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Abstract 

Two types of parallel computers commonly used for solving large scientific problems are 
clusters of workstations and distributed-memory multicomputers. Each system has strengths 
and weaknesses for this task. Workstation clusters have a high performance to cost ratio and the 
advantage of the latest processors. Workstations are commonly under-utilized and can provide 
an inexpensive source of CPU cycles. However, clusters of workstations cannot compete with 
the performance of a dedicated supercomputer. 

This research proposes that creating a metacomputer combining different types of parallel 
computers can provide some of the advantages of each separate system. Specifically, I have inte
grated a distributed-memory parallel computer (the MEIKO cs-2) with a heterogeneous cluster 
of workstations. The integrated system uses the CHARM parallel-programming environment to 
provide for machine-independence and ease of programming in this heterogeneous environment. 

The availability of processing capacity limits the size and complexity of the types of problems 
that can be efficiently solved. By creating a metacomputer the amount of processing capacity 
can be increased at relatively low costs. The low cost of the system and the fact that it is 
easily reconfigurable make it a good choice for solving large-scale Grand Challenge type scientific 
problems. 
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Chapter 1 

INTRODUCTION 

1.1 Objectives 

This research had three main objectives. 

1. The porting of the CHARM parallel -programming environment to the MEIKO cs-2 parallel 
computer 

2. Combining CHARM systems for the MEIKO and heterogeneous workstation clusters to create 
metacomputer CHARM 

3. Developing applications to test the performance of the new systems 

The CHARM programming environment provides a high -level architecture -independent envi
ronment for general-purpose parallel-programming. CHARM has been implemented on a variety 
of parallel platforms including shared-memory and distributed-memory systems. The MEIKO 

cs-2 is a distributed-memory parallel computer using standard Spare workstations connected 
over a specialized communications network. The first phase of this research adapted an existing 
workstation version of CHARM for operations on the MEIKO cs-2. 

Viewing the MEIKO CS-2 as a collection of workstations provided a clear next step for com
bining the two versions of CHARM. Integrating the two systems required some significant modifi
cations to support a system with multiple types of communication and different startup require
ments. 

Testing the new CHARM systems required the development of new applications. The new 
applications were designed specifically to test differing amounts of communication and to optimize 
performance on the heterogeneous metacomputer. As the applications were developed, additional 
modifications for the system were explored and implemented. 

1.2 Related Works 

In researching this paper, I found another system that combines the operation of a supercomputer 
with workstations , the Mentat metasystem developed at the University of Virginia. Not specif
ically metacomputers, several other systems provide for the use of networks of heterogeneous 
computers. The Message Passing Interface provides a standard for global communications and 
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portable parallel applications. There are also a number of different parallel computing systems 
for clusters of heterogeneous workstations, such as Paralex and Dome. 

1.2.1 Mentat 

Mentat is an object-oriented parallel-programming system developed at the University of Virginia 
[1]. It provides high performance across a wide variety of programming platforms. The portability 
of the system is ensured by using a classic layered virtual machine model. The use of the virtual 
machine model simplifies the construction of a metasystem by always providing the user with 
the same interface and by hiding details of object location. Mentat has two main components, 
the Mentat run-time system (RTS) and the Mentat Programming Language (MPL). The RTS 
controls all communication, knows the types of machines being used, knows the class of data 
being transported and is responsible for scheduling. In MPL, parallelism is exploited through 
the use of special C++ object classes, called mentat classes. The object classes parallelized are 
selected by the user from the object classes with sufficient complexity to exploit parallelism . 
Data and control dependencies are detected by the construction of dataflow graphs at run-time. 

1.2.2 Message Passing Interface(MPI) 

The message passing interface (MPI) is a standard for writing portable message-passing parallel 
programs [2]. In addition to simple point-to-point communications, MPI provides machine
independent abstractions for various global communication operations, such as broadcast, scat
ter and gather. The system uses multiple logical layers of software to provide for portability 
and machine-independence. MPI constructs can be used directly or incorporated into parallel
programming systems. 

The heterogeneous workstation implementation of MPI uses the User-level Reliable Transport 
Protocol (URTP) to ensure message arrival over Ethernet or other unreliable broadcast transport 
media. URTP is implemented using a sliding window protocol and uses a pessimistic immediate 
request protocol for message retries. Because of the need for efficiency in handling multicast 
messages for the global communications operations, much of the special processing needed is 
done in the URTP software layer. 

1.2.3 Heterogeneous Workstation Clusters 

A number of computing systems provide for a system of heterogeneous workstations in addition to 
CHARM. While restricted to workstations there are many innovative systems with applications 
to a metasystem . The Dome parallel-programming environment was developed at Carnegie 
Mellon University [3]. Dome is primarily a run-time system built on top of PYM. The main 
issues addressed by Dome are load balancing, fault tolerance and ease of programming. Paralex 
is a parallel-programming environment developed at Cormell University and the University of 
Bologna [4]. Like Mentat, Paralex uses a data-flow model, but in Paralex programs are developed 
using a graphical editor to specify the dependencies. 
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1.3 Overview 

() The next chapter will discuss the definitions and requirements for creating a metasystem , a virtual 
parallel computer made up of different types of computers that are networked together. Chapter 
three deals with the CHARM parallel-programming environment and how it was adapted to the 
MEIKO cs-2 and the heterogeneous metasystem. Chapter four discusses the various applications 
that were used to test the new CHARM systems and specific changes that were made to the 
applications and the system to improve performance. Chapter five discusses the techniques used 
to evaluate system performance. The discussion includes the results of the application testing, 
information about the standard latency applications , and the use of the load balancing window 
( a graphical performance measuring tool). Chapter six summarizes the results obtained from the 
applications , discusses the significance of the results , and areas for future research. 

) 
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Chapter 2 

METACOMPUTERS and 
METASYSTEMS 

2.1 What is a Metasystem? 

A metasystem is a distributed computing system composed of a heterogeneous group of au
tonomous computers linked together by a network [1]. Computers in different physical locations 
can be connected over a network to create a metasystem with great potential for large-scale scien
tific computing. Moreover, the metasystem is more than just a number of computers connected 
together. The metasystem is a transparent machine independent programming environment that 
insulates the programmer from the complexities of machine type, processor type and data repre-

) sentation details. The entire system, however configured, appears to the user as a single parallel 
multicomputer. Independent of the current configuration, the system provides a standardized 
interface to data processing and storage services. 

_) 

There are many difficulties in creating software for a metacomputer. The metasystem involves 
the creation of a unified software system to deal with the complexities of scheduling, communica
tion, synchronization, decomposition, data conversion, data distribution and differing hardware 
resources. 

2.2 Metacomputer Charm 

The CHARM programming environment was selected for implementation of the metasystem for a 
number of different reasons. First, the system was exp licitly designed for machine independence 
without the loss of efficiency. Originally this was done to provide a singl e common programming 
environment usable on many different platforms, but using the same abstractions and manage
ment tools the system can be extended. This extens ion provides additional processing resources 
for the new virtual multicomputer. Second, the CHARM system can reduce the complex iti es of 
parallel-programming by automatically decomposing computation into sma ller parallel computa
tion. The CHARM system also decides how and when to schedule specific actions . This removes 
the need for the programmer to decide how to assign data and computation to specific locations. 
The language provides for a large variety of app lication domains, and by the use of a rich set of 
primitives, is applicable to a large number of target machine architectures . CHARM is discussed 
in more detail in chapter 3. 
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HETROGENOUS CLUSTER OF WORKSTATIONS 
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INTERCONNECTION 
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Figure 2.1: The Metacomputer Used in this Research 

2.3 The MetaComputer 

The Metacomputer developed in this research consists of a cluster of Sun and HP work
stations combined with the MEIKO cs-2 distributed-memory parallel computer (see 3.3.1). The 
computers are connected via UDP over Ethernet. Because each MEIKO node has its own Eth ernet 
interface all communications can be done directly processor to processor. The system provides 
a uniform interface independent of the machines being used. The user needs only to specify the 
specific workstations and the number of MEIKO nodes to be used for each configuration. Due 
to the requirements of the MEIKO resource manager , if any MEIKO nodes are to be used in the 
configuration then the launching host node must also be a MEIKO node. Typically this is a node 
on the login partition or the scalar shark16 node is used. 
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Chapter 3 

CHARM 

3.1 Parallel Programming with CHARM 

The CHARM system was developed at the University of Illinois at Urbana-Champaign [5]. The 
system is designed as runtime support for an explicitly-parallel language. Intrinsic to the design 
was that CHARM should be machine-independent , object-based , and message-driven. The system 
permits users to develop portable parallel applications without the loss of efficiency. The clear 
separation of responsibilities between programmer (problem decomposition and process creation) 
and programming environment (process location and load balancing) helps to control program 
complexity. The language supported is based on the message-driven paradigm. This means that 
from the users viewpoint messages are explicitly sent but not explicitly received. The system 
automatically receives the message and starts program execution based on information in the 
message. CHARM provides high-level mechanisms to facilitate the task of developing even highly
complex parallel applications. 

The basic unit of work in CHARM is a coarse grained process called the chare 1 • A chare 
definition consists of the name of the chare, its local variables and a sequence of message entry 
points . A block of code within each entry point defines the coarse grained computation . All 
CHARM programs must have a main chare that executes on a single processor, and is a starting 
point for program execution. All other chares are created by programs statements. 

CreateChare (processor, processor@Ini t, start..message); 

This statement is used to create an instance of the chare processor. The call returns instantly 
and the create request is queued. Sometime later the request is processed and the chare is created. 
A variety of load balancing schemes can be used to determine on which processor to execute the 
chare. Execution of this chare begins at the Ini t entry point with the message referenced by 
start..111essage. 

SendMsg(processor @receiveLMSG,lmsg, &Dest); 

This statement is used to send the message lmsg to the entry recei vedLMSG on the chare 
referenced by Dest. The sending chare doesn 't need to know the destination processor as that 
information is contained in the ChareIDType variable Dest. The call is non-blocking and the 

1from Old English, meaning chore or task 
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calling chare can continue to process data while the communication is taking place, permitting 
the overlap of communication and computation . There is no corresponding receive message call 
in the language. The message is received by the system at the destination and queued. Execution 
of the entry begins when the message is processed off the queue. 

There are many addition CHARM constructs to aid in programming. The Branch Office 
Chare is a special type of chare that has one representative chare per processor. Several type of 
distributed data types are also supported: readonly, accumulator, monotonic and write-once. 

3.2 Charm on a Cluster of Workstations 

A cluster of workstations can be regarded as a collection of processors that do not share an address 
space, much like a distributed-memory parallel computer. The differences between a cluster of 
workstations and a distributed-memory parallel computer result from the use of UDP socket 
connections over Ethernet. Because of the need for reliable and efficient message passing, this 
version of CHARM implements message fragmentation for large messages and a sliding window 
protocol to reduce the number of acknowledge messages. Load balancing is a key issue on 
a heterogeneous cluster, and the CHARM system takes processor speed and network load into 
account when allocating chares to processors. 

The CHARM environment reads a nodes file to determine which workstations to use. This 
file contains the machine name, relative processing speed and other information needed to create 
the UDP socket connection. Changing the configuration of the cluster is a trivial task. 

3.3 Charm on the MEIKO CS-2 Parallel Computer 

3.3.1 The MEIKO CS-2 Distributed-Memory Parallel Computer 

The MEIKO CS-2 parallel supercomputer is a scalable distributed-memory parallel vector com
puter. The system consists of two main parts, processing elements and the cs-2 interconnection 
network. 

Each processing element consists of a scalar processor, a vector processing element, and a 
communications processor. The processing element is a SuperSparc chip with a peak processing 
capacity of 40 MFLOPS. The vector unit consists of another scalar SPARC processor and two 
Fujitsu vector processors that share a 3-ported memory system with the other processors in the 
element. The vector processing element has a peak processing capacity of 200 MFLOPS. The 
communication processor provides a fast interface to the interconnection network. 

The cs-2 communication network is a multi -stage packet-switched 4-ary fat-tree in which the 
bandwidth between stages remains constant. Messages are routed by full crossbar switches at 
each stage of the fat-tree. The MEIKO processors typically communicate among themselves using 
the Elan Widget library calls . Messages using Elan Widgets have very small latencie s. The calls 
have been standardized in the Intel message passing library (MPL) mpsclib. Message passing 
latencies can be as low as 24 microseconds between processing elements [8]. 
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3.3.2 Porting CHARM to the MEIKO CS-2 

l ) A CHARM program is source translated and compiled to generate a host program and a node 
program. The host program sends a request to the MEIKO resource manager, which grants the 
host exclusive access to the requested number of processors. Once the processing elements are 
available the node program is loaded on each processor and program execution begins. 

) 

The configuration used by a CHARM application is determined by a user specified nodes file 
containing the number of nodes to use and the pathname to the appropriate directory containing 
the application. Once the initialization is complete, the main chare begins execution. At the same 
time each processor enters a loop of picking a task or chare, created with calls to CreateChare () 
or SendMsg(), from its own queue and executing it. If communication takes place while executing 
a chare, the SendMsg () call is executed and the message is sent asynchronously. Because the 
call is non-blocking, it is possible for communication and computation to overlap increasing the 
efficiency of the system. 

The original implementation of the MEIKO version of CHARM was created using the Intel 
MPL library mpsclib. For example, the standard CHARM SendMsg() is implemented as an MPL 
isend(), which in turn is implemented using the Elan Widget DMA port. 

3.3.3 The Channel Version of CHARM 

In an attempt to reduce message passing latency on the MEIKO an additional version of the system 
was created. This version uses Elan Widget channels as the primary form of communication. It 
was hoped that by using channels the message passing latency would be reduced as the latency 
for the Intel NX library has been reported at 78 microseconds verses 24 microseconds for channel 
communications [8]. 

Using channels for CHARM communication proved difficult. CHARM uses communication 
that is inherently asynchronous. Channels, while not strictly synchronous, are better suited to 
synchronous communication. To achieve asynchronous communication each channel is used for 
mono -directional communication only. The channel is initially prepared to receive a message with 
the ew_chanRxStart () call. Each channel also has an outstanding transmit for which the message 
has completed but the blocking ew_chanTxWai t () has not been issued. Transmitting a message 
involves issuing the wait for the previous message then starting the current one. Receiving a 
message involves testing for receipt using ew_chanRxDone () . If done, a wait is issued, the message 
is processed and finally the system resets by issuing a start for the next message. This system 
produces asynchronous communication but will also block if a second message is sent on the same 
channel before the first has been completely received, this can potentially lead to deadlock. The 
implementation uses multiple channels between each pair of processors to reduce the chance of 
blocking . Another problem with this system is that it is possible to overwrite previously received 
data. To prevent this, the receiving processor uses an acknowledge message to indicate that the 
channels can be safely reused. If all channels are in use the system uses NX calls instead of 
channels. One other problem with the system is that there is no way to know the size of the 
incoming message until after it has been received . Ports have this ability and the workstation 
version uses message fragmentation to force all packets to the same size. The system uses a 
user set value to determine the maximum size of a channel message and allocates a buffer for all 
messages based on that size. Any message larger than this maximum value is sent via NX. 
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3.3.4 Vectorization 

The MEIK0 processing elements each incorporate two Fujitsu µ VP vector processors. In order 
to make better use of the vector processors a number of modifications were made to the CHARM 
system. The compiler used for producing the vectorized code is the Portland Group C Compiler 
(pgcc). This compiler became the standard for the MEIK0 cs-2 based CHARM system when I 
found that optimized non-vectorized code ran faster with pgcc than with the original compiler. 

The automatic vectorization feature to the pgcc compiler failed to vectorize CHARM programs 
because of the data structure used to store variables local to a chare . Possible data dependencies 
prevent the vectorization. Loops to be vectorized need to be forced with the addition of a 

#pragma nodepchk 

statement immediately preceding the loop. Changes were made to the charm translator to 
incorporate pragma statements into the language. 

The biggest changes that were made for vectorization were that changes made to the applica
tions. The need for larger grains, removal of code designed to reduce cache misses, and reordering 
of nested loops is discussed in 4.2.4. 

3.4 Implementation of MetaComp Charm 

The major obstruction in the creation of MetaComp CHARM was the fact that multiple commu
nications networks are used to connect the processors. It is fairly simple to determine which of 
the communication networks to use, but the redundancy greatly complicates the system. It was 
also necessary to make significant changes to accommodate the addition of MEIK0 nodes to the 
heterogeneous network. The main problems dealt with the new operating system (Solaris was 
not previously supported by CHARM) and differences with the file structure on the MEIK0. 

3.4.1 Initialization 

The nodes file to be used is supplied by the user and contains the names of the workstations to be 
used. This was modified to include the MEIK0. The exact processors used by the metacomputer 
are assigned by the MEIK0's resource manager . Internal to the system the individual processors 
are recorded when the needed information is available. This permits UDP communication to 
individual MEIK0 nodes. 

3.4.2 Communications 

The system uses UDP sockets to connect all processors in the metacomputer. The faster CS-2 
network is used when possible, in communications between MEIK0 nodes. Originally the system 
used the MPL communications library on the cs-2. MPL on the MEIK0 is implemented using 
DMA ports. In an attempt to reduce message passing latency, these calls where later augmented 
with DMA channels. This greatly complicates certain system operations especially detecting and 
receiving messages. The system has to check the UDP connection and the port connection and 
all of the channel connections before being sure there are no outstanding messages. 
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3.4.3 Other Additions 

While developing efficient implementations of algorithms for the metacomputer it became clear 
that a new way was needed to balance the load on the various computers. The standard method 
previously used, created many chares which were distributed to processors according to the 
speed and load of the processor. For many algorithms , it is necessary for all of the chares to 
communicate and the large number of messages required greatly slowed execution . The solution 
used was to reduce the number of chares and make the amount of work that each chare processes 
variable. This complicates the program but can greatly reduce the total number of messages 
required. A new load balancing function 

CkDataPartition(size,max,base,fraction); 

is called by the user and information on processor speed and load are used to determine the 
amount of data for each processor. 

A few other constructs where also added to the translator to standardize the use of some non
charm functions, including CkMemCopy() replacing the use of memcpy() and McTimer() replacing 
calls to Real Time() a timer implemented with time-of-day system calls . Corrections were also 
made to the initialization routines for the load balancing window . 
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Chapter 4 

APPLICATIONS 

4.1 All-Pair Shortest Paths 

The all-pairs shortest paths problem is to find the shortest path between all pairs of vertices 
Vi, Vj E V such that i -=J j in a weighted graph G(V, E, w ). 

4.1.1 Dijkstra's Algorithm 

The parallel formulation of Dijkstra's all-pairs shortest paths distributes the V vertices of the 
graph among the processors. Each processor Pi then finds the shortest paths from vertex Vi to 
all other vertices employing Dijkstra's sequential single-source shortest paths algorithm. 

In CHARM the adjacency matrix is replicated on all processors using the readonly construct. 
A chare is then created for each vertex Vi E V. Note that this is the only applications discussed 
here that has no floating point operations. 

4.2 Matrix Multiplication 

The matrix multiplication problem discussed here, takes two n x n dense, square matrices A and 
Band yields the product matrix C =A x B. 

4.2.1 Conventional Algorithm 

Each value of the resulting C matrix is computed using the standard formula 

k=n-1 

ci,j = I: A,k x Bk,j. 
k=O 

The CHARM implementation uses a readonly variable to replicate the B matrix on all processors . 
A number of chares are created on a user specified grain-size input variable. This variable can 
be set to a fraction of a row per chare ( fine grained) or several rows per chare ( course grained). 
Each of these chares contains part of the A matrix. On execution each chare computes the rows 
of C corresponding to that chare's rows of A. 
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Figure 4.1: Cannon's Data Partitioning and Communication Patterns 

4.2.2 Cannon's Algorithm 

Cannon's algorithm partitions the A, B and C matrices into a number of blocks equal to p, 
the number of processors used, in a checkerboard fashion. Blocks of the A and B matrices are 
passed from processor to processor where each processor accumulates a partial dot product of 
the current A and B blocks. The number of iterations required is y1p. The algorithm has the 
same time complexity as the conventional algorithm but is more memory-efficient requiring only 
½ times the memory on each processor ( ~ if overlapped communication is used). 

The CHARM implementation creates a number of blocks based on user input rather than the 
number of processors used. This provides a mechanism for the user to control the grain of the 
program. In CHARM terminology each block is one chare. The experiment used 64 chares in a 8 x 8 
grid. In order to reduce communication costs, communications and computation are overlapped. 
The two required blocks from A and B are copied to local memory, and the messages are sent 
on to the destination chares before computation begins. While overlapped communication works 
well for the low latency MEIKO cs-2 communications network, Ethernet is too slow to allow for 
a full overlap on the grain size used in this implementation. A balanced load is achieved by 
varying the number of chares on each processor . 

4 .2.3 Fox's Algorithm 

Fox's algorithm partitions the A matrix by columns onto the processors. The B matrix is par
titioned by rows into messages and each message is broadcast to the processors for computation 
of the dot products. 

The CHARM implementation partitions the A matrix based on each node's processing capacity . 
The result being that a faster (or less loaded) processor would be responsible for a greater number 

14 



l} 

) 

0 1 2 3 X 

A B C 

- - Indicates the region of C calculated by PE O from the first message 

Figure 4.2: Fox's Data Partitioning 

of columns. The B matrix is then partitioned by row. The number of rows sent per message can 
be set by the user and determines the grain size of the application. On completing computation 
for the message one of the processors then requests that another message be broadcast. 

4.2.4 Vectorized Matrix Multiplication 

Slight changes where made to implementations for Cannon's and the conventional algorithm to 
achieve better performance using the MEIKO cs-2 vector processors. Code designed to reduce 
cache misses in the non-vector application was removed. The code changed the order in which 
elements of the A and B matrix were accessed and would have unnecessarily complicated the 
vector code. The grain-size of the problem was increased. The non-vector version of Cannon's 
algorithm typically used a block size of 128x128 floats (64k bytes), where the vectorized version 
produces better results with larger blocks (256k bytes). In the non-vector version the size of a 
block was selected based on the time taken to calculate the partial dot-product for a block. The 
block size also effected the number of cache misses made during the calculation. Both of these 
factors had less of an effect in the vector version and grain size could be increased to the point 
needed for a balanced load. In order to reduce data dependencies the nested loops were reordered. 
Normally this would have been done by the vectorizing compiler, but because of CHARM'S data 
structures the compiler could not. Changing the order of the loops in the applications produced 
significant differences in runtime. 
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4.3 Systems of Linear Equations 

This problem is to solve a system of n linear equations of the form 

ao,oXo + ao,0X1 + + ao,n-JXn-1 bo, 

a1,0Xo + a1,0X1 + + a1,n-1Xn-l b1, 

an-1,oXo + an-1,0X1 + ... + an -1 ,n-JXn-l bn-1 • 

usually written in matrix notation as Ax = b, where x is the solution vector. 

4.3.1 Gaussian Elimination with Back Substitution 

This application solves the equations in two steps. Gaussian Elimination with partial pivoting 
is used to reduce the A matrix to an upper triangular system. Once in upper-triangular form, 
back substitution is used to solve for x, the solution vector. 

The CHARM implementation uses a modified branch office chare to create one chare on each 
processor. Due to the heterogeneous nature of the processors a variable number of rows of the 
'matrix are assigned to each chare using the CkDataPartition() function (see 3.4.3). Rows are 
elimin ated in place rather than swapping in order to maintain balance between the processors. 
After gaussian elimination is finished, the resulting matrix has to be sorted by row to become 
upper-triangular. Back substitution then proceeds normally, but some parallelism is lost as 
some processors finish the substitution before the other processors and broadcast results. As 
the sorting and backsubstitution are a relatively small fraction of the total computation the 
backsubstitution has a negligible effect on the total time. 

4.3.2 Jacobi Iterative Method 

Jacobi is an iterative method for estimating the solution to a system of linear equations. The 
solution of the i th linear equation can be written as 

x[i] = A[~ .] (b[i] - L A[i,j ]x[j]) 
i, i i=/:j 

using the solution vector x[j] from the previous iteration to estimate the solution for the current 
iteration of a specific linear equation x[i]. All equations are solved in parallel and compared with 
the previous solution for that equation to decide if another iteration is needed. The solutions 
are then collected and made available to all processors for the next iteration. 

The CHARM implementation work uses data partitioning very similar to that used with Gaus
sian elimination . Iterations continue until successive solutions change by no more than a user 
supplied E for all equations. 

4.4 Modifications Specific to Metacomputing 

It became clear during the testing of typical CHARM programs, that some additional changes 
would have to be made in order to run efficiently on the metacomp system . A CHARM program 
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designed for a homogeneous parallel computer typically uses the creation of many chares to 
parallelize the program and set the grain size. Because of the different latencies associated with 
off processor communication and the large amounts of communication required for some of the 
applications, it is desirable to reduce the number of chares and increase the grain size. However , 
decrease the number of chares too much and load balancing becomes difficult . Consider the 
extream case of one chare per processor, if each chare has the same amount of work, differences 
in processor speed and load will greatly effect the amount of time to do that work. Several 
different schemes were used to overcome these problems. 

The applications presented in this paper use several different kinds of data partitioning. The 
typical applications Matrix Multiply and Dijkstra's All-Pairs Shortest Paths use a rows based 
chare with replicated data on all processors. While efficient in terms of communication, they use 
a great deal of memory on each processor. Because of the large number of chares, This type of 
partitioning is only practical when little or no communication takes place between chares. 

Gaussian elimination, Jacobi and Fox's algorithms all take the opposite approach reducing 
the number of chares to the minimum of one per processor. This helps in reducing the amount of 
communication at the expense of a slightly more complex program. Load balancing is achieved by 
varying the amount of data each chare has to process . This means that dynamic load balancing 
strategies cannot be used, but static load balancing schemes performed well during tests. 

The block partitioned Cannon's algorithm makes use of chares in a different way. The number 
of chares to use is specified by the user not by the problem size or the number of processors used. 
The user has some control over the grain-size of the program ( the number of blocks must be a 
square). The application is designed to overlap communications with computation by copying and 
sending data for the next iteration before beginning computation of the current iteration. This is 
especially evident when Cannon's algorithm is run on the MEIKO without workstation nodes (see 
5.2 and 5.3). In this homogeneous environment the size of the blocks can be optimized in terms 
of hiding communication cost by overlapping. The block size also can be altered to reduce the 
effect of cache misses . The program also makes use of a two step chare creation scheme, creating 
a single chare on each processor then having that chare create a number of the actual data 
chares based a call to CkDataPartition(). This mechanism provides the load balancing that 
is needed for any heterogeneous computing system, while reducing the amount of off processor 
communication. 
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Chapter 5 

APPLICATION EVALUATION 

5.1 Measuring Performance 

The performance results for the metacomputer were obtained by running the application pro
grams under standardized conditions. The load on the workstations was kept low by running 
the applications after hours and careful load monitoring. The MEIKO resource manager ensures 
that the user has exclusive access to the MEIKO nodes. The times reported are real elap sed 
time, calculated by calls to gett imeofday (). All load balancing was done statically, taking into 
account the initial work load of each machine and that machine's relative processing speed. Rel
ative processing speed for each application was determined by executing the application program 
sequentially on each type of processor used. Relative speed varies slightly from application to ap
plication depending on the amount of communication and floating point computation done, with 
major differences for the all integer Dijkstra's All-Pairs Shortest Paths and vectorized Matrix 
Multiplication. 

All applications were run on a problems size of 1024 x 1024. All applications but APSP used 
randomly generated single-precision floating-point numbers. System initialization time is not 
included in the reported runtimes. 

5.2 Meiko Performance 

The entirely homogeneous MEIKO provides a simple means for measuring system performance 
(in contrast to the heterogeneous MetaComp ). The only complication was in running vectorized 
code on 16 processors. The combination of a scalar host (shark 16) as host and vectorized nodes 
produced suspect results. · 
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Table 5.1: Dijkstra's All-Pairs Shortest Path 

II Meiko Nodes I Run Time (seconds) I Speedup II 

1 398 1.00 
2 200 2.00 
4 100 3.99 
8 50 7.96 

Table 5.2: Cannon's Algorithm 

II II Scalar II Vector II 
II Meiko Nodes II Run Time (seconds) I Speedup II Run Time (seconds) I MFLOPS II 

1 130 1.00 26.6 81 
2 65 1.98 14.8 145 
4 33 3.95 8.4 256 
8 17 7.74 5.7 375 
16 8.5 15.20 

also see the load balancing window 5.5 

Table 5.3: Conventional Algorithm for Matrix Multiplication 

II II Scalar 11 Vector II 
11 Meiko Nodes 11 Run Time (seconds) I Speedup JI Run Time (seconds) I MFLOPS II 

1 
2 
4 
8 
16 

168 1.00 23.5 
85 1.99 14.3 
43 3.94 11.6 
22 7.75 13.8 
12 14.32 

Table 5.4: Fox's Algorithm for Matrix Multiplication 

11 Meiko Nodes I Run Time (seconds) I Speedup 11 

1 181 1.00 
2 123 1.47 
4 61 2.94 
8 32 5.62 
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Table 5.5: Gaussian Elimination 
II Meiko Nodes I Run Time (seconds) I Speedup 11 

1 97 1.00 
2 54 1.80 
4 31 3.08 
8 22 4.36 
16 22 4.48 

also see the load balancmg wmdow 5. 7 

Table 5.6: Jacobi Method of Solving Linear Equations 

II Meiko Nodes I Run Time (seconds) I Speedup II 

1 92 1.00 
2 47 1.95 
4 25 3.65 
8 15 5.98 
16 11 8.67 
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5.3 Metasystem Performance 

(] The measure of system performance on the metasystem is difficult due to the heterogeneous 
nature of the system. There are too many variab le and no single standard sequentia l runtime 
for a comparison. The sequential runtimes for the applications were used to calculate the rel
ative number of sequential MEIKO processors it would take to achieve the same runtime. This 
value for equiva lent number of MEIKO processors is is summed for all the processors used in a 
particular configuration. The actua l configurations of processors used in the reported data are 
listed below. The value of equivalent Meiko's can be misleading in applications where there is 
significant communication, for example one of the configurations has an equivalent number of 
5.45 Meiko nodes but actually uses a total of 13 processors. The communication requirement for 
this application scales with the actual number of processors . 

Table 5. 7: Processor Configurations Used 

II Configuration I Meikos j Sparc20 I SparclO I Sparc5 I HP730 I HP715 II Total II 
Meta 0 1 1 
Meta 1 1 2 3 
Meta 2 1 1 2 
Meta 3 1 1 2 4 
Meta 4 1 1 1 1 2 6 
Meta 5 1 2 2 2 1 5 13 

) 
Meta 6 1 4 3 3 1 3 15 
Meta 7 2 1 1 1 5 

Table 5.8: Dijkstra's All-Pairs Shortest Path 

II Configuration j Equ. Meiko Nodes I Run Time (seconds) II 
Meta 0 1.00 398 
Meta 1 2.10 199 
Meta 2 2.10 192 
Meta 3 3.20 142 
Meta 4 5.15 84 

also see the load balancing wmdow 5.2 
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Table 5.9: Cannon's Algorithm 

II Configuration I Equ. Meiko Nodes I Run Time (seconds) II 
Meta 0 1.00 130 
Meta 1 1.50 135 
Meta 2 1.75 134 
Meta 3 2.25 124 
Meta 4 4.15 108 
Meta 7 6.05 99 
Meta 5 6.05 91 
Meta 6 8.10 83 

also see the load balancmg wmdow 5.3 

Table 5.10: Conventional Algorithm for Matrix Multiplication 

II Configuration I Equ. Meiko Nodes I Run Time (seconds) II 
Meta 0 1.00 168 
Meta 1 1.75 113 
Meta 2 1.80 148 
Meta 3 2.60 106 
Meta 4 4.00 74 
Meta 7 4.00 57 
Meta 5 8.20 52 
Meta 6 10.50 56 

Table 5.11: Fox's Algorithm for Matrix Multiplication 

II Configuration I Equ. Meiko Nodes I Run Time (seconds) II 
Meta 0 1.00 181 
Meta 1 1.35 180 
Meta 2 1.55 128 
Meta 3 1.90 124 
Meta 4 3.00 139 
Meta 7 3.15 99 
Meta 5 5.45 162 

also see the load balancing window 5.4 
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Table 5.12: Gaussian Elimination 
11 Configuration I Equ. Meiko Nodes I Run Time (seconds) II 

Meta 0 1.00 97 
Meta 1 2.10 95 
Meta 2 2.30 85 
Meta 3 3.40 79 
Meta 7 4.00 80 
Meta 4 5.25 95 

also see the load balancmg window 5.6 

) 

Table 5.13: Jacobi Method of Solving Linear Equations 

11 Configuration I Equ . Meiko Nodes I Run Time (seconds) II 

Meta 0 1.00 92 
Meta 1 1.90 65 
Meta 2 2.00 54 
Meta 3 2.90 67 
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5.4 Measuring Communication Performance 
l
,,_, 

J As it was developed, the metasystem used a variety of different communications. It became 
necessary to measure the performance of the various different types of commun ications . Four 

) 

measures of communication speed were used: latency, scatter, gather, and an all to all broad
cast . The load ba lanc ing window also provided some performance informat ion and graphically 
demonstrates the resu lt of using the various communication types . 

5.4.1 Latency 

The latency measured and reported in this report includes all overhead associated with the 
CHARM system . The times reported are in milliseconds and were calcu lated through calls to the 
charm function CkUTimer () implemented as gettimeofday() with a resolution of microseconds . 
The size of a message does not include the charm message overhead (80 bytes in this version). 
Latency is measured by repeatedly sending and receiving a message between two processors . 
The resu lting average round trip time is then divided by two to get the average time for one 
send-receive pair. The measurement was made using both types of implemented Meiko to Meiko 
communications. NX refers to the use of the Inte l NX library, and CH refers to the use of elan 
widget channels. The Sun used was a SparcStation 20, and the HP was a HP715 workstation. 
The reported one processor overhead was measured by running the application on a sing le Meiko 
node. 

Tab le 5.14: Message Passing Latency 

II Message Size II Meiko to Meiko(NX) I Meiko to Meiko(CH) I Meiko to Sun I Meiko to HP 1/ 

5.4.2 

1 
4 
16 
64 

256 
1024 
4k 
16k 
64k 

0.4 0.4 3.0 
0.4 0.4 3.0 
0.4 0.4 3.0 
0.5 0.4 3.2 
0.5 0.5 3.7 
0.5 0.6 5.9 
0.7 0.7 9.8 
1.5 6.5 38.7 
5.1 51.5 116.7 

one processor overhead = 170 µs all other times are in milliseconds 
message size is in bytes 

Global Communication Operations 

4.5 
4.5 
4.6 
4.6 
5.0 
9.0 
13.1 
36.5 
146.3 

Three operations are used as a broader measure of communication performance , being more like 
what would occur in an actua l program. These operations are scatter, gather, and an all to all 
broadcast. Scatter involves an operation in which a single processor sends a specific message 
to each processor and each processor then replies with a message indicating receipt. Gather 
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is similar, a single processor broadcasts a request message, and each processor then sends its 
message to the requesting processor. The all to all broadcast process has one processor sending 
a request and receiving data from each processor. This data is collected and then broadcast 
to all processors. The operation ends when the original processor receives an receipt message 
from each processor. The operations were tested using a variety of message sizes and various 
mixes of processors. The Two PE measurements used a Meiko node and a Sun SparcStation 20. 
The Three PE measurements used a Meiko node and two HP 715 workstations . The Four PE 
measurements used a Meiko node, a Sun SparcStation 20 and two HP 715 workstations . The 
reported one processor overhead was measured by running the app licat ion on a single Meiko 
node . 

Tab le 5.15: Average time for a Scatter in milliseconds 

II Message Size (bytes) II Two PE I Three PE I Four PE I Four Meikos IJ 
1 6.7 11.4 21.1 1.8 
4 6.6 11. 7 17.9 1.8 
16 6.4 11.5 18.2 1.8 
64 6.6 13.4 18.9 1.8 

256 7.0 13.7 24.0 2.0 
1024 9.0 15.5 26.7 1.9 
4k 13.2 28.7 42.8 2.5 
16k 34.7 107.6 117.3 4.4 
64k 124.2 370.2 900.7 14.4 

one processor overhead 495 microseconds 

Tab le 5.16 : Average time for a Gather in milliseconds 

II Message Size (bytes) II Two PE I Three PE I Four PE I Four Meikos II 
1 6.8 11.2 17.1 1.8 
4 6.6 11.5 16.3 1.9 
16 6.6 11.7 18.2 1.9 
64 6.4 12.6 19.4 1.9 

256 6.9 18.8 24.6 2.0 
1024 9.1 71.0 85.5 2.0 
4k 155.3 58.0 38.0 2.6 
16k 35.0 62.8 108.5 5.1 
64k 125.2 302.5 886.1 16.4 

one processor overhead = 430 microseconds 
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Table 5.17: Average time for a All to All Broadcast in milliseconds 

II Message Size (bytes) II Two PE I Three PE I Four PE I Four Meikos II 
1 13.8 23.7 29.1 3.8 
4 14.0 22;9 36.9 3.9 
16 12.9 23.0 32.6 3.7 
64 13.4 24.1 35.7 3.8 

256 15.9 33.1 37.9 4.3 
1024 22.1 111.1 143.3 4.9 
4k 219.5 127.2 124.7 9.4 
16k 146.5 353.8 479.4 28.4 
64k 592.5 1504.0 2327.1 129.4 

one processor overhead = 830 microseconds 

5.4.3 The Load Balancing Window 

The existing load balancing window was an important tool for finding and eliminating sources 
of idleness in the metasystem. The window displays relative amounts of processor idleness 
while the application runs. It also gives direct feedback about the balance achieved by the 
load balancer. Several additions were made to the window including displaying smaller amounts 
of idle/ computation, making it easier to change scales, and the ability for the user to specify 
the exact end of the initialization phase of the program through a call to Ckini t □ver(). This 
provides better agreement between the displayed runtime and actual runtime. 

The load balancing window displays data on the program as it executes. Three bars report 
data on the progress of each processor. The bars are (from left to right) computation, cumulative 
idle and chares processed. The computation bar is time based and shows the state of the processor 
as the program executes. States are computation, idle and initialization. The cumulative idle bar 
uses the same data as the computation bar but only displays idle time. Cumulative idle is useful 
as a rough determination of how much time the processor spent waiting for messages without 
other work to do. The chares processed bar shows the number of chares that each processor 
executes. This is used as a check on how well the load balancer is working, and shows little 
useful information for application with few ( or one) ch ares per processor. 
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Chapter 6 

SUMMARY 

6.1 Application Evaluation 

6.1.1 Meiko Results 

The performance of the applications on the MEIK0 system is quite good ( compared to the same 
applications on the metacomputer system). As expected, performance degrades with the amount 
of communication in the application. Applications with very little communications (APSP) show 
near linear speedup, while the applications with the most communication (Gaussian and Jacobi) 
show the least speedup. One interesting result is that the performance of Cannon's algorithm 
is better than that of the conventional algorithm. Cannon's algorithm has been optimized for 
execution on the MEIK0 by using a grain size that overlaps the computation time with the 
communication time. As a result the costs of communication are almost totally hidden. Also, 
the size of the blocks used in Cannon's has a favorable effect on the number of cache misses 
during computation. Cache miss problems may be the reason that Fox's algorithm performs so 
poorly especially when the sequential runtime is compared to the sequential runtimes for the 
other matrix multiply applications. 

6.1.2 Metacomputer Results 

The results here show only modest improvement over use of the MEIK0 component of the various 
processor mixes. That is to say that the use of a MEIK0 node plus several other workstations is 
only marginally better than the use of a MEIK0 node alone . The exact amount of improvement 
varies with the amount of communication in the application and the number of non-MEIK0 
processors used . Applications that require frequent processor synchronization (Gaussian, Jacobi) 
suffer from the long idle times on the metacomputer . 

The mix of processors selected for use in the experiment, might have had an additional ef
fect. One of the advantages of using workstations is that new faster processors are typically 
available earlier for workstations than for multi-computers . This was not the case for worksta
tions available for testing. The MEIK0 SuperSparc processor was , for most applications, the 
fastest workstation used ( although the SparcStation 20 was very close). Finding enough fast 
workstations to significantly increase the metacomputer capacity without using large numbers of 
workstations should increase the system performance. 
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6.1.3 Latency Results 

Two unexpected results were the poor performance of channel communication on the MEIKO and 
the large latency overhead added by CHARM. 

The performance of the channels using large messages can be attributed to two problems. 
One, that channels are not well suited to asynchronous communications, and require overhead to 
prevent blocking and overwriting of messages. Two, the requirement that all messages allocate 
a number of bytes based on the maximum message size. Node to node communication using 
channels directly ( without CHARM) has latencies of 24 µs, using NX calls the latency increases to 
78 µs. There is a discrepancy between these latencies and the measured MEIKO system latency 
of 400 µ. The one processor overhead can explain some of the difference, in the operations 
of processing and moving the message, but the other operations should not take hundreds of 
microseconds. 

In general the metacomp latencies were not as surprising. The relatively low values of the 
latencies when compared to the global communications, shows the source of the slow runtimes 
produced by high communication metacomp applications. While point to point latencies average 
to low values the combined worse case aspect of the global measures clearly shows the commu
nication difficultly over Ethernet. These delays can be seen in the load balancing window 5.3 
where a synchronization can add seconds of idle to each iteration of the algorithm . 

6.2 Conclusions 

6.2.1 Metacomputing 

The metacomputer system tested in this report was able to improve the performance of all the 
applications tested. The amount of improvement, however, was not as much as was expected. 
Based on the data taken, here are some conclusions about the usefulness of the metacomputer 
system. 

The additional resources of workstations are a fast and inexpensive way to increase the 
capacity of a supercomputer. The exception is when the extra workstation's processing capacity 
is not great enough to overcome the overhead incurred by the addition to the system. The non
processing resources of the workstation will still aid the system, but speed will not be increased. 

The metacomputer speed is highly dependent on the amount of communications in the ap
plication. Applications with little communications are a good prospect for use with the meta
computer. Reducing communication is an important way to improve performance, but cannot 
be done at the expense of load balancing. 

6.2.2 Load Balancing 

There is an problem with the use of load balancing on the metacomputer. The current system 
uses various methods to balance the load, but they are all static operations. They do not 
respond to changes in the system load. The problems is that the current dynamic load balancing 
techniques used by charm cannot move a chare once it has begun to execute. In practical terms 
only programs without communication or ones that create new chares as they execute can be 
dynamically balanced. For execution efficiency the opposite is true. Fewer chares mean less 
communication between chares. With the relatively small programs being tested this was not a 
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problem, but large problems running in a multi-user environment will have problems maintaining 
a balanced load. 

6.3 Future Work 

6.3 .1 New Systems and Networks 

The existing metacomputer CHARM environment works only on a few types of computers con
nected on the Ethernet. A true metacomputer will have to support more machine architectures 
and different interconnection networks. There are existing systems for a variety of supercomputer 
systems that could be incorporated into metacomputer CHARM . An existing system uses ATM as 
an interconnection network for workstations instead of Ethernet , this could also be incorporated 
into the metacomputer system. 

6.3.2 Different Applications 

An interesting area for study would be to design or find applications that required more than one 
type of parallelism . All the applications tested here were SIMD type scientific problems. These 
types of problems are expected to do well on a parallel computer optimized for data parallel 
execution. Applications with both MIMD and SIMD components might be a better fit to the 
metacomputer as the different parts of the problem could be matched with different parallel 
computers or workstations. This could also help some in the area of dynamic load balancing, as 
applications that create new chares as the system executes can adapt to changes in system load. 

6.3.3 Channel Communication and Global Communication 

The poor performance of the channels does not mean that the use of channels should be dropped. 
With small messages channels work as well as using the NX library calls. A better way to utilize 
the channels would be to use them for global communications. Rather than using channels for 
point to point communications, the elan widget BCHAN uses channels for a combined barrier 
and broadcast. The current CHARM system is incompatible with several machine broadcast 
mechanisms, including the NX library 's. 

Moving some of the more common global communications into standard CHARM calls would be 
a step to making the language easier to use. Some already exist , like broadcast when using branch 
office chares. But a more robust mechanism is needed for implementing operations like: scatter, 
gather, barrier, and all-to-all broadcast. If built into the language, lower level communications 
(like the broadcast channel) could be used to optimize these operations. 
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