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it unsuitable for real-time scenarios. To address these challenges, we combine the

merits of cyclostationarity features and Convolutional Neural Networks (CNN) to
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Correlation Function (SCF) analysis to robustly identify modulation type of the

occupied signal in each of the channels of the wideband spectrum. Our technique
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linear projections of the input features.



c©Copyright by Seifeddine Mejri

 JUNE 16, 2020
All Rights Reserved



Deep Learning Based Automatic Modulation Classification for
Wideband Access Using Cyclostationarity Analysis

by

Seifeddine Mejri

A REPORT

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented June 2020
Commencement June 2020



Master of Science report of Seifeddine Mejri presented on JUNE 16, 2020.

APPROVED:

Major Professor, representing Electrical and Computer Engineering (ECE)

ofof the School of Electrical Engineering and Computer Science (EECS)
Oregon State University

Dean of the Graduate School

I understand that my report will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
report to any reader upon request.

Seifeddine Mejri, Author



ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to all those who provided me

the possibility to complete this report. A special gratitude I give to my academic

advisor, Professor Bechir Hamdaoui, whose contribution in stimulating suggestions

and encouragements, helped me to coordinate my project, especially in writing this

report. His expertise, suggestions, and constant support, added considerably to

my graduate experience and my ability to carry out research. I want to express

my sincere gratitude also to my committee members Professor Jinsub Kim and

Professor Bella Bose, for accepting to serve as members of the committee of my

defense. Finally, I want to thank my father and my mother who have been always

there for me with their support, love, and encouragement.



TABLE OF CONTENTS

Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Limitations of Existing AMC Techniques . . . . . . . . . . . . . . . . 2

1.3 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Signal characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 SCF Based Classification: A Convolutional Neural Network Approach . . 9

3.1 Proposed technqiue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Channelization and Energy Based Detection . . . . . . . . . . . . . . 11

3.3 Spectral Correlation Function (SCF) . . . . . . . . . . . . . . . . . . 12
3.3.1 Time Smoothing Method . . . . . . . . . . . . . . . . . . . 15
3.3.2 Implementing The TSM . . . . . . . . . . . . . . . . . . . . 16

3.4 Supervised Learning Model For Classification . . . . . . . . . . . . . 17
3.4.1 Classifier Architecture . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Classifier Training and Parameters . . . . . . . . . . . . . . 19

4 Performance evaluation and analysis . . . . . . . . . . . . . . . . . . . . 21

4.1 Dataset and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Evaluation under Multi-Path Channel With Variable Path Delays
Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Evaluation Under Multi-Path Channel With Variable Path Gains Profile 26

4.4 Evaluation Under Additive White Noise Channel Distortion . . . . . 27

5 Enhanced SCF with Compressed learning . . . . . . . . . . . . . . . . . 32

5.1 Proposed Compressed SCF: Compressed Conv-Net . . . . . . . . . . 34

5.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



TABLE OF CONTENTS (Continued)

Page

6 Discussion and future extension . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 background on cumulants . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Proposed features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



LIST OF FIGURES

Figure Page

2.1 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 A channelized Receiver Architecture for WB Spectrum Modulation
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Convolution operation between input I and a (3x3) filter K . . . . 18

3.3 (a)Convolution between IQ and (2x2) kernel(filter) (b)Convolution
between SCF and (2x2) kernel(filter) . . . . . . . . . . . . . . . . . 20

4.1 Performance in terms of test accuracy under variable path sum de-
lays vector(fixed sum gain=0 dB) . . . . . . . . . . . . . . . . . . . 25

4.2 Performance in terms of test accuracy vs multi path sum gain vector 27

4.3 (a) Comparison between SCF+CNN and IQ+CNN under additive
white noisy channel (b) Training convergence time for SCF+CNN
as compared with IQ+CNN . . . . . . . . . . . . . . . . . . . . . . 28

4.4 SCF confusion matrix under AWGN channel with different SNR
(dB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Sparse encoding and decoding . . . . . . . . . . . . . . . . . . . . . 36

6.1 Cumulants prediction model: Linear SVM ((a) C2,1 vs C2,0; (b) C4,0

vs C2,0; (c) C8,4 vs C2,0) . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 CM for predicition model using cumulants . . . . . . . . . . . . . . 47



LIST OF TABLES

Table Page

3.1 Architecture of the CNN model . . . . . . . . . . . . . . . . . . . . 19

4.1 Variation in sum path delays and sum path gain . . . . . . . . . . . 23

5.1 classification accuracy(in %) for learning with compressed SCF vs
sensing rates SR=M/N(averaged over 800 test SCF) . . . . . . . . . 33

6.1 Theoretical higher order cumulant values for selected modulations
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



LIST OF ALGORITHMS

Algorithm Page



Chapter 1: Introduction

1.1 Objective

Radio frequency (RF) spectrum analysis is critical for spectrum awareness, policy

enforcement, security, and interference mitigation. Automatic modulation classi-

fication (AMC) helps to automate the process of RF spectrum analysis by using

state of the art decision theory and statistical pattern recognition. Recently, AMC

has been an important topic in wireless communication due to the prospective use

of convolutional neural networks and deep neural networks to apply classification

instead of manual feature extraction combined with machine learning (ML). The

advantage of deep learning (DL) over feature-based methods is flexibility and non-

dependence on expert knowledge and more complex powerful models. However,

DL simultaneously brings a lot of computation cost, especially when used with a

large number of samples, making AMC computationally more expensive. With the

growing demand towards application such AMC, computer vision, sensors based

applications that require a lot of data to be processed, and with the increasing

utilization of deep complex architecture such as VGG nets and GoogleNet, there

is a need to look at this problem to reduce both the latency, throughput, and

memory storage.
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1.2 Limitations of Existing AMC Techniques

In wideband (WB) spectrum, there are three modulation classification techniques.

Rule-based classification, classic machine learning, and representation learning.

Rule-based systems are hand-designed if-then-else statements that embody the

domain knowledge of human experts specialized in the field. A rule-based classi-

fier is said to be limited in its ability to simulate intelligence. It is always limited

by the size of its underlying rule base (also called knowledge base). On the other

hand, in classical machine learning, all the features are engineered, and the sys-

tem learns the features to the outputs. For both rule-based systems and classical

machine learning, it is difficult to extract useful features, especially for very com-

plex signals such as OFDM DSSS and CDMA. The recent advances in this field

have used feature engineering to design high order features (moments, cumulants,

and second order cyclostationarity of modulated signal) for classification. For

instance, Aslam et al. [1] utilize the generic programming and K-nearest neigh-

bors (GP-KNN) algorithms, which adopt the higher order cumulants(HOC) as

features. Han et al. [2] propose a set of classifiers by using maximum-likelihood

based (MLB) and feature-based (FB) classification. An approximate maximum

likelihood (AML) classifier and a linear support vector machine (LSVM) are pro-

posed with lower computation complexity than the conventional ML, but only for

a known channel, which is not always the case. Furthermore, E. Like et al. [3] use

spectral coherence function(SOF) to design a highly reliable classifier for multi-

path fading channel. El Khamy et al [4] consider the classification of multi-user
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chirp modulation signals using high order cumulant features, and they did the

test with four classifiers. These classical machine learning approaches, used in

this case, are vulnerable to the frequency and phase offset. Thus, their perfor-

mance can be dramatically degraded by imperfect synchronization. Additionally,

we cannot automate the process of modulation recognition. For instance, in rule-

based classifiers, it is tough (to nearly impossible) to add rules to an already large

knowledge base without introducing contradicting rules. This can be, in our case,

when we want to add some new modulation to our dictionary. Indeed, we need

to reconfigure the dictionary with the addition of the new modulation. This can

become time-consuming and expensive, especially in large complex domains, and

that’s typically the showstopper for rule-based systems.

On the other side, representation learning [5] [6], however, goes one step fur-

ther and eliminates the need to hand-design features. The important features are

automatically extracted from within data using a representation of the input at

the hidden layer(s), which is subsequently used for classification or regression at

the output layer. Hence, in representation learning, the system automatically dis-

covers the representations needed for feature detection or classification from raw

data. We can think of feed-forward networks trained by using supervised learning

as an example performing a kind of representation learning. In a like manner,

multi-layer perceptron or convolution neural networks are used to learn more com-

plex features in various levels or layers. It is shown that by using DL for AMC,

promising results are found by T.O’shea [7], which conduct I/Q-based classifiers.

The I/Q based classifier uses In-phase quadrature-phase components as input to
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the classification model to detect modulation.

This approach used in [8], is one of the first to conduct DL based multi-class

classification. The signals are generated with different modulation types, and deep

convolutional neural networks are directly applied to conduct the classification.

For the most part, the complexity of the IQ in WB, makes it harder to perform

classification. In particular, when we have a large number of samples, this becomes

cumbersome and introduces high complexity which affects the training time and

the inference time.

1.3 Our contribution

Since DL has a lot of computation costs and due to the high sampling rate, we

propose channelization to be used at the receiver front end, which reduces the

number of samples and allows parallel processing for features estimation. In ad-

dition, we try to solve AMC by using cyclostationary features instead of IQ as

input features. Most of the work done does not consider the effect of channel im-

pairments(including constructive and destructive interference, frequency and phase

shifting), so a comprehensive study to compare both spectral and temporal IQ for

classification under the effect of a variable path is conducted. Finally, we introduce

an enhancement to the hardware implementation by using a compressed learning

approach where features are learned based on a small number of measurements.

This reduces the dimensionality of the data domain, while not losing much in terms

of the classification accuracy. To the best of our knowledge, we don’t know any
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work, paper, or journal which targets AMC similar to the way we do in this paper.



6

Chapter 2: Signal characterization

The system can be used in any band regardless of the frequency it can be in

medium 300− 3, 000 kHz, high 3− 30 MHz, very high 30− 300 MHz or ultra-high

frequency 300 − 3, 000 MHz. Consider a WB spectrum of interest and multiple

signals coming from multiple transmitters over the band, as explained in Figure 2.1.

We have no information regarding the number of signals actively present(unknown)

in the WB nor the waveform nor the carrier frequency of each signal. One user

is occupying one channel, and we suppose that user signals are non-overlapping

in frequency, since they could represent emitters from different services(without

interference). A medium of transmission can be considered in this case to model

any impairment on the composite signal. Additive white gaussian noise (AWGN)

channel is often used as a model in which the only impairment to communication

is a linear addition of WB noise with a constant spectral density. Another case

could be using Rayleigh fading channel, which models multipath transmission in

heavily built-up urban environments where we have scattering and no dominant

line of sight(LOS). It produces a simple and tractable mathematical model, which

is useful for gaining insight into the underlying behavior of the system with fading,

frequency selectivity, interference.

The baseband signal received after the channel impairments, is the corrupt
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Figure 2.1: Signal model

version of the originally transmitted individual user signal, which is given by:

s(t) = x(t) + w(t) (2.1)

Where w(t) is the stationary Gaussian white noise and x(t) is an unknown mod-

ulation type to be determined. x(t) depends on the modulation type and is given

by:

x(t) = aej(2π∆fc t+θ)
∑
k

skp(t− kT − t0) (2.2)

Where a is the amplitude factor, θ is the phase shift, ∆fc is the carrier frequency

offset, sk = skl + jskQ represents the symbol transmitted within the kth symbol

period, T is the symbol period, t0 is the propagation delay and p(t) is the overall

signaling pulse.

The receiver monitors the activity of the spectrum spanning all the frequency

range from fmin until fmax. The receiver terminal is sweeping over multiple equal

bandwidth sub-bands (SBs), and each of these SBs may be occupied by narrowband
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signal or not. Our goals are to estimate the spectrum occupancy and to reveal the

modulations of individual signal components over the entire WB [fmin, fmax].
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Chapter 3: SCF Based Classification: A Convolutional Neural

Network Approach

3.1 Proposed technqiue
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Figure 3.1: A channelized Receiver Architecture for WB Spectrum Modulation
Classification

The proposed technique consists of 3 stages. First, a receiver front end, which

uses an analog domain channelizer. The reason we suggest using channelization is
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mainly to overcome the ADC speed limits or circuit limitations. Also, to reduce the

processing time in the digital domain. Let’s take, for example, a receiver operating

in the [fmin, fmax] frequency band. In this case, after channelization, the band is

split into several sub-channels, and we process each sub-channel independently.

For instance, as highlighted in Figure 3.1, each sub-channel has its own mixers,

band-pass filters, and ADCs. After down-conversion to baseband, we can sample

each sub-channel at 1 GHz. We explain the channelization stage in more detail in

the next Subsection. The second stage consists of an energy detector (ED) using

energy to detect the presence of any signal based on a simple noise floor estimation

for each sub-channel where the energy is compared to a threshold, as highlighted

in Figure 3.1. Therefore, each sub-channel where a signal is actively present is

subsequently processed separately in the digital domain.

Finally, a CPU board that uses the samples from the first and second stages

to obtain the features as described in Figure 3.1. Furthermore, we use statistical

cyclostationarity features due to their resilience to noise and co-channel interference

comparable to the in-phase and quadrature-phase components. We choose one of

the most widely used features in the cyclostationary signal processing, the spectral

correlation function (SCF), for its efficiency in representing the cyclostationarity of

a given signal. We consider supervised learning as a classifier and a convolutional

neural network (CNN), in particular as one of the most popular and powerful

deep learning algorithms specically designed to work with 2D structure inputs.

In this section, the first and second stages are discussed in Subsection 3.2, the

theory behind the SCF is explained in Subsection 3.3, and best-supervised learning
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technique is highlighted in Subsection 3.4. We also evaluate the performance under

different propagation distortions that may affect the classification performance and

end up finding the best features to use in classification based on the analysis of

performance in terms of complexity and accuracy in Subsection 4.

3.2 Channelization and Energy Based Detection

One of the challenges of working with the WB RF spectrum, for instance, 3.5−7.5

GHz range, is the need for high sampling required by ADC’s to successfully re-

cover the high rate WB signal. Also, in many cases, signals do not fully cover the

whole spectrum; therefore, applying the classifier on the whole spectrum would

result in an unnecessary increase in computational power. To overcome the afore-

mentioned challenges, we use a channelization stage to split the WB input into

non-overlapping narrowband sub-channels and only choose the sub-channels that

contain a certain energy level. The goal is to reduce computation costs by estimat-

ing the SCF for only a few sets of the sub-channels. Let the input signal denoted

by x(t) which has bandwidth B = |fmax − fmin| and is sampled at fs Hz. The

number of sub-channels in general could be more than four and is denoted in this

case by Nt where each sub-channel has bandwidth Bt = B
Nt

. In other terms, the

band is downsampled by Nt Hz.

After the channelizer produces a set of parallel narrowband sub-channels, an

energy detection stage as highlighted in Figure 3.1 is applied to each sub-channel.

The square of the samples are summed. After that the energy for each sub-channel
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E0 is compared to certain threshold ET . If the energy is more than the threshold

ET , then it is assumed that the signal is present. If the energy is below ET it is

assumed that signal is absent. Which makes the decision for the energy detection

according to two hypothesis null (H0) and alternative (H1) expressed as following:

(H0) : s(t) = 0 if E0 < ET

(H1) : s(t) = h.x(t) if E0 ≥ ET

where h is the channel amplitude gain.

In our framework, a frequency channelized receiver structure is chosen to imple-

ment the channelization stage where the channels are selected at the analog stage.

We use a 4 sub-channels example here to make the visualization in Figure 3.1 clear

to the reader. But a more interesting channelization problem is to handle bigger

sets of channels. A digital domain channel selection can be implemented using a

controller that tunes the analog front end to the desired operating frequency. After

channelization, the spectral correlation function is estimated in each sub-channel

separately, which we explain in the following Subsection.

3.3 Spectral Correlation Function (SCF)

The SCF can be seen as the Fourier transform of the cyclic autocorrelation func-

tion, which is the Fourier series of the autocorrelation function. The former is
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defined by the following:

Rα
x(τ) =

∞∑
n=−∞

x[n+
τ

2
]x∗[n− τ

2
]e−i2παn (3.1)

Therefore, the SCF can be defined as:

Sαx (f) =
∞∑

τ=−∞

Rα
x(τ)e−i2πfτ

where x[n + τ
2
] and x[n− τ

2
] are two random variables corresponding to two time

instants of the random signal separated by the lagging variable τ while α represents

the cycle frequencies (CF) of the signal.

We seek to leverage the second order cyclostationary SCF as our input features.

The SCF has a better representation of the input data. In fact, the SCF can be

harnessed to characterize the cyclostationarity of the dataset at a reasonable cost.

The SCF function of a complex-valued stationary process x(t) depends on esti-

mation method: Time Smoothing Method (TSM), Frequency Smoothing Method,

and the Strip Spectral Correlation Analyzer(SSCA). In theory [9], both the CAF

and SCF require an infinite time/frequency averaging of the cyclic periodogram.

However, for any of the estimation methods, they produce an estimate of the SCF

over N samples. The TSM produces a power spectrum estimate by averaging M

cyclic periodograms corresponding to the different blocks of a time series X(t)

over the time domain in order to reduce the variance of the cyclic periodogram.

The TSM is very similar to Bartlett’s estimation method for stationary signals
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except that this method averages the cyclic periodograms instead of the standard

periodograms [10].

For further optimization and complexity reduction, the SCF estimate of the sig-

nal can be calculated using less number of samples by the applying channelization

on each channel. Channelization (tunneling) can reduce the size of the input and

compute an estimate SCF by exploiting only the tunnels that contain the highest

energy of the signal and ignoring tunnels with lower energy below a threshold. This

technique is a part of a tunneling framework described in [11]. The SCF function

Sαx (f) is typically sparse and has non-zero values only at the Cycle Frequencies

(CFs), which reduces the computation time of the SCF calculation. The choice of

SCF as our input feature for the classifier is driven by first, the periodicity of the

correlation between the spectral components of x(t) for different modulations such

as BPSK, FSK, QPSK, ASK, and AM that exhibit different CF’s and that can be

used to discriminate between different modulations. Second, it is also noticeable

that the spectral correlation of noise is zero since white noise is stationary and thus

exhibits no spectral correlation. Third, we can use the SCF function with all α as

our features to classify different modulation classes. However, this will result in a

huge amount of computation due to the size of the matrix and how it varies with

the number of cycle frequencies. Instead, fixing the number of cycle frequencies α

can reduce further the input by considering a handful of cycle frequencies.
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3.3.1 Time Smoothing Method

Several estimators can be used to estimate the SCF of a given signal: Time Smooth-

ing method (TSM), Frequency smoothing method (FSM), and Strip Spectral Cor-

relation Analyzer (SSCA). The TSM is used instead of both FSM, SSCA because

FSM requires a Fourier Transform with a window equal to the size of one block of

data. Obviously, the TSM segments the provided data block into M contiguous

blocks of N samples each, computes the cyclic periodogram for each block, and

averages the results. Consider the discrete Fourier transform of some data x shifted

by some amount of time u.

X(u, f) =
N−1∑
t=0

x(t+ u)e−i2πft (3.2)

The non-conjugate cyclic periodogram is a function of time offset u as well

Iα(u, f) =
1

N
X(u, f +

α

2
)X∗(u, f − α

2
) (3.3)

The TSM estimate of the SCF simply averages M non-conjugate cyclic peri-

odograms over time. The FFT is used to compute each non-conjugate cyclic peri-

odogram in practice and because the FFTs are averaged over time, their relative

phases are not taken into account. Thus, the TSM requires a phase compensation

factor which is easily accounted for by multiplying each cyclic periodagram by

e−i2παD where D represents the starting point or left edge of the sub-block [10].
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The final TSM expression is

Ŝαx (f) =
1

M

M−1∑
j=0

Ĩα(jN, f)e−i2παjN (3.4)

where Ĩα(jN, f) is the non-conjugate cyclic periodogram of the jth block of N

samples.

One of the main advantages of the TSM that makes it very appealing for

hardware implementations for all non-blind automatic modulation classification is

that the FFT length needed for the operation is independent of the data length.

Unlike the Strip Spectral Correlation Analyzer method, for non-blind operations,

the TSM has a low computation cost which is expressed in the formula [11]:

CTSM = N log2(M) + 2N (3.5)

where M is the number of blocks, and N is the number of samples in each block.

Hence, TSM is the most suitable SCF estimation method for hardware implemen-

tation.

3.3.2 Implementing The TSM

From the implementation’s point of view, to find the estimate of SCF, the input

signal X[n] is divided into M evenly split blocks with N samples each. Then,

the cyclic periodogram is calculated for each block by applying the conjugate

multiplication of the Fourier transform output with its conjugate shifted by the
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cycle frequency α. This can be illustrated by the following equation:

Iα(jN, f) =
1

N
X(jN, f +

α

2
)X∗(jN, f − α

2
) (3.6)

where Iα(jN, f) is the cyclic periodogram of that block, and jN indicates the

amount of time shift for a block j. In order to take into consideration the temporal

start of each block, each block is shifted by a phase compensation factor, equals

to jαN . Finally, a smoothing kernel is applying that and averages the cyclic

periodogram of all the M blocks over time, as shown in the following equation:

Sαx (f) =
1

M

M−1∑
j=0

Ĩα(jN, f)e−i2παjN (3.7)

Then, these operations are repeated for each cycle frequency. This algorithm

outputs a KxF matrix, where K is the number of cycle frequencies, and F is the

FFT resolution. Each row of this matrix represents the spectral correlation of the

cyclostationary signal at a cycle frequency of α.

3.4 Supervised Learning Model For Classification

3.4.1 Classifier Architecture

We investigate the effectiveness of the supervised algorithms for automatic mod-

ulation recognitionrecent work considered using a convolutional neural network.

Convolutional neural networks are based on convolution operation with a given
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Figure 3.2: Convolution operation between input I and a (3x3) filter K

filter.

This is useful for applications such as image processing and computer vision.

Mainly there are two advantages of using convolutional networks over fully

connected layers, first parameter sharing, and second sparsity of connections.

• Parameter sharing: A feature detector that’s useful in one part of the data

is probably useful in another part of the data. For example, if you have a 3x3

filter and a feature detector such as vertical edge detector, that is useful in

one part of the image is probably useful in another part of the image. Let’s

say you figure out a 3x3 filter, then, you can apply that filter multiple times

on the input on different positions, which results in output I ∗K.

• Sparsity of connections: In each layer, each output value depends only

on a small number of inputs. As an example in Figure3.2 the output(1, 1) of

the I ∗ K matrix depends only on the convolution of the filter K with the

first 3x3 input matrix. The other inputs do not affect output(1, 1) at all.
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We start with a convolutional neural network similar to the CNN2 network pro-

posed in [7]. The architecture we use, consists of two 2D Convolutional layers

(conv2D) with 8 and 16 features maps respectively and two Batch Normalization

layers. Finally, we add one fully connected layer (dense layer) and the output of

the last fully-connected layer is fed to an 11-way softmax which produces a distri-

bution over the 11 class labels. Further, the model used is inspired from models

in [7] and [12], with a slight difference. ReLU activation function is used and ad-

justment has been made to reduce overfitting. The full architecture is drawn in

Table 3.1.

1 Input Layer 6x64x1

2 Convolutional 8 1x8 convolutions

3 Batch normalization Batch normalization
4 ReLU ReLU
5 Convolutional 16 1x8 convolutions
6 Batch normalization Batch normalization
7 ReLU ReLU
8 Dense Layer 11 x 1
9 Softmax Softmax
10 Classification Output 11

Table 3.1: Architecture of the CNN model

3.4.2 Classifier Training and Parameters

We also use Stochastic gradient for optimization and categorical cross entropy [13]

to compute the loss [14]. We also build our model as defined, and we run the

model after using MATLAB c© and deep learning toolbox seamlessly on GPU
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Figure 3.3: (a)Convolution between IQ and (2x2) kernel(filter) (b)Convolution
between SCF and (2x2) kernel(filter)

server with NVIDIA GTX 1080 GPU and 16GB RAM. This paper considers two

representations of the input signal. The first representation using In-Phase and

Quadrature components (I/Q), while the second using SCF. If the IQ’s are fed

to the model as in Figure 3.3,(a) the input layer consists of a 2xN real data

vector corresponding to the I/Q values. The first row corresponds to the in-phase

component, and the second row holds the quadrature component. Specific to our

problem, the input vector 2xN real data vector is fed to the model in frames of

size 400 samples. If the SCF is fed to the model as in Figure 3.3,(b) the input

layer consists of KxM matrix where K is the number of cycle frequencies of the

spectral correlation function, and M is the size/number of samples in one block.
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Chapter 4: Performance evaluation and analysis

Our evaluation aims to evaluate the performance of supervised learning using con-

volutional neural networks with respect to additive white noise, multipath channel.

Both these channels can be used to model the transmission of signals over a more

complex environment. AWGN channel is often used as a model in which the only

impairment to communication is a linear addition of WB noise with a constant

spectral density. Rayleigh fading channel, however, is a model used to describe

multipath transmission in heavily built-up urban environments where we have

scattering and no dominant line of sight (LOS). Hence, we want to see and test

the performance of the CNN model with both IQ and SCF as input features under

these different environments to validate the results. We train and test our model

with both IQ and SCF as input, to see which one has better performance. We

start in the next Subsubsection by presenting the dataset generation and simula-

tion setup.

4.1 Dataset and Simulation

We use the dataset presented in [8] by T. O’Shea. The dataset contains a training

set and test set, and we have 220000 examples. Since the number of samples in the

aforementioned dataset, which is 128, is not enough to use for our scheme, a new
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dataset is generated by building upon the functions in MATLAB c© communication

toolbox and deep learning toolbox. Eleven modulations are generated, and we

consider mainly two variety of wireless channels. Firstly, additive white gaussian

noise channel and secondly Rayleigh fading channel with 4 paths.

We consider multiple short time frames (observations windows) with a size

equal to 400 samples, and each frame is passed through a raised cosine FIR pulse

shaping filter with a roll-off factor of alpha = 0.25.

We create multiple datasets to test the performance:

• D0, without impairments. Initially, the generated dataset D0 consists of

11000 frames without any channel impairment added.

• D1, with AWGN noise. We use AWGN noise with SNR values (in dB):

−20,−15,−10,−5, 0, 5, 10, 15, 20, 25, to create 11000 frames.

• D2, with variable multipath delay impairment. We use a Rayleigh multipath

fading channel with the sum of the 4 path delays values picked according to

the first row of Table 4.1 and the sum of path gains fixed to 0 dB. The second

dataset generated contains 11000 frames.

• D3, with variable multipath gain impairment. Additionally, the same Rayleigh

multipath channel is used as in D2, where at this time Rayleigh multipath

fading is added with fixed sum delays equal to 75e−2µs and the sum of 4

path gains picked according to the second row of Table 4.1 to create the

third dataset D3. The third dataset generated contains 11000 frames. We
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use 4 paths Rayleigh model, and the variation in path delays and path gains

of all four paths is illustrated in the description Table 4.1.

sum of path delay (µs) 75e2 75e1 75e0 75e-1 75e-2

sum of path gains (dB) 0 -1.5 -3 -10 -25

Table 4.1: Variation in sum path delays and sum path gain

We use all these datasets as a benchmark for comparison between the proposed

SCF and the IQ based classification. The specific modulations considered within

each of these four dataset types are as follows:

• BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM, PAM4, GFSK, CPFSK, B-FM,

DSB-AM, SSB-AM

Overall, we have 11x1000x2x400 matrix with 11x1000 frame or observation win-

dows total, with 1000 frames for each modulation. Each frame in one of the three

datasets has 400 IQ samples complex values. To reiterate the findings from a

large amount of data in hand, 10% of the data is reserved for validation, 10% is

reserved for test and the remaining 80% is reserved for training.

We use accuracy to quantify the performance of the AMC model proposed. We

plot the accuracy curve and the confusion matrices for each modulation. Accuracy

is one metric for evaluating classification models. Formally, accuracy is defined as

the ratio of the number of correct predictions by the number of predictions:

Accuracy =
Number of correct predictions

Number of predictions
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It is actually inversely related to the loss, as:

Accuracy = 1− 1/m
m∑
i=1

l(ŷi, yi)

where l is the loss for a single observation or modulation among the 11 classes of

modulations (BPSK, QPSK, 8-PSK and others). To train our model and to find

all the optimal weights values, we use a cross entropy loss function appropriate for

multi-class classification defined as

l(ŷi, yi) = −yΘ,ilog(pΘ,i)

where:

• yi: binary indicator (0 or 1) if class label i is the correct classification for

observation Θ.

• pΘ,i: estimate or probability that the observation Θ is of class i.

• Θ: the actual observation

4.2 Evaluation under Multi-Path Channel With Variable Path De-

lays Profile

We performed classification experiments on dataset D2 where a number of different

path delays are added to the 11 modulated signals. Values of the sum path delays

(in µs) are described in Table 4.1. Using CNN only, with number of layers following
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Figure 4.1: Performance in terms of test accuracy under variable path sum delays
vector(fixed sum gain=0 dB)

the architecture described in Subsection 3.4 and summarized in Table 3.1, we show

in Figure 4.1, that the classification performance of both SCF and IQ are impacted

by the scattering delay dues to multipath propagation in the environment that it

is likely to happen in urban cities.

The addition of the multipath fading does not impact the SCF+CNN model

as much as it impacts the IQ+CNN model, where a much higher effect is seen. In

fact, we can see from Figure 4.1, that for path sum delays equal or higher than 7.5

µs, SCF+CNN achieves almost 18%, 16%, 20%, 40% higher accuracy on average

compared to IQ+CNN. It is shown from the Figure that the SCF based classifier

performs better under severe fading, especially for values of path sum delays (in

µs) equal to 7.5, 75, 750, 7500. However, for IQ based classifier, the classification

performance gets worse as we go for a more extreme and higher value of path
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sum delays. For instance, at 7500 µs path sum delays, the accuracy of IQ based

classifier reaches below 10%. Meanwhile, the SCF based classifier has almost 50%

accuracy. This shows how SCF and IQ based models will most likely act in an

environment where the receiver is under such impairments.

4.3 Evaluation Under Multi-Path Channel With Variable Path Gains

Profile

We performed classification experiments on dataset D3, where this time, a set of

different multipath sum gains are added to the 11 modulated signals. Values of

set (in dB) are described in Table 4.1. Using CNN only, with number of layers fol-

lowing the architecture described in Subsection 3.4 and summarized in Table 3.1,

we show in Figure 4.2, the classification performance of both SCF, and IQ under

variable sum path gains (in dB). Both SCF and IQ are impacted by the addition

of fading dues to multipath propagation and variable path sum gains. The addi-

tion of the multipath fading does not impact the SCF+CNN model as much as it

impacts the IQ+CNN model, where much bigger effect is seen. In fact, we can see

from Figure 4.2, that for sum gain (in dB) under −1.5 dB, and specifically equal to

−25,−10,−3,−1.5dB where SCF+CNN achieves 41%, 1%, 12.5%, 1% higher accu-

racy on average compared to IQ+CNN.

It is shown from the Figure that the SCF based classifier performs better

under severe fading, especially for values of path sum gains (in dB) equal to

−25,−10,−3,−1.5 dB. However, for IQ based classifier, the classification per-
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Figure 4.2: Performance in terms of test accuracy vs multi path sum gain vector

formance gets worse as we go for low values of the sum gain (in dB). For instance,

at path sum delays equal to −25 dB, the accuracy of SCF based classifier is 5x

more than the IQ based classifier, with accuracy more than 50%. This shows how

SCF and IQ based models will most likely act in an environment where the receiver

is under such impairments.

4.4 Evaluation Under Additive White Noise Channel Distortion

We perform classification on dataset D1, which is described previously in Subsec-

tion 4.1. Our goal is to see the robustness of both techniques under additive noise.

Additive white noise is a linear addition of noise with a constant power spectral

density. Typically, it is likely to observe such noise in WB spectrum, and we expect
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Figure 4.3: (a) Comparison between SCF+CNN and IQ+CNN under additive
white noisy channel (b) Training convergence time for SCF+CNN as compared
with IQ+CNN

that SCF would perform better than IQ since stationary noise exhibits no spectral

correlation. Hence, it would not add any effect to the classification performance

of the SCF function.

We perform classification on dataset D1 where we try different signal-to-noise

ratio (SNR) equal to −20,−15,−10,−5, 0, 5, 10, 15, 20, 25 for different levels of ad-

ditive noise. Using CNN only, we show in figure 4.3a, both results for CNN+IQ,

CNN+SCF after training a convolutionnal neural networks following the architec-

ture as in Subsection 3.4 and summarized in Table 3.1. The test accuracy for both

model is shown, in Figure 4.3a.

It is shown from Figure 4.3a that with SCF+CNN, we get performance in

terms of test accuracy quite close to the IQ+CNN. In fact, SCF+CNN achieves

a test accuracy of 83.09% compared to 87.09% for IQ+CNN for SNR value equal
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to 25 dB. For values less than 5 dB until −20 dB, the gap between both models

lessen, and at −20 dB both have the same accuracy. While IQ+CNN is bet-

ter in terms of test accuracy for high SNR values, on the other hand, for lower

SNR values, the SCF+CNN reaches almost the same performance in terms of

test accuracy. Although the test accuracy is little less than IQ+CNN model, the

convergence time is much better, as we can see from Figure 4.3b. In fact, we

observe from Figure 4.3b, that CNN+SCF takes only 100 iterations to converge,

although CNN+IQ takes around 500 with the same CNN architecture. Figure 4.4,

highlights the individual performance with respect to each modulation under the

additive white gaussian noisy channel for SCF+CNN model with different SNR

values in −15,−10,−5, 5, 10, 20 dB. This Figure excludes IQ+CNN model. The

model, in this case, does not perform well under additive white noise, especially

for lower signal-to-noise ratio. Nevertheless, we expect the cause is due to the low

resolution of the spectral correlation. This suggests that using higher resolution

in both frequency and cyclic frequencies would definitely increase the test accu-

racy. However, this can increase the training and convergence time due to larger

size. For the above reason, a good choice of resolution and size of the input is

important so that we don’t compromise much of the accuracy, training time. We

can see from Figure 4.4, that as the signal-to-noise ratio rises, the classifier is able

to classify better each modulation among the 11 modulations. We note that our

goal is to justify the use of SCF with convolutional neural networks for improving

the performance of the classification. Therefore, our focus is more on proving that

SCF+CNN is more convenient than CNN+IQ with certain channel conditions,
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Figure 4.4: SCF confusion matrix under AWGN channel with different SNR (dB).

and therefore we did not try different other architectures such as AlexNet. Indeed,

we think that trying different architectures and hyper-parameters can improve the

performance further. This, however, requires a lot more training and computation

time. Hence, we leave that for a future research direction, and for now, the next
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Subsection, evaluation under compressed learning only focus more on improving

state of the art proposed CNN by using compressed measurements and compressed

learning.
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Chapter 5: Enhanced SCF with Compressed learning

In previous Subsection, we provide results that SCF based classification outper-

forms IQ under severe fading conditions. In this Section, the proposed technique is

enhanced for hardware implementation. As mentioned earlier in Subsection 4, we

have to choose carefully the resolution of SCF. The reason is that both accuracy

and training time depend on the SCF input size. In fact, the selection of high fre-

quency resolution, and high cycle frequency resolution will increase the accuracy

but at the expense of training time. On a similar manner, low frequency, and low

cycle frequency resolution will reduce the accuracy. For this reason, our aim in

this Subsection is to improve the classification/inference task by reducing the cost

of learning in the data domain perceptibly while preserving almost the accuracy

of classification. A general strategy for making this possible is called compressed

learning. Compressed learning provides a projection from the data domain to a

measurement domain that preserves the linear separability under certain condi-

tions [15].

Classification in the measurement domain is possible after transforming the

data to some appropriate compressed domain provided that the linear projection

using a matrix φ preserves the structure of the instance space.

Being able to learn in the compressed domain is beneficial both in many appli-

cations. Examples include image recognition, natural language processing, sensor
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Sensing
Rate

Random
Sensing +
CNN [16]

Percent
difference

Compressed
Conv-Net

Percent
difference

1 72.125 - 72.125 -
0.5 70.5 1.625 70.375 1.75
0.1 68.125 4 67.75 4
0.05 66.125 6 68.125 4
0.02 61.25 10.875 65.5 6.625
0.01 47 25.125 57.25 14.875

Table 5.1: classification accuracy(in %) for learning with compressed SCF vs sens-
ing rates SR=M/N(averaged over 800 test SCF)

networks, wireless communication, and automatic modulation recognition. All

these applications share the need to have an efficient data acquisition and need

to compress the data in the data domain. For instance, in automatic modulation

recognition, reconstruction of a signal(FM, GSM, Radar) in WB from the sen-

sor data could be expensive and not necessary. Rather one wishes to identify a

function of the signal that, for example, indicates whether the signal is consistent

with a target signature. Compressed learning can be a solution to reduce the cost

of high dimensionality especially in WB spectrum and reduce the computational

complexity of the SCF during training time. For this reason, many have proposed

compressed learning.

Calderbank et.al(2009) [15] is the first to show that learning and classification

are possible in the compressed domain y = φx and that the performance of SVM’s

classifier in the compressed domain is close enough to that of the best linear thresh-

old classifier in the signal domain. Davenport et.al(2007) addresses the problem
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of compressed learning [17], using the idea of smashed filter, based on a lemma

proposed by Johnson-Lindenstrauss [18] about dimension reduction of finite point

sets in Hilbert space, show that for sufficiently large M, all pairwise distances

between points on a manifold are well-preserved under projection to a random

M-dimensional subspace. The paper propose a generalized maximum-likelihood

classifier to be employed for target detection in the measurement(compressed) do-

main. A deep learning approach was introduced [19] [16] in which a convolutional

neural networks that operates in the sensing domain used to optimize the sensing

matrix. Others, have tried to proposed a theoretical guarantees for achievable ac-

curacy in the compressed domain for both sparse and non-sparse domains [20] or

solve the problem using classification on compressed data [21] [20] [16] [22] [23].

In the following, we leverage the same technique called compressive learning to

perform classification directly on sensing domain for our SCF based automatic

modulation classification instead of the signal domain. The aim of the proposed

compressed Conv-Net is to improve the performance of the SCF based classification

proposed in Subsection 4.

5.1 Proposed Compressed SCF: Compressed Conv-Net

First, we design an optimal sensing matrix to be used instead of random sensing.

We propose a deep learning solution for CL, which jointly optimizes the sensing

matrix and the inference operator. Our choice is motivated by the work of [19]

which employs convolutional networks for the task of compressive classification
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on the MNIST dataset. Our approach, uses two dense layers to find the optimal

sensing matrix φ, based on a sparse structure similar to the one highlighted in Fig-

ure 5.1. The network is composed of an input layer with N nodes, a compressed

sensing fully-connected layer with N ∗ SR nodes, SR << 1 (its weights form the

sensing matrix) (3) ReLU activation units (4) a fully-connected layer that expands

the output of the sensing layer to the original image dimensions N (5) ReLU ac-

tivation units. The input size is the same size as the SCF size, and the two fully

connected layers are trained to optimize the sensing matrix φ, together with the

CNN to find the inference operator. Again, we use the same CNN architecture

presented in Subsection 3.3. The proposed Compressed Conv-Net framework is

composed of : (1) Sensing stage, (2) Inference stage. The first stage (1), uses two

subsequently fully connected layers to find the optimal sensing matrix φ. Mean-

while, the second stage (2), reshape the input size and uses two 2D convolutional

layers(conv2D) with 8 and 16 features maps respectively, two Batch Normalization

layers and one fully connected layer with Softmax activation at the output layer.

This is the same architecture used in Subsection 3.4.1 to perform non-linear in-

ference. The input features are the same SCF generated in Subsection 4, only in

our Compressed Conv-Net framework we use compressed measurements, and the

feature extracted from compressively sensed signals based on the sensing matrix

φ.

For training, the two networks are jointly optimized to find the optimal sensing

matrix φ and optimal weights. The sensing matrix φ and its transpose φT are

jointly trained from the spectral correlation data. For inference, the input layer
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takes as input the original SCF and project it to a measurement domain y = φx.

The second layer takes y and represents the back-projection of y to the original

space to produce the same input SCF at the output. The architecture that is used

is presented in Figure 5.1. The second stage, the inference stage, takes the output

of the sensing stage as input to a convolutional neural network to realize some non

linear inference task for automatic modulation classification.

In summary, we have two stages the first stage called sensing where we use the

optimal sensing matrix φ to project the SCF into a measurement domain with low

dimension. Once we have the output from the sensing stage, the inference stage

kicks off, using the output of the first stage y = φx for direct inference.

φ φT

(x+ w)

Figure 5.1: Sparse encoding and decoding
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5.2 Performance Evaluation

We provide the performance evaluation of the proposed compressed Conv-Net com-

pared to random sensing [16](random ortho-normal MxN matrix).

5.2.1 Simulation setup

We follow the same setup as in Subsection 4 except that we only use a noisy

channel, with signal-to-noise ratio equal to 30dB to evaluate the performance of our

proposed compressed Conv-Net scheme. A total of 11x1000 frames or observation

windows total, with 1000 frames for each modulation. To reiterate the findings

from the large amount of data in hand, 10% of the data is reserved for validation,

10% is reserved for test and the remaining 80% is reserved for training.

We train the proposed network using the spectral correlation function and we

try to fine tune all parameters by looking at best learning rate, weight decay and

number of epochs. For best results we train our network using stochastic gradient

descent with a variety of learning rates. For each training cycle, we fix the number

of epochs as 17 based on the size of the dataset and the training takes around

3 minutes for one training cycle. Increasing the number of epochs to 500 makes

the training 20-30minutes. The hardware we use for the training is GPU NVIDEA

GeForce GTX 1050. The learning rate is 0.002 and we train the proposed networks

and test on the same dataset with AWGN noise presented in Section 4.
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5.2.2 Results

The performance evaluation of the proposed Compressed Conv-Net vs random

sensing matrix followed by convolutional network is presented in Table 5.1. We

define the Accuracy loss after compression as the difference in accuracy before

compression and after compression. The performance results that are obtained

with the aforementioned techniques in terms of accuracy for sensing rates SR in

the range of SR = 0.01 to SR = 0.5 are presented in the table 5.1.

Classification accuracy results, reveal an advantage of the Compression using

deep learning to find the optimal sensing matrix. In fact, the accuracy of Com-

pressed Conv-Net is much better compared to random sensing for SR < 0.1. At

lower sensing rates SR < 0.1, the accuracy of Compressed Conv-Net is not much

degraded.
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Chapter 6: Discussion and future extension

6.1 background on cumulants

The goal from this Section is to provide a brief study of higher order cyclostation-

arity, mainly high order features that can be used for statistical characterization of

signals of interests and modulations. Even though, we can talk about moment and

cumulants, mainly in this chapter we focus about the nthorder cumulants. Overall

goal is to improve the automatic modulation classification further and make it

more robust to interference and multipath. The most relevant work related to au-

tomatic modulation classification, using cumulants and cyclic cumulants is briefly

reviewed in the sequel.

OA Dobre [24] employed fourth, sixth and eight orders cyclic cumulants(CC)

respectively for classification between ASK, PSK and QAM modulations and anal-

ysis of cyclic cumulants of the basband signal at the receiver is performed and used

as feature selection. A detailed function of the nthorder cyclic cumulants(CCs), cy-

cle frequencies(CFs) and cycle spectrum of the baseband signal at the receiver are

derived. In another work, OA Dobre [25] propose an algorithm based on higher-

order cyclic cumulants for the automatic recognition of QAM signals. Swami and

Sadler [26] proposed a hierarchical classifier, that shows to be effective particu-

larity when used in decision tree, enabling separation into sub-classes at very low



40

signal-to-noised ratio. Using fourth-order cumulants, higher order cumulants are

shown to be robust when employed to discriminate ASK, PSK and QAM signals

in the presence of carrier phase and frequency offsets.

Gardner and Spooner [27] [28] provided a cyclic cumulants foundation and

introduced higher order moments and cumulants of narrowband spectral compo-

nents of time-series. Furthermore, a comprehensive historical survey that traces

the development of the ideas of temporal and spectral cumulants is introduced.

In this Section, we discuss the performance of cumulants based features to

discriminate between 16-QAM 64-QAM QPSK family of modulation. The rea-

son behind selecting this set of modulation is that SCF performs poorly with the

later individual modulations. Theoretical results show that the spectral correla-

tion function is the same for QPSK,QAM modulations for order two shown in

Table 6.1. In fact, as it can be seen from Table 6.1, despite the three modulation

scheme are different, they all have the same theoretical second order statistics.

This shows that not all modulation schemes are distinguishable using the CAF,

or the SCF. Thus, higher order statistics such as moments and cumulants are re-

quired to determine the type of modulation in use. In the following, we investigate

the cyclic cumulants as part of an alternative for SCF. Given the signal, x(t), the

mathematical definition of the lag product is:

n∏
j=1

x(∗)(t+ τj) (6.1)

is simply the time delayed product of x(t). Where notation (*) indicates the



41

conjugation is optional. Different conjugation can produce different values, leading

to multiple outcomes for the same order. An nth-order statistic may have up to

n
2

conjugations, and we can see some defined up to order 8 in Table 6.1 This way

temporal moments are defined by taking the expected value of the lag product

defined in Equation (6.1) which is expressed as:

Rx(t, τ)n = E[Lx(t, τ)n]. (6.2)

This equals to the nth-order autocorrelation function, which when evaluated with

n=2. Similarly, the Cyclic Temporal Moment Function generalizes the CAF. While

moment can be used for classification, a much better alternative would be to use

cumulants which are robust to noise especially when the radio scene has multiple

signals.

The nthorder temporal cumulant can be expressed as a combination of products

of lower-order temporal moment functions. The nthorder cyclic temporal cumulant

function (cyclic cumulant) is just a Fourier coefficient of the nthorder temporal

cumulant function.

The Temporal Cumulant Function can be expressed by a generalized Fourier

series:

Cx(t, τ ;n,m) =
∑
Pn

[Cβ
x (τ ;n,m)ei2πβt] (6.3)

where Cβ
x (τ ;n,m) is the nth cyclic temporal cumulant function, or just cyclic cumu-

lant, n is the order, m is the number of conjugations, and β is the pure nth-order

cycle frequencies. The summation is performed over Pn, which is the set of all
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possible partitions of the set 1, 2, .., n. The cyclic cumulants are pure sine-wave

amplitudes, and they can be computed by combining cyclic-moment amplitudes

which can be easily estimated from the signal data. Cumulants have a number

of properties that make them attractive for constructing classification features.

We show how cyclic cumulants can be used to discriminate between many of the

modulations with same second order cyclostationarity features. This classes of

modulation for example {16QAM, 64QAM, QPSK} have identical SOC. They are

part of the digital QAM signals. The all have a similar spectral correlation func-

tion, so second order features would fails in this case to provide an information

about the class of modulation of the received signal in case the signal is exposed

to severe channel conditions. Cyclic cumulants have a number of properties that

make them more suitable than moments for automatic modulation classification.

Cyclic cumulants inherit all well-known properties of cumulants, such as tolerance

to Gaussian contamination. If X is a set of jointly Gaussian variables, then the

cumulant of X is zero for n > 2. Second most important cumulant property is

the additive property, that is, the cumulant for the sum of N independent cyclo-

stationary signals is the sum of the cumulants for the N individual signals. This

property does not hold in general for the moments. Third property is selectivity,

which implies that if two statistically independent time-series Y and Z defined

as X = {Xj}nj=1 = {x(∗)j(t+ τj)}nj=1 and Y = {Yj}nj=1 = {y(∗)j(t+ τj)}nj=1, sim-

ilarly for Z = X + Y . Then, if β0 is nth-order cycle frequency for y(t) but not

for x(t) Then Cβ0
z (τ ;n,m) = Cβ0

y (τ ;n,m) Last but not least property is the delay

property, if we have a delay signal of x(t), y(t) given by y(t) = x(t − d). Then
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Cβ
y (τ ;n,m) = Cβ

x (τ ;n,m)e−i2πβd

It is shown previously [28] [29] that cumulants perform really well under non-

ideal scenario(under interference and congested environment). In the following,

we study their performance with respect to three modulation {16QAM, 64QAM,

QPSK}. The scope of the next Subsection is to discuss the estimation of cyclic cu-

mulants briefly and motivate the use of cyclic cumulantsx to discriminate between

modulation of the same family.

6.2 Proposed features

The problem of AMC is studied in this Section, with respect to three classes

of modulation 16QAM,64QAM,QPSK as explained in previous Subsection, and

consider the input data

x(t) = a(t)ei2πfct+iφ0

where the complex-envelope signal a(t) is defined by defined by a complex valued

PAM signal:

a(t) =
+∞∑

k=−∞

akp(t+ kT0 + t0)
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(a) (b)

(c)

Figure 6.1: Cumulants prediction model: Linear SVM ((a) C2,1 vs C2,0; (b) C4,0

vs C2,0; (c) C8,4 vs C2,0)
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The cyclic cumulant is given as a function of the nthorder cumulant according to

the following:

Cγ
x (τ ;n,m) =

Cn,m
T0

∫ +∞

−∞

n∏
j=1

p(∗)j(t+ τj)e
−i2πβtdt

ei2πβt0ei(n−2m)φ0

n∏
k=1

[ei2πfcτk ](∗)k (6.4)

for γ = (n− 2m)fc + β, where β = q/T0 and Cn,m is the nth-order cumulant of the

symbol ak using m conjugation.

Taking into consideration the additive Gaussian white noise w, the received

signal can be modeled as following:

y(t) = x(t) + w(t)

where w(t) is independent of x(t)

The nth-order cumulant is defined by Equation (6.4) for digital QAM mod-

ulated signal. To estimate the nthorder cumulant, it is important to know the

impure cycle frequencies of all signal of interests. Thus by knowing the cycle fre-

quencies, estimation of the cumulants become easier, and less complex. However,

in case we don’t have prior knowledge of such information a procedure called blind

cyclic cumulant estimation must be performed a priori. The estimation of the

cyclic frequencies can be done from the data and it is specifically used in ”blind”

modulation classification which is out of scope of this report, thus we suppose we

are given knowledge of one or more of the signal’s modulation frequencies, such as
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a symbol rate or carrier frequency. In particular, the cycle frequencies for a digital

QAM are given analytically by the formula: (n − 2m)fc + k/T0 for n even. This

was highlighted in [29]. We follow the theory in [28] to implement the estimation

of the cyclic cumulant. The estimation of the cyclic cumulant, in this case, is

based on cumulants. Cumulants estimates are based on the moments according to

Shiryaev-Leonov Moment-Cumulant Formula or simply the Moment-Cumulant(M-

C) formula.

6.3 Results

Using the M-C formula written for the nth-order time-varying cumulants for n =

2, 4, 8, m = 0, n/2, at τ = 0, we compute the cumulant at order n = 2, 4, 8.

The nthorder cumulants obtained are taken as feature for QPSK, 16-QAM, 64-

QAM classification. The magnitude of the cumulants versus the C2,1 is shown in

Figure 6.2 for n = 2, 4, 8. It is clear from Figure 6.2 that the higher the degree

of the cyclic cumulant the better it is. In fact, using large n as in 8th order, the

different modulations belonging to the same family give rise to distinct features

as the degree become larger. For example, 16-QAM and QPSK have identical

cyclic autocorrelation functions (C2,1) with reference to C2,0 as it can be seen from

Figure 6.2.(a). Meanwhile, have different fourth-order cumulant functions (C4, 0)

with reference to C2,0 as highlighted by 6.2.(b). Figure 6.2.(b) shows that even at

n=4 16-QAM and 64-QAM still have the same cumulant but as we move to Figure

6.2.(c) feature C8,4 have better separability. This demonstrate that Fourth-order
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CCs are appropriate statistics to distinguish between the two classes QPSK and 16-

QAM or QPSK and 64-QAM, while eighth-order CCs are suitable to discriminate

signals within each class of the three QPSK,16-QAM,64-QAM. Even though, the

separability increases for higher-order modulations with the degree n, we cannot

keep increasing n to infinity because of the prohibitive burden increasing with

it. Instead, we look at the lowest degree value that gives considerable separation

between any modulation. Mostly this can be reached at 8th degree or even less.

For this reason we combine all possible cumulants with order n ≤ 8 and use the

mangitude to obtain such a vector F = |Cn,m|, n = 2, 4, 8,m. the classifier used in

this case is SVM and Figure 6.2 depicts the performance defined by the confusion

matrix(CM) and the true positive rate under a non-ideal awgn channel.

Figure 6.2: CM for predicition model using cumulants
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Table 6.1: Theoretical higher order cumulant values for selected modulations
schemes.

Order (n) # of Conjugations QPSK 16-QAM 64-QAM
2 0 0 0 0
2 1 1 1 1
4 0,4 1 -0.68 -0.619
4 2 -1 -0.68 -0.619
6 1,5 -4 2.08 1.7972
6 3 4 2.08 1.7972
8 0 ,4,8 -34 -13.9808 -11.5022
8 2,6 34 -13.9808 -11.50222
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Chapter 7: Conclusion

A complete framework is designed to be used in detecting how many users in the

system and what type of modulation they are using. The major use is in both

military and civilian applications. We showed that using SCF as a characteriza-

tion of cyclostationarity of communication signals, we can design an effective with

reasonable computational cost features for AMC. First, using supervised learning

and convolutional neural networks, we perform the classification on both SCF and

IQ and show that SCF based classification achieves better accuracy than IQ under

Multipath fading channel and especially under higher values of paths delay and

lower values of gains. Second, we show that SCF has much faster convergence

and training time. Finally, to reduce the cost furthermore, we establish a com-

pressed learning scheme using a small number of measurements obtained by linear

projections of the input features. We perform the linear sensing and non-linear

inference stages. The framework includes channelization stage, ED stage, Super-

vised learning stage with improvement to be implemented on real-time system.

In future work, we are looking forward to optimize the results by working on the

hyper-parameters optimization and wider range of parameters.
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