest an action that they would take if they were in the state the main

agent is in. This enables information to be injected into the system via shaped rewards

and transferred to the main learning agent of the system without the problems that

arise from directly applying those shaped rewards: the true objective of the problem

is still being solved.

Evolutionary Reinforcement Learning is an example of this as well. The merging of

evolutionary algorithms with reinforcement learning is achieved by transferring expe-

riences from an evolutionary population to a gradient based learner, then the gradient

based learner’s policy being transferred back to the evolutionary algorithm. This back

and forth enables optimization over a system objective via the evolutionary algorithm

while still reaping the speed benefits of gradient based learning.

4.3 Imitation and Inverse Reinforcement Learning

If there is a manner in which we can have access to the desired behavior outright, we can

attempt to use that to improve the learning of our agent. Suppose we have some way

of providing examples of what the desired behavior is, such as human demonstration

of a task. One simple way to at least jump-start the learning process would be to

learn to imitate the expert demonstrator. In attempting to imitate an expert, the

agent now receives dense feedback instead of the usual sparse reward, making learning

from the provided information relatively simple. Issues arise when the agent cannot

nearly perfectly replicate the expert’s results however. Once an action takes the agent

off course from known trajectories, it becomes less certain about the proper action to

take. This results in a positive feedback loop where the agent ends up farther and

farther from the expert trajectory. That being said, directly supervised imitation can

still aid in pre-learning for RL [57]. The knowledge may be flawed, but the rough

imitation can be a starting point for transfer into a more traditional RL algorithm.

Alternatively, instead of using expert behavior to directly drive the learning of a
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policy, the field of Inverse Reinforcement Learning (IRL) attempts to use this behavior

to learn a reward function, which is then used to train an agent to replicate the behavior.

While this may not at first glance be all that useful, it can provide benefits over direct

imitation. First, the reward function learned should hopefully be general. So now

instead of only being able to produce feedback related to limited expert trajectories,

we have a means of evaluating any arbitrary trajectory. Second, this learned reward

represents the goals of the expert. If for whatever reason the system dynamics change,

direct imitation is completely useless. However, having the goals of the expert in the

form of a reward function mean that the information provided by the expert can still

be utilized. This is not to say that IRL is without its drawbacks. Additional criteria

must be specified to be able to derived any useful reward function at all, since there

are no unique reward functions for given set of trajectories. For example, r(s) = 0

would technically be a solution to an unconstrained imitation learning problem, but

that hardly provides the useful information we want to gleam from expertly provided

trajectories.

[66] use a maximum entropy approach to IRL. This is to say they attempt to learn

parameters for the reward that describe the broadest distribution that still reflects

the data of the expert provided trajectories. This simultaneously uniquely defines

the solution and avoids overfitting that could possibly occur using other methods.

[42][41] introduce constraints and a quadratic objective to reduce the IRL problem to

a quadratic programming problem. They introduce constraints to make sure the policy

learned achieves the highest expected reward, while regularization over the weights of

the reward function is the minimization function. Similar to maximum entropy IRL,

this provides a unique solution in a manner that limits overfitting of the function

learned. Ultimately, there are many formulations for both uniquely defining the IRL

problem in a way that attempts to be most successful, but in order to produce a useful

solution, the designer will have to impose additional constraints to the problem.

4.4 Sparse Rewards in Multiagent Systems

Up until this point, the work presented has centered on single agent systems. Multi-

agent can easily suffer from the same problem of sparse rewards, though the problem

generally becomes harder when trying to determine the optimal policy for not only one

agent, but a group of agents. The environment for an agent is no longer stationary, as

while other agents update their policies, the way the state changes and the environment
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provides feedback will change with them. Furthermore, system rewards often require

cooperation between multiple agents, meaning agents can individually be performing

the correct action, but still receiving poor performance. Beyond this, the fact that task

success will be defined by a single reward is problematic for a group of agents. Finding

proper ways to assign credit when success or failure occurs is incredibly important in

gleaming useful information from a sparse reward signal.

Some of the attempts to combat the sparse reward multiagent problem are simply

further applications of single-agent methods, such as HRL. For example, Multi-Fitness

Learning (MFL) [64] uses a 2 layer hierarchical approach alongside evolutionary op-

timization methods. A set of sensitive rewards are defined that correspond to lower

level agent behaviors, a policy is evolved for each of these rewards, then a upper level

policy that picks between these policies to solve the overall system task is evolved.

Utilizing HRL in a multiagent setting like this reduces the search space for solving

complex tasks, making them far more manageable. It also provides policies with an

initial skill-set that it can utilize, as opposed to having to start from scratch exploring

the exponentially complex joint-state space via low level actions.

Transfer learning has also successfully been utilized in a multiagent context. [6]

transfer knowledge from other agents’ policies by biasing the initial value functions of

the new policies. [43] uses a teacher policy to occasionally advise student policies that

control the agents. [61] transfers policies based on inferred roles of different agents in

attempt to generalize to new agents with different capabilities.

Intrinsic rewards are another technique that have been utilized in multiagent do-

mains, though the commonly used exploration rewards begins to mean different things

in a non-stationary multiagent environment. For example, one exploratory intrinsic

reward in [59] attempts to reward agents for exploring states where the agent has an

influence on the other agents.

Others attempt to provide an alternative reward signal to the excessively sparse

system reward. A common theme in attempting this in a multiagent setting is finding

ways to provide more precise assessments to individual agents in the system while

optimizing via evolution. [45], attempts to provide more precise policy fitnesses in

tightly coupled domains by training a function approximator to estimate the value of an

agent performing an action in a given state. The function approximator is then fed what

(s, a) pairs an agent observes in their last episodes trajectory, providing an estimated

value for each point in the trajectory. These values are then aggregated (averaged or
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maximized over) to provide the fitness to the individual. [39] provides counterfactual

agents to simulate cooperation. A counterfactual agent is simply an agent simulated

in the evaluation process that runs against what actually occurred in the individual’s

experience. By providing this counterfactual agent, it can be determined if the agent’s

actions would have been beneficial to the system if another agent was cooperating,

regardless of if any cooperation actually occurred. Under this system, a fractional

reward for an agent performing their part in a coordination action is given even if

other agents around them fail to do their part.

[37][36] use leniency to provide a more informed individual evaluation. This means

that each agent is evaluated over a wide array of teams, and the maximum performance

of the agent across those teams is used as their fitness. The evaluation is ”lenient,”

using optimistic evaluation to remove the variations that could be caused by a bad

team. An alternative strategy for teaming and evaluation is the Hall of Fame [47].

The Hall of Fame keeps track of the agents that produce the best results, and when

forming a team for an agent’s evaluation, all of the best policies for the other agents

are who it is teamed with. This attempts to give an agent the best chance at showing

that it can perform, since it has the best teammates possible. It also gives all agents

even ground for evaluation. Unfortunately, leniency and Hall of Fame both notably

increase the number of evaluations that need to be performed, which can drastically

slow down the speed at which learning occurs.

Finally, while many of these examples utilize evolutionary algorithms, more tradi-

tional reinforcement learning has been applied to these multiagent problems. [51] learns

to decompose team values into individual values to provide more agent specific feed-

back. By approximating the joint-action value that the team actually produces when

interacting with the environment as the summation of the individual values for each

agent, simple backpropagation can be used to update the individual value networks to

match this approximation. This provides each individual with specific feedback unique

to their trajectory.

5 Problem Domain

To illustrate how we can combine the methods previously mentioned in this document,

we will use the example of underwater manipulation. Manipulation is a challenging

learning task on a fixed base in plain air. By moving underwater, effective control
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Figure 2: Sketch of the underwater manipulation domain. The vehicle’s goal is to
successfully move through its environment, grasp the object represented by the blue
star, and then drop off the object at the specified target.

becomes a much more challenging task. Being attached to the vehicle means the arm

has no stationary platform to maneuver from. Currents will disturb both the vehicle,

the arm, and potentially the object being manipulated. Water resistance modifies

the dynamics of the robot arm substantially. Murky water can effect the ability for

effective perception, and objects underwater are likely to be corroded, slippery, or

not even rigid if manipulating wildlife. But the difficulty of direct modelling lends

the likelihood that learning can be an effective technique for successfully grasping and

moving objects underwater. For these problem formulations, we consider a gripper with

multiple dexterous fingers attached to the end of a 6 degree of freedom robotic arm,

which is itself attached to the center of a thruster/fin controlled underwater vehicle.

The goal will be to perform a standard pick and place operation, except in the unique

underwater domain (see Figure 2).

The state space would consist of the concatenation of the manipulator joint states

and/or the end effector position relative to the base of the manipulator, the position
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Figure 3: Picture of sample vehicle for underwater manipulation

of the object in question, the state of gripper appendages, the relative location of

the object and target location (where we want to move the object) to the base of

the manipulator on the vehicle, rates of change of these quantities, and any additional

perception data such as a camera feed. The action space would be force/torque controls

for the manipulator joints and gripper, as well as control over the thrusters and fins

for control of the vehicle itself. The task will be considered successful if the agent is

able to move the object within a predefined range, δ of the target location. The reward

for the system represent the two key milestones of the manipulation task: successful

grasping of the object and successfully placing the object at the target.

Rsparse = I(object = grasped) + I(||xtarget − xobject|| < δ) (4)

While the ultimate goal will be to utilize these algorithms on a physical vehicle such

as that in Figure 3, time and cost constraints make simulation a necessary component
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to learning this task successfully. While simulation can be used to provide more data

than physical operation ever could, the complexity of the environment means that high

fidelity simulation will be relatively slow. Good approximation of fluid mechanics are

incredibly computationally expensive, not to mention properly modelling contact forces

for the grasping component. Selection of an appropriate simulator to achieve enough

samples while still learning appropriately accurate dynamics is another aspect of this

problem that we recognize, but do not consider further. Simulator trajectory sample

size and fidelity ultimately do not matter if the learning algorithm is ineffective; that

is where we will focus our attention.

6 Application

The next section produces three combinations of multi-reward schemes and sparse re-

ward solutions that could be utilized in learning complex, sparsely rewarded problems.

We work through the ideas behind these combinations as well as how they would be

applied in a sparsely rewarded underwater manipulation task.

6.1 Competition Strategies and ERL

The first proposed research direction is a combination of intrinsic motivation and Evo-

lutionary Reinforcement Learning (ERL). ERL combines evolutionary algorithms and

policy gradient methods in a way that enables it to take advantage of both. It has the

stability of EAs while injecting gradient information from a policy gradient learner. A

key point of ERL is that exploration is achieved in relatively naive ways: the policy

gradient learner occasionally takes actions with noise applied in the action space, and

the evolutionary population randomly mutates to produce slightly different policies

each generation. For a sufficiently sparse problem, these forms of random exploration

will fail to find the desired solution, and ERL will fail to be of use. Therefore, I propose

expanding the use of intrinsic rewards to ERL, maintaining its previous benefits while

improving its ability to explore quickly and effectively.

One simple way to implement this would be to simply add an intrinsic reward to the

experiences relayed to the gradient-based learner. This would likely be a simple fix that

would indeed help with exploration and hopefully find a solution to the sparse reward

problem. Unfortunately, there may be multiple unequal optima within the sparsely

rewarded domain. Basic exploration incentives should help to find at least one of those
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Figure 4: ERL using competition. Two gradient networks compete with each other
while a third network attempts to compete with the results of the EA.

optima before converging, but we do not want to find just any optima - we want the

global optimum.

To avoid getting stuck in a local optimum, I propose using competition based

strategies such as those found in [55][25]. Whatever the particular implementation

details, the key aspect of these methods is that they produce a modified version of the

true reward based on similarity between policies. If we have two policies, each policy

has their reward augmented by increasing their return for achieving different states

than its counterpart or penalize achieving the same state as their counterpart. This

provides a constant force pushing these policies to produce different results, so if one

gets caught in a local minimum, the other policy will continue to explore away from

that minimum.

In theory, you could have n policies all searching simultaneously, but every policy

added increases computational requirement significantly. For an initial attempt, we

propose modifying the structure of ERL to have not 1, but 3 gradient-based learners

optimizing alongside its core EA. 2 of these learners would compete with each other,

encouraging exploration in the policies learning only from the gradient. One additional
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learner would compete with the champion network within the EA. This encourages

explicit exploration away from the general space the EA may be converging to. All

3 networks will occasionally be placed in the EA as in the original formulation, and

the selection criteria will remain unchanged. This will preserve the fact that ERL

optimizes the true system objective through its use of an EA. A visualization of this

idea can be seen in Figure 4.

To apply the proposed combination of competition strategies with ERL to under-

water manipulation, we will utilize the scheme of competitive experience replay [25].

There will be 3 different DDPG learners. Two of these learners will compare their roll-

outs with each others’ trajectories. These will mirror the two policy approach in [25],

where one policy receives a penalty for producing similar trajectories to the other, while

the other policy receives a bonus for the same result. The third learner will compare

its rollouts with the experiences of the evolutionary population, receiving a penalty for

reaching similar states. A shaped reward would be used to provide dense feedback to

the gradient learners alongside this intrinsic competition. The reward function would

be

Rdense = −||xee − xobject|| − ||xtarget − xobject||+Rsparse (5)

This rewards the agent for moving end effector towards the object, for it successfully

grabbing the object, for it moving the object closer to the target, and for it ultimately

reaching the target. The evolutionary algorithm of ERL would only use the sparse

reward metric of the system in evaluation.

This gives agents a milestone to make the reward somewhat less sparse for the

evolutionary optimization. Using ERL enables the optimization towards completion

of the true task while enabling the use of dense rewards and gradient learning to

speed it up. Competition should further improve the agents ability to explore arm and

gripper configurations towards finding useful behaviors. Though this formulation is

only preliminary, and it is worth noting that variation on the scale of different parts

of the rewards may improve/harm results. For example, the penalties associated with

competition may need to be larger or smaller, or a scaling may need to be applied

to the distance based portion of the dense reward to improve the impact of the step

rewards.
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6.2 Imitation Learning and Policy Combination

In a typical imitation learning setting, we have some way of retrieving example trajec-

tories for the behavior we wish to imitate. But suppose we have a problem where we

have an idea of what may constitute useful skills, but are unsure of how to combine

these skills in a useful manner to solve the overall problem. We can use imitation to

learn those skills, but additional work will be required to determine how to properly

use them. One option would be to apply a simple hierarchical structure such as that

in Figure 1. The lower level skills are sub-policies, and by having the root policy now

choose between a discrete set of skills instead of the continuous action space, we shrink

the search space and improve learning. However, even though we assuming we pro-

duced useful skills for our agent to use, only being able to make decisions at a coarse

level may limit the quality of the final solution.

To help enable a more fine-tuned policy to emerge from the subset of skills we

learned to imitate, we propose using policy combination methods, such as those from

[16][3]. These methods enable the actions taken by an agent to be the effective com-

bination of skills, rather than simply one skill or another. Having a value function for

skills is a key aspect of these formulations; because of this, we propose to learn skills via

Inverse Reinforcement Learning (IRL) rather than just directly training imitative poli-

cies. Once we have a reward function determined via IRL, we can train value functions

and policies for each of the skills we wish to have. For this purpose, any traditional

temporal difference method can be used in line with an actor-critic network structure

to produce both an estimate of the value function, as well as policies themselves for

the skills. After these skills are trained, we use a policy combination method to learn

how to best combine these skills with a linear vector of weights, one for each skill.

This formulation enables learning in domains where how to best achieve a given

goal is difficult enough that an expert demonstration may simply not be possible a

priori. By providing the agent with skills instead of just low level actions, we make

more challenging learning problems tractable. The use of policy combination further

expands the flexibility to produce unique solutions.

To utilize the proposed merging imitation learning and policy combination for un-

derwater manipulation, we must first define what skills we wish to learn from an expert.

To this end, I propose three categories of skills to be learned:

1. Different grasp types
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2. Different arm motions

3. Different vehicle motions

Assuming multiple dexterous appendages for gripping, a number of basic grasp

types should be able to be demonstrated and learned from. These different grasps can

correspond to grabbing items of different shapes, such as cylinders or cubes, or items of

different mechanical properties, like rigid versus highly malleable objects. Arm motions

would best be defined as cardinal motions for the end effector. This includes moving

along the positive and negative Cartesian axes, and rotating the end effector about

each axis. Vehicles motions would be similar, with the addition of a ”stabilization”

skill whose goal is to simply keep the vehicle still. These skills should sufficiently cover

the action space needed by the agent to successfully complete the task.

Once expert demonstrations have been acquired for all skills, we apply maximum

entropy inverse reinforcement learning [66] to learn a reward function for each of these

skills. Independently from each other, these reward functions will then be used to

produce actor-critic networks for each skill. Once we have the critic networks for each

skill, we apply the Option Keyboard methodology [3] to learn how much of each skill

we wish to apply at any given time. This is done by learning a network that produces

a linear weighting vector across each of these skills when given a state.

While there is nothing fully preventing the problem to be entirely solved in this

formulation, having grasp types, arm motion, and vehicle motion grouped together

is a rather needless complication that will likely hinder learning. Alternatively, this

paradigm could be used to inform the control for any of the individual parts, assuming

the other components are successfully taken care of. For example, the option key-

board method would be used to define a wide range of grasping mechanisms, but more

straightforward commands would be utilized to stabilize the vehicle and move the arm

as a whole.

6.3 Temporally Abstracted Multi-Fitness Learning and Re-

ward Shaping

The final proposed research research direction attempts to utilize a hierarchy of problem

solving such as that found in Multi-Fitness Learning (MFL) [64]. Some key points to

note about MFL is that the rewards for the individual skills are relatively sensitive,

and that the skills are only used for a single timestep before the skill picking process
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resumes. This lack of temporal abstraction means that the high level policy must

repeatedly choose the skill associated with an objective over and over again before the

desired result is achieved. The first modification we propose is to introduce temporal

abstraction to this framework by remodeling skill choices as options. Now, when a skill

policy is chosen, it executes until it reaches its goal, or until some other condition causes

it to terminate (such as having been going on for too long). Furthermore, instead of

using sensitive scalar rewards for skills, we propose having the skills be goal oriented

sparse rewards. This change along with the change to options makes the learned skills

produce long term actions associated with achieving a particular goal.

As of this point, we have taken an attempt at solving a sparse reward problem and

split it into several sparse reward problems. While making the individual skills more

challenging to learn, the overall complexity of the problem has increased. But this is

actually the objective: by changing this formulation, we should be able to learn more

complex skills, and with more complex individual skills follows the ability to learn

solutions to more complex environments on the whole. Let us consider the use of this

formulation in both single agent and multiagent environments.

For single agent problems, there is little that is particularly interesting about us-

ing goal oriented skills in a hierarchy with options. This is a pretty typical problem

formulation, and one could make a decent case for the use of gradient based methods

(possibly with potential based rewards or intrinsic rewards) to learn these skills over

MFLs EAs.

But for a multiagent problem, these skills can represent coordination behaviors of

agents. With that in mind, the sparse reward signal an agent receives is now dependent

not only on its own behavior, but the behavior of others. Furthermore, as the agents

learn, their behavior will change, so what actions produce good coupled behavior may

change from one episode to the next. To get around this, we suggest the use of alter-

native fitness formulations for these low-level skills (and possibly for the main policy).

Difference rewards [62] may be able to provide enough of a push in the right direction,

but are not suitable for complex enough tasks. For simple grouping behavior, D++ [39]

provides an excellent augmented fitness. For more general problems of coordination,

Fitness Critics [45] can produce a more sensitive fitness function, though that involves

supervised training of an additional network for each skill that uses this method. There

does exist the potential of agents attempting to perform non-complementary behav-

iors and wasting time stuck in their option for a coordination goal that will never be
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reached. This could be alleviated with limited communication and voting systems,

though it may not be a real issue come experimentation.

The main ideas of this direction are to:

1. Temporally extend skills used in MFL via an options framework

2. Increase problem complexity in MFL by using goal oriented rewards to produce

more complex skills

3. Utilize fitness approximation methods to improve the learning of these now more

complex skills

To apply this idea to the underwater manipulation domain, the key question be-

comes: what high level tasks would be useful that don’t solve the entire problem? We

can begin with motion of the vehicle through space. Two tasks could correspond to

moving within range of the object and target, respectively. Other tasks could be to get

the end effector close to the object and target, or other high level motions of the arm.

Finally, a task could be the actual action of successfully gripping the object (but not

necessarily moving it), though instead of having a single ”grasp” task, utilizing tasks

that correspond to different types of grasps could be useful in allowing manipulation

of different objects. Each of these tasks have clear success or failure states and could

make use of distance potential rewards to help aid in their learning. Once these ac-

tions are abstracted, it should be much simpler for the high level policy to learn how

to properly incorporate these actions in the correct order to successfully achieve the

pick and place task.

7 Conclusions

In this document we have discussed how multiple rewards can be used to learn complex

behaviors, and how certain strategies can be used to improved learning for problems

with sparse rewards. We explored multi-objective reinforcement learning, hierarchical

reinforcement learning, intrinsic reward methods, and policy combination as ways in

which multiple rewards can contribute to a reinforcement learning problem. Further-

more, we examined how reward shaping, transfer learning, curriculum learning, imita-

tion learning, and inverse reinforcement learning can be used to help learn in sparsely
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rewarded single agent and multiagent domains. We presented 3 possible research di-

rections pulling from the surveyed approaches. We propose merging competition based

exploration strategies with ERL to provide further exploration and avoidance of local

minima, utilizing Inverse Reinforcement Learning to produce useful skills that are then

combined to perform complex tasks, and modifying the Multi-Fitness framework to use

goal oriented, temporally abstracted skills. Finally, we discussed how we could apply

two of these research directions to the particular domain of underwater manipulation.
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for control of character animation. ACM Transactions on Graphics, 28(3):1–10,

July 2009. ISSN 0730-0301, 1557-7368. doi: 10.1145/1531326.1531388.

[11] Peter Dayan and Geoffrey E. Hinton. Feudal Reinforcement Learning. In Advances

in Neural Information Processing Systems, pages 271–278. Morgan Kaufmann,

1993.

[12] K. Deb and A. Kumar. Light beam search based multi-objective optimization

using evolutionary algorithms. pages 2125–2132. doi: 10.1109/CEC.2007.4424735.

ISSN: 1941-0026.

[13] T. G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value

Function Decomposition. Journal of Artificial Intelligence Research, 13:227–303,

November 2000. ISSN 1076-9757. doi: 10.1613/jair.639.

[14] Layla El Asri, Romain Laroche, and Olivier Pietquin. Reward Shaping for Statis-

tical Optimisation of Dialogue Management. In David Hutchison, Takeo Kanade,

Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni

Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,

Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Adrian-

Horia Dediu, Carlos Mart́ın-Vide, Ruslan Mitkov, and Bianca Truthe, editors,

Statistical Language and Speech Processing, volume 7978, pages 93–101. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-39592-5 978-3-642-

39593-2. doi: 10.1007/978-3-642-39593-2 8. Series Title: Lecture Notes in Com-

puter Science.

33



[15] Marek Grzes and Daniel Kudenko. Learning Shaping Rewards in Model-based

Reinforcement Learning. January 2009.

[16] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine. Composable

Deep Reinforcement Learning for Robotic Manipulation. In 2018 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 6244–6251, May

2018. doi: 10.1109/ICRA.2018.8460756. ISSN: 2577-087X.

[17] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting

is not an option : Learning options with a deliberation cost. arXiv:1709.04571

[cs]. URL http://arxiv.org/abs/1709.04571.

[18] Shengyi Huang and Santiago Ontañón. Action Guidance: Getting the
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