
)

Porting and Optimizing a Routing

Library for C* on the iPSC/860

Chetan Uberoy .

Department of Computer Science

Oregon State University

Corvallis, OR 97331

uberoyc@research.cs.orst.edu

A project report

submitted in partial fulfillment of

the requirements for the degree of

Master of Science

Major Professor: Dr. Michael J. Quinn

Minor Professor : Dr. Timothy Budd

Other Commitee Member: Dr. Prasad Tadepalli

April 2, 1993

)

Abstract

High level data-parallel languages are easy to use and shield the programmer from
machine specific details. A simple and efficient way of providing an interface to
such languages is to develop a machine-independent compiler and a routing library,
which isolates the low-level machine dependent communication functions. The
compiler translates the high-level language source code into C (or some other high­
level sequential language) code . It also includes calls to the routing library routines
whenever it comes across a statement in the source code, which requires a
communication.

C* is a data-parallel language designed for Connection Machine computers by
Thinking Machines corporation . A routing library for C* on the Intel Touchstone
Delta was developed at the University of New Hampshire . This project dealt with
porting this library to the Intel iPSC/860 system by making alterations to the library
routines and the makefile . The original mesh-based communication routines were
also converted to hypercube style communications . The assembly code generated for
these hypercube routines was optimized . Various benchmark C* programs were
written and the timings for these were recorded, and the speedup curves plotted .

Acknowledgments

I would like to thank my advisor , Dr. Mike Quinn , who guided me throughout the

course of this project and patiently listened to the questions I asked him. His

support , help and encouragement went a long way to make this project a success .

I would also like to thank Dr. Phil Hatcher of the University of New Hampshire

who helped me in the initial and most difficult stage of this project .

) Contents

Chapter 1 Introduction

1. 1 Data-parallel programming and C*

1.2 What is a routing library?

1.3 The aim of this project

Chapter 2 The iPSC/860 system

1

1

1

2.1 Architecture 3

2.2 Allocating , releasing and loading a cube 4

2.3 Using the ice and cc compilers 5

2.4 iPSC system calls 6

Chapter 3 An overview of C*

3.1 Shapes 8

3.2 Parallel variables 8

3.3 The "with" statement 10

3.4 Operations on parallel variables 11

3.5 New C* operators 12

3.6 Selecting positions in a parallel variable 13

3.7 An example C* program 14

Chapter 4 The routing library routines

4.1 Mapping routines 16

4.2 Allocating shapes and parallel variables 18

4.3 Communication routines 19

)

)

Chapter 5 Porting the library routines to the iPSC/860

5.1 Installing the library

5.2 The makefile

5.3 Changing the library source files

Chapter 6 Optimizing the library routines

6.1 Reduce

6.2 Broadcast

6.3 Scatter and gather

Chapter 7 Assembly optimization

7.1 The i860™ instruction set

7.2 Optimizations

Chapter 8 Compiler bugs

Chapter 9 Summary

AppendixA

Appendixes

Hypercube style routines' performance

A.1 Hypercube reduce timings

A.2 Hypercube broadcast timings

A.3 Hypercube scatter-gather timings

27

28

28

31

32

33

35

36

38

39

)
AppendixB

AppendixC

Bibliography

)

Assembly optimization performance

B.1 Scatter timings

Benchmarks and speedup curves

C.1 Performance data

C.2 Speedup curves

) Chapter 1

Introduction

1.1 Data-parallel programming and C*

In the data-parallel computing model , the programmer writes a program which is
run in a lock-step synchronized fashion on different processors , each processor
having some associated memory. By lock-step we mean that all processors must be
executing the same program statement at any time during the program execution .
This is also known as the SIMD (Single Instruction Multiple Data) style of parallel
programming.

C* (pronounced 'sea-star') , is one such data-parallel language designed for
Connection Machine computers by Thinking Machines Corporation. The major
goal of developing a language like C* is to provide the programmer with a high
-level, machine independent parallel language that is insulated from the details of
the underlying hardware . C* can be efficiently implemented on a variety of
multicomputer architectures and has the major advantage that it is an extension of
ANSI C. The parallel extensions provided by C* are few in number , easy to learn ,
and do not significantly alter the underlying structure of the code .

1.2 What is a routing library ?

The task of providing a high-level parallel language interface for C* has been
divided into two phases for reasons of portability and simplicity . The first phase is
developing a compiler for the language which will translate the source code into C
code, and the second phase is implementing a routing library which will take care of
the communication between the processors . The compiler is, therefore , machine
and architecture independent-it just generates calls to the routing library whenever
it comes across a place in the C* program where the processors need to
communicate . The routing library then implements these communications by
making calls to the low-level machine dependent C functions that exist on the
parallel machine.

1.3 The aim of this project

A compiler and routing library for C* were developed at the University of New
Hampshire. The target architecture was the Intel Touchstone Delta system which is

1

a mesh topology . Therefore, the routing library routines were optimal for a mesh
configuration of processors .

This project dealt with porting the routing library routines to the Intel iPSC/860, a
hypercube topology, and changing some of the communication routines to
hypercube style . It also involved optimizing the assembly code generated for these
new routines . Various benchmark C* programs were written and the improvement
in timings , achieved as a result of the new hypercube style routines and the
assembly optimizations, was recorded .

2

)

Chapter 2

The iPSC/860 System

2.1 Architecture

In the iPSC/860 system, up to 128 processors (called nodes) can work concurrently on
parts of a single problem. The user communicates with these nodes through a front
end processor called the host. The host can be local, in which case it is also known as
the System Resource Manager (SRM), or it can be a remote workstation [1]. See
Figure 2.l(a) .

The nodes on the iPSC/860 are based on the Intel i860™ microprocessor and are
organized in a hypercube topology, as shown in Figure 2.l(b). These nodes are also
called RX nodes. Each node has its own Direct Connect Module (DCM) which allows
a message to be passed from one node to another without interrupting the
intermediate CPUs. As a consequence, nearest neighbors in a cube (nodes directly
linked to one another) have only slightly lower message latency than those that are
not.

Ethernet

Remote
workstation

(a)

Node
cabinet

(b)

Figure 2.1 : The iPSC/860 system. (a) The SRM and a remote workstation
connected to the node cabinet. (b) An 8-node hypercube.

The DCM has eight channels numbered 0 through 7. Channels 0-6 of each DCM are
connected to the nearest neighbors. Channel 7 on node 0 of the cube is connected to
the SRM, giving the SRM the same kind of access to the cube that the nodes have.

3

) 2.2 Allocating, releasing and loading a cube

)

)

Running a concurrent application involves allocating a cube of processors , loading
the application on to the cube and finally releasing the cube. This section describes
some system commands which facilitate these operations . For a complete reference ,
see [1].

get cube : This command "gets" or allocates a cube . The - t switch specifies a
particular number or type of nodes . Some examples will illustrate this system
command :

getcube -t8rx

getcube -t4m8rx

-allocates a cube with 8 RX nodes .

-4-node RX cube, each node having 8M memory .

Multiple cubes can also be allocated at the same time. Names must be assigned to
the cubes in order to do this . The - c switch allows you to name a cube . A cube
allocated without this switch is given the name def aul tname . Multiple cubes
cannot be allocated with the same name . Some examples :

getcube -t2rx -this cube is named defaultname .

getcube -c mycube -t4rx -this cube is called mycube .

Redirecting the output of getcube into a file as in

getcube > myfile

redirects the standard output and standard error of the node processes, too.

cubeinfo : Use this to get information about the current cube or all the allocated
cubes. The current cube is the last one allocated. The -a switch gives information
about all your cubes while the -s switch tells you about all the cubes allocated on
the iPSC system belonging to that SRM. This command, when used without any
switches, gives the details of the current cube.

4

)
relcube: Releases one or more cubes allocated by the user . Without any switches,
it releases the current cube. The -a switch releases all your cubes. Used with the -c
option , this command releases the named cube. For example ,

relcube -c mycube -will release the cube with the name mycube .

attachcube : Changes the current cube. Used without a switch , it makes the cube
with name defaultname the current cube. The -c switch can be used to make a
particular cube the current one.

load : Loads the program on a cube. Some examples will illustrate its use :

load myprogram -loads myprogram on each node of the current

cube.

load -c mycube node -loads executable node on mycube.

Command line arguments may also be passed to the node program by specifying
them after the name of the executable. A host program may be used alternatively to
load a node program on a cube.

killcube : The killcube command kills the processes running on a cube. The -c
switch works in its usual way for this command , too.

rebootcube : Performs a limited system reboot . Should only be used when there
is a problem with the host daemons .

2.3 Using the ice and cc compilers

The ice system command is used to compile a node program on the iPSC/860
system. Besides the usual cc options and switches, the switch -node must be used
with ice to compile a node C program. The cc compiler when used with a -host
switch compiles a host C program.

The ice command produces optimized code when the -o switch is used. The levels
) of optimization can be selected by specifying a number from 1 to 4 (4 being the

5

maximum) after the switch . The - Mv e ct switch can also be used for code
) optimization [1].

2.3.1 Example

An example of a script for compiling a host program called host_prog. c and a
node program called node_prog. c is illustrated below :

cc -host -04 -Mvect -o host_prog host_prog . c
ice -node -04 -Mvect -o node_prog node_prog.c

The executables are called host_prog and node_prog respectively .

2.4 iPSC system calls

iPSC system calls provide the basic functions for cube management , message passing
and performing I/ 0 from the node processes. These calls can be used in either host,
or node programs, or both . The file cube . h must be included in any program
making a system call. A brief description of the important system calls follows . See
[1] for a complete reference .

) mynode () : Returns the number of the node on which the program is executing .

j

node dim () : Gives the dimension of the cube.

numnodes () : Returns the number of nodes in the cube.

crecv(int MSG_TYPE, char *rec_buf, int sizeof(rec_buf)) :
Receives a message synchronously (the program waits till the message is received)
into rec_buf .

csend(int MSG_TYPE, char *send_buf, int sizeof(send_buf),
DEST_NODE, o) : Synchronous (waits till the message has left the sending
process) send to processor DEST_NODE. The last parameter, which represents the
process ID, is always O on an iPSC/860 because all RX nodes are single process nodes.

gcol(),
giand () ,
gixor(),
gs high (),

gcolx (), gdhigh (),
gihigh () , gi low () ,
gland () , glxor () ,
gslow(), gsprod(),

gdlow () ,
gior () ,
glor(),

gssum(),

6

gdprod () , gdsum () ,
giprod (), gisum(),
gopf (), gsendx(),

gsync () : These are global

operations which can be used for communication among node processes . In some
•) cases , they are more efficient than the primitive message passing calls . For example ,

)

gdsum(double *partial_int , 1 , double *work);

sums up the partial_ints on all processors of the cube and puts the result in each
partial_int . This is a O(log N) operation where "N" is the number of processors
in the cube. Similarly , g ihigh () finds the global maximum of a given integer
variable, and so on . gsync () performs a global synchronization.

hwclock () : This call is used for execution timing. It returns the value of the
node 's hardware counter as a 64-bit unsigned integer. The value returned by
hwclock is a structure of type esize_t defined in /usr /include/es tat . h . An
example will illustrate how hwclock can be used to measure times.

esize_t

char

start_time, end_time , diff_time;

str_time[21];

hwclock(&start_time) ;

•
•

hwclock(&end_time);

diff_time = esub(end_time , start_time)/1000 ;

etos(diff_time, str_time) ;

printf("Time in seconds is %s\n " , str_time) ;

In this example, esub is used to subtract one esize_t from another and etos is
used to convert an esize_t to a string.

7

)

)

)

Chapter 3

An overview of C*

C* is a superset of ANSI C. In addition to all the features of C, C* provides new
features that make data-parallel computing possible. Some of these features are :

• A method for describing size and shape of parallel data.
• New operators and expressions for parallel variables along with new meanings of

standard operators.
• Methods for choosing parallel variables and specific points within the parallel

variables, upon which operations are to performed .
• A parallel variable pointer.
• Changes to the way functions work to allow parallel variables to be passed as

arguments.
• Library functions that allow communication among parallel variables.

The C* compiler developed at the University of New Hampshire supports all except
the last feature. For a complete description of all features of C*, see [4].

3.1 Shapes

C* provides a new type specifier, shape, which is used as a template for distributing
parallel data [4]. The shape keyword is used for declaration of a shape.

shape[4] [8] shapeA;

declares a shape shapeA of two dimensions. The rank of a shape or a parallel
variable is the number of dimensions in the shape declaration. A dimension is also
referred to as an axis. In the above example, shapeA has 4 elements in axis O and 8
elements (or positions) in axis 1. A 4-by-8 shape is shown in Figure 3.1.

3.2 Parallel variables

A parallel variable, along with having a type and storage class, has a shape. The
shape defines how many elements of the variable exist, and how they are organized.

8

Axes 1 or
0

1

2

3

0 1 2 3 4 5 6 7

Figure 3.1 : A 4-by-8 shape (rank 2).

Each element in a parallel variable corresponds to a position in the shape and
contains a single value for the parallel variable . For example ,

shape[4] [8] shapeA;

int : shapeA foo ;

) declares a parallel variable foo of type integer with 32 elements (as shown in Figure
3.1). The advantage of a parallel variable is that C* allows a program to carry out
operations on all elements (or any subset of elements) of a parallel variable at the
same time .

)

C* allows the use of parallel structures and arrays , too . An example of a parallel
array declaration is :

shape [128] foo;

int: foo my_array[3] ;

my _array[O]
my _array[l]
my _array[2]

0 1 2 3 127

§
Figure 3.2 : A parallel array (3 parallel variables, each with 128 positions).

9

)

)

Parallel variables can be initialized by assigning a single value to all elements at the
time of declaration. For example, in the following statement , the value 5 is assigned
to each element of the parallel variable psi which belongs to shape foo :

int : foo psi= 5 ;

The intrinsic functions positionsof , rankof and dirnof can be used to obtain
information about parallel variables as well as shapes . They return the total number
of elements , the rank, and the number of elements in a particular axis respectively .
For example ,

positionsof(foo)

dimof(foo , 0)

returns the number of elements of foo .

returns the number of elements in axis O of foo .

An individual element within a parallel variable can be described by its coordinates
along the axes of the shape . The coordinates appear in brackets to the left of the
variable name , starting with the coordinate for axis 0. These coordinates are also
referred to as a left index. For example ,

[5] [8] foo specifies the element in row 5, column 8.

Using this form, individual elements can be referred to in sequential code as well [4].

3.3 The "with" statement

AC* program can operate on parallel data from only one shape at a time. This shape
is known as the current shape and is selected using the with statement as in:

shape [4] [16] foo ;

•
•
with (foo) {

Any statement in the with can operate on parallel variables of the current shape (the
shape selected with the with). Nested with statements are also allowed (see [4]).

10

)

)

)

3.4 Operations on parallel variables

3.4.1 A scalar and a parallel operand

Consider the assignment :

pl= sl ;

where pl is a parallel variable and sl is a scalar , This is quite similar to initializing a
parallel variable to a constant value , The value of s 1 is copied into all the elements
ofpl ,

An assignment statement with a scalar on the left hand side and a parallel variable
on the right hand side is not allowed , But, an explicit cast can be used to achieve this
-the value assigned to the scalar can be any one of the values in the positions of the
parallel variable ,

sl = pl ; is not allowed ,

sl = (int)pl; results in an arbitrary value to be assigned to s 1.

3.4.2 Two parallel operands

A statement like

pl= p2;

where pl and p2 both are parallel variables (they have to be of the same shape
because a with selects only one shape to be the current one), assigns the value in
each element of p2 to the element of pl in the corresponding position (Figure 3.3).

Similarly, a conditional expression like

pl>= p2

returns, for each element , 1 if it is greater than or equal to the corresponding
element of p2, and O if it is not.

11

) 0 1 2 3 n

p2 5 l2ol-sl34 I II ■■■■■ 0

' ' ' ' ' p1 5 1201-s 1341 Ii U ■■ lllil 0
Figure 3.3 : Copying a parallel variable to another .

3.5 New C* operators

3.5.1 Reduction operators

Reduction operators reduce the values of all elements of a parallel variable to a
single scalar value.

The+= operator sums the value in each element of a parallel variable and adds the
sum to the scalar variable on the left hand side. For example ,

sl += pl;

The+= operator is also a unary operator . Operators like-=, and=, A= and I= work in
a similar way as the+= operator.

The <?= and >?= operators find the minimum and maximum respectively, of all
elements of a parallel variable . These operators can also be used with a parallel
variable on the left hand side as in :

pl<?= p2;

This assigns the lesser of pl and p2 to pl, for every pair of corresponding elements
of these parallel variables .

12

3.5.2 The % % operator

This operator is quite similar to the % operator in C and provides the modulus of its
operands . The only difference is when one or both of the operand is negative , in
which case the sign of the result depends upon the implementation of the operator
[4].

3.5.3 The "bool" data type

This is very similar to the Boolean data type in Pascal. Usually , a variable of type
bool occupies one bit of memory and therefore , stores a 1 (True) or O (False). Casting
a larger data type variable to bool gives it a logical behavior . The operator boolsizeof
introduced in C*, is used to obtain the exact size of a variable in units of bools .

3.6 Selecting positions in a parallel variable

3.6.1 The "where" statement

When a with statement is first entered , all positions of the shape are active; i.e., the
statements operate on all elements of a parallel variable . The where statement is
used to select a subset of these positions to remain active . For example ,

with (shapeA)

where(foo > 25) {

•
}

In this section of code, all statements inside the where block operate on only those
positions of shape shapeA in which the value of f oo is greater than 25 (Figure 3.4).
In the figure, the active positions of foo are shown shaded. pl is another parallel
variable of shape shapeA and all references to pl in the where body, operate on only
the elements of pl corresponding to the active positions of f oo, as shown in the
figure .

The context set by the where remains in effect for any procedures called within its
body . An exit from the body of the where resets the context to back to what it was
before entering it (see [4]).

13

)

0 1 2 3 4

foo

p1 ~ 1 ~

Figure 3.4 : Selecting positions with a where . All positions in which the
values of elements of foo is greater than 25 are selected .

3.6.2 The "else" clause

The else following a where inverts the active/inactive status of all the elements .
That is, all positions which were inactive in the where now become active , and vice­
versa .

3.7 An example C* program

A C* program for finding the sums of the odd and the even positions of a shape is
illustrated below :

#define ODD 0
#define EVEN 1

shape [64]a;
int:a node_no;

main ()
{

int odd_sum = 0 , even_sum = O;
with(a) {

}

node_no = pcoord(O) ;
where(node_no % 2)

odd_sum += node_no;
else

even_sum += node_no;

14

)

J

In this program , a is a template or shape for parallel data distribution with rank 1
and 64 positions in the 0th axis. node_no is a parallel variable of shape a (and type
int), and thus has 64 elements. The with statement makes a , the current shape .
Function call pcoord(O) returns the number of the position in the 0th axis and thus ,
the parallel variable node_no now contains the position numbers (the 1st position
of node_no contains 1, the 63rd position contains 63, and so on) . The where
statement makes active all those positions for which node_no is odd . A reduce
inside the where adds up all the odd position numbers and places the result in odd_
sum. The else selects all those positions which were not selected in the where; i.e., all
the even numbered positions . Again , the sum of all these active position numbers
is placed in even_sum by virtue of the reduction operator +=.

15

Chapter 4

The routing library routines

This chapter briefly describes some of the routing library routines developed at the
University of New Hampshire . These routines were written for a mesh architecture
(Intel Touchstone Delta) originally , but included flags which allowed them to be
used for a hypercube, too [5].

4.1 Mapping routines

4.1.1 Mesh to hypercube

A shape in C* has the topology of a mesh . Thus , a mapping from a mesh to a
hypercube needs to be done when the communication routines are implemented on
an iPSC/860 . The library takes care of this by using Gray codes. A Gray code has the
following property :

1) For any number i, G(i), the gray code of i, differs from G(i+1) by exactly one bit.

As an example of this , consider the case of mapping a 2X4 mesh to an 8-node
hypercube . Two bit positions are used for the column number and 1 bit for the row
number of the mesh . The Gray codes for the column are {00, 01, 11, 10} and that for
the row are {0, 1}. The 3 bit code for the mesh is formed by concatenating, for each
processor , the Gray code for the column and the Gray code for the row . So, the
processor in say, the 1st row and the 2nd column (assuming rows and columns are
numbered starting from 0) will have the code 111. This means that the processor
numbered 111 in the hypercube is responsible for row 1, column 2 in the mesh
(Figure 4.1).

The file set-up. c contains the various routines for implementing the mapping.
The function CS_Setup, which is one of the initialization functions, calculates the
row and the column of the node (on which the program is executing) at runtime by
using the array CS__yarg (in file gray. h), which contains the gray codes.

4.1.2 Shape to physical mesh

The next step involves mapping the shape positions to the physical mesh [5].

16

)

000

010

101

11 1

...
►

000 001

100 101

Figure 4.1 : Mapping a 2 X 4 mesh to an 8-node hypercube .

011 010

1 1 1 1 1 0

For a shape of rank one mapped to a two-dimensional mesh , the mesh is viewed as
a one-dimensional array of processor s and the data (parallel variables) are mapped
to the array, as shown in Figure 4.2 [7].

Figure 4.2 : Viewing a 2D mesh as a one dimensional array of processors .

Data are distributed evenly to the processors , and in case the number of positions in
the shape is not a multiple of the number of processors , the extra positions are
assigned to the lower numbered processors (Figure 4.3).

Physical
processors

Shape
positions

0 1 2 3

Figure 4.3 : Mapping extra positions of a shape to the physical processors.

17

)

)

Mapping a shape of rank two to a 2-D mesh is pretty straightforward with the rank 0
positions mapped to the rows, and the rank 1 positions mapped to the columns of
the mesh . In case the positions of the shape do not divide evenly into the mesh
processors, a procedure similar to the one illustrated in Figure 4.3 is used .

For any shape of rank greater than two, the first two axes are distributed as usual and
all positions contained in the additional axes, are held locally.

This mapping is implemented in mapping. c in a function called CS_MapAxes .
The function is invoked when a shape declaration is seen in the C* program .

4.2 Allocating shapes and parallel variables

Shapes and parallel variables are allocated at run-time in C*, which gives it greater
flexibility because size and dimension of shapes can be based on the characteristics of
the input data set.

4.2.1 Shape allocation

The compiler calls the function cs __ allocate_shape_array_l in file cs __
alloc . c when it sees a shape declaration in the source code. This function stores
the rank, the length (number of positions) of each axis and the total number of
positions in the shape, in a C struct called cs __ shape_struct [5]. The shape
positions are then mapped to the physical processor mesh by calling function cs_
MapAxes, as mentioned earlier. For example , when the compiler sees the statement

shape [8192]row ;

it emits the following C code :

struct CS_shape_struct CS_temp_0 ;
CS_Shape row= &CS_temp_0;

/* The following function is executed before main () */

void _GLOBAL_I_SHAPE_warshall_cs_0(void)
{

}

CS_SetUp();
CS_allocate_shape_array_l ((CS_Shape *) &row,

(CS_Shape) &CS_temp_0,
sizeof(row)/sizeof(CS_Shape), 1,
(int) (8192));

18

)

Here, cs_shape is a pointer to cs _ shape _ struct . All shape allocations are done
by calling up a startup function (in this case _GLOBAL_I_SHAPE_warshall _ cs_0)
which is executed before function main () .

4.2.2 Parallel variable allocation

The function cs __ PvarAlloc in cs _ _ al l oc . c takes care of parallel variable
allocation . For parallel variables declared globally, this function is called from one of
the startup functions (called before main ()). The shape to which the parallel
variable belongs, is passed as an argument to the cs __ PvarAlloc function . The
function stores this shape pointer , the stride and the start (to be used in VP
emulation loops) in a struct called CS_Pvar (see [5] and [6]). It returns the pointer
to the struct. For example , a declaration like

double : chunk x ;

causes

CS_Pvar x;
x = CS_PvarAlloc ((chunk) , sizeof(double) , CS_USERMEM_POOL);

to be emitted . For a parallel array declaration like

char : row a[64];

the following code is emitted :

CS_Pvar a ;
a= CS_PvarAlloc ((row), sizeof(char [64]), CS_USER_MEM_POOL);

4.3 Communication routines

The communication routines implemented in this routing library are broadcast,
reduce, scatter, gather, point to point, grid write, grid read, owner assign and sync.
This section briefly describes these routines along with the algorithms used to
implement the communication .

19

., 4.3.1 Sync

)

)

Called with the name cs_Sync , this is just a barrier synchronization routine that
returns only when all the processors have made the call to this routine .

4.3.2 Owner assign

Function cs_ownerAssign is called when the compiler sees a statement like

[5]p9.mem2 = scalar;

No communication is required; only the scalar value needs to be assigned to the
parallel variable on the processor holding the parallel variable . The compiler has
the capability of combining any number of owner-assign operations into one library
call by passing the number of assignments in a parameter to cs_ownerAssign .

4.3.3 Broadcast

A broadcast is used to distribute a value residing on one processor to all the other
processors . The compiler calls function CS_Broadcast in broadcast . con seeing
a statement like

scalar= [2]p7;

This is implemented by first assigning the value of the parallel variable to the local
copy of scalar, and then broadcasting the value to all other processors so that they
can update their values of scalar .

The algorithm used (see [6]) for performing the broadcast is pictorially represented in
figures 4.2 (a) and 4.2 (b).

The algorithm first assigns each node with a new pseudo-number, obtained by
rotating the source node's ID to zero and adjusting the others accordingly . A jump
or span is calculated with which the physical dimension is to be divided. This is
equal to the ceiling of log(N) where "N" is the number of nodes. The source node
sends the value to its partner , located in the middle of the renumbered array. The
span is divided in half, and each new subdivision then participates in the
communication. This step is repeated till the span equals one. At each step, twice as
many nodes as in the previous step, are involved in the communication.

20

)

In the first step, the value is broadcast to all the processors in the same row in the
mesh as the source processor . In the next step, each of these processors (which now
have a copy of the value to be broadcasted) broadcast along their respective columns .

~
000 001 010 011 100 101 110

Step 1 • • • • • • • ,-. ::)
Step 2 • • • •
Step 3 ~ ~ .cl •

Figure 4.2 (a) : Broadcast algorithm on a non power-of-two number of
processors with the source being node 0.

~
000 001 010 01 1 1 00 1 01 11 0 111

Step 1 • • • • • • • •
~ 0

Step 2 • • • • • • • •
Step 3

Figure 4.2 (b) : Broadcast algorithm with source node not being the
0th node (node 2 is the source here) .

This algorithm requires a total of (ceiling(log R) + ceiling(log C)) communication
steps where R is the number of rows, and C is the number of columns in the
physical mesh.

21

)

I)

4.3.4 Point to point

Direct assignment of one position of a parallel variable to another position of some
parallel variable (both positions must be known at compile time) , results in a call to
function CS_PointToPoint . An example of such a statement is (see Figure 4.3) :

[15]p4 = [8]p6;

0 8 1 5 n

G Ii ■■ 1111lil □ □
~

□ ll ■■ ■ 1111 B □
Figure 4.3 : Point to point communication.

The library determines the source and destination nodes of the call by calling
function CS_GetRowAndCol in file mapping. c . The left indices of the source and
destination positions of the parallel variables , are extracted from the parameters
dlindex [] and slindex [] . The library then buffers the data at the source and sends
it to the destination, while the destination receives the packet and moves it to the
appropriate address in its local memory [5].

4.3.5 Grid write

When all outgoing values from a single processor are routed to a single destination
processor known at compile time, and all incoming values to a processor are
coming from a single processor, also known at compile time, the compiler emits a
call to function cs_GridWrite. An example of such a statement is (Figure 4.4):

[(pcoord(O) - 1) %% 8]p7 = p7 ;

In this statement, each element of the parallel variable p7 writes its value to its
immediate left neighbor. The % % operator is used so that element O writes to the
rightmost element (wraparound) . The algorithm used for the grid write operation

22

I)

)

is summarized below . See [5] for more details .

(1) Separate the local data to be sent to other nodes from the data that will remain
local.

(2) Determine the list of destinations and calculate how many incoming messages to
expect.

(3) For each destination, collect the outgoing data destined for that node and send it.
(4) Alternate the reading of incoming messages with performing local work from

the buffer receiving the data.

The grid read operation involves reading values from neighboring elements of the
same parallel variable and storing it as your own value. The context of the source
element (whether it is active or not) is ignored . The grid read operation is, therefore,
very similar to the grid write, and is performed by making a call to function cs __
GridWrite with a ignore_context flag. The appropriate values are copied from a
temporary parallel variable (which is used to avoid overwriting positions ' values
before they have been read) into the destination parallel variable , after the read
operation is completed . This avoids the step in which processors request data from
the sources (see [5] for more details) .

lnnnnnnnl
p7 I 8 1 2 33 I 5 I 71 1 6 48 99

+ +
p7 I 1 2 33 5 I 71 I 1 6 48 99 8

Figure 4.4: Grid write - each position writes its value to its
neighbor (left neighbor in this case).

4.3.5 Reduce

A reduce is performed on all or some elements of a parallel variable, the result of
the operation (such as sum, subtraction, product, maximum or minimum) being
stored in a scalar variable. For example, the statement

23

)

)

scalar+= pl;

calculates the sum of all the active elements of pl and stores it in scalar.

The C* compiler performs the local reduction (on all elements of the parallel
variable held on the node) before invoking function cs_Reduce, and provides the
library with the scalar source of distribution rather than a parallel variable [6].

The algorithm for the reduction (see [6]) first calculates the largest power-of-two that
fits within the actual processor array size. The processors which fall in this power-of­
two are marked as filled and the others are marked partially-filled . In the first
iteration, all partially-filled processors send their values to the filled ones. The filled
processors are then divided in half, and they swap their values with their partners
across the half. This division and swap is repeated, and in log(N) steps, where "N" is
the greatest power-of-two, all the filled processors hold the desired result. They now
relay this result to the partially-filled processors. An illustration of this algorithm
for an array of 7 processors is shown in Figure 4.5.

000 001 010 011 100 101 110
Step 1

Step 2

Step 3

Step 4

Figure 4.5 : Reduce algorithm-in the first step, the processors on the filled (with IDs
less than the greatest power-of-two that fits in the processor array size) side exchange
their values with those on the partially-filled side. Then, the filled processors swap
their values with each other (steps 2 and 3). In the final step, the result of the reduce
is sent to the partially-filled side. In this figure, the filled processors are the ones
shown shaded.

24

)

4.3.6 Scatter and gather

Function cs scatter is called when values are to be distributed in an
unpredictable pattern across the nodes. An example of C* code requiring a scatter is

[p8]p7 += p8;

The communication which takes place as a result of this statement is shown in
Figure 4.6. 4.6(a) shows the values before , and 4.6(b) shows the values after the
communication .

For a scatter operation, the context of the parallel index is examined to determine
which positions are active and what the values are . These values are then used to
calculate the destination nodes and offsets for the corresponding source values.
Finally, the synchronized algorithm is executed and the values sent at the
appropriate steps [6].

An example of a gather is :

p4 = [p2]p3;

0 1 2 3 4 5 6 7

pa 4 o 7 6 2 3 1 5

p7 0 0 0 0 0 0 0 0

{a}

p7 0 1 6 7

(b)

Figure 4.6: Scatter-values of p8 are added to values of p7 indexed by p8. (a)
shows the values in the parallel variables before the scatter and (b)

shows the values in p7 after the scatter.

The gather algorithm requires two scatters. First the requests are scattered to the
nodes where the source values reside, and then these nodes scatter back the values.

25

)

,)

The algorithm used for scatter and gather is identical to the reduce algorithm , except
that in this case, packets are sent instead of a single value, At each step, the
processors check the buffer and keep the values meant for them, and send the other
values.

26

)

)

Chapter 5

Porting the library to the iPSC/860

Some changes had to be made to the existing library routines and the makefile to
port them to the iPSC system. This chapter describes those changes .

5.1 Installing the library

The C* routing library and the associated files are installed in the directory
/usr /uberoyc I cs tar on the iPSC system. A layout of the files is illustrated in
Figure 5.1.

/usr/uberoyc/cstar

CStarBench cs-commlib cs-release cs-compiler

Benchmark C*
programs

base

Comrnlib
source files

Compiler and Compiler
comrnlib will be source files

installed here

ipsc

Comrnlib
Makefile

Figure 5.1 : Layout of the communication library files on the iPSC.

27

)

5 .. 2 The makefile

The communication library make f i 1 e compiles the source files to produce object
files. An executable for a C* program is created by first using the C* compiler to
obtain C code. This is then compiled to produce an object file using the i cc
compiler , which is then linked with the communication library object files to
produce the executable . This section gives a brief description of the communication
library makefile .

The ice compiler is used to compile the library source files for the iPSC nodes. The -
node switch is used for this purpose. The -04 and -Mvect switches, as discussed in
Chapter 2, are used for optimizing the code. The -DCS_IPSC and -DCS_RUNTIME_

LIB switches are required so that the code which is compiled, is suited to the iPSC
system (The communication library routines are portable to other systems. For this
purpose , the library source files contain many #ifdef pre-processor directives which
filter out the code meant for other systems) . After compiling the source files, the
makefile links them to produce a communication test program called test .

The original makefile contained a ran lib command which created a library
archive called cs-commlib. a. The UNIX system V release 3.2, however , does not
support this command. Therefore , the original command for creating a library
archive

make cs-commlib.a

issued from the command line, does not create a symbol table for the archive .

The make f i 1 e also provides the options of compressing and uncompressing the
object files (make small and make big) and linting the C files. A table describing all
the make f i 1 e options is shown in Figure 5.2.

5.3 Changing the library source files

The communication library makes use of system independent macros to implement
the communication routines. The macros are implemented using the system calls
supported by the particular system. Therefore , a few changes had to be made to these
macro implementations to port the library to the iPSC/860. Some of the important
changes made are described in this section.

28

)

)

Command Description

make Compile library source files into object
files and oroduce a oroaram "test".

Create library archive. The "ranlib"
make cs-commlib . a command is not available for this option.

make from_compiler_build
Creates library archive and copies .h
files from source dir to "release" dir .

make cs-commlib.a lib
Removes old archive and creates it
again.

make release install Installs the archive in the "release" di r .

make small Compresses all files in the directory.

make big Uncompresses all files in the directory.

Figure 5.2 : The communication library makefile commands .

5.3.1 Mapping

Some iPSC system calls were added to the function cs_setup in set-up. c which,
as mentioned earlier, maps the physical mesh to a hypercube. A section of the added
code is shown below :

#elif defined(CS_IPSC) /* Preprocessor directive to filter the

iPSC code*/

CS_nodenum = mynode(); /* Get the node number*/

CS_mesh_size = numnodes();/* The total number of nodes*/

CS_cube_dim = nodedim(); /* The cube dimension*/

Using this information about the allocated cube, a mapping is carried out from the
mesh to a hypercube as described in chapter 4.

29

)
5.3.2 Macro implementations

The file macros. h contains the implementation of message passing and other
macros using system calls. The Intel Touchstone Delta, for which this routing library
was originally written , has system calls which are exactly similar to the iPSC/ 860
calls. So all that needed to be changed to the message read , message write and most
of the timing macros, was the addition of a logical OR preprocessor directive as :

#if defined (CS_DELTA) I I defined(CS_IPSC)

One of the timing routines in the same file, which returns the time in milliseconds
when passed the number of clock ticks elapsed , had to be changed for the iPSC/860
in the following manner :

#if defined(CS_IPSC)

#define CS_MSECS(units) \

(double) (ediv(units , (long)lOOOO)

#endif

) In this routine , units is divided by 10000 to obtain the time in milliseconds . This is
because the hardware count rate , defined in constant HWHZ, (returned by system call
hwclock () used in the iPSC/860 timing routines) is 10000000 for RX nodes . To
obtaine the time in milliseconds , you divide units by HWHZ/1000 which equals
10000. See [1] for details .

5.3.3 Synchronization

The iPSC system call for global synchronization {gsync) is the same as that for the
Intel Delta so a logical OR preprocessor directive, as shown previously, was all that
was needed in the routine cs __ Sync in file sync . c .

5.3.4 Timer and profiling routines

Again, these have the same implementation as for the Delta. The files sys/ types. h
and es tat. h, needed to perform extended arithmetic with the timer values, have to
be included in timer. c, profile. c and profilel . c, just like in the case of the
Delta.

30

)

)

Chapter 6

Optimizing the library routines

The communication library routines , as mentioned earlier, were originally written
for the Intel Touchstone Delta which is a mesh architecture. To achieve better
timings , the communication routines were changed to hypercube style
communications. This chapter provides a brief description of the algorithms used ,
and the changes made to the code .

All these new functions are called from within a preprocessor #if defined (CS_
IPSC) , thus mantaining the portability of the library .

6.1 Reduce

The routine HypercubeReduce in file reduce . c implements a hypercube style
reduce algorithm .

As described in chapter 4, a reduce reduces a set of parallel values to a scalar. The
new hypercube style routine takes into account only the active elements of a parallel
variable, and reduces them . The algorithm proceeds by repeatedly dividing the cube
into subcubes. At each step, every node swaps its value with the corresponding node
in the newly created subcube . At the end of log(N) steps, all nodes have the final
scalar value . The implementation is described in Figure 6.1 (D denotes the cube
dimension) . See [3].

For each i, from D down to 1

Shift left 1 i times .

Calculate your partner by XORing your node number with the result of the shift left.

Send your value to your partner.

Receive partner's value .

Perform the required operation on both (your and partner's) values and store it as "your"

value.

End For.

Figure 6.1 : Implementation of the hypercube reduce algorithm
on a hypercube of dimension D .

31

)

)

The original reduce algorithm required (log(R') + 2) + (log(C') + 2) steps where R' is
the greatest power-of-two which fits in R, the number of rows (when the mesh is
mapped to the hypercube), and C' is the greatest power of two which fits in C, the
number of columns . For a hypercube , R=R', C=C' and R*C = N, the total number of
nodes . This means that a total of (log(N) + 4) steps are required to perform a reduce
using the original reduce algorithm . The hypercube reduce algorithm, on the other
hand , requires log(N) steps . Appendix A.1 shows the improvemen t in timings
achieved for some C* programs by using the hypercube style reduce.

6.2 Broadcast

A broadcast is required when a single processor needs to communicate a set of
values to all other processors .

The function HypercubeBroadcast in file broadcast . c implements a hypercube
style broadcast. The algorithm for this implementation (see [3]) has the form of a
binomial tree with the source node being the root of this tree . In the first step, only
two processors-the source and one of its neighbors participate, with the source
sending its value to the neighbor . In the next step , each of these two nodes send
their values to two other nodes , thus involving a total of 4 nodes in this step . This
process is repeated with the number of nodes participating being multiplied by 2 in
each step. Hence , for a cube of dimension D, it takes D steps for the value to reach
every node . This algorithm is illustrated in Figure 6.2.

Figure 6.2 : Hypercube broadcast.

An implementation of this algorithm is described in Figure 6.3.

The mesh broadcast algorithm requires (ceiling(log R) + ceiling(log C)) steps where
R*C = N, the number of nodes in the hypercube. This is equal to log(N) steps for a
hypercube because R and C are both powers-of-two. The hypercube algorithm also
requires log(N) steps . A considerable improvement in timings was still achieved for
one of the benchmark C* programs because of the fact that the hypercube algorithm
involves less traffic on the node links than the mesh algorithm. The mesh
algorithm also involves a lot of communication between processors which do not

32

..

have direct links, resulting in slower timings . Appendix A.2 shows the figures for
) the hypercube broadcast performance .

(1) Find the physical node number of the source node.

(2) Shift left 1 (D - 1) times (this is equal to half of the number of nodes in the cube).

(3) Xor the source node number with your own node number (this assigns each node a value

relative to the source node, with the source node being node 0). This is called xored no.

(4) For each i, from 1 to half, multiply i by 2 in each iteration,

Determine whether this node will be sending a value in this iteration .Only the nodes whose

relative node number (xored no) is less than i, send in each step. Thus, xored_no is

compared with i.

If i is greater,

Else

Calculate partner by xoring your node number with i. This is the

corresponding processor across the ith dimension, which will receive your value in

this step.

Determine whether this node will be receiving a value in this iteration. Only those nodes

whose xored _ no is less than 2i but greater than or equal to i, receive. Thus, xored _ no

is compared to 2i.

If xored_no is lesser,

EndFor .

Calculate the node number of the source by xoring your node number with i

and receive the value from it.

Figure 6.3 : Implementation of the hypercube broadcast algorithm
on a hypercube of dimension D .

6.3 Scatter and gather

A scatter, as discussed earlier, is required when values are to be distributed in an
unpredictable pattern across the nodes. A gather is 2 scatters.

The hypercube algorithm for a scatter is quite similar to that of a reduce. Each node
maintains a read and a write buffer and in each iteration, it checks every data item
in the read buffer. If the data item belongs to the same node, it keeps the item. If it
doesn't, another check is performed to determine whether the data item belongs to a

33

')

node in the same partition (or subcube) of the current iteration . If it doesn't, then
the data is transferred into the write buffer . Otherwise, nothing is done . Then the
nodes swap their read buffers with their partners . The cube is subdivided in each
iteration, with the above sequence of steps performed every time . After log(N) steps ,
the values are scattered to the desired destinations .

Hypercube scatter is implemented by the function HypercubeScatter in the file
scatter . c . The CS_Gather function , which is emitted by the compiler when it
sees a statement requiring a gather makes a call to HypercubeScatter two times­
once for scattering the requests and then for scattering the values .

The hypercube scatter algorithm requires log(N) steps and a gather requires 2log(N)
communication steps , "N" being the number of processors in the hypercube . The
mesh scatter algorithm required (log(R) +2) + (log(C) + 2) steps where R*C = N . This
is equal to (log(N) +4) steps for a scatter and (2log(N) + 8) steps for a gather.
Appendix A.3 shows the improvement in timings achieved for a benchmark C*
program by using the hypercube style scatter and gather.

34

)

)

)

Chapter 7

Assembly Optimization

The -s switch , when used with the ice compiler, produces the assembly code for
the file which is being compiled . This chapter describes optimizations made to the
assembly code of some of the communication routines of the routing library . The
functions which were optimized were HypercubeScatter, HypercubeBroadcast
and HypercubeReduce .

7.1 The i860™ instruction set

The iPSC/860 RX nodes use the Intel i860™ microprocessor , which has a 64-bit
design [2]. This section gives a brief explanation of some of the instructions which
were involved in the optimizations .

7.1.1 The conditional branch statements

be and bnc : These instructions check the contents of the Condition Code (CC) field
of the processor status register of the i860™ microprocessor. This field is set or
cleared by a previous add or subtract instruction. Depending on the CC field, the
instructions branch or do not branch to a specified branch target. The be. t and
bnc. t instructions are similar to be and bnc except for the fact that the instruction
following be. t and bnc. tis executed even if a branch is taken.

7.1.2 Register loading instructions

ld . 1, rnov and fxfr : The ld .1 instruction loads the value stored in a memory
location into a register . The fxfr instruction transfers a value from a floating point
register to an integer register. rnov moves the contents of one register to another.

7.1.3 Arithmetic operations

adds and subs : These instructions add or subtract the values stored in two registers.
The CC field is set depending on the relative magnitudes of the two values .

35

) 7.2 Optimizations

7.2.1 Removing redundant statements

Although the - o 4 switch passed to the i e e compiler removed almost all the
unnecessary statements, some further redundancies in function HypereubeReduee
were removed . These included some mov and adds statements whose operation did
not have any effect on the execution .

7.2.2 Moving around instructions

A reference to the destination of ld . 1 and fxf r in the next instruction causes a
delay of one clock. Thus, one optimization dealt with looking for such cases and
inserting statements between the two instructions to get rid of the delay . The
inserted instruction was usually plucked out from the code preceding the two
instructions, taking care that no data dependencies were disturbed. An optimization
which caused a considerable improvement in timing in function
HypereubeSeatter is illustrated in the following code :

ld. l 76 (sp) , r22

fxfr f8, r25

adds r25, rl7, r16

The reference to r2 5 in the adds statement following the fxfr whose destination is
r25, causes a delay of one clock. This is because the instructions are pipelined and
the adds instruction must wait for the fxfr to complete before it can be executed.
Inserting the first of those instructions between the last two as shown in the
following, gets rid of the delay.

fxfr f8 , r25

ld . l 76 (sp) , r22

adds r25 , rl7, r16

A be, bne, be.tor bne. t following an adds or subs causes a delay of one clock
which is also optimized by inserting an instruction between the two. The delay is
again a result of the instruction pipeline-the subs and adds instruction set the CC
flag and the be . t decides whether to branch or not based on the contents of this flag.
So, the be. t instruction must wait for the completion of execution of the subs or
adds instruction. An example illustrates this :

36

)

st.l rl6, 128(sp)

•
..
subs r4, r18, rO

bc . t .B838

(a) Before

7.2.3 Loop invariant code

subs r4 , r18 , rO

st.l r16, 128(sp)

bc.t . B838

(b) Optimized

Invariant code inside a loop (which does not depend on the iteration being
executed) was moved to before the loop . Most of these optimizations were taken
care of by using the -04 switch.

Optimizing HypercubeReduce and HypercubeBroadcast using the above
described optimizations did not result in any improvements in timings .
HypercubeScatter gave a considerable improvement , the results of which are
summarized in Appendix B. l.

37

Chapter 8

Compiler Bugs

A bug in the C* compiler was discovered while benchmarking one of the C*
programs. A description of the bug is given in this chapter.

The C* benchmark program shallow-2d . cs has a procedure called init_p_u_v
whose compilation caused the bug to appear . The C* code for the part of this
procedure is shown :

void init_p_u_v()
{

}

inti , j ;

with(physics) {
float :physics
float :physics
float :physics
float :physics

new_psi;
new_east_psi;
new_southeast_psi ;
new_south_psi ;

new_psi = a*sin((pcoord(0)+ . 5)*di)*sin((pcoord(l)+ . 5)*dj) ;

new_east_psi = [.] [(.+ 1) %% dimof(physics , l)]new_psi ;

•

•

An error message from the routing library :

Unsupported distribution type in CS __ GetRowAndCol

was displayed when the above piece of code was executed. It was traced to the
statement in which new_eas t_ps i is being assigned its value. On examining the
translated C code for the above C* code, it was found that the shape map of new_psi
changed when a value was assigned to it (in the previous statement). The change in
the map was traced to a VP emulation loop in which new_psi was assigned the
values.

When the declarations for new_psi, new_east_psi, new_southeast_psi and new_
south_psi were moved to before the with, the program compiled and executed
correctly.

38

) Chapter 9

Summary

• The routing library was ported successfully to the iPSC/860 system.

• The communication routines for reduce, broadcast and scatter were changed

to hypercube style. Benchmark C* programs were written and the

improvement in timings recorded for the new routines.

• The assembly code for the new routines was optimized which resulted in a

further improvement in timings .

• The timing data was compiled for all the benchmark C* programs. Appendix

C.1 summarizes this data .

• C* programs can now be written on the iPSC/860 making use of the ported

routing library .

39

Number of
Processors

1
2
4

8

Number of
Processors

1
2

4
8

)

Appendix A.1
Hypercube Reduce performance

rel prime.cs (128)

Original Timings Timings after
(in secs) Hypercube reduce

(in secs)

14.295 6.243
7.453 3.345
3.854 1.762
1.993 0.941

warshall.cs (64X64)

Original Timings Timings after
(in secs) Hypercube reduce

(in secs)

21.087 10.941
11.068 6.005
6.174 3.613
3.716 2.434

Appendix A.2
Hypercube Broadcast performance

warshall.cs (64X64)

Number of Original Timings Timings after
Processors (in secs) Hypercube broadcast

(in secs)

1 10.941 6.565
2 6.005 3.816
4 3.613 2.476
8 2.434 2.052

Appendix A.3
Hypercube Scatter-Gather performance

red_black.cs

Number of Original Timings Timings after
Processors (in secs) Hypercube scatter

(in secs)

1 96.031 82.887
2 54.173 48.408
4 28.261 25.861
8 15.865 14.597

)

)
Appendix 8.1

Scatter assembly optimization performance

red_black.cs

Number of Original Timings Timings after
Processors (in secs) assembly opt.

(in secs)

1 82.887 69.062
2 48.408 40.316
4 25.861 21.667
8 14.597 12.436

Appendix C.1
Intel iPSC/860 Performance Data- Feb 1993

Performance of C* programs on IPSC/860 (all times in secs)
Program Size Number of Processors

1 2 4 8
pi 100,000 1.061 0.532 0.266 0.134

pi 200,000 2.119 1.063 0.532 0.267

pi 400,000 4.238 2.126 1.064 0.532

relprime 128 6.243 3.345 1.762 0.941

relprime 256 49.395 25.836 13.347 6.861

fastmatl 64 0.043 0.036 0.031 0.029

fastmatl 256 2.931 1.833 1.248 0.805

warshall 64 6.565 3.816 2.476 2.052

warshall 128 26.468 15.301 9.733 7.301

warshall 256 109.697 65.636 43.504 33.411

gauss 64 No memory 3.639 2.165 1.479

gauss 128 No memory No memory 7.348 5.059

gauss 256 No memory No memory No memory 22.156

sieve 64,000 0.331 0.638 0.969 1.418

sieve 512,000 30.115 51.773 74.673 100.981

shallow-ld 64 303.797 150.796 72.571 38.665

shallow-2d 64 130.028 76.391 53.982 33.806

ocean No memory 604.573 323.524 167.295

jacobi 26.995 13.795 7.516 4.231

red-black 69.062 40.316 21.667 12.436

0.5

I o
~ t -0.5

-~ - 1

-1 .5

1.5

i
1

'Cl 0.5 ~
~

~ 0
eii
0 - -0.5

- 1

)

Appendix C.2
Speedup Curves

ocean.cs speedup
curve

log(no. of processors)

shallow.cs speedup
curve

log(no. of processors)

3

3

pi.cs speedup curve

2.5
2

! 1.5 .. 1 ..
~ 0.5 '-' 1:)(1
0 0 -

-0.5 1 2 3
- 1

log(no . of processors)

)

)

)

Bibliography

[1] Intel Corporation . 1991. iPSC/2 and iPSC/860 user's guide.

[2] Intel Corporation . 1990. i860™ 64-bit Microprocessor Programmer's reference

manual.

[3] Philip J. Hatcher and Michael J. Quinn . 1991. Data-Parallel Programming on

MIMD Computers. MIT Press , Cambridge , MA.

[4] Thinking Machines Corporation . 1990. C* Programming Guide, Version 6.0 Beta.

[5] Kathleen P. Herold . 1992. A Retargetable C* Communication and Run-time

library for Mesh-Connected MIMD Multicomputers. Masters' thesis , Department

of Computer Science, University of New Hampshire , Durham , NH .

[6] Anthony J. Lapadula and Kathleen P. Herold . 1992. A Retargetable C*

Communication library for Mesh-Connected MIMD Multicomputers.

[7] Michael J. Quinn . 1991. Designing Efficient Algorithms for Parallel Computers.

MCGraw-Hill Book Company .

