
92-60-1

OSU v 3.0 Browser:
Window into GUI Applications

Tong Li
Dr. T. G. Lewis

Dr. T. Budd
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

.)

l
n
n
n
f 1

I
7

I
I

l I
I

I
j

·U

OSU v 3.0 Browser:

Window into GUI Applications -

By Tong Li

:-=---;,
~ ..
~ ... ,

A research paper submitted in partial fulfillment of the
requirements for the degree of Master of Science

Major Professor: Dr. T. G. Lewis
Minor Professor : Dr. T. Budd

Department of Computer Science
Oregon State University

Corvallis, Oregon 97331

Dec. 13, 1991

1

n
n
n
n
l
}

l
I
I
I
I
I
J

I
j

u

Abstract

Graphical user interface(GUI) applications based on object-oriented design are

difficult to build without a supportive tool to graphically visualize the structure of the

entire application. As an application becomes larger and more complex, it becomes

harder to visualize its class hierarchy. Several systems, such as Smalltalk, MacApp,

THINK C 5.0 and THINK Pascal, have provided powerful tools for this

visualization. However, none of them can be invoked internally by the Oregon

Speedcode Universe version 3.0 (OSU v3.0) supporting tools such as the Petri Net

Editor [Keh 91]. The Petri Net Editor needs to view the class hierarchy of an

application and obtain information to specify a transition arc, such as the method that

sends a message to an object, the class that defines this method, and the path to find

the definition of this class.

The solution is straight forward: to build our own OSU 3.0 Browser to meet

the .OSU v3.0 supporting tools' needs. A browser provides a graphical view of the

class hierarchy of an entire application and gives a better idea of how the system or

the application is structured and how the classes relate to each other.

The functionalities of the OSU 3.0 Browser is to parse the C++ source code of

the OSU Application Framework, save the necessary information in an internal data

structure, display the class hierarchy in a tree chart, and return the path name of the

definition of the selected methods to the Petri Net Editor. The Browser is built on the

OSU Application Framework [Wittel 91] and integrated with the Petri Net Editor.

l
n
n
n
n
fl
l
1

I
l

I
J

l

u
u

Table of Contents

1. Introduction. .. 1

2. The Problems .. 4

3. The Approach 5

3.1. The TlilNK Pascal Browser .. 5

3.2. The TlilNK C 5.0 Browse.r: .. 8

3.3. The MacApp Browsers 8

3.4. The Smalltalk Browser .. 9

3.5. The OSU 3.0 Browser .. 12

4. The Design of OSU Browser .. 17

4.1. Subclassing the OSU 3.0 Application Frameworlc ... 17

4.2. The Layout Algorithm .. 20

5. Implementation of the OSU 3.0 Browser .. 23

5.1. The BRClass Class .. 23

5.2. The BRMethod Class .. 24

5.3. The BRLabel Class ... 25

5.4. The BRLine Class ... 27

5.5. The BRClassView Class ... 27

5.6. The BRParser Class .. 28

5.7. The BRowser Class. .. 29

5.8. The BRWindow Class .. 30

5.9. The BRDocument Class. ... 30

6. Conclusions ... 31

7. References ... 33

8. Acknowledgements 35

l
n
n
n
n
n
I
l

, J

I
I
I
I
I
l
j

J
u
~

1. Introduction

One of the most complex and time-consuming programming areas is the

development of graphical direct-manipulation user interface applications [Myers 89]

[Myers 90] [Urlocker 89]. In this paper, we explore some of the reasons why GUI

applications are difficult to program without a browser, and discuss various browsers,

in particular, our OSU 3.0 Browser, that have been incorporated into our approach to

these problems.

Oregon Speedcode Universe version 3.0 or OSU v3.0 consists of an MVC

based (Model-View-Control-based) object-oriented application framework called

OSU Application Framework and a set of integrated high level tools for specification,

visualization, modeling, simulation, validation, and rapid prototyping of GUI

applications. The OSU v3.0 architecture is pictured in Figure 1: the RezDez allows

the designer to create and edit icons, menus, windows, panes, palettes, pictures,

cursors, dialog boxes, and alerts; the Petri Net Editor provides a graphical front end to

most of the underlying application framework features and produces an executable

specification (model) which is the design representation of the modeled system and

can be easily translated into a C++ program; the Graphical Application Builder allows

the designer to do "reverse specification", interactively manipulating user interface

objects, and to generate the formal specification from there; the Simulator sets the

initial state of the modeled system according to the initial marking of the net, and then

executes the system by using the user's inputs; the Analysis Tools based on previously

developed reachability graph analysis techniques can be implemented for analyzing

the Petri net design representation of a system to determine system properties; and the

Code Generator takes an annotated Petri net as input and produces an OSU

1

Application Framework-based C++ program as output. Interested readers of this

framework and its tools are referred to the related reports [Keh 91], [Wittel 91], [Lai

91], [Luo 91].

The Browser that I implemented allows the designer to navigate through the

application framework class hierarchy, retrieve desired features if necessary, and

visualize the connection between the sequence and the class hierarchy. It can parse

C++ code (either the application specific C++ code, or the C++ source program

generated by the Code Generator, or the source code in our Framework) and display

the class hierarchy in a tree chart. Inheriting the features from the Framework, it can

save the tree chart in documents and can read the saved Browser documents and

display them in a window. Currently the Browser is directly used by the Petri Net

Editor for obtaining the information about a chosen method of a chosen class to

specify transition arcs.

2

7
n
A

n
l
I
}

I
,)

l I

I
I
Ll

l
n

r

n
n
n
n

1

I
j

l
I
j

I

u
u
d

Static Descriptions
of User Interface

Objects

Annotated
Petri Net
Model

Application
Specific
C++code

C++ Source Program

osu
Application
Framework

Figure 1. Architecture of OSU v3.0

Browser
Documents

A,

'

Other
C++Source

Program Files

3

2. The Problem

The introduction of the Lisa in 1983, followed by the Macintosh in 1984

exposed a wide audience to Apple's implementation of the GUI developed in the

1970's at the Xerox Palo Alto Research Center (PARC) [Allen 1990]. Since then, the

desktop metaphor with bit mapped graphical windows, icons, and a mouse for input

has become an accepted standard for user-friendly applications. However, Graphical

User Interfaces (GUI's) are still difficult to program [Weinand 89] because of

asynchronous input management, lack of high level abstraction in GUI toolkits, and

lack of a standardized model for generic GUI functionality. Although GUI toolkits

provide good abstractions for the lowest levels of a GUI, such as line and shape

drawing, mouse and keyboard input, and display of standard graphical items such as

windows, buttons, and menus, the programmer must constantly reinvent the wheel

when integrating these features into an application.

The problem of too little functionality is addressed in our framework by using

an object-oriented approach that encourages both the reuse of design and the reuse of

code. But several cognitive problems prevent users from successfully exploiting their

function-rich systems [Fischer 87]. Users do not know

• that reusable components exit,

• how to access these reusable components,

• when to use these reusable components,

• what the reusable components do, or

• how to combine, adapt, and modify these reusable components to their specific
needs.

To build new applications as much as possible with existing parts, the

designer must understand how these existing parts organize.

4

l
n
n
n
n
l

l

1

I
I

l
n
n
A
0
~

l
1

I

l

l
t

J

I

J
j

J

3. The Approach

A browser is a window into GUI application. It supports the object-oriented

approach by visualizing the hierarchical architecture of an application and providing

easier access to the system. The OSU 3.0 Browser displays the inheritance structure

of our Framework and lets the programmer look around a system and search for

reusable components. The connections between the Framework and the classes it

inherits can be analyzed in more detail by selecting a class and looking at its methods.

Specifically, the user of the Petri Net Editor would create a GUI object such as menu,

window, dialog, alert, or so forth, and specify a transition arc to this object. The OSU

3.0 Browser provides a graphical view of the reusable framework and lets the user to

choose the desired methods to specify the transition arc.

Before we discuss our OSU 3.0 Browser in detail, let's elaborate on the other

browsers from four different systems, THINK Pascal [Borenstein 88], THINK C

[Borenstein 89], MacApp [Wilson 90], and Smalltalk-80 [Goldberg 83], for

comparison.

3.1. The THINK Pascal Browser

From the perspective of a software production staff, profitability depends

largely on component availability and on easily locating components, accessing

their applicability, and incorporating them into the software system being

developed [Woodfield 87]. The convenience of getting a program serviced easily

is very appealing. The less effort the users have to expend in finding candidates

for reuse, the more likely they are to use them. The reusable components are

useless unless the designer knows that they are available and how the right one

5

can be found. A browser addresses this retrievability problem by letting the user

locate resources without knowing and remembering names. And the THINK

Pascal Browser is a good example of solving this problem.

TCommand

TOb ·ect

Closs Browser

TPdntSt

TRevertDocCommand
TSaveDocCommand
TUndoRedoCommand

ommand

TGab A lfoation

TStdPrintHandler
···:········:··
............. ··

Figure 2. The THINK Pascal Browser

The interface of this Browser is shown in Figure 2. It displays all the classes

defined in a project as a tree chart. Each box represents one class. Subclasses are

connected to their superclasses like an organizational chart. To find the declaration of

a class, double-click on the box that represents the class. The editor opens the file

that contains the class declaration and scrolls to the declaration of the class. To find

all the methods that a class defines or overrides, hold the mouse down on the class

6

I
I
I
I
I
I
I
I

J
J
J

l
'l
n
Fl

n
l
I
I
J

1

I

I
j

I

j

J
Ll

name. A pop-up menu appears next to the class. If the user chooses a method from

the pop-up menu, the editor opens the file that defines the method. Here, the pop-up

menu shows only the methods that a class defines or overrides. It does not include

the methods that the class inherits from its superclass, since several classes may

define or override the same method, it's not clear which file the editor should open.

osu 3.0 Framework

CLlter

CL Iterator

Dolt
Redo It
Undo It
CLCommand
~cLCommand

CLOb ·ect

CLController CLUIOb ·ect

·:.:.:::.::::::::::::::::::::::

Figure 3. The OSU Browser

This kind of interface shows clearly the entire class hierarchy of the

application and the inheritance relationship between classes (superclass and subclass).

As an exercise in graphical user interface design and implementation, I chose this

style of interface for my Browser, as shown in Figure 3. The differences between

these two interfaces are: since the OSU Application Framework can not support pop

up menus, I decided to have two windows, one for displaying the tree chart of the

class hierarchy, another one for displaying the method list of the selected class; also,

7

in the TIIlNK Pascal Browser, the sizes of the boxes which contain the class names

are varied with the length of the class names; but the sizes of the boxes in the OSU

Browser are fixed. The advantages of having these fixed size boxes and class names

to represent a class in the class hierarchy view is that, the tree structure seems to be

more even and the depth of a node (class) is shown more clearly. Also, it simplified

the layout algorithm. The disadvantage of this design is, since the long class names

(more than 15 characters) are truncated, it may happen to have identical class names

in the tree chart representing several different classes. This case doesn't happen in the

OSU 3.0 Framework.

3.2. The THINK C 5.0 Browser

The browser in TlilNK C 5.0 is called Class Browser. The user can use this

Browser to look at the declaration of a class or to find the definitions of methods.

The interface design of this Browser is the same as the TlilNK Pascal Browser that

was discussed above except for the keyboard shortcut functionality: the user can use

the keyboard to navigate through the class_es in the Class Browser window. For

example, if the user types the name of a class, the Class Browser highlights the

classes whose name matches what the user has typed so far.

3.3. The MacApp Mouser

Instead of showing the class hierarchy in a tree chart, the browser in MacApp

(called Mouser) displays a list of class names in the top left view, and displays

message and variable names for the selected class in the next two views, as shown in

Figure 4. The large view on the bottom displays the interface information of any

selected method. The users can use Mouser as a substitute for the MPW text editor

and modify the method code directly. The differences between Mouser and the OSU

8

~

n
n
n
I
I
I

I
I
I
j i

I
j

J

l
n
n-

R
D
n

1
I
l

j

J

I
J

l

I
u
J

Browser are: the Mouser has a subview to display the member fields but the OSU

Browser doesn't support this functionality since the Petri Net Editor doesn't need this

information; and the OSU Browser doesn't have a substitute for the MPW text editor.

The MacApp Mouser also allows many types of searching and cross

referencing through both the user's code and the original MacApp source code. For

example, the user can find all methods that send the message Dolt to any object, or

flatten the hierarchy and see all the methods inherited from a superclass in one

scrollable list. The Mouser makes it much easier to navigate through the large class

library. It is written in MacApp and can handle source code in Object Pascal or C++.

CLAlert

CLArcline
CLArrayedCollection
CLArrayedlter
CLArrowline
CLAssoc

Mouser osu 3.0
AlreadyOpen
CLApp I i cation
CreateCursor

vt
vt

CLApplicstion -> CLController -> CLObject

virtual class CLMenuBar * CreateMenus<>;

CLBasicWindow
CLWindow
fAppQuit
fCursor
fMenuBar
fTheEvent
fWhichWindow

Source Code-:.·:.·.·.·.-... ·.· ·.·.· ... ·.·.· ... ·.·.·.· · · :· .. :·:·:·:·:·:·:·

Figure 4. The MacApp Mouser code browser

3.4. The Smalltalk Browser

The Smalltalk Browsers were the first and are the most powerful browsers in

the computer world. There are many browsers in Smalltalk:: class browser, Class

Hierarchy Browser, Project Browser, Protocol Browser, message-set browser,

Message Browser, Message Category Browser, Change-Set Browser, Change-

9

Management Browser, System Browser, System Category Browser, and file list

browser.

CLASS
CATEGORIES

VIEW

CLASS
NAMES
VIEW

instance class

MESSAGE
CATEGORIES

VIEW

TEXT VIEW

MESSAGE
SELECTORS

VIEW

Figure 5. The Structure of a System Browser

An example of these browsers is the System Browser as shown in Figure 5. It

is made up of five subviews and two menu items labeled "class" and "instance". The

various subviews of the browser are referred to by their labels in Figure 5. The

bottom one is a view in which methods can be defined and modified using the text

editor. The information about a class that the user can retrieve using this browser

includes:

• a comment about the role of the class in the system

• a description of the part of the system class hierarchy in which the class is

found

• a description of the variables of a class

n
n
A

n
l
J

I
l
I

I
I
j

I
j

J
J
El I

l
(

n
n
n
f l
I
l

I
I
I
I
J

l

I
J

• a description of the message and methods of the class, including comments

about the use of the message and the design of the method

• a classification of the class with respect to other classes

• a classification of the message of the class

• access to all methods in the system that send a particular message

• access to all methods in the system that implement a particular message

• a list of all message sent in a particular method

Among this list of functions, my Browser only can show the class

hierarchy and the list of the methods of a class. If the OSU tools need more

information and functionalities in the future, my Browser should be enhanced.

The current design is ready for the enhancements, which will be explained in the

implementation section of this report.

The Smalltalk system browser also provides access to templates for

defining new classes and templates for defining new messages. This Browser

gives the user access to all the class descriptions available in the system, including

comments about the classes, comments about the methods, and examples of how

to use many of the classes. Other ways to find out about messages and methods

involve creating system views called Message-Set Browser. These views are

created in response to queries to determine which methods send a particular

message, which classes implement a particular message, or which methods

reference a particular variable or literal. All these help the users to understand the

system and determine whether they would reuse it and how to reuse it.

11

3.5. The OSU 3.0 Browser

The OSU 3.0 Browser was designed as a support tool for the OSU 3.0

Framework. Currently the Petri Net Editor is using it to browse the class hierarchy of

the OSU Framework and choose methods to specify an arc [keh 91]. When the user

chooses the "Browse Hierarchy" in the "Tools" menu (Figure 6.), the Browser will be

invoked and will bring up a dialog (Figure 7 .) asking the user to choose a header file.

The user then selects a file in the "includes" folder of the OSU 3.0 Framework.

,.. • FI·1e Ed"t T I • I 00 S , r §

~§
ii
[i][e]
I I ~

~

Figure 6. Petri Net Editor Environment

Then the Browser automatically parses all the header files (consisting of the

class definitions) in the current folder. At the same time, it shows a modeless dialog

(Figure 8.) telling the user which file it is parsing. When it parses all the files in the

"includes" folder, it will check whether all the class definitions have been parsed, in

other words, it will check if all the necessary header files are in the "includes" folder.

12

l
n
n
n
n
n

I
j

I
I

I
l
J
u

n
n
Fl

n
n
I
l
I

1

j

J

j

I
J

J
u
t1

If there are any header files missing, the Browser will ask for the files where the

specific classes are defined (Figure 9.).

Please select the files to parse.

Cl clarray edcollection.h
Cl clbag.h
Cl clbArra yedcollection.h
Cl clbasicwindow.h

(
(

loraunol
c::,Mac.

l: j(H t

Drh•<~

)
)

Cl clBTree .h ..

Cl clclass. h
Cl clclassManager.h
Cl clcollection.h

(
(

Open

Cancel

Figure 7. Select a File in the "includes" Folder

II Pnrsing file clobject.h

Figure 8. A Dialog Showing which File is Being Parsed

)
)

II

13

Please select the file that defines class CLOataStructure.

I <5l Datastructure I lorau1tol
D c:ldatastruc:ture.h ~ e:>Mac.

(t: j(~(t)
(D.-hi<~)

..

(Open)
(Cancel)

Figure 9. Find the File that Defines Class CLDataStructure

After all the parsing and checking, the Browser will display a window

containing the tree chart that represents the class hierarchy (Figure 10.). The user can

click on a box that represents a class to see its protected and public function members,

and double click on a method name or select a few methods and choose the "copy"

item in the "Edit" menu to select methods. After the user chooses all the methods he

wants, the list of messages of the method definitions can be pasted to the high-lighted

arc.

14

n
n
n
n
l
I
l

I
1

I
j

1

1

j

J

l
l
n
n
fl
rl

I

1

I
I
1

J

I
I

l

j

tJ

B

OSU 3.0 Framework

Cllter

CL Iterator

Dolt
Redo It
Undo It
CLCommend
""'CLCommend

CLOb"ect

CLController CLUIOb 'ect

. ·.·=·.·.·.·.·.·=·.·=·.·.·.·.·.·.·.·.·=·.·.·.·.·.·=·.·.·.·.·.·.·.·.

Figure 10. OSU Browser showing the OSU Framework Class Hierarchy

Whenever the user wants to choose messages to specify an arc, he/she can

choose the "Browser" in the "Windows" menu and the Browser window will be

brought up to the front. The user also can double click on an arc to see the messages

specifying it. The method definitions will be displayed in a dialog as shown in

Figure 11. And the user can edit these methods.

15

16

Untitled
rr-----------:2~.=:;.-IT--------r,~

,t

OutputArc Information

Sequence # : Io ___ __.
Messages

IEnableMenu I tem(short
p I temNumber) (Cancel)
CheckMenultem(short pltemNumber) L]

~....,O_K____,.

Figure 11. Returning the Selected Method Names to the Petri Net Editor

I
n
n
A

n
n
I
I
I
I
I
1

I
1

I
J

u
Li

I
l
n
n
fl
l

1

I
J

I
J

I
j

j

J
tJ

4. The Design of OSU Browser

In this section, I first discuss how my Browser inherited the object-oriented

design of the OSU Application Framework. Then I will address the specific layout

problem of displaying the tree chart. Basic knowledges of Macintosh applications,

Object-Oriented design, and MVC model are referred to [Lewis 90], [Budd 90],

[Krasner 88].

4.1. Subclassing the OSU 3.0 Application Framework

OSU 3.0 Browser was constructed by subclassing and instantiating classes

from the OSU 3.0 Framework. The OSU 3.0 Framework is used by deriving new

concrete classes from existing classes and configuring a set of objects by providing

parameters to each object and connecting them (Figure 12). OSU 3.0 has a large class

library of concrete subclasses of each abstract class, so that most of the time an

application can be plugged together from existing components.

The model class holds the domain specific data that is to be represented and

manipulated by the GUI application. The domain specific data of this Browser

application are the BRClass and BRMethod classes which contain the information

about an application program's classes or methods. In this application, the

BRClassView renders parts of the data, the names of the classes and the names of the

methods, on the screen. The BR Class View decides the layout of the tree chart which

will be discussed in detail in the following section. In this particular application, a

subclass of the Window class, BRWindow, is responsible for accepting asynchronous

input from the mouse and keyboard and passing appropriate messages to the model

17

,---- c:-::: er= , c= r-- -- ,--..-.

CLOb '!'Ct

CL tt:er.a111r

CLll:er

mowstr::: :;:::::

~P.rser:: :::::::

CIMDdel

CIDacumtnt

CLCatr'mclllf

Ct.ablttc

CLCon1roller

CLOb l istltl'r

CLGr •

CLCo11ec1m

CLS !Ots

CLUIOb '!'Ct

BRClas:s:::: :::::::

aRHt1hQd:: :::::::

a.se C.Ollec1lln

O.SidUIOb ·e-i:t

Q.Db 'List

a.cus1xrniz:td\lil'

a.Pane

Figure 12. OSU 3.0 Browser Class Hierarchy

(The shaded cl asses are created for the Browser.)

- - --:i ---,

CLCornrnatidStac~

:BRClassVie\.f:: : : : :

Cl Virmw :B~'rtiriro-w:: ::: ::: :

00
,--;

l
n
n
n
n
n

I
)

I
1

I
j

J

I
j

and view classes. The BRDocument class which is subclass of the

GraphicsDocument is created for file J/O.

BRLabel class and BRLine class are subclasses of the CLLabel class and

CLLine class, which are subclasses of the CLShape class.

The BRParser class and the BRowser class are the most important classes

created for this Browser: the BRParser class is responsible for parsing files,

meanwhile building up a binary tree structure to store the class hierarchy; the

BRowser class is responsible for invoking the Browser tool and returning the message

list to the Petri Net Editor.

All these subclasses will be discussed in more detail in the next section.

Some classes in the Framework are so powerful that I could simply instantiate

them. These classes are mostly the subclass of data structure classes [Luo 91],

CLObjList, and the subclass of StdUIObject classes [Luo 91], CLModelessDialog.

The way to use these classes is fairly easy. For example, to use a modeless dialog to

ask for the files where the specific class is defined (Figure 9.), what I need to do is

just the following four lines of code:

aDialog = new CLModelessDialog(128, classA-> getSuperclassName());

aDialog -> Draw();

SFGetFile(where, (Str255) "", (FileFilterProcPtr) 0, -1, (SFTypeList) 0,

(DlgHookProcPtr) 0, &theReply);

delete aDialog;

4.2. The Layout Algorithm

The key idea of my layout algorithm for drawing the class hierarchy tree chart

is that I have two member fields in the BRLabel class: the coordinate numbers (the

19

vertical number "yNum" and the horizontal number "xNum"). After the BRParser

reads all the files and builds the binary tree containing all the information of the class

hierarchy, the BRClassView does a depth-first-search [Aho 74] to compute all the

coordinate numbers as following:

void BRClassView :: setClassPositions(BRClass *theClass) {

// at first pass the root of the binary tree

20

BRLabel *labelA, *labelB;
BRClass *classA, *classB, *classC;
int temp YNum, i;

theClass -> setTag (0);

CLObjList *aSubclassList = theClass -> getSubclassList();

if (aSubclassList != 0){

}

CLiter nextClass (aSubclassList);
classC = (BRClass *) nextClass();

labelA = findClassLabel(theClass -> getClassName());
labelB = findClassLabel(classC -> getClassName());
labelB -> setxNum (labelA -> getxNum() + 1);

// set the x number of the subclass' label equal to the x number
// of the superclass' label plus one.

while (classC != 0) {

}

if (classC -> getTag() == 1)

setClassPositions (classC);

classB = (BRClass *) nextClass();
labelA = findClassLabel(classC -> getClassName());
if (classB != O){

}

labelB = findClassLabel(classB -> getClassName());
labelB -> setxNum(labelA -> getxNum());

// set all the subclasses with the same superclass
// the same x number.

classC = classB;

if (theClass -> getSubclassCount() == 0) {

}
else {

// if theClass doesn't have any subclasses.

aYNum++;
findClassLabel(theClass -> getClassName()) -> setyNum(aYNum);

l
n
n
A

n
l
I
l
I
1

I

I
I
j

J

u
Ui
fJ

l
l
ri

n
n
I
l
l
l

I
j

j

j

j

J
J

};

0

2

3

4

5

6

7

y

}

classA = (BRClass *) aSubclassList -> First();
labelA = findClassLabel(classA -> getClassName());
labelB = findClassLabel(theClass -> getClassName());
i = labelA -> getyNum();

if (theClass -> getSubclassCount() == 1)
labelB -> setyNum(i);

else {
tempYNum = ((aYNum - i) / 2) + i;
labelB -> setyNum(tempYNum);

}

setEachClassPosition(theClass);

2 3
--.--------.----------,...---------,-4 X

(2, 1) (3, 1)

(2, 2)

(3, 3) (4, 3)

(1, 4) (2, 4) (4, 4)

(3, 5)

(2, 6)

(2, 7) (3, 7)

Figure 12. The Layout of a Tree Chart

As the result of this search, the layout of the tree will be as even as the ones in

Figure 12. The numbers in the parentheses are the "xNum" and "yNum" of each

node.

21

5. Implementation of the OSU 3.0 Browser

The descriptions below are introductory and describe the current state of the

Browser. Instance variables and member functions of special interest to the

implementation are also explained.

5.1. The BRClass Class

The BRClass class is a subclass of the CLGraphicsModel class . It contains

the information we need about a class object, such as the name of the class, the name

of its super class, the name of the file in which the class is defined, and the number of

subclasses of it; and also some information for internal use, such as the pointer to its

method list, and the pointer to the subclass list, also a tag for the depth-first-search

representing whether a node has been searched to. If more information is needed in

the future, more instance variables should be added in this class.

The methods in this BRClass class are to hold information about the instance

variables and to get the information from the instance variables, also to read these

information from the header files, as explained in detail below.

Instance Variables:

• className

• superclassN ame

• fileName

• subclassCount

• methodList

• subclassList

• tag

22

the name of the class

the name of its super class

the name of the file in which the class is defined

the number of subclasses of this class

the pointer to the method list

the pointer to the Subclass list

the tag for depth-first-search

l
n
,1

A

fl
n
I
I
]

j

j

)

J

j

J
j

0

l
n
n
R
n
n

I
j

J

J

j

Member Functions:

• setClassName

• setSuperclassName

• setFileName

• setMethodList

• setSubclassList

• setSubclassCount

• setTag

• addSubclassCount

• getClassName

• getSuperclassName

• getFileName

• getMethodList

• getSubclassList

• getSubclassCount

• getTag

• readSelf

• readMethods

set the class name

set the super class name

set the file name

set the pointer to the method list

set the pointer to the subclass list

set the number of subclasses

set the tag value ('O' means that this class object node
has not been searched and 'l' otherwise.)

add one to the number of subclasses

get the class object name

get the super class name

get the file name

get the pointer to the method list

get the pointer to the subclass list

get the number of subclasses

get the tag value

read the header files to set the information

read all the methods of the class

5.2. The BRMethod Class

The BRMethod class is a subclass of the CLGraphicsModel class. It just

contains the name of the method and the line that defines the method and is

responsible for setting and getting the name and the line.

Instance Variables:

• methodN ame the name of the method

23

• methodDefStr

Member Functions:

• setMethodName

• setMethod.DefStr

• getMethodName

• getMethod.DefStr

• readSelf

• getMethodName

• getMethod.Def

5.3. The BRLabel Class

the line that defines the method

set the name of the method

set the line that defines the method

get the name of the method

get the line that defines the method

read the line sent from the BRClass to set the
information

parse the line containing the method definition for the
method name

parse the line containing the method definition for the
method definition without return type

The BRLabel class is a subclass of the CLLabel class in the Shape Library

[Luo 91]. Because when the user double-clicks on a class in the tree chart, the

Browser should display the list of methods of the selected class on the method

window (see Figure 13.); when the user double-clicks on a method in the method

window, the Browser should save the definition of the selected method in a list for the

Petri Net Editor. So I need a member field as a pointer to the selected object in the

BRLabel class. The two dimensional coordinate numbers (xNum, yNum) represent

the related position of the class box in the graphical view. The CLHighlight method

is to show a class is selected by inverting the region instead of putting four knobs at

the corners of the region when the user clicks on it, the CLLabel class doesn't have

this choose. And the CLDrag method was overrode for not doing anything. I use this

BRLabel class for displaying labels in both the class window and the method

window.

24

l
n
n
n
n
I

I
I
I
I
I
I
J

J
u
LI

1

n
.,.. n .
R
n
n
I

I
J

I
J

I
I
LI

u

aBRLabel = fTheC11ckedShape

theSel ectedCl ass = aBRLabel -> getSel ectedObj ()

alist = theSel ectedCl ass -> getMethodLi st()

theMethodView = theMethodWindow -> GetFocusedView()

theMethodVi ew -> SetModel (el i st)

theMethodVi ew -> addMethodsToVi ew()

Figure 13. Double-click on a BRLabel in the BRClassView

Instance Variables:

• selectedObj the point to the method list

• xNum the coordinate number (horizontal) in the graphical
view

•yNum

Member Functions:

• setSelectedObj

• setxNum

• setyNum

• getSelectedObj

• getxNum

• getyNum

• CLHighlight

• CLDrag

the coordinate number (vertical) in the graphical view

set point to the object list

set the horizontal coordinate number

set the vertical coordinate number

get point to the object list

get the horizontal coordinate number

get the vertical coordinate number

highlight the label region by inverting it (override
method)

do nothing (override method)

25

5.4. The BRLine Class

The BRLine class was created for overriding the CLHilight method of the

CLLine class. The lines in the tree chart should not be able to high-lighted, as a result

they can not be dragged.

5.5. The BRClassView Class

The BRClassView class is a subclass of the CLGraphicsView class. It is

responsible for drawing the graphical tree chart on the screen and detect the mouse

actions.

Member Functions:

26

• xyToRect convert the internal coordinate values of a class into a
position (a rectangle) where the class name will be
located on the screen

• addLabels add one label to the view for each class object

• setEachClassPosition decide the position for each label and add the lines to
the view for each label

• setClassPositions decide the positions for _all the labels

• findClassLabel knowing the class name, get the label of this class in the
fShapeList of the view. Since I keep the xNum and
yNum in the BRLabel class and decide the position of
each label after I create all the labels, so I need to find
the labels and set the position.

• DoubleClick handle double-clicks for the view (this is an override
method.)

• ReleaseMouse handle release-mouse for the view (this is an override
method.)

• addMethodsTo View add the methods of the selected class to the view

• addMethodsToStrList add the selected methods to the list for the Petri Net
Editor

n
n
A

fl

1

1

I
J

u
u
LI

l
n

/

n
R

n
n

I
l

1

j

u
LJ

5.6. The BRParser Class

The BRParser class is a subclass of the CLObject class. It is a major class of

the Browser. The only member field is a pointer to a CLObjList object. Since each

element in this list will be an object of the BRClass class which has a member field

"subclassList" as also a CLObjList, this constructs a binary tree structure.

The BRParser class is responsible for parsing all the header files to build up

the class hierarchy tree and setting the layout of the tree chart.

The parsing method that was used to parse the files is LL(l) parsing [Aho 86].

That means left-to-right, left-most, and a single input symbol used to resolve the

production choice. This parsing process has a time bound that is linear with the

length of the input string.

FileDocument

_____,..

Object

... I Application I

-+ I StdUIObject

pointer in the CLObjlist

pointer to the subclasslist

Data Structures
Class Hierarchy

Figure 14. Binary tree structure to save Class Hierarchy

The instance variables and member functions of this class are:

Instance Variables:

27

• treeRoot

Member Functions:

• · getTreeRoot

• setTreeRoot

• initTreeRoot

• deleteTreeRoot

• parse

•parseOneFolder

• parseOneFile

• getMissedFiles

• addClassToTree

• setSuperclassPtr

• newOrNot

• setTag2.ero

5.7. The BRowser Class

the root of the class hierarchy tree

get the root of the class hierarchy tree

set the root of the class hierarchy tree

initialize the root of the tree

delete the root of the tree

do the parsing

parse all the header files to get the class information for .
building the class hierarchy tree

parse one header file to get all the class information for
building the class hierarchy tree (LL(1) parsing)

ask for the files that define the classes whose subclasses
have been parsed

add the new class to the tree

look for the BRClass object that contains the same class
name as the 'superClassName' (a global variable) using
depth-first search method

check if the class is already saved in the binary tree

set all the tag of the class object link to 'O', it should be
called every time before the depth-first searching

The BRowser class is a subclass of the CLObject class. It is an interface class

to the Petri Net Editor. Each member function is responsible for a function required

by the Petri Net Editor:

28

·• newBrowser

• getSelectMethods

• addMethodsToList

• · close Window

initialize the Browser

get the list of selected methods (by double click.)

add the selected methods to the list

close the browser window

I
n
D
B
n
n

. I

u
u
u

l
n
n
Fl

n
n
I
n

l

l

I
j

1

I
J

u

• emptyList empty the list of selected methods

• getMethod.Name get the method name from the method definition

5.8. The BRWindow Class

The BRWindow class is a subclass of the CLWindow class. !just override the

"CreateDocument" method to create my own document.

5.9. The BRDocument Class

The BRDocument class is a subclass of the CLDocument class. I override the

"Create View" and "CreatModel" methods to create my own view (BRClassView) and

model (BRClass).

29

6. Conclusion

The Browser used the reusable design of the OSU 3.0 Application

Framework. There are 9 classes and 82 methods in the Browser and it reused about

146 methods in the Framework (Table 1.). This is a report of satisfaction and success

because software reuse has been encouraged and practiced. And the promise of

increased productivity by reusing software is realized. It reduced application

development time from overnight to over lunch.

As I said earlier in this report, if more functionalities are needed by the OSU

3.0 tools, enhancements should be made according to these needs. For examples, if a

tool needs information about the member fields of a class, the "parse()" method of the

BRParser class should be able to get the information and a number of member fields

should be added to the BRClass class; if a tool needs to see the text of a class

definition, the Browser should be able to open the file that has the definition. Since

there is a field in the BRClass class as "fileName" storing the name of the file where

the class is defined, it should be possible to accomplish this requirement if it's needed.

Another significant future work on this Browser is to generalize the binary

tree structure and depth-first-search in the Browser implementation into a new data

structure in the Framework because currently there is no binary tree data structure in

the Framework that supports the depth-first-searching. This generalization can

basically be done by changing the names of classes, member fields and member

functions and by adding more general methods such as to replace a node in the tree, to

make a copy of a subtree, and so forth.

30

1

n
n
A

n
l

I

J

u
D

l
l
n
R
n
n

I
I

I
1

I
J

lJ
J

J

u
u·

Cl83se:,

BRCiass

BRMetbod

BRLabel

BRLine

BRParser

BRovser

BRCiass
Viev

BRWindov

BRDocment

CLCursor

CLDialog

CLObjL:ist

To'tBl

Number of
Methods

19

9

10

2

14

9

11

4

4

0

0

0

82

MyCode Reused Code

Lill.es of Coat Num.:ber of Lin.es of Code

.h .cp Methods .h .cp

74 201 2 16 25

43 136 2 16 25

47 70 17 90 300

4 10 16 44 104

67 507 5 116 52

46 173 5 115 52

61 448 41 125 770

35 60 28 272 713

40 61 2 10 15

0 3 3 42 28

0 4 5 32 51

0 6 20 57 180

413 1669 935 2315

146
2082 3250

Table 1. Comparison of code size

31

7. References

[Aho 86] Aho Alfred V., Sethi Ravi., Ullman Jeffrey D., Compilers,
Principles, Techniques, and Tools, Addison-Wesley, Reading,
MA, 1986.

[Aho 74] Aho Alfred V., Hopcroft John E., Ullman Jeffrey D., The Design
and Analysis of Computer Algorithms, Addison-Wesley, Reading,
MA, 1974.

[Allen 1990] Allen Daniel K., On Macintosh Programming: Advanced
Techniques, Addison-Wesley, Reading, MA, 1990.

[Borenstein 88] Borenstein Philip, Think's Lightspeed Pascal™ User's Manual,
Symantec Corporation, Cupertino, CA, 1988.

[Borenstein 89] Borenstein Philip, Mattson Jeff, Think's C™ Object-Oriented
Programming Manual, Symantec Corporation, Cupertino, CA,
1989.

[Budd 90] Budd Timothy, An Introduction to Object-Oriented Programming,
Addison Wesley, Reading, MA, 1990.

[Fischer 87] Fischer Gerhard, "Cognitive View of Reuse and Redesign" IEEE
Software, July 1987, pp 60-72.

[Goldberg 83] Goldberg Adele, Smalltalk-BO: The Interactive Programming
Environment, Addison-Wesley Publishers, Menlo Park, 1983.

[Keh 91]

[Krasner 88]

[Lai 91]

[Lewis 90]

[Luo 91]

32

Keh Huan Chao and Lewis T.G., "Direct-Manipulation User
Interface Modeling with High-Level Petri Nets," Proceedings of
19th ACM Computer Science Conference, March 1991, San
Antonio, TX, pp. 487-495.

Krasner Glenn and Pope Stephen, "A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk-
80," Journal of Object-Oriented Programming, Vol. 1, No. 3,
Aug./Sep. 1988, pp. 26-49.

Lai Chi, "Adding Object-Oriented Structured Graphics and
Graphics Building Block to the MVC Paradigm Application
Framework", Project Report, Dept. of Computer Science, Oregon
State University, Corvallis, OR, 1991.

Lewis T.G., CASE, Computer-Aided Software Engineering, Van
Nostran Reinhold, New York, NY, 1990.

Luo Chung Cheng, Lewis Ted, "Oregon Speedcode Universe 3.0
Programming Manual", Project Report, Dept. of Computer
Science, Oregon State University, Corvallis, OR, 1991.

n
n
A

n
fl
I
l
I

I 1

j

j

u

l
n
n
Fl

n

I
j

I
)

J

J

j

J

u

[Myers 89]

[Myers 90]

[Urlocker 89]

[Weinand 89]

[Wilson 90]

Myers Brad, "User Interface Tools: Introduction and Survey,"
IEEE Software, Vol. 6, No. 1, Jan. 1989, pp. 15-23.

Myers Brad, "Garnet: Comprehensive Support for Graphical,
Highly Interactive User Interfaces," IEEE Computer, Vol. 23, No.
11, Nov. 1989, pp. 71-85.

Urlocker Zack, "Abstracting the User Interface," Journal of
Object-Oriented Programming, Vol. 2, No. 4, Nov./Dec. 1989.

Weinand Andre, Gamma Erich and Marty Rudolf, "Design and
Implementation of ET++, a Seamless Object-Oriented Application
Framework," in Structured Programming, Vol. 10, No. 2, 1989

Wilson David, Rosenstein Larry, and Shafer Dan, Programming
with MacApp, Addison-Wesley, Reading, MA, 1990.

[Wittel 91] Wittel, Walter I., "Integrating the MVC Paradigm into an Object
Oriented Framework to Accelerate GUI Application
Development, 11 Project Report, Dept. of Computer Science,
Oregon State University, Corvallis, OR, 1991.

[Woodfield 87] Woodfield Scott N., Embley David W., and Scott Del T., "Can
Programmers Reuse Software?" IEEE Software, July 1987, pp 52-
59.

33

Acknowledgements

I would like to thank my Major Professor, Dr. Ted G. Lewis, for the opportunity to

work on the testing and documentation of Oregon Speedcode Universe v2.0 and the

development of OSU v3.0 Browser. His guidance, support, and encouragement

throughout this project has been instrumental to my progress . His Software

Engineering series did much to prepare me for work on this project. I would also like

to thank my Minor Professor, Dr. Timothy Budd, for his support, concern and caring.

His classes did much to develop my understanding concerning computer science and

enlarged my interest in this field. I am grateful to Dr. Lawrence Crowl for his

willingness to participate on my Graduate Committee.

My special thanks go out to the other members of the OSU v3.0 development team,

Dr. Ruan Chao Keh, Mr. Walter Wittel, Mr. Chung-Cheng Luo, Ms. Fangchen Lin,

Mr. Chih Lai, Mr. Kangho Lee, Mr. Kee-Yun Chan, and Ms. Huei-i Huang, for the

excellent framework upon which my Browser was built and for all the helpful

explanations. I could not have done this project without their support and friendship.

I appreciate this cooperative environment and enjoyed our team work together. Ms.

Sherry Yang and Mr. Dan Boerner, two Macintosh specialists in our laboratory, have

always been willing to answer my questions.

I would also like to thank my American host family, Professor and Mrs. Walter Kraft,

who have been playing the role of parents for me since I came to the United States,

and also my family in China and Hong Kong, who gave me the opportunity to come

to America, and, to Burnette Or, for his special love to me.

34

n
n
A

n

l
)

J

I
]

I I

J

j

J
u
u

	Li_Lewis_Budd_92_60_01_A
	Li_Lewis_Budd_92_60_01_B

