
)

Integrating the MVC Paradigm into an
Object-Oriented Framework to Accelerate

GUI Application Development

By Walter I. Wittel-Jr.

A research paper submitted in partial fulfillment of the
requirements for the degree of Master of Science

Major Professor: Dr. T. G. Lewis

Department of Computer Science
Oregon State University

Corvallis, Oregon 97331

June 26, 1991

Acknowledgements

I would like to thank my Major Professor, Dr. T.G. Lewis, for the opportunity to work

on the tail end of Oregon Speedcode Universe v2.0 and participate more fully in the

development of OSU v3.0. His guidance, support, and encouragement throughout

this project has been instrumental to my progress. His Software Engineering series

did much to prepare me for work on this project. I would also like to thank my Minor

Professor, Dr. Timothy Budd, for his encouragement over the last two years . He

provided my first contact with the Computer Science Department at Oregon State

University. His concern and caring has carried me through several rough periods. I

would also like to thank Dr. Bruce D'Ambrosio for participating on my Graduate

Committee even though I never had the pleasure of taking one of his classes.

My special thanks go out to Ruan Chao Keh, who has been my mentor and friend

throughout my participation on this project. Our discussions have always been lively

and informative and he has kept my spirits up when our goals seemed far away. He

has also provided a good deal of unpublished material that has assisted me in

preparing this report. Thanks also go to Chung-Cheng Luo who provided many of the

header files for framework classes I implemented, and was always helpful in

explaining points that were not clear. I would also like to thank Kee-Yun Chan for

his assistance during the debug and testing phases. My life has been enriched through

my contact with the other members of the OSU v3.0 development team, Chih Lai,

Kangho Lee, Tong Li, Fangchen Lin and Huei-i Huang. Sherry Yang always

provided insights and encouragement and was especially helpful when I first came on

board last spring.

I would also like to thank my wife, Catherine, for her encouragement and support,

especially over the last two years, and my daughter, Patricia, for her understanding.

Table of Contents

1. Abstract ... 1

2. Introduction ... 3

3. The Problem .. 5

3.1. GUI's are Difficult to Program .. 5

3.2. Current Tools are Inadequate In Many Areas ... 6

3.2.1. A. Limited Functionality and GUI Development Support ... 7

3.2.2. B. Lack of Architectural Models and Abstraction Mechanisms .. 8

3.2.3. C. GUI Specifications are Difficult to Understand, Edit, and Reuse 9

3.2.4. D. Lack a Single Conceptual Graphical Model .. 10

4. The Approach .. 11

4.1. A. Object-Oriented MVC-Based Application Frameworlc ... 12

4.1.1. The Object-Oriented Paradigm 12

4.1.1.1. GUfs Fit the Object-Oriented Paradigm .. 14

4.1.1.2. Our Choices .. 14

4.1.2. Object Oriented Frameworks: Beyond GUI Toolkits .. 15

4.1.2.1. Why Another Framework? ... 16

4.1.2.2. Framework Design Considerations .. 16

4.1.3. The Model-View-Controller Paradigm .. 17

4.1.3.1. Model. 19

4.1.3.2. View ... 19

4.1.3.3. Controller 20

4.1.3.4. Multiple Views ... 20

4.1.3.5. Change Propagation .. 20

4.1.3.6. Integrating the MVC Paradigm Into OSU's Framework .. 21

4.2. B. Solid Architectural Model and Abstraction Mechanism .. 22

4.3. C. Easy to Understand, Edit, and Reuse Graphical Specification ... 22

4.4. D. Single Conceptual Graphical Model Supports Development Cycle .. 23

5. The Results .. 25

5.1. The OSU 3.0 System ... 25

5.2. The OSU 3.0 MVC-Based Application Framework ... 26

5.2.1. Class Hierarchy Overview .. 27

5.2.2. The Model Class 30

5.2.3. The View Class 30

5.2.4. The Controller Class ... 32

5.2.5. The Application Class ... 32

5.2.6. The Document Class ... 33

5.2.7. The UIObjectClass 35

5.2.8. The StdUIObject Class ... 36

5.2.9. The Pane Class 36

5.2.10. The BasicWindow Class ... 41

5.2.11. The Window Class, ... 41

5.2.12. The Clipboard Class ... 42

5.3. A Simple Ex~ple 43

5.3.1. Subclassing CLApplication .. 44

5.3.2. Subclassing CLModel ... 44

5.3.3. Subclassing CLView 44

5.3.4. Instantiating CLPane ... 45

5.3.5. Creating Resources ... 45

5.3.6. Putting It All Together in mainO 45

6. Conclusions ... 47

7. Appendix A 49

8. Appendix B ... 55

9. References 57

) 1. Abstract

Applications supporting a graphical user interface (GUI) are difficult to write. While
existing tools can accelerate software development, they suffer from a number of
problems that limit their helpfulness. They offer too little functionality, and support
only a small part of the GUI software development task. They lack architectural
models and abstraction mechanisms to support large GUI applications. Their user
interface specifications are difficult to understand, edit, and reuse. They lack a single
conceptual, graphical model to be used as a medium for integrating specification,
documentation, design, simulation, validation, and rapid prototyping.

We present an approach that solves many of these problems with existing systems by
supporting a larger part of the development task, providing a unifying conceptual
graphical model, and providing tools for graphical specification and manipulation of
our underlying architectural model. Our approach uses the MVC paradigm, an
application framework, reusable classes, and pluggable and adaptable domain specific
views to offer greater functionality and to support a greater part of the development
task. Our object-oriented approach encourages the reuse of code. An architectural
model for large GUI applications is supported by the reusable design embodied in our
framework and by the visual Petri net with net hierarchy (subnets). The use of a
visual Petri net also makes user interface and design specifications easier to
understand, edit, and reuse. By using an annotated Petri net we are able to provide a
single conceptual graphical model that integrates specification, documentation,
design, validation, and rapid prototyping.

Oregon Speedcode Universe version 3.0 (OSU v3.0) is a second generation
experimental object-oriented tool for GUI software development currently under
construction at Oregon State University. It consists of an MVC-based application
framework, a class library of reusable code, and a set of integrated tools for
specification, modeling, simulation, validation, and rapid prototyping of GUI
applications. It is written in C++ on the Macintosh and produces C++ code that can
be compiled to produce stand-alone applications. This paper presents an overview of
the OSU v3.0 approach and focuses on the MVC-based framework as a way of
supporting added functionality, greater reuse of code, and a higher level of abstraction
to the task of developing GUI applications. My responsibility in this project was
implementation of the MVC, application, and window classes. These are detailed in
the final section and an example of their use is included.

Page 1

J

2. Introduction

One of the most complex and time-consuming programming areas is the development

of graphical direct-manipulation user interface (GUI) applications [Myers 89]

[Myers 90] [Urlocker 89]. In this paper, we explore some of the reasons GUI

applications are difficult to program, and discuss various paradigms we have

incorporated into our approach to these problems. Although many tools and systems

have attempted to facilitate the development of GUI applications, several problems

have limited their success. We will first discuss four areas in which existing tools fall

short and discuss briefly the solutions our approach, Oregon Speedcode Universe 3.0

or OSU 3.0, provides. We then describe in more detail the rational behind, and results

obtained, applying an MVC-Based Application Framework to the first two problems.

Table 1 summarizes the topics discussed in the problem and approach sections. The

results sections provides an in-depth look at our MVC-Based Application Framework.

This research forms the foundation of a second generation User Interface

Management System (UIMS) that will allow rapid prototyping of GUI applications

using various direct manipulation techniques combined with traditional programming.

We are indebted to previous research done at Oregon State University in this .area for

many insights into the problems confronting us [Lewis 89].

Page 3

Problems with Existing Tools and Solution OSU3.0 Other Solution
Systems Comoonents Svstems)

A. Offer too little functionality, and •MVC •MVC-Based • Gamet
support only a small part of the • Pluggable and Application •OSUv2.0
development task: adaptable domain- Framework with a •NeXTstep

1. Contents of application windows: specific views rich set of domain- •MacApp
• Do not help the programmer create • Reusable Design (A specific views •ET++
application-specific graphics. model of interaction • Class Library
• The programmer must handle all input and control of flow (Structured graphical
events at a low level. among classes) objects and Data
• Intertwined interaction between user • Reusable code structures)
interface and the application logic is not
considered. (e.g. Change propagation)

2. Common aspects of GUI applications:
• Accessing documents
• Undo/Redo of commands
• Printing
• Managing memory
• Manioulatine: data structures

B. Lack architectural models for • Reusable Design •MVC-Based • Smalltalk
large applications: •MVC Application •MacApp
• Do not help designers decompose and • Visual Petri net Framework •ET++
structure complex GUI applications • Net hierarchy • Petri Net Editor • HyperCard
• Hard to visualize the overall (Subnet) •Browser
architecture of the entire GUI application
• No abstraction mechanism

C. User Interface specifications: • Visual Petri net • Petri Net Editor • State-Diagram
• Hard to understand • Net hierarchy Interpreter
• Hard to edit (Subnet) • Rapid/USE
• Hard to reuse •UildX

•OSU2.0
• Trillium

D. Lack single conceptual graphical • Annotated Petri net • Petri Net Editor • Garden
model used for Integrating: • Code Generator
• Specification • Simulator (will not be
• Documentation impler.nented)
• Design • Reachability Analysis
• Validation Tool (will not be
• Rapid prototyping implemented)

Table 1. GUI Development Tools: Problems and Solutions.

Page4

I) 3. The Problem

It is well known that Graphical User Interfaces (GUI's) are difficult to program

[Urlocker 89], [Weinand 89], [Myers 89]. The introduction of the Lisa in 1983,

followed by the Macintosh in 1984 exposed a wide audience to Apple's

implementation of the GUI developed in the 1970's at the Xerox Palo Alto Research

Center (PARC) [Allen 1990]. Since then, the desktop metaphor with bit mapped

graphical windows, icons, and a mouse for input has become an accepted standard for

user friendly applications. The Apple Macintosh presents a mature, well documented

user interface having these characteristics [Apple 85], and combined with its

availability, makes it an ideal platform for our research, easing the burden of

programming GUI applications.

Although the Macintosh first popularized the desktop metaphor, there are now many

examples of similar GUI's for PC's and Unix workstations including Microsoft

Windows, OSF/Motif, InterViews; and ET++. Smalltalk-80, which grew directly

from the PARC research, remains a strong influence. Our approach stays as general

as possible, so that our solutions may be applied to any other GUI system.

3.1. GUI's are Difficult to Program

--Unfortunately graphical user interfaces present many problems for the programmer,

such as complexity, asynchronous input management, lack of high level abstraction in

GUI toolkits, and lack of a standardized model for generic GUI functionality.

Although most GUI's are built using libraries or toolkits of low level functions, there

are typically around a thousand calls in the library. Add to this the need to handle

asynchronous input devices such as a mouse or keyboard and management of the user

interface becomes much harder [Urlocker 89] [Myers 90]. Although GUI toolkits

provide good abstractions for the lowest levels of a GUI, such as line and shape

drawing, mouse and keyboard input, and display of standard graphical items such as

windows, buttons, and menus, the programmer must constantly reinvent the wheel

when integrating these features into an application. Take as an example an

application that contains numerical data that is presented to the user in two different

windows, one a spread sheet view and the other a bar chart view. Either window can

be manipulated using the mouse and keyboard to edit the data. When a number is

changed by typing a new number into a cell in the spread sheet view, or dragging a

Page5

bar in the bar chart view, both the application's data and the other view should be

updated. Toolkits (collections of functions that provide low level graphical support

such as drawing windows or menus) provide no model for this type of GUI

interaction with the user, and therefore force the programmer to supply all of the logic

necessary to accomplish the updates. This is in addition to the (perhaps application

dependent) code to display and graphically edit the two views of the data.

Application independent design support is generally lacking for tasks such as change

propagation, file management, undo operations, printing, and memory management.

Since the user interface can comprise 40 to 50 percent of an application [Myers 89] it

is clear that providing abstract support for these higher level functions is worthwhile.

Before we describe our approach to these problems, lets step back for a moment and

take a look at some existing tools and their shortcomings.

3.2. Current Tools are Inadequate In Many Areas

Although user interface toolkits, such as the Macintosh Toolbox and Xt for the X

window system [Young 90], hide much of the complexity of graphical user interface

(GUI) programming, there are still some difficulties resulting from the intertwined

interaction between direct-manipulation user interface and the application logic

[Urlocker 89]. For example, updating a view on the screen may require both updating

the underlying data structure and broadcasting changes to all other views whose

graphical rendering depends on the same data structure. Also, many user interface

toolkits do not help programmer create the most important part of the application -

the graphics that appear in the main application window. In particular, the

programmer must handle all low level input events and draw graphical objects with

the underlying low level graphics package [Myers 90]. Another limitation is due to

the fact that user interface toolkits only factor out user interface components and

provide no support for various tasks common to most GUI applications such as

printing, undo and redo, accessing documents, and managing memory [Urlocker 89].

As a result, code that is common to most GUI applications, such as prompting the

user for the name of the file to load, or warning the user if he/she does not save

his/her work, is rewritten for each application. Also, a toolkit typically includes

hundreds of procedures that implement many interaction techniques. It is often n~t

clear how to use the procedures to create a desired interface [Myers 89].

Page 6

)

Many user interface development systems (UIDSs) or user interface management

systems (UIMSs) have been developed to facilitate the construction of GUI

applications but they have not adequately addressed these problems . Since most

UIDSs only help the designer create toolkit components in a window and/or layout

and use predefined toolkit items only modest improvements in productivity can be

expected from them. Several shortcomings, which are common to most existing

UIDSs, have limited their success (refer to Table 1):

A They offer too little functionality, and support only a small part of the GUI
software development task.

B. They lack architectural models and abstraction mechanisms for large GUI
applications.

C. The user interface specifications are difficult to understand, edit , and
reuse.

D. They lack a single conceptual, graphical model to be used as a medium for
integrating specification, documentation, design, simulation, validation,
and rapid prototyping.

3.2.1 . A. Limited Functionality and GUI Development Support

Since most UIDSs only provide a graphical front end to their underlying user

interface toolkit features, they automatically inherit most of the limitations and

shortcomings of the user interface toolkits discussed above. Several systems have

provided a partial solution to this problem. Both Garnet [Myers 90] and OSU v2.0

[Lewis 89] allow the application-specific graphics that the application will create and

maintain at runtime to be specified by direct manipulation. Garnet's Lapidary

interface builder lets the designer specify a GUI application's graphical aspects

pictorially. In addition, the behavior of these graphical objects at run-time can be

specified using dialog boxes and by demonstration. Relationships among graphical

objects are specified using constraints. OSU v2.0 provides a set of domain-specific

tools, such as GraphLab [Lin 88], which accepts direct manipulation of various

graphical objects as input and produces code modules that implement the runtime

behavior of those objects. However both systems can only generate a limited range of

graphical objects' runtime behavior, since they must rely on graphical or

demonstrational specification of the graphical objects' semantics. Also, they provide

no support for various tasks common to most GUI applications such as printing, undo

and redo, and accessing files. Instead of using a user interface toolkit , NeXTstep

[Thompson 89] uses an application kit to help the designer implement the basic

Page?

functions that a GUI application needs to run . Although the application kit, a class

library consisting of 38 tested objects, offers more functionality than user interface

toolkits, it is still far behind application frameworks in providing both reusable design

and implementation. NeXTstep's Interface Builder allows the designer to graphically

place preprogrammed user interface objects, such as menus, buttons, and palettes, in a

window and visually connect those user interface objects to the application code.

However, it does not address the application-specific graphics at all. Other UIDSs,

such as MacApp [Wilson 90] [Schmucker 86] and ET++ [Weinand 88 & 89], provide

an object-oriented application framework in which the designer programs the GUI

applications. Generic features, such as undo and redo, saving and opening, and

printing, found in most GUI applications are already available in a reusable form in

these systems. However, these systems provide very little support for handling

application-specific graphics and the designer usually has to handle all low level input

events and draw graphical objects using their underlying low level graphics packages.

Although application frameworks provide much more support for developing GUI

applications than user interface toolkits, they are still difficult to use. Clearly, tools

that automate the use of application frameworks are necessary.

3.2.2. B. Lack of Architectural Models and Abstraction Mechanisms

Most UIDSs do not provide any reusable development methodology to help designers

decompose and structure complex GUI applications. Th~-designer working with

those systems usually has to make up his own methodologies for analysis and design.

Also, they provide no support for the designer to visualize the overall architecture of

the entire GUI application at different levels of abstraction. Smalltalk's Model-View

Controller (MVC) paradigm [Goldberg 83] is a decomposition technique, designed

specifically for modularizing the structure of a GUI application. However, the

traditional argument against the MVC approach is that it does not support the concept

of document . Another argument against MVC is that it separates the behavior of

windows into two different roles: user-input managed by the controller, and output

provided by the view [Urlocker 89]. Unfortunately, this separation does not fit well

with most GUis where input is always associated with a particular window. Although

MacApp and ET++ refine some of the ideas in MVC, much of their design has

violated the MVC discipline. For example, in MacApp, the TDocument class is

designed to be both a Model and a Controller . Therefore, MacApp does not directly

support separation of user input handling from data. Also, the TDocument object

Page8

)

(model) knows a lot about its TView objects. This can greatly decrease code

reusability. Furthermore, MacApp does not support the change propagation

mechanism; this mechanism must be created by the designer. Apple's HyperCard

provides a very good architectural model for structuring hypertext systems. The

entire hypertext system is structured as a network of mostly static pages or frames.

HyperCard supports graphical specification of static pages. The designer can

graphically define the text and graphics for the current page, and buttons that cause

transitions to other pages. However, this architectural model is only useful for

structuring hypertext systems; it is not applicable to other types of GUI applications.

Also, HyperCard provides no support for the designer to visualize the overall

architecture of the entire hypertext system being designed. Furthermore, it does not

support hierarchical structure in a hypertext system. This makes the design and

browsing of a large hypertext system more difficult and less effective.

3.2.3. C. GUI Specifications are Difficult to Understand, Edit, and Reuse

In most UIDSs, the designer specifies the interface with a special purpose language.

The special purpose languages used by many UIMSs are likely to be unfamiliar to

programmer and interface designer alike [Linton 89]. These languages are poorly

structured in a software engineering sense: They use global variables, nonlocal

control flow, and explicit gotos [Myers 89]. Consequently, it can be very difficult for

a designer to understand, edit, and reuse user interfaces specified with those UIDSs.

Some graphical languages, such as state transition diagrams used in Rapid/USE

[Wasserman 85] and Jacob's State-Diagram Interpreter [Jacob 86], may be easier to

understand and edit than textual languages when resulting diagrams are moderate in

size. However, state transition diagrams can become an incomprehensible maze of

wires· as the interface becomes large. Also, state transition diagrams can only specify

dynamic aspects of the interface as states and events, but they can not represent the

static (linked) structure of the interface. This implies that state transition diagrams are

not able to be used as users' or designers' mental model. Direct-manipulation UIDSs

lets designers create user interface by direct manipulation. Examples include UIMX

[Lee 90], NeXTstep's Interface Builder, OSU v2.0, and Trillium [Henderson 86].

These systems are usually much easier for the designer to use. However, when direct

manipulation UIDSs support multiple levels of sequencing, as in OSU v2.0 and

Trillium, it can be difficult for the designer to modify and reuse the existing user

interface specifications.

Page9

3.2.4. D. Lack a Single Conceptual Graphical Model

Designers developing systems typically build conceptual models in their heads

[Reiss 87]. These models consists of notations used in the design. The conceptual

model is the abstract representation of a software system as perceived by the users'

community and the development team [Kung 89]. To build complex systems, the

developer must abstract different views of the system, build models using precise

notations, verify that the models satisfy the requirements of the system, and gradually

add detail to transform the models into an implementation. A conceptual model may

serve several purposes: (1) reduction of complexity; (2) system specification, (3)

communication with customers; (4) visualization of the system; (5) design; (6)

simulation; (7) validation; and (8) automation of prototype implementation. Although

different models may be used to serve different purposes, it is desirable that a single

model be used to achieve all purposes. However, most existing UIDSs do not support

the conceptual modeling (programming) approach for developing GUI applications.

Page 10

)

) 4. The Approach

To overcome the above shortcomings, we propose an object-oriented conceptual

modeling approach for constructing GUI applications. An important feature of

object-oriented programming in the field of GUI software systems is that the objects

on the screen have a physical correspondence with the real object instances in the

actual system. So, object-oriented modeling is ideal for developing GUI systems.

The proposed conceptual modeling approach uses an annotated Petri net notation

[Keh 91] for representing the object-oriented concepts and the underlying objects

themselves and has the following features:

• it is a visual and formal approach which is capable of modeling both the
static and dynamic aspects of GUI applications at a higher level of
abstraction through the use of an object-oriented application framework that
supports a modified MVC design methodology and embodies most generic
functionality required when constructing a GUI application;

• it benefits from previously developed analysis techniques to verify
behavioral properties of the modeled system;

• it produces an executable specification which can be directly executed by a
suitable interpreter to simulate the system being modeled and can be easily .
translated into a C++ program prototype.

Due to the fact that graphical rendering and user input are coupled tightly in most

GUI applications, our modified MVC combines the functionality of the MVC view

and controller into one object (view). Placing responsibility for input and output in

the same object reduces the total number of objects and the communication overhead

between them [Linton 89].

The proposed Petri-net-based object-oriented conceptual modeling approach provides

solutions to many problems encountered in the development of GUI applications. We

will describe below how this approach may overcome the shortcomings of existing

tools and systems discussed above:

A The underlying MVC-based object-oriented application framework offers
much more functionality than a user interface toolkit and supports a
significant part of the GUI software development task.

B. It provides a good architectural model and abstraction mechanism.

C. The user interface specifications are easy to understand, edit, and reuse.

Page 11

D. It is able to integrate the phases of specification, modeling, design,
validation, simulation, and rapid prototyping of GUI applications within
the framework of the operational software paradigm.

4.1. A. Object-Oriented MVC-Based Application Framework

One of the main advantages of object-oriented programming is that it supports

software reuse. The design of object-oriented application frameworks is probably the

most far-reaching use of object-oriented programming in terms of reusability since it

supports not only the reuse of code but also the reuse of design. A framework is

typically composed of a mixture of abstract and concrete classes along with a model

of interaction and control flow among the classes. As in MacApp and ET++, the

design and implementation of common aspects of most GUI applications, such as

handling windows, undo and redo, saving and opening, and printing, are already

available in a reusable form. The change propagation mechanism provided by the

MVC approach helps the programmer deal with the intertwined interaction between

the user interface and the application logic. It permits multiple views of the same data

to be displayed simultaneously such that data changes made through one view are

immediately reflected in the others. With the support of a rich set of domain-specific

views in the application framework, the programmer can easily create and manage the

domain-specific graphics even without writing any code. In situations where the

developer must write unique code to derive new subclasses, they are easy to create

because they can reuse both the design and implementation from their abstract and

concrete superclasses. As mentioned above, application frameworks are still difficult

to use. This drawback can be significantly reduced by using Petri-net-based visual

programming tools to automate the use of an application framework. As long as the

application framework becomes mature enough and contains a rich set of domain

specific view classes, a GUI application can usually be plugged together from existing

components by drawing an annotated Petri net. Since this paper focuses the object

oriented MVC-based application framework component of OSU 3.0, we will further

elaborate on the related paradigms before discussing the remaining advantages to our

approach.

4.1.1. The Object-Oriented Paradigm

Software itself is inherently complex [Booch 91] [Lewis 90]. Decomposition of a

software system into smaller parts is an essential tool for managing this complexity.

While both algorithmic and object-oriented decomposition are important in

Page 12

understanding programs, object-oriented decomposition offers many benefits over

algorithmic or structured decomposition. Among them are the incremental nature of

object-oriented design, encouragement of the reuse of both code and design, and the

natural ability of humans to model a problem domain using objects. We will later see

that GUI's fit the object-oriented model well.

Korson and McGregor [Korson 90] assert that the object-oriented paradigm solves

several problems with traditional software design and development approaches.

Specifically the lack of iteration, lack of encouragement for reuse, and lack of a

unifying model to integrate all phases of the software life cycle put these classical

models at a disadvantage compared to an object-oriented approach. The boundaries

between the analysis, design, and implementation phases are blurred in the object

oriented paradigm since objects are the items of interest in all three phases. This

allows the designer to utilize the same paradigm throughout the software life cycle.

For the object-oriented paradigm to provide full benefits requires a new way of

thinking about ·decomposing and solving problems using computers [Budd 90].

Object-oriented programmers see a program as a collection of objects, sometimes

called agents. Each object is autonomous, containing its own state and behavior, and

with other objects by sending and receiving messages. In this sense programs look

much more like a model of the real world than traditio~~l procedural programs, and

makes conceptually modeling of GUI applications much more natural and intuitive

than traditional algorithmic decomposition.

The main characteristics of object-oriented languages are encapsulation, class,

inheritance, and polymorphism [Appendix B]. Aside from the design advantages

afforded an object-oriented approach,OSU 3.0 takes advantage of all four features in

very concrete ways. Encapsulation allows us to create pluggable and adaptable

domain-specific views. It is also used to create user interface objects at a higher level

of abstraction than supported by the toolkit level. The ability to have multiple

instances of a class (objects) allows modeling user interface objects as typed Petri net

places [Keh 91], with multiple tokens representing the various instances of the object

at a point in execution. Inheritance encourages the reuse of code by allowing classes

to be created and then specialized through subclassing. Polymorphism is used

extensively in our data structure and shapes classes to allow objects, such as a list, to

hold may types of objects, such as SquareShapes and CircleShapes. A message such

as Draw can be sent to each of the objects with the expected result.

Page 13

4.1.1.1. GUI's Fit the Object-Oriented Paradigm

Most toolkit routines are very low level, and consequently the code required to model

a window or simple dialog may become quite complex. Booch [Booch 91] cites

several studies that indicate humans have a fundamental limitation on their capacity

for dealing with complexity. Decomposition of a complex problem into a hierarchy

of classes is suggested as a powerful technique for dealing with this complexity. We

can also take advantage of specialization through subclassing to allow us to use a

variety of buttons, for example, but only write the code (and learn the interface) for

the common characteristics once. Treating GUI features as objects is so natural that

even Apple [Apple 85] refers to them as "graphical objects."

GUI toolkits, by mapping the various elements of the GUI onto a carefully crafted set

of procedures or classes takes a large step towards simplifying the task of

programming a GUI. However there is still a great deal of complexity that is

common to every GUI based application that we have not yet abstracted. For

instance, asynchronous events coming from the mouse and keyboard are dispatched

from a main event loop. Almost every application must read and write disk files.

Toolkits and class libraries do not capture this level of the design, but clearly it would

be beneficial. We will return to this idea when we discuss frameworks.

4.1.1.2. Our Choices

Our objective remains simplifying the difficult process of programming complex GUI

based applications. Although our hardware platform is the Macintosh, we wanted our

results to be portable to other systems. Given the potential benefits of the object

oriented methodology for GUI design and decomposition, and the good fit with the

graphical elements of a GUI, the choice of an object-oriented paradigm was obvious.

We found that C++ [Ellis 90] was already in use supporting GUI's on a number of

Unix systems [Weinand 88] [Linton 89], and offers many performance advantages

over other object-oriented languages [Jordan 90]. Other possibilities were Object

Pascal or Smalltalk-80, but these were discarded due to lack of portability in the case

of Object Pascal and the inability to create stand-alone runtime applications in

Smalltalk-80.

For these reasons we chose C++ both for the implementation of OSU 3.0, and as a

target language to be automatically generated from high level specifications entered

Page 14

into the UIMS. Apple's recent announcement that version 3.0 of its MacApp

application framework [Wilson 90] is written in C++ rather than Object Pascal

(versions 1 & 2) lends additional weight to our decision.

4.1.2. Object Oriented Frameworks: Beyond GUI Toolkits

We have shown above the value of abstracting GUI objects and other program entities

into reusable classes. GUI applications, however, can encompass relatively large

numbers of classes related to one another in complex ways via message passing. We

would like to find a mechanism that manages much of this complexity for us, while

retaining the advantages of the object-oriented paradigm. Subclassing won't help

because it does not make sense to make a button object a subclass of an application

object, but the two must certainly communicate in the finished GUI application.

Although the reuse of code through GUI and other class libraries is valuable, the reuse

of the overall design for an application is probably even more important [Johnson 88]

[Wirfs-Brock 90]. Since toolkits simply abstract the visual representations of various

GUI objects, they cannot help with the complex higher level interactions between the

application, the application's data, and various GUI objects. We look to frameworks

to allow us to write once and reuse application level designs that manage the

intertwined interaction between user interface and application logic.

Wirfs-Brock asserts "A framework is a collection of abstract and concrete classes and

the interfaces between them, and is the design for a subsystem." The Model-View

Controller (MVC) of Smalltalk-80 was the first widely used framework and was

developed at PARC. It demonstrated the value and suitability of using object-oriented

programming to model GUI objects and capture the overall design of the user

interface. The MVC framework will be discussed in more detail in a later section.

Many other examples of application frameworks for constructing GUI applications

have since appeared. MacApp [Wilson 90] is an application framework designed

specifically for the Apple Macintosh to assist in constructing applications that

conform to Apple's User Interface Guidelines. Other GUI frameworks include

InterViews [Linton 89] and ET++[Weinand 88 & 89]. Although many of the well

known frameworks support the construction of GUI applications, Wirfs-Brock points

out that frameworks can be applied to any area of software design, not just user

interface issues.

Page 15

Although frameworks add additional classes to an already large GUI toolkit, they can

actually reduce the complexity of programming GUI applications by reducing the

number of toolkit calls a programmer must use in developing applications. A

framework provides " ... a fully-functional do-nothing application" [Urlocker 89]

embodying standard GUI features such as file management, printing, scrolling, and

window management. Frameworks may also contain support for complex data

structures such as linked lists, trees, sets, stacks, queues, and others. Frameworks are

put to use by refining their underlying design to meet a specific applications needs

through subclassing. In addition application specific classes may be created to

support special types of data structures or model calculations.

4.1.2.1. Why Another Framework?

At this point it might be useful to explore why we are developing another framework

for the Macintosh given the existence of MacApp and others. There are three main

reasons for developing another GUI application framework. First, designing a

framework is a difficult, iterative process [Dearle 90] [Myers 89] and can be

considered research itself [Gamma 90] [Wirfs-Brock 90], since the designer must

develop a theory in the problem domain and express it with an object-oriented design.

Second, while MacApp is currently in its second version it has documented

shortcomings [Alger 90] [Weinand 88], most notably its failure to capture design

methodologies such as MVC. Third and most important is our ultimate objective of

building a tool that will allow construction of large portions of GUI applications using

direct manipulation and visual programming techniques [Keh 91]. It is important that

we have the flexibility to modify the design to accommodate automatic code

generation from high level specifications.

4.1.2.2. Framework Design Considerations

Designing frameworks may at first appear to be a simple matter of extracting common

functionality and abstract classes from a completed application, however a framework

must be designed in a much more general manner to be useful in building new

applications. Designing a framework is also complicated because we are no longer

working just with encapsulated objects that may each be developed and tested

independently. We now have a society of objects that are interconnected and

interrelated due to the structure of the application. The ability to create new

applications with a minimum of subclassing and overrides is important, as is the

Page 16

'

ability of a programmer to easily understand and use the design embodied in the

framework. Due to the difficulty of generalizing a GUI application, frameworks are

usually iterated over several versions. At each stage, the framework must be tested by

using it to build applications. It is here that weaknesses in the design will show up.

We plan to improve the state of the art by building on the successes and avoiding the

shortcomings of previous frameworks. For example, our framework employs a

modified MVC to support the update of multiple views of a single model. Most of the

time an application can be plugged together from existing components by drawing an

annotated Petri net. This ability to be automated makes the framework considerably

easier to use.

The MacApp community has generally agreed that MacApp falls short in providing a

reusable design methodology [Alger 90]. If fact it has been described as " ... only a

thin layer on top of the Macintosh toolbox." [Weinand 88]. Although this may be

judging MacApp too harshly, there is ample evidence that improvements can be

made. Keh has pointed out that both MacApp and ET++ combine the concept of

model and controller into the document class because documents are subclasses of the

event handler class [Keh (unpublished)]. MacApp admittedly has as one of its goals

the enforcement of the Macintosh User Interface Guidelines. While this is laudable

for its intended market, we would like to produce a more general framework that may

be applied to other systems as well as the Macintosh.

Since our ultimate goal is building applications that are modeled using a high-level

Petri net and configured using a direct manipulation Petri net editor [Keh 91], we

must design a framework that supports these goals. Subtle changes in class structure

that seem innocuous may have significant implications during code generation, and

we have already seen changes made to our design for this reason. For example, our

data structure classes are subclassed from our model. This allows data structures to

send a changed message to its superclass which then notifies all dependent views to

update themselves.

4.1.3. The Model-View-Controller Paradigm

The Model-View-Controller (MVC) metaphor integrated into the Smalltalk-80

programming environment [Goldberg 83] grew out of the positive results experienced

with the Smalltalk-76 system when model, view, and controller functionality were

broken into separate modules [Krasner 88]. The MVC paradigm has proven so useful

Page 17

that it has been adopted and adapted for many systems, including MacApp [Alger 90],

The Andrew Toolkit, NeWS Development Environment and Stepstone's ICpak 201

[Knolle 89], portions of ET++ [Weinand 89], and Smalltalk/V [LaLonde 89]. MVC

is discussed in [Alexander 87], [Urlocker 89], [Wirfs-Brock 90], [Booch 91], and

[Dodani 89].

The MVC paradigm consists of a set of three classes that abstract the essential

application independent features of a GUI [Figure l]. The model class holds the

domain specific data that is to be represented and manipulated by the GUI

application. The view class renders all or parts of this data on the screen. The

controller class is responsible for accepting asynchronous input from the mouse and

keyboard and passing appropriate messages to the model and view classes to allow

editing of the model data. The important difference between the MVC user interface

framework and a set of toolkit functions is the MVC's embodiment of the

collaboration between these classes.

Keyboard &
Mouse

I've Changed Message

Display

I've Changed Message

Figure 1. Model-View-Controller Communication

In use, the MVC framework is subclassed in the application. These subclasses further

refine the MVC classes to allow display and editing of the model data. Views and

controllers may have only one model, but models may have many views and

controllers [Figure 2]. Views and controllers are generally tied closely together. The

reason for this becomes obvious when you consider the difference in semantics

Page 18

between editing data in a spread sheet view and a chart view. With the possibility of

multiple views we introduce the problem of keeping all of the views consistent with

the state of the data when it is edited by one of the views. It is also important to keep

communication between these two classes tight to support adequate semantic

feedback when objects are manipulated interactively on the screen [Myers 89].

Keyboard &
Mouse

I've Changed Message

splay

I've Changed Message

Figure 2. A Model With Multiple View-Controll~~ Pairs.

4.1.3.1. Model

The model contains domain-specific data that is to be displayed and manipulated by

an application. It can range from an integer (representing a counter or thermometer)

or an array of characters (a simple text editor) all the way to dynamic lists of

structures, records, or other complex data structures. A model does not need to know

anything about its views or controllers.

4.1.3.2. View

The view controls the visual representation of all or parts of a specific model.

Common functions such as refreshing or scrolling a window may be contained in this

class, but application specific functions such as "display this array as a spread sheet"

will be subclasses by the application developer. Views may represent the entire

model or only certain aspects. The view must know about the model it is

representing, but needs no knowledge of any other views.

Page 19

4.1.3.3. Controller

Controllers are associated with both views and models. A controller accepts user

input from various input devices such as the keyboard and mouse, and sends

appropriate messages to the view and model. The controller should have a consistent

interface to the model, but because of the semantics of user feedback, may have a less

standard and more complex interface with its view. Controllers must know about the

model and view they are associated with, but need no information about other

controllers. Figure 1 illustrates message passing in the MVC paradigm.

4.1.3.4. Multiple Views

The real power of the Model-View-Controller paradigm is demonstrated when you

consider the case of multiple views. Since the model doesn't have any code that is

dependent on the nature or number of its views, existing views may be modified or

new views added at any time. Since communication between the model and the view

controller pair is captured in the abstract classes, this design can be reused for every

new view and application. This can save considerable design effort every time the

MVC framework is used.

4.1.3.5. Change Propagation

We have not yet discussed the way multiple views are kept "in synch" with the

model. One or more views may be used to edit the model's data at any time. Each

view can access its models data at any time to update the current representation.

Unfortunately the model shouldn't know anything about its views, and therefore can't

advise any that need updating to update themselves. However updates can be taken

care of if we introduce the notion of dependents. Views and controllers are registered

with their model when they come into existence, and any time the model's data is

changed the model broadcasts an "I've changed" message to all of its dependents

[Figure 3].

Each dependent view and controller can then access the model's data and update itself

appropriately. Parameters passed with the changed message may allow views and

controllers to decide if they need to update for a given change.

Page 20

View/
Controller

View/
Controller

View/
Controller

View/
Controller

View/
Controller

View/
Controller

Figure 3. Two Models With Multiple Dependents.

4.1.3.6. Integrating the MVC Paradigm Into OSU's Framework

Alger has demonstrated the feasibility of using the MVC paradigm with the

Macintosh user interface [Alger 90], and it is a well proven metaphor with years of

use in the Smalltalk-80 environment [Krasner 88]. Ferr-el lists "a general mechanism

for multiple views of content" as a desirable objective for Aldus' proprietary Vamp

framework [Ferrel 89] but fails to tell us how it is implemented. ICpak 201

[Knolle 89] implements a version of MVC using DepObject, a general dependency

mechanism available to all objects, which poses as the root Object (posing is an

Objective-C feature). The Andrew Toolkit [Palay 88] uses a similar change

propagation mechanism inherited from a superclass in their custom object-oriented

environment called "Class". Both ICpak 201 and the Andrew Toolkit combine the

view and controller into a single object.

Although our framework encompasses features not addressed by MVC, such as the

CLDataStructure class, reading and writing of models to disk, and the main event

loop of CLApplication, it can be easily integrated into our framework and provides

the advantages of reusable code and design discussed above. An additional advantage

can be realized at the code generation stages when our framework is used in the future

UIMS. By modularizing and specifying the way application data is displayed and

Page 21

edited using the MVC metaphor, we have provided a clean interface where

application dependent code may be inserted to control the visual representations of an

application. This allows pluggable domain specific views to be easily added by

subclassing the existing view class. These views may be graphically combined with

other GUI objects using the Petri net Editor to rapidly create applications with little or

no additional C++ programming.

4.2. B. Solid Architectural Model and Abstraction Mechanism

The incorporation of the MVC paradigm into the object-oriented application

framework provides a reusable design methodology to decompose and structure

complex GUI applications so that developers do not have to reinvent analogous

design methodologies on their own. Since annotated Petri nets are also able to

represent the linked structure of a GUI application, the designer, by using a graphical

net editor, can refer to a graphical representation of the annotated Petri net to obtain

the overall structure of the GUI application being designed. Furthermore, with

careful use of net hierarchy, a designer can organize a GUI application more

effectively than with a flat structure. For example, hierarchy can provide a form of

abstraction, so that the designer can browse information in a hypertext system at

different levels of abstraction and skip unimportant details if necessary.

4.3. C. Easy to Understand, Edit, and Reuse Graphkal Specification

By using a graphical net editor, the developer can construct annotated Petri nets,

working directly with their graphical representation. The graphical representation

promotes understandability of the model and facilitates computer aided

documentation. The graphical net editor lets the developer easily perform graphical

modifications on the model. It also promotes reusability of the model because the

developer can easily perform cut-and-paste editing operations on any consistent part

of the graphical representation across models of different GUI applications in a

MacDraw-like fashion. A criticism which is often raised against ordinary Petri nets is

the unmanageable size of the models of complex systems; however this drawback can

be reduced by using high level Petri nets, such as annotated Petri nets [Bruno 86]

which are often more concise and suitable for the analysis of the described systems .

Moreover a further improvement can be obtained if models based on those nets

contain hierarchy, in which the object representing a subsystem can be described by

an autonomous net exchanging messages, through the movement of tokens, with other

Page 22

)

)

objects of the system. Note that the use of net hierarchy not only reduces the

complexity of the model but also promotes reusability at the modeling level because

subnets can be used as reusable components to build models of complex GUI

applications. There are two advantages of annotated Petri nets over state transition

diagrams in specifying GUis. First, annotated Petri nets are able to represent both the

static (linked) structure and dynamic behavior of a GUI application, however, state

transition diagrams can only specify dynamic aspects of a GUI application. The

ability of annotated Petri nets to represent the linked structure of a GUI application

makes them a better conceptual model than state transition diagrams. The second

advantage is that the resulting Petri net graphs are usually much smaller than state

transition diagrams. This is because all reachable states of a modeled system have to

be explicitly represented in the state transition diagram, but they are implicit in the

Petri net specification and can be brought out by executing it

4.4. D. Single Conceptual Graphical Model Supports Development Cycle

The proposed approach supports conceptual models and gives an operational

specification of the GUI application. Also, the annotated Petri net representing the

high-level design of a GUI application allows previously developed analysis

techniques to be used to verify system properties, such as display complexity, the

presence of terminal states, node reachability and unreachability, and so on. These

properties can be related to specific situations in the actual systems. Previous work

on annotated Petri nets used these reachability graph analysis techniques to verify the

properties of a hypertext-based information retrieval system [Keh 91]. Furthermore,

since the annotated Petri net model is executable, it can be directly executed by a

suitable interpreter to simulate the system being modeled and determine whether or

not it matches the user's requirements. Due to the fact that the annotated Petri net

representation of a GUI application may involve application-specific classes and

domain-specific view classes, written in the target language, simulation of the entire

GUI application needs to have a built-in interpreter of the target language. However,

all the standard graphical user interface portions of a GUI application can be

simulated with a simple Petri-net-based controller guided by the Petri net execution

rules. Also, some behavioral properties for domain-specific views can be simulated

without a built-in interpreter. For example, by displaying a domain-specific view's

clipping pane (a rectangular area) in its containing window, simulation can be

performed to see if the view is scrolled or scaled correctly when its containing

Page 23

window (superpane) scrolls or changes in size. Finally, the annotated Petri net model

itself can be used as a simulation prototype, since it is executable. This type of

prototype can be produced rapidly. Due to the reusability and translatability of the

annotated Petri net model, a program (implementation) prototype can be easily

obtained through automated tools. The program prototype can then be further refined

to produce the final system. The proposed Petri-net-based object-oriented conceptual

model approach can thus integrate the phases of specification, modeling, design,

validation, simulation, and rapid prototyping of GUI applications within the

framework of the operational software paradigm [Zave 84].

In summary, the annotated Petri net basis provides an abstract graphical

representation of the modeled system and can be used as a medium for specification,

documentation, design, simulation, validation, and rapid prototyping. The use of an

object-oriented application framework provides both reusable design and reusable

code and handles common aspects of most GUI applications. The incorporation of

the MVC paradigm into the object-oriented application framework provides a

reusable design methodology to decompose and structure complex GUI applications

having multiple views so that developers do not have to reinvent analogous design

methodologies on their own. The change propagation mechanism provided by the

MVC approach helps the programmer deal with the intertwined interaction between

user interface and the application logic. Pluggable and adaptable application-specific

views help developers create the application-specific graphics that appear in the main

application window.

Page 24

5. The Results

A brief overview of the Oregon Speedcode Universe, version 3.0, is provided.

Following this is a more detailed look at the classes I implemented in the OSU 3.0

MVC-based application framework. Some knowledge of the Macintosh Toolbox and

the characteristics of Macintosh applications is assumed. Interested readers are

referred to [Apple 85] and [Allen 90] for more information.

5.1. The OSU 3.0 System

Since the annotated Petri net model itself can be executed and translated into the

implementation language, it also serves as the basis for the UIDS of Oregon

Speedcode Universe version 3.0 (OSU v3.0), an experimental programming

environment currently under development with Macintosh MPW C++

[Apple 89b & 89c], to ease the development of Macintosh applications. Much of the

design of OSU v3.0 is based upon the successes and shortcomings of its predecessor,

OSU v2.0 [Lewis 89] [Yang 89], implemented in Macintosh Think Pascal

[Borenstein 88]. The UIDS of OSU v3.0 consists of an MVC-based object-oriented

application framework, a reusable class library, and a set of integrated tools for

specification, modeling, simulation, validation, and rapid prototyping of GUI

applications. We briefly describe each tool below, and~ in depth look at the MVC

based object-oriented application framework follows.

1) RezDez: The RezDez tool allows the designer to create user interface objects by

actually drawing these objects on the screen. The descriptions of objects are then

saved in a binary resource file.

2) Petri Net Editor: The Petri Net Editor tool serves as the modeling and specification

tool. It also provides a graphical front end to most of the underlying application

framework features and produces an executable specification which is the design

representation of the modeled system and can be easily translated into a C++

program.

3) Browser: The Browser tool allows the designer to navigate through the application

framework class hierarchy, retrieve desired features if necessary, and visualize the

connection between the sequence and the class hierarchy.

Page25

4) Simulator: The Simulator tool sets the initial state of the modeled system according

to the initial marking of the net, and then executes the system by using the user's

inputs. Simulation can be controlled either by the firing of enabled transitions from

the displayed annotated Petri net or by directly selecting enabled items from the user

interface objects displayed on the screen. Note that simulation of the user interface

portion of the system can be guided by the Petri net execution rules, however the

simulation of the application-specific functionality needs to have a built-in interpreter

of the implementation language.

5) Reachability Graph Analysis Tool: This tool can analyze annotated Petri nets

representing the design of the user interface to determine properties such as display

complexity, the presence of terminal states, node reachability and unreachability, and

soon.

6) Code Generator: The Code Generator takes an annotated Petri net as input and

produces a C++ program as output. Most generated C++ classes will be derived

classes from the existing classes in the OSU Application Framework ..

5.2. The OSU 3.0 MVC-Based Application Framework

Oregon Speedcode Universe version 3.0 is currently under construction at Oregon

State University. Within OSU 3.0, the MVC-based application framework solves

several of the problems with existing UIMS tools. It provides additional functionality

and supports both the design and coding stages of the development task. It provides a

strong architectural model for large applications and therefore supports reusable

design and reusable code. The integration of the MVC paradigm into our framework

has been discussed above. The Code Generator, Petri Net Editor and Browser tools

within OSU are not yet complete, but they will all be implemented using our

framework. The framework will also be an integral part of the application source

code generated by OSU 3.0. An overview of the OSU 3.0 MVC-based application

framework is followed by a discussion of the classes I implemented. Comments

about the expected benefits are followed by a simple example application

demonstrating the use of the framework to support a model with two view-controller

pairs.

Page 26

) 5.2.1. Class Hierarchy Overview

Since graphical rendering and user input are usually tightly coupled, we have

combined the functionality of the MVC view and controller classes into one object

(view). Placing responsibility for input and output in the same object reduces the total

number of objects and the communication overhead between them. In what follows

the term "MVC" refers to our modified MVC. In our framework, the controller is an

abstract class [Johnson 88], forming a root for any classes that handle input from the

mouse or keyboard. It is roughly equivalent to the TEvtHandler class in MacApp

[Wilson 90]. Our class hierarchy is illustrated in Figure 4. The grayed out classes

were implemented by other members of the OSU 3.0 development team. Note also

that some, like Data Structures, may be quite complex with hierarchies of their own .

Each of our class names is prefixed with the letters "CL", however this prefix has

been elided until the discussion of our example application.

Our model, view, and controller classes combine to support the MVC paradigm in our

framework. Views are subclassed to provide domain specific graphic representations

of model data and allow editing of that data. Our framework supported applications

have a single instance of the application class which is primarily responsible for

receiving and dispatching mouse, keyboard, and other events received from the

hardware. Our document class is responsible for responding to Open and New

commands passed along from the menu class, and usually has a window with one or

more views associated with it.

Like all GUI applications, our framework is event driven. The communication

between classes triggered when the mouse button is clicked by the user is illustrated

in Figure 5. The Application class dispatches the event to the proper object, based on

the location of the cursor when the button was clicked. Notice if the mouseDown

event reaches the View class, it is directed to a domain specific, overridden (gray box)

method that will generally change the Model's data, thus causing all the dependent

views to be redrawn.

The descriptions below are introductory and describe the current state of the

framework. As with most frameworks, the source code header and implementation

files should be consulted for more detailed information. Selected instance variables

Page 27

and member functions of special interest to the user of our framework are also

outlined.

File Document

Figure 4: OSU 3.0 MVC-Based Application Framework Class Hierarchy

Page 28

)

)

MenuBar::
HandleMenuCommand

View::
ModelUpdated

MouseDown
Events from OS
Event Queue

Pane::
{ Find subPane
in fSubParielist}

Pane:: View::

DoClose
or

DoGrowWindow
or

DoZoomWindow
or

DoDragWindow

Scroll Bar::
DoMouseDown

Pane::
Scroll

ViewUpdate DrawContents

Figure 5: Framework Communication Triggered by User Clicking Mouse
Button

Page 29

5 .2.2. The Model Class

The Model class supports the MVC paradigm by maintaining a list of views

dependent on its data. In our framework, the data structure classes such as lists,

arrays, and bags, are subclassed from the model class. For this reason, it is usually

unnecessary to subclass the model class directly, unless you need a model of simple

or unusual data (see our example below).

The data structures are provided with member functions (methods) to allow

modification of the object's data. When these functions are invoked, they call the

model's Changed() function which calls Notify(). Notify() sends the ModelUpdated()

message to each dependent view. Since the data structure is a subclass of model, it

just passes the Changed() message to itself. If the model's constructor is invoked with

a pointer to a CLDocument, the model class will also increment the document's

fChangeCount variable, used to determine if a document should save its data before it

is closed.

Instance Variables:

• viewList

• ffheDocument

Member Functions:

• Changed

• AddView

• Remove View

5.2.3. The View Class

list of view objects dependent on this model's data

reference to optional document object

called by data structure when it data is modified

add a view to viewList

delete a view from viewList

The View class is responsible for the graphical rendering of model data within

windows. Since GUI's commonly allow data to be edited by direct manipulation of

the visual representation on the screen, we have incorporated methods inherited from

the abstract controller class into our views to handle mouse and key events. Views

draw inside a pane, and panes are inside windows. The view draws relative to an

origin of (0, 0) positioned at the upper left hand comer of the view. The pane class

takes care of offsetting the origin of the view to account for its position within a pane

and window, and also clipping the view so that it does not draw outside of its

enclosing pane.

Page 30

)
When a model sends the ModelUpdated message to a view, the view sends a

View Update message to all the panes in its superPaneList. The pane in turn "focuses"

the view and calls its DrawContents method. If the view is visible, its Draw method

is called and drawing takes place on the screen within the bounds of the clip region.

MouseDown events are converted by each view to single, double, or triple clicks and

dispatched to the appropriate view method, which is overridden in the domain specific

pluggable view or in a user written subclass of view. KeyDown events are handled in

a similar way.

The view class gets a pointer to its model as one of its constructor parameters and

automatically registers itself as a dependent by sending the AddView message to the

model object. It can later remove itself from that model and become a dependent of

another.

Instance Variables:

• ITheModel

• fSuperPaneList

• ±Max.Scroll

Member Functions:

the model this view is dependent upon

a list of the panes that should be focused and drawn into
when this model receives the ModelUpdated message

the maximum horizontal and vertical dimensions (in
pixels) of the view - this is used by the pane to calculate
scroll limits, etc . ~ ·

AddSuperPane adds a pane to the fSuperPaneList

ModelUpdated called when the model this view displays is changed

DoMouseCommand called when a mouseDown has occurred in the view
rectangle of the enclosing pane

DoSingleClick overridden by user - defines what the view/controller
does on a single click; similar functions for double and
triple clicks

DoKeyDown overridden by user if keystrokes are to be handled

DrawContents calls Draw if the view is visible

Draw overridden by user - draws the domain specific view of
the model's data

DoSetupMeiius enables and checkmarks menu items "owned" by this
view

Page 31

5 .2.4. The Controller Class

The Controller class is strictly an abstract class used to define event handling methods

(member functions) for subclasses like application, view, and window (see Figure 4).

The controller class is never instantiated directly.

Instance Variables:

• none

Member Functions:

• DoActivateEvt dispatches activate events generated when a window
becomes the front most window

• DoDeactivateEvt handles deactivate events when a window is switched
from front most to some other position in the systems
window list

• DoKeyDown handles keyDown events for a specific object

• DoKeyDownEvt handles keyDown events from GetNextEvent - calls
HandleMenuCommand if the key was a menu key

• DoMouseDown handles mouseDowns for a specific object (i.e. view,
window, ...)

• DoMouseDownEvt handles mouseDown events received from the Toolbox
via GetNextEvent - dispatches tP. various mouse handling
methods based on location of the mouseDown (i.e.
inMenuBar, inSysWindow, inContent, etc.)

• DoUpdateEvt dispatches the message DoUpdateEvt to the proper
window object

5.2.5. The Application Class

The Application class contains the GUI's main event loop and dispatches events

received from the operating system to the object responsible for handling that event.

For each GUI application generated using our framework, the application class must

be subclassed and a single instance instantiated. At a minimum, the CreateMenus

method must be overwritten in the subclass to create -a menuBar object and install the

application's menu objects into it. When the application class is instantiated (the first

action in the GUI application's C function "main"), its constructor initializes the

Macintosh Toolbox routines. After any additional domain specific initialization is

performed, the Run method of the application class is invoked. The Run method

contains the application's main event loop.

Page 32

)

r)

)

Instance Variables:

• fWindowList application's list of windows, palettes, modal and
modeless dialogs, alerts, etc.

• fWindowObject the window object that should handle the event just
fetched via the TooIBox GetNextEvent function

• fWhich Window pointer to the front window

• ffheEvent the current event (last one fetched via GetNextEvent)

Member Functions:

• CreateMenus overridden by user - instantiates the menuBar and menu
objects

• DoActivateEvt dispatches activate events generated when a window
becomes the front most window

• DoDeactivateEvt handles deactivate events when a window is switched
from front most to some other position in the systems
window list

• DoKeyDown handles keyDown events for a specific object

• DoKeyDownEvt handles keyDown events from GetNextEvent - calls
HandleMenuCommand if the key was a menu key

• DoMouseDown handles mouseDowns for a specific object (i.e. view,
window, ...)

• DoMouseDownEvt handles mouseDown events received from the Toolbox
via GetNextEvent - dispatches to various mouse handling
methods based on location of the mouseDown (i.e.
inMenuBar, inSysWindow, inContent, etc.)

• DoUpdateEvt dispatches the message DoUpdateEvt to the proper
window object

• Run enters the application's main event loop

• Terminate sets a flag that causes an exit from the main event loop -
called when the user wants to Quit the application,
usually from the Quit item of the File menu

5.2.6. The Document Class

The Document class is given responsibility for reading and writing data contained in

the model to disk. Subclasses of document are created which contain one or more

model objects, one for each file that is open. Our document class, unlike MacApp, is

Page 33

not an event handler. We have chosen to keep the event handling responsibilities in

the MVC, application, and menu classes since they relate closer conceptually to user

events. In a sense, the document is also responsible for data storage in RAM,

although this is delegated to the model/dataStructure classes. The subclassed

document is usually instantiated by the CreateDocument method of the window class.

In the current implementation, the Document and FileDocument classes have been

combined, but they could be split as shown in Figure 4 so that a document does not

have to be disk based. In the current implementation of our document class the user

must override the document's DoRead and Do Write methods, however the data

structure classes are undergoing changes to allow them to receive DoRead and

Do Write messages so that the user does not have to write this code. The document

class manages the logic of putting up dialogs to get file names to open (load from

disk) and save. It also puts up a dialog, based on fChangeCount, that asks the user if a

modified document (really the model's data) should be saved before closing. When

using the document class be aware that when a file is saved, it writes data stored in

RAM to the data and/or resource forks of a new file, so all model data must be

resident in memory before a save. Specifically, data can not be appended to currently

existing data or resource forks.

Instance Variables:

• tWindow

• fChangeCount

• tFileType

• tFileCreator

Member Functions:

• IDocument

• Free

• FreeData

• DoinitialState

Page 34

pointer to window object - usecffo get WindowPtr

number of changed to model since New or Open -
incremented by changes to the model and ReDo,
decremented by Undo

the file type

the file creator

called from constructor to initialize tFileType, fCreator,
fChangeCount, and several other variables

called to force close of an open file and dispose of any
document data structures

overridden by user - disposes of any model objects
contained in the document subclass

called for "New" and "Revert" operations to instantiate
and/or initialize any document models

• DoMake Views overridden by user - instantiates any panes and views
needed by the documents model

• DoRead overridden by user - reads the model data from disk

• Do Write overridden by user - writes the model data to disk

• DoOpen displays standard SFOpen dialog and if reply.good, calls
ReadFromFile

• DoNeedDiskSpace overridden by user - must return the number of bytes
needed for a disk save of the model's data

• DoSave called to save the model's data to disk

• DoSaveAs save the model's data to a new file name (puts up
SFGetFile dialog)

• DoClose pose save dialog if fChangeCount '# 0 and take
appropriate action, then call Free

• DoRevert discard the changes to the model's data and revert to
previously saved file or initial state

· • DoSetupMenus enables and checkmarks menu items specific to this
document

Note that in addition to the Macintosh Toolbox functions, the document class uses a

number of higher level C utility functions that are not mmnbers of any class. They are

GetFilelnfo, FileModDate, GetDirID, FilllnDirID, OpenFile, CloseFile, and

DeleteFile. In general it will not be necessary to call any of these functions directly

from user written code.

5.2.7. The UIObject Class

The UIObject class provides variables for storing an id and name, and methods to set,

get and compare them.

Instance Variables:

• fld

• fName

Member Functions:

• SetID

• GetID

id or the UI object

name of the UI object

sets fld

returns fld

Page 35

• Isld

• SetName

• GetName

• IsName

compares id to UI object's id & returns a boolean

sets fName

returns pointer to fN ame

compares name to UI object's name & returns a boolean

5.2.8. The StdUIObject Class

The StdUIObject class provides a variable for the storage of the object's resource id,

and methods to get and set the variable.

Instance Variables:

• fResourceld

Member Functions:

• SetResourceld

• GetResourceld

5.2.9. The Pane Class

resource id of the standard UI object

sets fResourceld

gets tResourceld

The Pane class positions, scrolls, and clips views within a window, as well as

directing mouseDown and key Down events received by a window to the proper view.

Panes can have a single base view or one or more sabpanes, allowing for a

hierarchical display of panes within panes in a window. The root of the hierarchy is

the pane from which windows are subclassed [Figure 4], and the leaf nodes contain

the views. [Figure 6].

Page 36

)

)

View View View

Figure 6: Hierarchy of Panes and Views

Panes are initialized with a location and size which positions them within the

enclosing window, and if the pane is a leaf, the number of scroll bars and a pointer to

the view. Panes may be initialized explicitly using the ICLPane method, or from the

application's resource file (see "CreateSubPanes" in The Window Class below).

Each pane has a pane rectangle that encloses the entire pane and is framed by a one

pixel line. Inset one pixel within this pane rectangle is-~ view rectangle that defines

the clipping region when drawing the view. If the pane has a vertical and/or

horizontal scroll bar, then the appropriate edge of the view rectangle is inset further.

An fOrigin variable provides the relative offset between the upper left of the pane

rectangle and the upper left of the view to adjust the view's position after scrolling,

and is initialized to (0, 0) [Figure 7].

Page 37

[Hample Window
.......__

fLocalLocation

--.........~==========~~ Q e = struct {
short v
short h

} l
.... ---- fViewRect

.... ··········-········· ····················-,ie.J
fPaneRect

Figure 7: Pane Location, Origin, Pane Rectangle, and View Rectangle

When a mouseDown is received by a window, it is passed J~.ong to the root pane. If

the pane has scroll bars, and the mouseDown was enclosed in one of their rectangles,

the DoMouseDown. message is passed along to the scroll bar object. Otherwise, the

mouseDown is passed to the view, or to the appropriate subpane, whichever is

enclosed in the pane. If the user scrolls a view, the framework calculates a new

fOffset for the view, scrolls the bits within the view rectangle on the screen, and

updates (redraws using the new origin) the area filled with the background color after

the screen bits are scrolled.

Another function provided by the Pane class is bringing panes and views into "focus".

FocusPane is called before a pane is Adorned (framed with a one pixel line and the

scroll bars redrawn). The FocusPane method sets the graphics port to the correct

(enclosing) window, sets the clip rectangle to the pane's rectangle, and draws the

frame and scroll bars. In a similar way, FocusView sets the port, but also takes into

account both the local location of the pane and the amount it is currently scrolled to

calculate the clip rectangle.

Page 38

)

j

Calculating new values for the pane rectangle, view rectangle, and scroll bars

[Figure 8] is done automatically when a window is resized or zoomed if the pane it

encloses is initialized to "size Variable". Usually panes within panes are initialized to

"SizeFixed".

All this takes place without the need for the user to write any code or subclass the

Pane class. Every pane is simply an instance of the framework's Pane class. However

user may, at times, wish to override the Adorn, MouseinPane, and DoSetupMenus

methods to customize the panes behavior.

' fOrigin 1
fViewRect ____.

'

e = struct {
short v
short h

}

r-r---~-. ·""_-_""·_-!:!_-_"·_-_~-_-""_-_.,.,._.!:! :!:'!.-.""·_-""_-_.,., ... !:! :!:'!.-.""·:"": . .,.,·.-.!:!-_-""_-_""·_-!:!_-_-:.,_-_~ ... ,.,,_........, fViewSize

' SetMin(0) fScrolllimit I
SetMax(fScrolllimit - fViewSize) "' fScrollUnit = 16 OR (fScrolllimit - fViewSize), whichever is smaller

fPageUnit = fViewSize OR (fScrolllimit - fViewSize), whichever is smaller

Figure 8: Calculating Maximum Scroll Bar Value and Scroll Units

Instance Variables:

• fOrigin used to adjust the GrafFort's origin to offset drawing of a
view that has been scrolled

Page 39

• fLocalLocation

• fPaneRect

• fViewRect

• fViewSize

• fPaneSize

• fEnableStatus

• fResizable

• fScrollBars

• ffheView

• fSubPaneList

• fSizeDeterminer

• ffhe Window

Member Functions:

• FocusView

• FocusPane

• Adorn

• MouselnPane

• AddSubPane

• RemoveSubPane

• FindSubPane

• DoMouseDown

• ScrollTo

Page 40

the location of the pane's upper left comer relative to the
enclosing window's upper left

the pane's rectangle (including scroll bars) in local
coordinates (relative to the enclosing window)

the view's drawing rectangle in local coordinates

the view's horizontal and vertical dimensions

the pane's horizontal and vertical dimensions

panes and views act on DoMouseDown messages only if
they are enabled

a pane can be adjusted in size (by growing or zooming the
window) if this is true

pointers to horizontal and vertical scroll bar objects (pane
must be a leaf)

if this pane is a leaf, a pointer to its view object, else
NULL

if this pane is not a leaf, a list of its subpanes

determines how panes are resized

the window object that encloses this pane

set the port, origin, and ClipRect for the pane's ffhe View

set the port, origin, and ClipRect for the pane's fPaneRect

frames the pane & draws the scroll bars - may be
overridden

allows changing cursor shape when mouse moves over
pane

adds a subpane to fSubPaneList

removes a subpane from fSubPaneList

given an id, finds the subpane with that id in
fSubPaneList

calls FocusPane, then passes DoMouseDown message to
part of pane located below mouseDown position

scroll view to an absolute offset

)

• Scroll

• DoSetupMenus

• ResizePane

• AdjustSize

• ICLPane

calculates absolute position to scroll to based on current
position of scroll bars

enables and checkmarks menu items owned by this pane

adjusts size of fPaneRect, fViewRect, scroll bars; calls
FocusPane and Adorn; notifies super pane and subpanes

computes new size of pane based on fSizeDeterminer

initializes the pane's size, location, number of scroll bars,
and view

5.2.10. The BasicWindow Class

The BasicWindow class is an abstract superclass common to windows, dialogs, and

palettes [Figure 4]. It holds the window's WindowPtr and its constructor

automatically inserts a pointer to itself into the application's fWindowList. It also

contains methods to drag a window.

Instance Variables:

• fWindPtr

• fProcID

Member Functions:

• GetWindPtr

• DoDragWindow

pointer to the window object's grafPort

the window's type

returns fWindPtr

called by application when mouseDown occurs in drag
region of window

5.2.11. The Window Class

The Window class implements standard window manipulation functions such as

resizing and zooming. It also implements many event handling methods defined in

the Controller class such as DoMouseDown, DoKeyDown, DoActivateEvt, and

DoUpdateEvt. It also supports menu commands such as DoNew, DoOpen, DoClose,

DoSave, Undo, and Redo. Our framework implements multiple levels of undo and

redo operations, and the undo and redo stacks are contained in the Window class. The

constructor of the Window class requires a resource ID so that the windows ProcID

[Apple 85], boundsRect, etc. can be read from the resource fork of the application.

The Window class also has a CreateSubPanes method that can be overridden to read

in a pane resource having the same ID as the window and automatically instantiate the

window's subpanes, rather than constructing them manually as in our example below.

Page 41

Instance Variables:

• ffheDocument

• fUndoStack

• fR.edoSack

• fWindRecord

Member Functions:

• DoGrowWindow

• DoZoomWindow

• DoMouseDown

• DokeyDown

• DoActivateEvt

• DoDeactivateEvt

• DoUpdateEvt

• DoNew

• DoOpen

• DoClose

• DoSave

• CreateSubPanes

• Undo

• Redo

• Draw

pointer to document object

undo command object stack

redo command object stack

provides storage for WindowRecord returned by
GetNewWindow in constructor

resizes window when user drags grow box

resizes window when user clicks in zoom box

sends DoMouseDown message to pane and handles any
Command object returned

sends DoKeyDown message to pane and handles any
Command object returned

handles window's activate event

handles window's deactivate event

handles window's update event

handles New command from menu

handles Open command from menu

handles Close command from menu

handles Save command from menu

optionally overridden by user - allows reading in size,
location, and hierarchical information about the windows
panes from resource file - uses the fR.esourceld stored in
StdUIObject superclass

undo using command object on top of the undo stack

redo using the command object on top of the redo stack

makes the window visible

5.2.12. The Clipboard Class

The Clipboard class provides an object oriented interface to the Macintosh Scrap

Manager routines.

Page 42

)

Instance Variables:

• oldScrapCount

Member Functions:

• GetScrapSize

• GetScrapHdl

• 'ScrapChanged

• PutNewScrap

• AppendToScrap

5.3. A Simple Example

used to determine if scrap has changed

returns the size of a given type and its offset into the scrap

return a handle to a copy a given type

returns true if oldScrapCount '# current scrap count

zero the scrap and add new type to it

add additional type to existing (non-zero) scrap

Although our framework is too immature at the time of this paper to have had

rigorous use and testing, based on early results and previous work [Wilson 90], we

can report that the amount of code that must be written to create an application using

the OSU 3.0 framework is considerably less than the amount required when using

only the Macintosh Toolbox. Furthermore, when it is necessary to step beyond using

the Petri net Editor in order to create application domain specific views, documents,

or other classes, we feel that our framework is considerably easier to use than

MacApp. We have outlined some of the more important reasons below:
~-

• The OSU 3.0 framework is considerably smaller than MacApp, while still
providing a complete application framework (14K lines to MacApp's 57K).
Since both frameworks remain largely white-box (vs. black-box
[Johnson 88]), it is necessary for the user to read the source code of the
framework to write new application domain specific subclasses. Less code
(all else equal) means less of a learning curve.

• Our MVC-based design eliminates the need to "reinvent the wheel" every
time an application contains multiple views of a single model by
encapsulating a higher level of application design [Alger 90].

• Most of an application can be constructed by graphically "plugging"
together various framework components using the Petri net Editor. The
Browser allows the framework hierarchy to be quickly scanned to locate a
needed class.

• The DataStructure and Shapes classes provide useful libraries for a variety
of domain specific problems, and can be added to applications using OSU's
tools.

Page 43

We conclude with notes about our simple example application [Appendix A] showing

the use of our framework from within the traditional C++ environment. With about

300 lines of code, we can produce an application that puts up a window containing

two scrollable sub panes, each with a different view of our model's data. When the

model's data is changed by a mouseDown event in one of the panes, both of the views

are automatically updated to reflect the new state of the model.

Note that the our framework class names are all prefixed with "CL", which can be

used to distinguish them from non-framework classes. Each class is split into an

interface or header file (" .h" suffix) and an implementation file (" .cp" suffix on the

Macintosh), however our example program is contained within a single ".cp" .file for

simplicity.

5 .3 .1. Subclassing CLApplication

A subclass of CLApplication is created to allow the CreateMenus() method to be

overridden. Here we simply create some dummy menus to illustrate subclassing and

operation of the CIMenu class, and to provide us with functional "About" and "Quit"

menu items in the Apple and File menus respectively.

5.3.2. Subclassing CLModel

Rather than using one of the more complex (for illustration purposes) data structure

classes, we have chosen to subclass CLModel in our example. We have added

instance variables to hold a rectangle (shapeRect) and a short to hold the number of

mouse clicks (numClicks). Methods to set and get each of these variables were also

added.

5 .3 .3. Subclassing CL View

We create two virtually identical subclasses of CLView. By overriding

DoSingleClick, DoDoubleClick, and DoTripleClick, each view invokes the model's

SetNumClicks() function with an appropriate value when it is clicked using the

mouse. The first view overrides Draw to display the model's rectangle as a filled

rectangle, and the second as a filled oval, thus providing two differing renditions of

the same data. The fill pattern in each is determined by the value of the model's

numClicks variable. ModelUpdated is overridden to call Draw.

Page 44

5.3.4. Instantiating CLPane

We create two instances of CLPane to contain the two views we have subclassed.

There is no need to subclass CLPane since we do not need to modify its behavior.

We initialize each of the panes (ICLPane) with the size and location of the pane

within the window, the number 3 (construct both horizontal and vertical scroll bars),

and a pointer to its view object.

5 .3 .5. Creating Resources

Apple's ResEdit [Apple 89a] is used to create the resources needed for our window

class, the About .dialog, and our menus. These resources are DeRez'ed [Apple 89b] to

produce a ".r" file which is included as a source in the make file. Soon a pane

resource editor will allow creation of a pane resource that can be read into our

framework to initialize the pane parameters. (see "CreateSubPanes" in The Window

Class above).

5.3.6. Putting It All Together in main()

The main() function of our application pulls together all these pieces by creating (and

initializing where necessary) a single application object, an instance of CLWindow,

an instance of our model subclass, two views, and .. J_wo panes. The panes are

initialized properly and added to the window's subPaneList, and the appropriate

view's superPaneList. The model's data is initialized, and the application sent the Run

message. An output screen showing the general appearance of the sample program is

shown in Figure 9.

Page 45

Figure 9:

Page 46

.: .::: ::::::::::::: :::::::::::
·: :::::::::::::::::::::: : :::::
::::::: :::: ::::::::::::: : ::: ::
. :::::::::::::::::::::::::::::
.....................

EHample Window

Simple MVC Example Application With Two Scrollable Panes
Containing Views

)

6. Conclusions

Section 3 outlined four major areas where existing tools and systems designed to ease

the task of programming GUI applications have problems [Table l]. The approach

we have taken to solving these problems is outlined in Section 4, with a more detailed

discussion centering around the use of an MVC based object-oriented framework to

solve portions of the first two problems. Section 5.2 looks more closely at the OSU

v3.0 framework and specifically at the eleven classes (approximately 2900 lines of

code) that I implemented, embodying support for MVC, document (file) handling,

and windowing (with subpanes, views, scrolling, & clipping).

The problem of too little functionality is addressed in our framework by using an

object-oriented approach that encourages the reuse of code. Reusable design is

supported by the incorporation of change propagation, the flow of events from the

Application Class to the responsible objects, and management of views within panes,

into our framework. Our framework also accommodates document (file)

management, undo and redo, and complex data structures with little or no subclassing.

Our simple example application illustrates the degree of functionality that can be

achieved by writing around 300 lines of new code and reusing the design and code in

our framework. These same characteristics also provide support for a larger part of

the development task.

Another common problem with existing tools, lack of an architectural model for large

applications, is also helped by our framework which helps decompose & structure

complex GUI applications via reusable design methodologies, such as MVC.

Encapsulation of functionality into distinct classes also provides an abstraction

mechanism for visualizing the structure of the application.

Currently, the implementation of our framework is only about 25% of the size of

MacApp. While framework design is an iterative process, we do not expect our core

framework to grow significantly. Figure 4 illustrates that most of the growth will be

in domain specific pluggable views, domain specific FileDocuments, and additional

StdUIObjects. This will allow continual enhancement of the framework without

altering the basic design. Enhancements will be largely encapsulated in their classes

and can be added on without adversely effecting backwards compatibility.

Page47

..... _

) 7. Appendix A

II
II Simple Example GUI Application: Demonstrates appl I cation of
II OSU v3.0 MUC-based application framework to the problem of
II keeping multiple dependent views of data up To date.
II

#jfndef CLAPPLICATION_H
#include "clappl ication.h"
#end if
Uifndef CLPANE_H
#Include "clpane.h"
#end if
Ujfndef CLMENU_H
#Include "clmenu.h"
#end if
#ifndef CLMODEL_H
#include "clmodel .h"
#endif
Uifndef CLWINDOW_H
#include "clwindow.h"
#end if
Uifndef CLUIEW_H
#include "clvlew.h"
#endif
Uifndef CLPALETTE_H
#include "clpalette.h"
#endif
#ifndef _DESK_
#include <Desk.h>
#endif
#jfndef _QUICKDRAW_
#include <Quickdraw,h>
Uendif
Uifndef CLObjlist_First
#include "clobj I ist.h"
#endif
Uifndef CLCol lection_First
#include "CLCol"lection.h"
#end if
#include "cldialog,h"
#Include <textedit.h>
#include <dialogs.h>
#include <traps.h>

#define MAX_MENU_OBJ 6
#define BASEJ1ENU_ID 256
#define UIND_ID 256

II
II MyFi leMenu
II

class MyFi leMenu
pub Ii c:

pub I i c CL Menu {

Page49

class CLCommand * 0oMenuCommand(short pltemNumber)
{

} ;

if (pltemNumber == 12)
gApplication->Terminate();

else
Check0nlyltem(pltemNumber);

return 0;

pub I ic:
MyFi leMenu():(BASE-11ENU_I0 + 1) {}

} ;

II
II MyAppleMenu
II

class MyAppleMenu pub I ic CLMenu {
private:

Str255 name;
short temp;
CLUserAlert *aboutMini;

pub I ic:
class CLCommand * 0oMenuCommand(short pltemNumber)

{
if (pltemNumber == 1) {

aboutMini = new CLUserAlert(126);
Point a0lgLoc, a0lgSize;
a0lgLoc.h = 20; a0lgLoc.v = 20; a0lgSize.h = 10; a0lgSize.v

1 O;
aboutMini->ICLPane(&aDlgSize, &a0lgLoc, 0, NULL);
aboutMini->0raw();
delete aboutMini;

else {
Getltem(fMenuHandle,pltemNumber,name);
temp= 0pen0eskAcc(name);

return 0;
} ;

pub I ic:
MyAppleMenu():(BASE_MENU_I0) {}

} ;

II
II MyAppl ication
II

class MyAppl ication : pub I ic CLApplication {
pub I ic :

CLMenuBar * CreateMenus();
} ;

CLMenuBar * MyAppl ication: :CreateMenus(){
CLMenu * aMenu0bj;
short i;

Page 50

CLMenuBar * aMenuBarObj = new CLMenuBar;
aMenuObj = new MyAppleMenu();
aMenuObj->AddRsrc();
aMenuBarObj->AddMenu(aMenuObj);
aMenuObj = new MyFi leMenu;
aMenuBarObj->AddMenu(aMenuObj);
for (i=2; i< MAX_MENU_OBJ; i++){

aMenuObj = new CLMenu(i + BASE_MENU_ID);
aMenuBarObj->AddMenu(aMenuObj);

aMenuBarObj->CheckMenultem(257, 2);
return aMenuBarObj;

} ;

II
II MyModel
II

class MyModel : pub I le CLModel {
protected:

short numCI icks;
Rect shapeRect;

pub 11 c:

} ;

void SetNumCI icks(short n);
short GetNumCI icks(void);
void SetShapeRect(Rect r);
Rect GetShapeRect(void);

MyModel(CLDocument* pTheDocument NULL);

void MyModel: :SetNumCI icks(short n) { numCI icks = n; Changed(); }
short MyMode I : : Get NumC I i cks (void) { return numC I i cks-;- }
void MyModel: :SetShapeRect(Rect r) { shapeRect = r; Changed(); }
Rect MyModel: :GetShapeRect(void) { return shapeRect; }

MyModel: :MyModel(CLDocument* pTheDocument) : CLModel(pTheDocument)
{
}

II
II MyUiewl
II

class MyUiewl :pub I ic CLUiew {
private:

short numCI icks;
pub Ii c:

void ModelUpdated();
CLCommand * DoSingleCI ick(EventRecord pTheEvent, CLPane

*pSuperPane);
CLCommand * DoDoubleCI ick(EventRecord pTheEvent, CLPane

*pSuperPane);
CLCommand * Do Trip I eC I i ck (Event Record p TheEvent, CL Pane

*pSuperPane);
CLCommand * Draw(CLPane *pSuperPane);
MyUiewl(CLModel *pTheModel, Point maxScrol I);

Page 51

void MyUiewl ::ModelUpdated()
{

□ raw(NULL)j

CLCommand * MyUiewl: : □ oSingleCI ick(EventRecord pTheEvent,
CLPane *pSuperPane){

((MyMode I *) fTheMode I)->SetNumC Ii cks(1) j
return Oj

} j

CLCommand * MyUiewl: : □ o □ oubleCI ick(EventRecord pTheEvent,
CLPane *pSuperPane){

((MyModel *) fTheModel)->SetNumCI icks(2)j
return Oj

} j

CLCommand * MyUiewl: : □ oTripleCI ick(EventRecord pTheEvent,
CLPane *pSuperPane){

((MyModel *) fTheModel)->SetNumCI icks(3);
return Oj

} j

CLCommand * MyUiewl: : □ raw(CLPane *pSuperPane) {
Rect myRect = ((MyModel *) fTheModel)->GetShapeRect()j

}j

switch (((MyModel *) fTheModel)->GetNumCI icks()){
case 1: Fi I IRect(&myRect, qd,gray)j

breakj
case 2: Fl I IRect(&myRect, qd.black)j

break;
case 3: Fi I IRect(&myRect, qd.dkGray)j

breakj

return Oj

MyUiewl: :MyUiewl(CLModel *pTheModel, Point maxScrol I)
,. :CLUiew(pTheModel, maxScroll){

II
II MyUiew2
II

class MyUiew2:publ ic CLUiew
pub I ic:

void ModelUpdated();
CLCommand * □ oSingleCI ick(EventRecord pTheEvent, CLPane

*pSuperPane)j
CLCommand * □oDoubleCI ick(EventRecord pTheEvent, CLPane

*pSuperPane)j
CLCommand * □oTripleCI ick(EventRecord pTheEvent, CLPane

*pSuperPane)j
CLCommand * □raw(CLPane *pSuperPane)j
MyUiew2(CLModel *pTheModel, Point maxScrol l)j

}j

Page 52

void MyUiew2: :ModelUpdated()
{

Oraw(NULL);

CLCommand * MyUiew2: :OoSingleCI ick(EventRecord pTheEvent,
CLPane *pSuperPane){

((MyModel *) fTheModel)->SetNumCI icks(l);
return O;

} ;
CLCommand * MyUiew2: :OoOoubleCI ick(EventRecord pTheEvent,

CLPane *pSuperPane){
((MyModel *) fTheModel)->SetNumCI icks(2);
return O;

} ;
CLCommand * MyUiew2: :OoTripleCI ick(EventRecord pTheEvent,

CLPane *pSuperPane){
((MyModel *) fTheModel)->SetNumCI icks(3);
return O;

} ;

CLCommand * MyUlew2: :Oraw(CLPane *pSuperPane) {
Rect myRect = ((MyModel *) fTheModel)->GetShapeRect();

} ;

switch (((MyModel *) fTheModel)->GetNumCI icks()){
case 1 : Fi I I Ova I (8.myRect, qd. gray);

breakJ I
case 2: Fl I IOval(&myRect, qd.black);

break;
case 3: Fi I IOval(&myRect, qd.dkGray);

break;

return O;

MyUiew2: :MyUiew2(CLModel *pTheModel, Point maxScrol I)
: CLU i ew (p The Mode I, maxScro I I) {

} ;

II
II main function
II

void main(void){
II make instance of application object
MyRppl ication * theAppl ication = new MyAppl ication;

II make instance of window
CLUindow * myUind ~ new CLUindow(UIND_IO, NULL, false, true,

sizeFixed, sizeFixed);
myUind->ICLPane(NULL, NULL, O, NULL);

II make instance of model
MgModel * theModel = new MyModel(NULL);

II make two views 8. add to theModel
Point myScrol I;
myScro I I . h = 1200;

Page 53

myScrol I .v = 3200;
MyUiewl * viewl new MyUiewl((CLModel *) theModel, myScroll);
MyUiew2 * view2 = new MyUiew2((CLModel *) theModel, myScrol I);

I I make two panes & in it i a I i ze with size, I ocat ion, view
Point thePaneSize, theLocation;

CLPane *myPanel = new CLPane((CLWindow *) myWind,
(CLPane *) myWlnd, false, true);

SetPt(&thePaneSize, 150, 200); ·
SetPt(&theLocation, 25, 50);
myPanel->ltLPane(&thePaneSize, &theLocation, 3, (CLUiew *) view1);
myWind->AddSubPane((CLPane *) myPanel);
view1->AddSuperPane(myPane1);

CLPane *myPane2 = new CLPane((CLWindow *) myWind,
(CLPane *) myWind, false, true);

SetPt(&thePaneSize, 150, 200);
SetPt(&theLocation, 200, 50);
myPane2->ICLPane(&thePaneSize, &thelocat ·ion, 3, (CLUiew *) view2);
myWind->AddSubPane((CLPane *) myPane2);
view2->AddSuperPane(myPane2);

// initialize model's numCI icks & shape rectangle
Rect myRect;
myRect. I eft=75;
myRect.top=75;
myRect.right=125;
myRect.bottom=125;
theModel->SetNumCI icks(l);
theModel->SetShapeRect(myRect);

// Run the application
theAppl lcatlon->Run();

Page 54

) 8. Appendix B

A brief discussion of the four main characteristics of object-oriented languages is

given below. Interested readers are referred to [Budd 90], [Cox 86], and [Korson 90]

for a more complete treatment.

Encapsulation: Objects encapsulate state and behavior. Each object has its own set

of variables and procedures or functions that operate on these variables when invoked.

Encapsulation allows us to decompose and organize programs into discrete objects

that are bound to other parts of the program only through their interface. This gives

us the opportunity to write and maintain portions of the program independently, as

well as easily reuse objects in more than one program. If we think of a baker as an

object, we can clearly see that a baker can be put to work in more than one bakery,

and still respond to the message "bake bread." in the same way.

Class: Objects are instances of a class. All instances of a class have their own

variables, but share common functions and procedures called methods . The ability to

have multiple instances of a class (the definition of an object) allows classes to be

used as types within a program. Like the Abstract Data Type of earlier paradigms,

this is much more powerful than simple encapsulation of state and behavior in a

module. Most real world systems are made up of multiple instances of objects and

while we can simulate this in imperative languages such as Pascal and C using

pointers to records and structures, it is not as natural as the use of objects.

Inheritance: The object-oriented notion of inheritance extends the concept of the

Abstract Data Type by allowing an object to inherit state and behavior from other

classes. This allows the construction of hierarchical inheritance trees that are used to

incrementally specialize objects in "is-a" relationships. As an example, a bicycle

class may contain a frame, handle bars and two wheels. We can then create

subclasses of this bicycle by inheriting these features and adding such things as a

derailleur to get a ten-speed or a three speed hub to get a cruiser. We can say that a

ten-speed is-a bicycle and that a cruiser is-a bicycle. Inheritance encourages the reuse

of code by allowing general classes to be created and then specialized through

subclassing in various programs or parts of a program. For instance, a Shape class

can be created for a graphics program that holds state such as color, line width, screen

position, and methods to change these states. The Shape class can then be subclassed

Page 55

to create a SquareShape, CircleShape, etc. by adding state and behavior that

differentiate a square or circle from the more general shape. Although most object

oriented programs also contain has-a relationships (for example a Drawing object

has-a list of Shape objects) it is the is-a relationship resulting from inheritance that

provides object-oriented languages a more powerful paradigm for code reuse.

Polymorphism: It is possible for a subclass to override or replace the functionality

defined for a specific method in its superclass. This allows the draw message to be

sent to a SquareShape or CircleShape object and still have the desired effect. The

method in the superclass may contain real functionality that is overridden, or simply

be an abstract method that defines the interface for use by its subclasses. At runtime,

a Drawing object may contain both SquareShapes and CircleShapes. By sending a

draw message to each of the Shape objects it contains, a Drawing can display itself.

This form of polymorphism is directly related to the is-a inheritance relationship and

is associated with dynamic binding of a message to a specific method at run time.

Page 56

9. References

[Alexander 87] James Alexander, "Painless Panes for Smalltalk Windows",
OOPSLA '87 Conference Proceedings, Special Issue of SIGPLAN
Notices, Vol. 22, No. 12, December, 1987, pp. 287-294.

[Alger 90] Jeff Alger, "Using Model-View-Controller With MacApp,"
FrameWorks, The Journal of Macintosh Object Program
Development, Vol. 4, No. 2, May 1990.

[Allen 1990] Daniel K. Allen, On Macintosh Programming: Advanced
Techniques, Addison-Wesley, Reading, MA, 1990.

[Apple 85] Apple Computer, Inside Macintosh, Volume I, Addison-Wesley,
Reading, MA, 1985, Chapter 2, The Macintosh User Interface
Guidelines, pp. 23-70.

[Apple 88] Apple Computer, HyperCard® Script Language Guide: The
HyperTalk Language, Addison-Wesley, Reading, MA, 1988.

[Apple 89a] Apple Computer, Macintosh ResEdit 1.2 Reference, Addison
Wesley, Reading, MA, 1985.

[Apple 89b] Apple Computer, Macintosh Programmer's Workshop
Development Environment, Version 3.1, Volume 1 & 2, Apple
Computer, Inc., Cupertino, CA, 1989.

[Apple 89c] Apple Computer, Macintosh Programmer's Workshop C & C++,
Version 3.1, Apple Computer, Inc., Cupertino, CA, 1989.

[Booch 91] Grady Booch, Object Oriented Design with Applications, The
Benjamin/Cummings Publishing Company, Inc., Redwood City,
CA, 1991.

[Borenstein 88] Philip Borenstein, Think's Lightspeed Pascal™ User's Manual,
Symantec Corporation, Cupertino, CA, 1988.

[Bruno 86] G. Bruno and G. Marchetto, "Process-Translatable Petri Nets for
the Rapid Prototyping of Process Control Systems", IEEE Trans.
Software Eng., Vol. SE-12, No. 2, Feb. 1986, pp. 590-602.

[Budd 90] Timothy Budd, An Introduction to Object-Oriented Programming,
Addison-Wesley, Reading, MA, 1990.

[Cox 86] Brad Cox, Object Oriented Programming: An Evolutionary
Approach, Addison-Wesley, Reading, MA, 1986.

[Dearle 90] Fergal Dearle, "Designing Portable Application Frameworks for
C++", Proceedings of the 1990 USENIX C++ Conference, April
9-11, 1990, San Francisco, CA, pp. 51-61.

Page 57

[Dodani 89] Mahesh Dodani, Charles Hughes, and J. Michael Moshell,
"Separation of Powers" Byte, Vol. 14, No. 3, Mar. 1989, pp. 255-
262.

[Ellis 90] Margaret Ellis and Bjarne Stroustrup, The Annotated C++
Reference Manual, Addison-Wesley, Reading, MA, 1990.

[Ferrel 89] Patrick J. Ferrel and Robert F. Meyer, "Vamp: The Aldus
Application Framework", OOPSLA '89 Conference Proceedings,
New Orleans, October, 1989, pp. 185-189.

[Gamma 90] Erich Gamma and Andre Weinand, "ET++ - Three Years After,"
Colloquium presented at Oregon Graduate Institute Nov. 2, 1990.

[Goldberg 83] Adele Goldberg, Smalltalk-BO: The Interactive Programming
Environment, Addison-Wesley Publishers, Menlo Park, 1983.

[Henderson 86] D.A. Henderson, "The Trillium User Interface Design
Environment", In Proceedings of SIGCH/'86, Boston, MA, Apr.
1986, pp. 221-227.

[Jacob 86] R.J.K. Jacob, "A State Transition Diagram Language For Visual
Programming", IEEE Computer, Aug. 1985, pp. 51-59.

[Johnson 88] Ralph E. Johnson and Brian Foote, "Designing Reusable Classes",
Journal of Object-Oriented Programming, Vol. 1, No. 2, Jun./Jul.
1988, pp. 22-35.

[Jordan 90] David Jordan, "Implementation Benefits of C++ Language
Mechanisms," Communications of the ACM, Vol. 33, No. 9, Sep.
1990, pp 61-64.

[Korson 90] Tim Korson and John D. McGregor, "Understanding Object
Oriented: A Unifying Paradigm," Communications of the ACM,
Vol. 33, No. 9, Sep. 1990, pp 40-60.

[Keh 91] Huan Chao Keh and T.G. Lewis, "Direct-Manipulation User
Interface Modeling with High-Level Petri Nets," Proceedings of
19th ACM Computer Science Conference, March 1991, San
Antonio, TX, pp. 487-495.

[Knolle 89] Nancy Knolle, "Variations of Model-View-Controller," Journal of
Object-Oriented Programming, Vol. 2, No. 3, Sep./Oct. 1989, pp.
42-46.

[Krasner 88] Glenn Krasner and Stephen Pope, "A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk-80,"
Journal of Object-Oriented Programming, Vol. 1, No. 3,
Aug./Sep. 1988, pp. 26-49.

[Kung 89] C.H. Kung, "Conceptual Modeling in the Context of Software
Development", IEEE Trans. Software Eng., Vol. 15, No. 10, Oct.
1989, pp. 590-602.

Page 58

)

[LaLonde 89] Wilf LaLonde and John Pugh, "Pluggable Tiling Windows,"
Journal of Object-Oriented Programming, Vol. 2, No. 3, Sep./Oct.
1989, pp. 57-66.

[Lee 90] E. Lee, "User-Interface Development Tools", IEEE Software, Vol.
7, No. 3, May 1990, pp. 31-36.

[Lewis 89] T.G. Lewis, F.T. Handloser, S. Bose and S. Yang, "Prototypes
from Standard User Interface Management Systems," IEEE
Computer, Vol 22, No. 5, May 1989, 51-60.

[Lewis 90] T.G. Lewis, CASE: Computer-Aided Software Engineering, Van
Nostrand Reinhold, New York, NY, 1990.

[Lin 88] M.H. Lin, "GraphLab", Tech. Report 88-60-15, Dept. of
Computer Science, Oregon State University, Corvallis, OR.

[Linton 89] Mark Linton, John Vlissides, and Paul Calder, "Composing User
Interfaces with InterViews" IEEE Computer, Vol. 22, No. 2, Feb.
1989, pp. 8-22.

[Myers 89] Brad Myers, "User Interface Tools: Introduction and Survey,"
IEEE Software, Vol. 6, No. 1, Jan. 1989, pp. 15-23.

· [Myers 90] Brad Myers et al "Gamet: Comprehensive Support for Graphical,
Highly Interactive User Interfaces," IEEE Computer, Vol. 23, No.
11, Nov. 1989, pp. 71-85.

[Palay 88] A.J. Palay, et al., "The Andrew Toolkit: An overview", In
USENIX Proceedings Winter Technical Conference, Dallas,
Texas, Feb. 1988, pp. 9-21.

[Reiss 87] S.P. Reiss, "Working in the Garden Environment for Conceptual
Programming", IEEE Software, Vol.4, No. 6, Nov. 1987, pp. 16-
27.

[Schmucker 86] Kurt J. Schmucker, "MacApp: An Application Framework", Byte,
Vol. 11, No. 8, Aug. 1986, pp. 189-193.

[Thompson 89] T. Thompson, "The NeXT Step", Byte, Vol. 14, No. 3, Mar. 1989,
pp. 265-269.

[Urlocker 89] Zack Urlocker, "Abstracting the User Interface," Journal of
Object-Oriented Programming, Vol. 2, No. 4, Nov./Dec. 1989.

[Wasserman 85] A.I. Wasserman, "Extending State Transition Diagrams for the
Specification of Human-Computer Interaction", IEEE Trans.
Software Eng., Vol. SE-11, No. 8, Aug. 1985, pp. 699-713.

[Weinand 88] Andre Weinand, Erich Gamma and Rudolf Marty, "ET++ - An
Object Oriented Application Framework in C++," in OOPSLA'88
Conference Proceedings (September 25-30, San Diego, CA),

Page 59

[Weinand 89]

[Wilson 90]

published as Special Issue of SIGPLAN Notices, Vol. 23, No. 11,
November 1988.

Andre Weinand, Erich Gamma and Rudolf Marty, "Design and
Implementation of ET++, a Seamless Object-Oriented Application
Framework," in Structured Programming, Vol. 10, No. 2, 1989

David Wilson, Larry Rosenstein, and Dan Shafer, Programming
withMacApp, Addison-Wesley, Reading, MA, 1990.

[Wirfs-Brock 90] Rebecca Wirfs-Brock and Ralph E. Johnson, "Surveying Current

[Yang 89]

[Young 90]

[Zave 84]

Page 60

Research in Object-Oriented Design," Communications of the
ACM, Vol. 33, No. 9, Sep. 1990, pp 104-124.

Sherry Yang, "OSU: A High Speed Software Development
Environment", Tech. Report 89-60-21, Dept. of Computer
Science, Oregon State University, Corvallis, OR.

D.A. Young, X Window System Programming and Applications
with Xt, OSU/Motif Ed., Prentice-Hall, Englewood Cliffs, N.J.
1990.

P. Zave, "The Operational versus the Conventional Approach to
Software Development", Commun. ACM, Vol. 27, No. 2, Feb.
1984, pp. 104-118.

