
,...

'
~ ')

"' I

)

An Experimental Evaluation of Auto-exploratory,

Average-reward Reinforcement Learning

by
Kimberly Mach

A PROJECT

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented April 6, 2004
Commencement June 2004

t

© Copyright by Kin1ber ly Mach

April 6, 2004

All rights reserved

)

TABLE OF CONTENTS

Page

1 INTRODUCTION . 1

2 BACKGROUND.... 4

2.1 Markov Decision Processes . 5

2.2 Policies and Optimization Criteria...... 5

2.2.1 Total versus Discounted Reward . 6

2.2.2 Optimization by Average Reward . 7

2.3 Dynamic Programming. 9

2.3.1 Value Iteration. 11

2.3.2 Policy Iteration . 14

2.4 Reinforcement Learning......... 16

2.4.1 Discounted Reinforcement Learning 16

2.4.2 Average Reward Reinforcement Learning 21

2.5 Hierarchical Methods. 26

3 AUTO-EXPLORATORY REINFORCEMENT LEARNING 28

4 FUNCTION APPROXIMATION . 32

4.1 Gradient Descent Function Approximation 33

4.1.1 Linear Function Approximation. 34

4.1.2 Neural Networks . 35

5 THE PRODUCT DELIVERY ENVIRONMENT 39

6 APPLICATION OF FUNCTION APPROXIMATION. 41

7 RESULTS 44

TABLE OF CONTENTS (Continued)

Page

7.1 Table-based... 44

7.2 Function Approximation ... 44

8 CONCLUSIONS AND FUTURE WORK 50

BIBLIOGRAPHY.. 51

)

)

)

J

LIST OF FIGURES

Figure

2.1 An example where taking the average reward will yield the proper
answer, but discounting will not (from A. Schwartz) 8

2.2 An example of value iteration. 12

2.3 The R-Learning Algorithm. 23

2.4 The H-Learning Algorithm. 25

3.1 An example of R-values in a grid-world environment. 29

3.2 The AR-Learning Algorithm 30

3.3 The AH-Learning Algorithm 31

4.1 A simple neural network, organized into three layers. 36

4.2 One unit in a neural network (adapted for this paper from Russell
and N orvig) 36

5.1 Grid used for the product delivery environment . Positions and num-
ber of shops can be altered. 40

7.1 Versions of AH and AR-Learning in the product delivery environment
for 2 trucks, 2 shops, and binary inventory levels. 45

7.2 AH and AR-Learning in the product delivery environment with 2
trucks, 2 shops , and 3 different different inventory levels. 46

7.3 AH and AR-Learning in the product delivery environment with 2
trucks, 2 shops, and 5 different different inventory levels. 47

7.4 Function approximated versions AH and AR-Learning for 2 trucks, 5
shops, and 5 possible inventory levels. 48

1. INTRODUCTION

Reinforcement Learning (RL) is the type of artificial intelligence where

an agent learns through numerical rewards as a consequence of its actions. A

reinforcement learner aims to maximize the overall reward that it receives. Since

most environments of interest involve some level of stochasticity, accomplishing

this task is not trivial. The issue of what optimization criteria will be used is an

important one. Discounted total reward and average reward are two main choices.

In this project, we will use the average reward optimization, which amounts to

maximizing the average reward received per time step.

Dynamic Programming (DP) can be used to learn an optimal solution to

a given problem by propagating reward information backwards to other states [4],

and is is central to the theory behind many reinforcement learning algorithms.

Dynamic programming is typically used in assigning values, or a measure of de­

sirability, to every state or state-action pair, and is essential for detection of the

true value function.

RL methods based on dynamic programming can learn through the use

of discounted or average reward. Policies, a mapping of states to actions, are

developed and evolved through the use of either value or policy iteration and the

examination of the values these methods produce. Value iteration can be summa­

rized as a method of continuously updating state values in a matrix until these

numbers have converged (or, at least, until they start changing at a slower rate).

There are several styles of value iteration, including the asynchronous, online va­

rieties. One difference between reinforcement learning and dynamic programming

is that DP is given the action models and RL is not.

)

)

)

2

H-Learning [21] is a model-based average reward reinforcement learning.

Models of the transition probability and of the rewards received are maintained

along with the state value table . R-Learning [17] is a model-free, average-reward,

reinforcement-learning algorithm. This means that models of the problem are not

directly learned, rather a table of state-action values is learned instead to directly

approximate the policy.

An issue that is critica l to all reinforcement learning algorithms is that

of exploration . It is of utmost importance for the agent to fully explore its en­

vironment so that it may make informed decisions on what states it would pre­

fer to be in. However, the agent must also use what values it does know and,

through the use of its learning algorithm, make logical decisions on what action

to take next - otherwise, the agent would be as inform ed as a random walker. In

auto-exploratory reinforcement learning the agent automatically searches the state

space, while always taking greedy actions. This is done through the strategy of

optimism under uncertainty [18]; the value of unexplored regions are kept higher

than previously examined regions, thus forcing exploration.

Of particular interest in this project are the auto-exploratory versions of

R- and H-Learning (AR- and AH-Learning). These average-reward methods force

exploration by making use of a parameter p, which represents the aspired average

reward per step and is maintained at a value higher than the actual average reward

per step. This causes a reduction in the values of explored state -action pairs, and

encourages the agent to explore other states.

The size of the state space involved in an artificial intelligence problem can

grow to unacceptable proportions, and this gives voice to the need to shrink the

size of the value function and the policy. Function approximation is the process

of approximating the value function of an environment in such a way as will

I

3

shrink its size. The method that is used in this paper is piecewise linear function

approximation using gradient descent.

We compare table-based and function-approximated versions of the auto­

exploratory methods AH- and AR-Learning. This is in response to the findings in

[22] where AR-Learning was unable to learn a policy as high as the one learned

by AH-Learning. We find AR-Learning to be comparable to AH-Learning in the

table-based domain. We also find AR- and AH-Learning to be comparable in

most function-approximated domains; however, in a few smaller environments

they achieve noticeably smaller results than their table-based counterparts. We

hypothesize that this discrepancy is due to a combination of the representation

of linear function approximation that was used and the coarse depiction of state

features.

The rest of the paper is organized as follows: We explore first an exten­

sive background of reinforcement learning in section 2. In section 3 we move to

auto-exploratory theory and methods. Section 4 includes a general description of

gradient descent function approximation, featuring the methods of linear function

approximation (used in this paper) and neural networks. The environment used

in this project is described in section 5, and the particular application of function

approximation that was used is outlined in section 6. Results are presented in

section 7 and this paper is summarized in section 8.

)

)

)

)

)

4

2. BACKGROUND

Many AI problems can be described in the framework of Markov Decision

Problems which are characterized by a set of states that the agent finds itself

in and a set of actions the agent can take. The program that is being used to

implement the specific artificial intelligence algorithm and to solve the problem

at hand can be referred to as an agent. The state, s, of the environment that

the agent is currently in refers to everything in the environment which might be

of importance to the agent within the program (for instance, if playing a chess

game, the state might refer to positions of the pieces on the board). The set of all

possible states in the environment which the agent is working in is S. At any given

time, the agent can take an action, a (which is in the set of all legal actions from

the current state, A(s)) that will alter the environment by taking the agent to a

new state, s' . Every time that an agent takes an action, it receives an immediate

reward, r. When necessary to prevent confusion, St, at, and rt will be used to

describe the state the agent is in, the action the agent is taking, or the reward the

agent received , at time t. A mapping of states to actions, or, rather, the decisions

of what actions to take in each state, is called a policy, 7r. The overall goal of

an artificial intelligence program is for the agent to act in such a manner as to

optimize some criterion (based on the rewards, and to be discussed later in more

detail) and as a result learn an optimal policy, 7r*. 1

The rest of this section will provide theoretica l background to properly

introduce the problem of reinforcement learning.

1The notation used here will be used throughout the remainder of this paper.

5

2.1. Markov Decision Processes

In this paper, we will restrict ourselves to dealing only with Markov Deci­

sion Problems (MDP). An MDP consists of a set of states Sand a set of actions A

from which the agent can choose. In any time step t the agent observes the state

s, takes action a, receives reward r, and ends in a new state s'. It is important

to mention: even though they are represented as a singular event, a, actions may

involve altering the state of the environment in several different ways at once [2].

For example, in a game of checkers, one move (or action a) could involve jump­

ing over the opponent's piece. The resulting action would involve changing the

location of the agent's piece and removing the opponent's piece from the board.

An important property of an MDP is that the future evolution of the world

is completely determined by the current state (no explicit description of the past

history needs to be kept to determine the best course of action). This property is

known as the Markov property. Mathematically, one can state this as:

(where time is quantized, and P is the probability [20]). In this paper, we also

assume that MDP's have a finite set of states and actions.

2. 2. Policies and Optimization Criteria

What exactly does an agent classify as a good action? It is mentioned

above that for every action taken there is a reward given to the agent. Most envi­

ronments of interest involve an element of stochasticity (randomness), such that

the immediate reward for any one action will not remain constant throughout the

)

)

)

6

entire lifetime of an agent. How do we figure out which state is the best to be in,

if this stochasticity changes the rewards received in any given state? Stochasticity

and delayed feedback are two main considerations. To briefly expound on the idea

of delayed feedback, consider the game of chess. In this environment, feedback is

received only at the end of a game. The problem here is how the agent will know

what move to start with, when the only reward in this environment is based on

whether or not the agent won. This is the delayed feedback problem.

A policy is a mapping from states to actions. The goal of a policy is to

optimize not just short-term, but the long-term rewards. If this goal is fulfilled,

the agent will not simply take actions that promise immediate rewards, but will

take instead those actions that return the highest total reward in the long run.

The expected total return that an agent may anticipate when following a policy

1r is the value of that policy. The return of 1r is defined by one of the following

optimization criteria.

2.2.1. Total versus Discounted Reward

In domains that have a natural final state that will eventually be reached,

one would like to maximize the sum of all rewards received up to the final (or

absorbing) state, that is:

where T is the time to reach the absorbing state, 0 is the time of the start of the

program, and Rr is the total reward received until the absorbing state is reached

(the quantity that we are maximizing). Since the rewards received are random

variables, one might optimize the expectation of the above sum, or:

I

7

T

Rr = E[Lrt],
t=O

where E is the expectation of the amount enclosed in the brackets, and Tis the

total time the program is run.

If the agent lives in a world with unbounded time, we run into another

problem-the total reward, Rr, becomes infinite. One alternative we have is to use

discounting, which will take a small number, ,, called a discount factor, where

0 < 1 ::::; 1 and multiply each successive reward received by a corresponding power

of,, such as:

T

Rr = ro + ,r1 + , 2r2 + · · · + ,trt + · · · = E[L ,trt]- (2.1)
t=O

This keeps the total reward's sum from blowing up to infinity. Discounted

reinforcement learning, though convenient, has the disadvantage that it tends to

prioritize immediate rewards and ignore/subdue the value of rewards in the distant

future [20, 21, 11].

2.2.2. Optimization by Average Reward

Average- reward reinforcement learning is an undiscounted method that

works by concentrating not on the immediate rewards offered (as discounting

does), but rather on the long-term average of the total reward received. In this

way, average-reward reinforcement learning takes on the 'big picture' instead of

giving undue importance to the immediate returns. Mathematically, this is done

by maximizing:

l n
p = lim - ~ E[rt],

n-----+oo n L....,,;
t=O

where p is the gain, or the average reward.

)

)

.J

8

"Heaven"

"Earth"

"Hell"

(-1)

FIGURE 2.1. An examp le where taking the average reward will yield the proper

answer, but discounting will not (from A. Schwartz).

Figure 2.1, an example taken from Schwartz's paper on R-Learning [17],

is one environment where an agent using discounting will find a policy that is

detrimental to the long-term well being of the agent. Here, the immediate rewards

are in parentheses and the titles of the nodes in quotes. An agent starts on node

1, or "Earth." We see that there are two immediate paths which can be chosen

by an agent on "Earth", A or B, and these paths have rewards of +0 and +1000,

respectively. After the initial choice of path of A or B, the agent will remain in

the same state indefinitely. In "Hell" , an agent receives a reward of -1 for taking

an action . In "Heaven" , the reward for an action is + 1. When concentrating on

the near future, as discounting does, path B looks like the better choice. We can

see, however, that if time goes on forever, the best policy is to choose path A and

stay in "Heaven" . This is the choice of an average reward learner.

In all finite MDP's (an MDP with a finite number of states) there is some 1

close to 1 which will cause the discounted version of some reinforcement learning

method to agree with the undiscounted version [17]. Though higher values of

1 allow the ability to see further ahead in time (and thus visualize more long

9

term rewards and become closer to average reward methods), they also cause slow

convergence [2, 17].

2.3. Dynamic Programming

The above section discussed different optimization criteria. In order to

determine the best actions to take in each state, and thus find an optimal policy,

1r*, we must move into the realm of value functions. A value function is a function

that estimates the worth of being in a certain state by approximating the estimated

future return of that state as a function of the state.

Dynamic Programming (DP) is used to learn value functions, and can be

based on either discounted or average reward methods. It allows agents to avoid

an exhaustive search of the "state-sequence space" (not to be confused with the

state-space, which must be exhaustively searched) [2]. Classical dynamic pro­

gramming requires that the problem being solved be a known Markov decision

process. This means that the agent knows both the probability transition func­

tion representing how the environment changes with every action, and also what

rewards are returned from every action taken.

In order to create an association between states and values we use Bellman

Equations, which can take many forms, but we will begin with the two simplest.

v1r is equal to:

v1r(s) = E1r[Rrlst = s] = rs,1r(s) + L 1P(s'ls, a)V1r(s'), (2.2)
s'

where v1r (s) is the value of starting from state s, and thereafter following a policy

1r, En is the expected value when following 1r, and rs,1r(s) is the immediate reward

received when starting in state s and following policy 1r. Expressing this in terms

)

)

10

of 'Q'-values, which associate values to state-action pairs, rather than just to the

state [26]:

s'

where Q1r (s, a) is the cost of taking action a from state s and from then on following

policy 1r. DP is used to solve these Bellman equations and fill in tables representing

state and state-action values, which will aid the agent in the decision of which

actions to take.

If presented with multiple choices, a greedy decision will always pick the

largest value possible. A policy is greedy with respect to a value function over

states if it always chooses an action that maximizes the expected sum of the

immediate reward received and the value of the next state. A policy is greedy

with respect to a Q-value function over state-action pairs if it chooses an action

that maximizes its Q-value in any state. An optimal policy is one that is greedy

with respect to its value function. Optimal policies can and only optimal policies

can be shown to be "greedy with respect to" their evaluation function (V). The

value of the state s when following the optimal policy 1r* is denoted by V* (s) and

has the following Bellman equation:

V*(s) = max[r + L 'YP(s'ls, a)V*(s')].
a

(2.4)
s'

The value of state s and action a picked when following the optimal policy 1r* is

denoted by Q* (s, 1r* (s)) and has the following Bellman equation:

Q*(s, 1r*(s)) = r + L 'YP(s'ls, a)V*(s'). (2.5)
s'

Referring to Equations 2.4, and 2.5, a relation may be drawn between V*(s) and

Q*(s, 1r*(s)):

11

V*(s) = Q*(s, K*(s)) = max Q*(s, a).
aEA(s)

(2.6)

In order to find what action is the best action to take, an agent must first evaluate

the Q-values for all possible actions from the current state s by using Equation

2. 7 and then find the best action by using Equation 2.6 [2].

Equations 2.2 and 2.3 are called Bellman Optimality Equations, named

after Richard Bellman [20]. The values calculated by these equations are a type

of 'rating' that is learned for each state. States or state-action pairs with a high

rating (or value) will tend to return better rewards in the long run, and states

with low ratings (or values) will tend to return worse rewards in the long run.

A policy (a mapping from states to actions) is obtained by choosing actions

greedily with respect to the value function, which is learned by solving a Bellman

equation. The theory behind the dynamic programming says that an optimal

policy, K*, will be obtained by always choosing to take the action of maximal

value, or by using a greedy strategy, with respect to the values defined by the

Bellman Equation.

2.3.1. Value Iteration

Before we continue with any discussion of various aspects of dynamic pro­

gramming, we must first introduce the basic outlines of a learning algorithm.

Value iteration is a method of assigning a value to each state. The update for

value iteration is:

Vi+1(s)+-maxaEh+l + ,Vi(st = s, at= a)]

maxa L P(s'Js, a)[rs,a,s' + ,Vi(s').
s'

)

J

)

J

12

(a) (b)

FIGURE 2.2. An example of value iteration.

For an example, take into account a simple grid environment. In this

environment, the agent wants to find the path of greatest value . Figure 2.2 shows

such an environment, with darkened squares representing impenetrable walls and

the square labeled 'G' representing the goal state of the agent (here a state is

simp ly the agent's location in the grid). In this environment, the default reward

is 0, and a reward of +64 is given if the agent reaches the goal state. In figure

2.2, 'Y is set equa l to 0.5. For simplicity, this environment is deterministic. Part

(a) shows the values for each square (or, rather , for each state) in the grid after 7

iterations of the value iteration algorithm .

Value iteration involves a series of updates on the values of all states in

the state space; during this stage all state values are determined. The values

shown in figure 2.2 are the result of value iteration (they are not the final values,

but they are close). For examp le, in the top right-most square of the grid, the

best move is to go down , as this will yield a reward of + 16, whereas the only

other possible move yields a reward of +4 . Part (b) of figure 2.2 shows the

13

resulting greedy policy, given that the agent uses the state values shown in part

(a). Multiple arrows in one square indicate that more than one action has the

same return, and so no one action is favored; either action is equally greedy at this

point in execution. There are two different techniques for using value iteration

to solve Bellman equations. Synchronous methods update current values using

only figures from previous iterations. An example of synchronous update in the

context of discounted optimization is:

½+1(s) +-- m:x I)rs,a + 1P(s'js, a)½(s')], (2.7)
s'

This equation written in terms of Q-values is:

In synchronous methods, the total value state space will increase and approach

convergence asymptotically, even if every individual state's value does not increase

[2].

In asynchronous methods, there are less strict requirements as to the man­

ner of backing up state values. Asynchronous methods can also update new func­

tion values based upon past and present values of the states. An example of an

asynchronous update in the context of discounted total reward is:

• For each k = 0, l, ... , if Sk ~ S is the set of states whose value is updated

at iteration k, then Vi+1 is computed as:

(2.9)

This means that not all state values must be backed up in every iteration, al­

though every state must be backed up eventually. Most strikingly, Sk can be a

set consisting of only one state.

)

)

)

14

2.3.2. Policy Iteration

When the agent has a complete and accurate model of the MDP, that is, it

knows the true values of the models P(s'ls, a) and rs,a, the problem may be solved

off-line. This can be seen as the agent using simulation s of the actua l environment

in order to train itself and non-adaptive contro l in order to solve the problem it

has been issued. Online methods and adaptive control will be mentioned later.

Non-adaptive control 2 is the type oflearning which we have been addressing

for which DP is suitab le. It requires knowledge of both the transition probability

P(s'ls, a) and the reward received, rs,a, from taking action a in states . When this

information is not known, the resulting problem is called an unknown MDP or

adaptive control. One needs to either learn the MDP and then solve it, which is

called a model-based approach, or learn to solve the MDP directly, which is called

the model-free approach 3 . Learning action models through the use of Bayesian

networks is an examp le of using a model-based approach to adaptive control; the

probabilities represented in each node are continua lly updated with each iteration

of the program. Representing and learning the Q-values and using them for action

selection is a model-free approach to adaptive contro l.

Policy iteration is different from the methods defined above. In the pre­

vious value iteration methods, values based on states (or state-action pairs) were

explicitly stored, and a policy was something that just happened to result as a

2 "Control" here refers to the determination of act ions .

3 A Markov Decision Problem with incomplete information is not the same as a par­

tially observable Markov Decision Problem (POMDP), in which the whole of the state

information is not known. The latter problem is beyond the scope of this paper.

r

15

consequence of taking actions greedily with respect to the value function. In policy

iteration, there are two main sections to the basic algorithm: 1. policy evaluation,

and 2. policy improvement. During the policy evaluation, the value of the current

policy is determined for all starting states. This is done by solving the Bellman

Equation 2.2 using the update:

v1r(s) f--- L P(s'ls, 1r(s))[rs,1r(s),s' + ,v1r(s')],
s'

where v1r (s) is the value of state s taken when starting in state s and following

policy 1r.

During policy improvement, a new policy 1r' is found which is greedy with

respect to v1r. In other words,

1r'(s) = argmaxa L P(s'ls, a)[rs,a,s' + ,v1r(s 1
).

s'

If the old policy 1r and the new policy 1r' are the same in all states, then the policy

has become stable, and therefore, it has theoretically reached 1r*. If not, the

evaluation and improvement stages are repeated until the policy does converge.

Policy iteration is guaranteed to reach an optimal policy in a finite number

of iterations; however, a lot more computation is typically required than in value

iteration. This extra computation comes from evaluating the policy every time

through, perhaps searching the entire state space several times in one iteration.

This is one of the reasons why this method is not quite as popular as the previously

described value iteration. Another reason may lie in the fact that the theory

behind improved versions of policy iteration such as optimistic policy iteration is

not quite as well understood as the theory for value iteration [2].

)

)

j

16

2.4. Reinforcement Learning

Reinforcement learning involves treating an artificial agent as one would

treat a little child. Initially , this child is placed inside of an environment of which

it knows nothing about . The child is given rewards (positive and negative) for

every action that it may make. The child then must learn what actions to choose

to optimize its total return. Since the reward function and the next-state function

are not known, dynamic programming methods cannot be directly used .

There are two different types of reinforcement learning methods for learn­

ing MDP's with incomplete information. Some reinforcement learning methods

learn state values indirectly by constructing models of the unknown components

of the environment, namely P(s'js, a) and rs,a · These techniques are known as

indirect, or model-based , methods. Another variation of reinforcement learning

is to directly model the policy using values based on state-action pairs. Methods

using this version do not need to create any explicit models of the domain; they

apply state-action values to form policies and determine 1r*. These are known as

direct, or model-free, methods.

2.4.1. Discounted Reinforcement Learning

• Adaptive Real Time Dynamic Programming - ARTDP •

When asynchronous dynamic programming is run concurrently with the

actual execution of an MDP, it is said to be running in Real Time [2]. Differences

between Real Time execution and simulation mode include the fact that the con­

trol decisions of the program will be based on the latest updates of stored values.

The policy to be used is usually greedy according to these latest value estimates.

17

At any time t only state St will have its value updated (this means that not all

states will be backed up during every single time step, thus the asynchronous

methodology).

If the agent is provided a Markovian decision problem with incomplete

information (either P(s'ls, a) or rs,a is not known), then the problem must be

solved using reinforcement learning or adaptive control. In ARTDP (Adaptive

Real- Time Dynamic Programming), the program uses the agents models of the

MDP (the models that agent stores of P(s'ls, a) and rs,a) and acts according

to the assumption that they are the true models. This is called the certainty

equivalence principle in the adaptive control literature. Due to this assumption,

one must keep in mind that the agent's current perception of the domain is not

necessarily (in fact, at the beginning it is most likely not even remotely) close to

the true MDP. When learning evaluation functions, a greedy policy will suggest

the action that looks the best according to t_he current value function. However, it

is easy in this way to get lured into a sub-optimal policy: depending on which ones

are updated first, various actions will have the optimal value at different points

during training. A greedy policy will always select an action which currently

has the highest value. In the case of a sub-optimal action being executed more

frequently at the beginning of execution, it may have a higher value than the true

optimal action does. In order for the agent to locate all true components of 1r*,

it is imperative that the agent not get stuck in these "local maxima." The way

to assure that this is done, is to guarantee exploration-that the probability an

action a is chosen in state s is greater than zero for all a E A(s). A common way

that this is done is to use an E-greedy exploration strategy.

This first introduces the need for exploration of the environment, and the

big conflict between exploration and the exploitation of the algorithm in use. In

)

)

)

)

18

any reinforcement learning algorithm, there needs to be induced and guaranteed

exploration of the entire environment in which the agent finds itself. Without

this exploration, the agent cannot even attempt at finding true values for every

state in S. The most popular method of exploration is an "E-greedy" method,

which takes random actions with probability E (0 < E < 1) and greedy actions

with probability 1 - E. One can see the conflict here. With too high of an E (too

much exploration) the agent will become completely random. There needs to be

some element of control issued here-some measure of exploitation of the values

that are currently being held. The issue of exploration will be explored more in

Section 3.

• Temporal Difference Learning •

Temporal difference (TD) learning methods are a type of Reinforcement

Learning first developed by Sutton [2]. TD-Learning is a type of discounted re­

inforcement learning which bases the update of its Bellman equation upon the

difference in the estimate of values between successive time steps [20, 23]. This

means that, as in other asynchronous, online methods, TD-Learning uses esti­

mations of the value function's future worth and observed values of the received

reward in order to update the current estimate of the value function. TD-Learning

updates once at every time step, as do other online methods.

To put all of this more concretely, the Bellman update equation for the

simplest kind of TD-Learning, TD(0), is:

V(s) t--- V(s) + ,8[r + ,V(s') - V(s)]

The learning rate, ,8, is necessary to keep track of how strongly an old state value

will be considered when updating a its value. TD(0) has been shown to converge

with probability 1 if ,8 is decayed appropriately [19].

I

t

19

TD(0) requires examining only the current reward received. More general

versions of TD-Learning, n-step TD methods, base the reward used in their backup

equations on the results of n steps (instead of just the immediate return, as in

TD (0)). Rewards used in these methods can be thought of as a sort of truncated

total discounted reward (Equation 2.1). For example, the reward used in TD(l)

1s:

where rt+I is equivalent tor (the use of this different notation will be revealed in

the next equation). Above, the final term is used to approximate the truncated

section of the discounted total reward. The general formula for finding the reward

inn-step TD-Learning is:

We can now generalize the backup equation for n-step TD-Learning as

V(s) r- V(s) + /J[R~n) - V(s)], Vs ES.

TD(,\) is a type of n-step TD-method that uses a look-ahead technique

that averages future rewards together through use of the parameter ,\ (where

0 ::; ,\ ~ 1). This is the theoretical equivalent of looking ahead n moves in

each state visited and combining the rewards of each of the n future states with

experimentally decaying the weight of the value of ,\ per step [20]. The formula

for the reward is now changed to

n

Of course, looking into the future is not something that a reinforcement

agent can do without the aid of a crystal ball, so this view of TD (,\) is purely

)

)

)

20

theoretical. When actually computing the results, TD(,\) is achieved through

looking backwards in time (this somewhat varies the equations of course, but the

theory remains the same).

In Tesauro's experiment of playing the game of backgammon, TD-,\ was

used, and the resulting agent was termed TD-Gammon [23]. In order to be able

to scale their problem in large domains, TD-Gammon used multi-layer neural net­

works trained by the TD-,\ method to approximate complex nonlinear functions 4 .

TD-Gammon far out-stepped its supervised learning predecessors . In fact, the

resulting TD-Gammon agent thought up playing strategies that human experts

hadn't considered before, and, in some cases, it gave better results.

• Q-Learning •

Q-Learning is one of the most used methods in reinforcement learning. It

is an adaptive, asynchronous, online, direct learning method. Like TD-Learning,

Q-Learning induces exploration, usually using a random action with probability

1:. Instead of using a function to learn values for each state, V (s), a Q function

is kept, which directly learns the value of state-action pairs. In other words,

Q-Learning maintains a relationship of: Q : S x A-----+~-

To get the common version of the Q-Learning Bellman equation, begin by

taking maxa' EA(s') on both sides of Equation 2.3. This yields:

V *(s) = max Q*(s, a)= max Q(s', a'),
aEA(s) a'EA(s')

Vs ES.

where we are estimating maxa'EA(s') Q(s', a'), the Q-value from taking the optimal

action from s', to be the value of the state. From here, we can move to the Bellman

update equation for Q-Learning:

4The topic of function approximation will be discussed in Section 4.

21

Q(s, a) ~ Q(s, a)+ ,B[r +, max Q(s', a') - Q(s, a)].
a'EA(s')

The advantage of Q-Learning is that it does not need to know or estimate the

action models either to do the updates of the Q-function or select the greedy

action in a given state.

2.4.2. Average Reward Reinforcement Learning

Section 2.4.1 was about discounted reinforcement learning. However, for

the sake of convenience, even dynamic programming formulae previous to that

section used discounting as well. We will now introduce undiscounted dynamic

programming formulae that incorporate the ideas of average reward.

An average-reward reinforcement learning value function maintains the rel­

ative value of executing action a in state s under policy 1r. This is known as a

relative value because we are concerned with the value of the state in comparison

to the expected total reward of the policy on the average. This is computed by

subtracting the average reward p1r of the policy 1r from the immediate reward at

each step, accumulating the results, and taking its expected value. In other words,

the expected value of a state might be represented as:

or as:

00

v1r(s) = L E1r[rt+k - P1flst = s],
k=l

00

Q1r(s, a)= L E1r[rt+k - P1rlst = s, at= a],
k=l

where p1r is the average reward when executing policy 1r and has the expected

value of:

(2.10)

)

)

)

22

The value v1r of policy 1r satisfies the following Bellman equation:

(2.11)
s'

Similarly, the value Q1r of policy 7r satisfies:

(2.12)
s'

Finally, the values of the optimal average-reward policies satisfy the fol­

lowing equations, where p* is the average reward of the optimal policy.

V*(s) = max[rs,a - p* + L P(s'/s, a)V*(s')].
a

s'

Q*(s, a)= rs,a - p1r + L P(s'is, a) m~xQ*(s', a').
a

s'

(2.13)

(2.14)

In the following, we describe model-free R-learning and model-based H­

learning, which learn these action-based and state-based value functions for

average-reward optimization.

• R-Learning •

Schwartz first developed the method of R-Learning in 1993 [17]. He noted

that discounting considers only immediate (and possibly mediocre) rewards while

ignoring future (and possibly superior) rewards. He also observed that in most

reinforcement learning plots, the average reward is diagramed , but, in the case of

discounted learning , this is not the method by which the agent was trained.

R-Learning (figure 2.3) is an average reward variation on Q-Learning. Only

a few steps in the Q-Learning algorithm need to be adjusted in order to yield

the R-Learning algorithm, and most all of them follow directly from the value

function for average-reward reinforcement learning: average-adjust the rewards by

r

23

subtracting p (the gain, or average reward) from the Bellman equation, eliminate

"Y by letting it go to 1, and introduce an update equation for the upkeep of p

(which is updated only when optimal act ions are taken, to keep pas close to the

true value as possible). Notation is also modified, changing Q-values to R-values.

The update for R-Learning is:

where

R(s, a) f--- R(s, a)+ ,B[r + H(s') - R(s, a) - p],

H(s') = max R(s', a').
a1EA(s')

(2.15)

Initi alize p and R(s, a), for all s, a, arb itrarily .

Repeat Forever:

l. s f--- current state

2. Choose an action from state s by comparing R(s, a) and using the
E-greedy exploration strategy. Let a be the action taken, s' be the
resulting state, and r be the immediate reward received.

3. Take action a, observer, and s'

4. R(s , a) f--- R(s, a)+ ,B[r + H(s') - R(s, a) - p],

where H(s') = maxa'EA(s') R(s', a').

5. If R(s , a)= maxaEA(s) R(s, a), then

pf--- p + a[r + H(s') - R(s , a) - p]
6 r, , f--- ____Q_

· '--" a+l

FIGURE 2.3. The R-Learning Algorithm.

R-learning has not been proven to converge to the optimal policy [17, 11],

but has been experimentally shown to reach the optimal policy, eventually, on

most every problem posed to it so far.

)

)

)

24

• H-Learning •

H-Learning is the model-based counter-part of R-learning, and the average­

reward version of ARTDP [21]. In H-Learning (figure 2.4) an E-greedy search

strategy is again used. The models that are learned are: the average immediate

reward received in states from taking action a (this table is referred to as rs,a), the

probability of moving to state s' from state s when taking action a (this table is

referred to as P and takes care of stochasticity in the environment). H-Learning

was found to perform either as well as or better than ARTDP in a number of

domains [21]. The update for H-Learning is:

n

h(s) +- max {rs,a + L P(jls, a)h(j)} - p.
aEA(s) .

J=l

(2.16)

Upon inspection of the algorithms presented in figures 2.3 and 2.4, one

can see how similar the R- and H-Learning processes are. Besides the difference

in modeling, the biggest changes between the two methods are the order of the

updates of the value function and the gain, and the update equations themselves;

the latter of which is the most prominent distinction. Despite their disparate ap­

pearance, these two updates (Equations 2.15 and 2.16) are actually quite similar.

First, let's break down the update for H-Learning (Equation 2.16). We

see that it begins by finding the action a that will maximize the sum of the

modeled immediate reward and the weighted average of the h-value of all possible

next states j . From all this , p is subtracted. Turning now to the update for

R-Learning (Equation 2.15), we see that , in the short term, it adds together the

max over all next actions a' of the value R(s', a') (this whole term may be, and

is, referred to as H(s') because of its congruency with H-learning's update) and

the immediate reward, then subtracts p. To compare the two updates, it becomes

necessary to think in a larger scale, time-wise.

Initialize.

Repeat Forever:

l. s - current state

25

2. Choose an action from states by comparing the h-value of the resulting
state and using E-greedy exploration strategy. Let a be the action taken,
s' be the resulting state, and r be the immediate reward received .

3. Update P(s'ls, a).

4. Update rs,a·

5. GreedyActions(s) - All actions a E A(s) that maximize

rs,a + L7=l P(jls, a)h(j)

6. If a E Gr eedyActions(s), then

(a) p - p + a(rs,a + h(s') - h(s) - p)

(b) a- a~l

7. h(s) - maxaEA(s){rs,a + L7=l P(jls, a)h(j)} - P

8. s - s'

FIGURE 2.4. The H-Learning Algorithm.

After a long period of time has passed, all state -action combinations will

have been attempted and updated. It goes almost without saying that the only

way in which an agent using R-Learning will see a state s' in its update is if the

action a moves the agent into this state. Action a is only going to move from state

s into states' with a probability of P(s'ls , a) , and thus this is the percentage of

the time that the update for value R(s, a) will involve using the numbers for the

state s'. Therefore, one might call this a sort of weighted average that takes place

over a longer period of time. This is also exact ly the same idea behind the update

equation for Q-Learning.

)

l

)

J

26

2.5. Hierarchical Methods

Probably the largest downfall of all reinforcement learning methods are

the extremely massive state spaces required, which necessitate meticulous explo­

ration in order for the agent being trained to learn anything. Hierarchical methods

strive to counteract this downfall by incorporating methods of abstraction to break

down the entire MDP being solved into a hierarchy of simpler "sub-MDPs" (also

called subtasks or subroutines). Sub-MDPs require less knowledge than the orig­

inal "root" MDP (which encompasses the overall goal of the agent). Irrelevant

features 5 in the state representation can be eliminated, depending on the current

subtask (a feature is irrelevant for a subtask if it doesn 't affect the next state or

the value of the state for that subtask).

In hierarchical reinforcement learning , each subtask finds the policy that is

optimal within the subtask. The overall policy which is chosen is a combination

of all of the policies of the sub-MDPs. The goal of the overall program is to

find a recursively optimal policy. Dietterich [7] defines recursively optimal as

"an assignment of policies to each individual subtask such that the policy for

each subtask is optimal given the policies assigned to all of its descendents."

Recursively optimal is not, however, guaranteed to be optimal overall, or optimal

policy over all hierarchical policies.

Hierarchical Semi-Markov Q-Learning and Dietterich 's MAXQ [6, 7] algo­

rithms operate on the above principles to find recursively optimal policies. Parr

and Russell's hierarchical abstract machines learn by finding hierarchically optimal

policies [13]. A hierarchically optimal policy is one that is optimal when given

5 Features are various important elements of a state

r

27

the restraints of hierarchies. This means that not all of the subtasks' policies

are necessarily optimal, and therefore, hierarchically optimal is not necessarily

recursively optimal and vice versa.

Hierarchical reinforcement learning has been applied, and, in most cases,

found to outperform its nonhierarchical counterparts (6, 18]. A hierarchical version

of H-Learning (RH-Learning) is used by Seri and Tadepalli [18]. In their inves­

tigation, they found RH-Learning to improve upon H-Learning in an automatic

guided vehicle (AGV) scheduling task.

)

_J

28

3. AUTO-EXPLORATORY REINFORCEMENT LEARNING

Most of the algorithms described above involve enforcing exploration by

inserting random actions with some probability. The major problem with this

E-greedy search strategy is that it forces the agent to choose sub-optimal actions

in order to efficiently explore the state space. It would be much preferred to

always take greedy actions. Some advantages to always taking greedy actions are:

removing sub-optimal reward returns, getting rid of the parameter E (and all the

adjustment that it may require), and abstaining from blind searching. This is

what an auto-exploratory search strategy attempts to do: thoroughly search the

available state space, and yet always take greedy moves.

The main theory behind an auto-exploratory search comes from noting that

the gain, p (approximately the average reward), is subtracted from the R-value

update in the Bellman equation of R-learning [12]:

R(s, a) ~ R(s, a)+ ,8[r + H(s') - p - R(s, a)].

Since the value function in average reward reinforcement learning, R in this case,

is measured in relation to p, for larger values of p the total value of R(s, a) is

decreased. The auto-exploratory search strategy utilizes this and keeps p at a

high value.

To see an example of this, direct your attention to figure 3.1. This is a

grid world environment similar to that shown in figure 2.2, which demonstrates

value iteration. Figure 3.1 is different than figure 2.2 in that it lists all possible

actions in every square (R = right, U = up, D = down, L = left), and includes

the current value of that state (the state being, again, the square in the grid)

action pair. Moves that cannot be made are denoted by '- '. The goal state is the

bottom-left-hand corner square and the environment is deterministic. The reward

29

R = -0.5 R = -0.5 R = -- R=0 R=0 R = --
u = -- u = -- u = -- U= -- u = -- u =--
D = -0.75 D = -0.5 D = -0.5 D=0 D=0 D=0
L = -- L = -0.5 L = -0.5 L =-- L=0 L=0

R = -0.5 R = -0.5 R = -- R=0 R=0 R = --
U = -0.5 U = -0.5 U = -0.5 U=0 U=0 U=0
D = -0.5 D = -0.5 D=0 D=0 D=0 D=0
L = -- L = -0.5 L = -0.5 L =-- L=0 L=0

R=0 R=0 R=0 R=0
U = -0.5 U=0 GOAL U=0 U=0 GOAL
D = -- D = -- D = -- D =--
L = -- L=0 L =-- L=0

(a) (b)

FIGURE 3.1. An example of R-values in a grid-world environment.

for reaching the goal is +5 , the default reward is +0, /3 = 0.5 (/3 is a learning

parameter that tells how seriously to take the new value) , and all state-action

values are initialized to 0. A greedy search strategy is used, with ties broken

randomly. In part a, p is held at 1, in part b it is held at 0. Both a and b have

been through 19 iterations. Notice how in part a, where pis set to 1, all visited

states-action pairs are less than 0. It is obvious where the agent has been and

where it has not been. In part b, where pis set to 0, all state-action values are still

0, and thus after 19 iterations , the agent is still blind as a bat . The larger value of

p seems to aid in the exploration of the state-action space: Already visited states

and actions will have a smaller value than the more enticing unexplored regions ,

thus forcing the agent to try unfamiliar zones while always taking greedy actions.

This ideology is known more simply as optimism under uncertainty [18].

)

)

30

We must now find some way in which to keep the value of p "sufficiently"

large. This is done by introducing new parameters Pmin and Pmax, which the

value of p is forced to remain between . Pmax is set at some unattainably high

value preferably just above p1r* and Pmin is set close to, but lower than, the value

of the policy which the agent is expected to learn (Pmin is a parameter which needs

to be tuned according to the environment and other parameters being used). The

value of a, the learning rate of p, is decayed so as to reduce the rate of exploration

as more states and actions are being evaluated. If the current policy being used is

sub-optimal, then p, which converges to its average reward, will eventually reach

Pmin, in which case p is immediately bumped back up to Pmax (and its learning

rate, a, can also be bumped up to the initial value (a0) with it), forcing the agent

to explore new regions. Hence, we have:

If P < Pmin, then

Initialize.

Repeat Forever:

1. s - current state

p = Pmax and a = a 0

2. Take an action a E A(s) that maximizes R(s, a) in the current states.
Let s' be the resulting state, and r be the immediate reward received.

3. R(s, a) - R(s, a)+ /3(r + H(s') - p - R(s, a))

4. p - p + a(r - p)

5 ,..., - _g_
• uc a+l

6. If P < Pmin,

p = Pmax and a = a 0

7. s - s'

FIGURE 3.2. The AR-Learning Algorithm.

l

31

Auto-exploratory R-Learning (AR-Learning) is the auto-exploratory ver­

sion of Schwartz's R-Learning (see figure 2.3). Note in this algorithm the definition

of

H(s') = max R(s', a')
a'EA(s')

(3.1)

is inspired from the H-Learning algorithm (figure 2.4). This is the algorithm that

we have based our research on.

Initialize.

Repeat Forever:

1. s f--- current state

2. Take an action a E A(s) that maximizes R(s, a) in the current states.
Let s' be the resulting state, and r be the immediate reward received.

3. Update model P(s'ls, a).

4. Update model rs ,s',a·

5. R(s, a) f--- I:7=1 [P(jls, a)(H(j) + rs ,j,a)] - p

where H(j) = maxa'EA(j) R(j, a')

6. pf--- P + a(rs,s',a - p).

7. O', f- a~l.

8. If P < Pmin,

p = Pmax and a = ao.

9. sf--- s'.

FIGURE 3.3. The AH-Learning Algorithm.

Auto-exploratory H-Learning (AH-Learning) is the auto-exploratory ver­

sion of H-Learning [21]. AH-Learning (figure 3.3) differs from AR-Learning only

in its Bellman equation and the fact that it is model-based, learning models for

rewards and for probability.

)

)

)

32

4. FUNCTION APPROXIMATION

For the methods and update functions mentioned above, we have assumed

a look-up table representation. That is, for each value (V, Q, H, R, or otherwise)

there is a one-to-one mapping to some matrix that stores all values . Such a

representation can always be achieved when the number of states is finite. In very

large state spaces, however, we come across two major problems: 1. The physical

space required to hold the value table grows extremely large, and 2. The time

needed to adequately explore the entire state space and come up with an optimal

policy expands to unacceptable proportions.

It is convenient to represent each state s as a feature vector ¢~. A feature is

some important aspect of the state that needs to be noted. For example, in a chess

environment one feature might be where my king is currently located on the board.

Function approximation seeks to learn a set of weights, or parameters, 0, that will,

when combined with a set of corresponding features¢~, yield an approximation for

a value function. For example, in linear function approximation the parameters

and the feature values are combines in a linear fashion:

n

½(s) ~ L 0t(i)cp8 (i) = 0t; · <p~, (4.1)
i=O

where <p~ is the feature vector of state s and 0t; is a vector of adjustable coefficients

at time step t. The learning of 0 can be done in several ways. We will present

two different versions on the method of gradient descent.

Before we move on it is important to note that, though function approx­

imation is good for speeding up the learning process and decreasing necessary

space requirements in large state spaces, it also has its drawbacks. While shown

to work in some circumstances [19], the errors introduced by approximation are

33

known to occasionally lead to sub-optimal policy convergence (17, 24] and even

divergence (1].

4.1. Gradient Descent Function Approximation

It is our objective to ensure that the values to which 0 is set will make the

agent take actions which result in maximizing expected returns in the long-term.

The way in which we will do this is through the use of TD-error, or temporal

difference error.

TD-error is based on a comparison of state values: how much better/worse

off is the value of the current state of the agent compared to what it should be

based on the next state's value? The equation of the TD-error, 5, for a discounted

algorithm is:

6 = r + ,V(s') - V(s).

Since we are going to be dealing with average-reward reinforcement learning, let's

put this in the terms of an average- reward method (more specifically, R-Learning),

6 = r + H(s') - p - R(s, a).

Now shift this all into the terminology of function approximation,

(4.2)

After solving for the TD-error, an appraisal of 6 will reveal the usefulness

of taking action a. Our goal is to get the error to be as small as possible. If the

given value for the next reward (r+H(s')-p) is greater than the current estimate

of the R-value, 0t ·¢~,then 6 will be positive and R-value will be adjusted upwards

by adjusting 0~. If the 6 is negative, then the action is considered one that might

not be such a good idea in the future.

)

)

J

)

)

34

4.1.1. Linear Function Approximation

The method of gradient descent involves finding a minimum in a function

by moving in a "downward" direction, as pointed to by the gradient (remember

that the gradient is a vector operation, and maintains directionality after it is

performed: we simply need to move in the direction that the gradient is negative

to decrease the value of the function). We want to find the place where the TD­

error is the least possible value. In order to do this, we need to critique the error

in reference to the only entity that we can change, the parameter 0~. To facilitate

this, we take the partial derivative with respect to 0t (or, in other words, find the

component of the gradient dependent upon 0t,).

To begin, we need to come up with an error measure that will, after the

derivative is taken, leave things in terms of 0~. Most people use the mean squared

TD-error (MS E):

The next step is to take the partial derivative of the MS E with respect to 0~ :

Through the application of the chain rule we find

_a(_M_~_E_) = (r + H(s') - p - 0t, · </>~) 0_, (r + H(s') - p - 0t · </>~).
80t · 80t

Taking the final partial derivative to finish yields

v' 0~MSE = (r + H(s') - p - 0t,. </>~)(-</>~)- (4.3)

To shift the parameter vector a small amount in a decreasing direction , we

subtract a small fraction of the gradient to form an update for 0 [27, 5]:

I

35

Plugging in Equation 4.3, this becomes

(4.4)

4.1.2. Neural Networks

This section is for completeness of different function approximation meth­

ods , and may be skipped without interrupting the flow of the rest of this paper.

Neural networks are widely used for function approximation in reinforce­

ment learning. A neural network is a weighted graph composed of a group of

several nodes, or units, connected together by links, and organized into layers .

In this paper we will talk about feed-forward networks, which require all links to

be unidirectional and the network to be a directed acyclic graph 1 . A unit, one

node in a neural network, can be one of three different types of units supported

by a neural net. Input units receive information directly from the environment.

Output units yield the final computations of the entire network. Hidden units

reside in-between the input and output units. Hidden units , unlike the two other

types, are not a required component of neural networks; that is, it is possible for

neural networks to exist that do not contain any hidden units at all.

As mentioned above, units are arranged into separate layers (figure 4.1).

The bottom layer of the network contains the only input units (and nothing else).

1There are types of neural nets which do not follow these requirements and have cycles

and/or bi-directional links. For simplicity's sake, however, we will not go into them

here.

)

J

)

J

Top Layer= Output Unit(s)

Hidden Units

Bottom Layer =
Input Units

1

G)

FIGURE 4.1. A simple neural network, organized into three layers.

36

This layer is followed by a variable number of layers containing hidden units. At

the top of the network we find the top layer, which contains all of the output units

in the network. Here we can appreciate the name given to hidden units fully: the

outside agent, who gives input to one side of the network and receives output from

the other, does not directly see these dividing layers. Thus , the in-between units

are "hidden" from the user of the neural network.

~j,i

~

------------Input links
from ith layer.

Thejth unit.

Output links
to kth layer.

FIGURE 4.2. One unit in a neural network (adapted for this paper from Russell

and N orvig).

t

37

Each unit j (figure 4.2) receives input links from units in the previous layer

(except, of course, in the case of input units , which receive their input directly

from the environment). Almost all networks have special inputs called biases.

Biases are extra inputs that always have a value of 1, and similar to the 00 term

of linear function approximation, allow for the existence of a constant term in

the value function 's approximation. All units also have output links to units in

the next layer (except, of course, for the output units, whose output is given to

the agent for use in the MDP being solved). Units also have a current activation

level, Yj. The activation level of a unit is computed through a nonlinear activation

function, g, which is usually the same for every unit in the network. Commonly

used functions are the sigmoid, sine, or step functions, which yield either a O or

1 result 2 , changing at a threshold 3 . This threshold can be adjusted using the

weights found on each link.

Calculation of the activation function for the jth unit begins by taking

a weighted sum (xj) compiled from the weights on links and activation levels of

the unit from which the links emanate: Xj = Li Wj,iYi = wj . ~' where ~ is

notation for a vector containing all of the activation levels of the units in the

layer i directly previous to unit j and are linked that unit, and where the weight

vector, Wj , corresponds to the parameter vector 0. All that is left to be done to

calculate the activation level of unit j is to apply the activation function to the

input , or: Yj -. g(xj) = g(Wj · ~). Theoretically, the activation levels of units in

2In the case of a sine function, of course, a -1 or 1 result is obtained .

3In biological neurons, this would correspond to a neuron firing or not firing given a

certain input.

)

)

j

38

the same layer are set in parallel, and each layer is set sequentially, starting with

the bottommost [15].

The heart of a neural network lies in the weights of the links between units.

The objective is to determine weights that will yield the best output given any

input to the network. The most popular method of finding appropriate weights

for a neural network is by using back-propagation, which implements the gradient

descent approach.

The back-propagation method minimizes the error between the goal out­

put and the actual output of the network by continually adjusting the network's

weights [15, 5]. Two sweeps of calculations through the network are necessary for

this to occur: one forward sweep, calculating the activation levels of all the units

as described above, and one backward sweep, using the back-propagation method.

The basic idea behind back-propagation is to take the gradient of the TD-error.

The weights are adjusted in the opposite direction of the error gradient by sifting

all of the way down through the network and figuring out each individual unit 's

contribution to the error along the way. At the end of this procedure, when the

bottom of the network is reached, all of the weights are adjusted by some l:::.w.

This is repeated many times until the error and the weights converge.

An example of neural networks used in reinforcement learning is Tesauros

TD-Gammon [23]. In this environment, the input to the network was a repre­

sentation of the current backgammon board and the output of the network was a

value for that board configuration [20].

39

5. THE PRODUCT DELIVERY ENVIRONMENT

The environment that we used for our research was that of trucks delivering

products to shops. In this environment, there are a given number of trucks, and

a given number of shops, located on a grid of ten nodes (figure 5.1). The main

players in this domain are the trucks, which stock the shops; the shops, which

hold stock and sell it to customers; and the customers, who buy the stock from

the shops. In every shop there is some probability per unit time that customers

will come in and "buy stock." This occurrence is represented by the inventory of

the shop being decremented by one level.

There are two rewards given in the product delivery domain: a small nega­

tive reward when any truck moves along an edge in the grid (money for gas), and

a large negative reward for when a shop runs out of stock and a customer comes

into the shop looking to buy (for the money that might have been earned if the

shop had been properly equipped). In all other instances, no reward is given.

Trucks move along edges in the graph, and when they are located at the

"truck depot" (node 0), they are refilled with stock. All trucks have the following

possible actions: do nothing, move up, move down, move left, move right, or

unload a certain amount of stock into a shop (the last of which is only valid if the

truck is located at a shop). The moving penalty for a truck is -0.1. The penalty

given when a shop runs out of inventory and a customer wants to buy something

is -20.

A state's features in this environment are: inventories of all shops, loads

being carried by each truck, and locations of each truck. Actions involve ordering

each truck to take one of the moves mentioned in the previous paragraph. A

truck does not depend upon the states of the other trucks, in any way, to move.

)

J

)

j

Shop

~
7

5

Truck
depot

4

8

40

3

2 Shop
~

9

FIGURE 5.1. Grid used for the product delivery environment . Positions and

number of shops can be altered.

Two trucks can inhabit the same location of the grid at the same time. The only

requirements for the trucks' movements are: they can only move in a direction

where a path is located, they cannot unload a greater amount than they have,

and they cannot unload at all if they are not located at a shop.

The goal of this environment is to maximize the average reward received.

41

6. APPLICATION OF FUNCTION APPROXIMATION

For any problem worth solving, function approximation will eventually be

necessary, as problems solvable by only table-based methods are either very small

(and, thus, tend to be rather unexciting) or take a ridiculous amount of time to

run. For instance, if we take the environment described above, and let the number

of possible shop inventories/truck load levels be l, the number of shops be z, the

number of trucks be T, and the number of positions that one truck can be in be

p, then, when run in a grid of 10 nodes, with 2 trucks, 2 shops, and 5 different

possible inventory levels (full, ¾ full, ½ full, ¼ full, and empty), this will have a

total of:

(6.1)

states. We can see that the number of states is exponential in both the number

of shops and the number of trucks. By increasing the number of shops to 5, the

number of states is increased from 62,500 to 7,812,500. This is a good illustration

of the motives for function approximation-somehow finding a method to reduce

the number of learnable parameters and approximate the value function to help

the program to be more feasible in large environments, and to run faster.

In our environment, the state features can be divided up into two cat­

egories, linear and non-linear. Here, as well as in [22, 14] we considered the

inventory of the shops and loads of the trucks as linear, and the positions of the

trucks upon the grid as nonlinear. Inventories are approximated as linear because

of the assumption that the value of an action increases and decreases proportional

to the amount of inventory stocked in a shop. A similar assumption is made for

the loads of the trucks. However, there is no reason to assume such a relation

exists for the locations of the trucks, thus they are denoted as nonlinear. All of

)

)

j

42

this leads to the partitioning of the value function into a set of linear equations:

where there is a linear function for each combination of nonlinear feature values.

The weights, if, have dimensions of nonlinear features (the locations of

trucks) and actions. For each location vector of all trucks f and the action vector

a, let 01,a represent the vector of weights for the linear parameters. ¢~ is the linear

feature vector representing shop inventories and truck loads . For every 01: _ and ,a

¢~ there are the same number of components, in order that the value function

may be approximated by a sum of functions of linear and nonlinear features:

I:~=O 0ra(i)¢s(i) (where ¢s(O) = 1 in order to include a bias term, 0ra:(0)).

This use of function approximation greatly reduces the number of calcula­

tions necessary. For instance, instead of searching 7,812,500 states as previously

mentioned for the table-based example, the same example using this representa­

tion would involve searching 100 different truck positions (10 positions in each

truck, with 2 trucks) times 7 different features , which will yield a total of only 700

different numbers to be kept to approximate states.

In order to find the update equation for this version of gradient descent for

AR-Learning, note that the update equations of R-Learning and AR-Learning are

the same. This means that the update for if in AR-Learning is the same as the

one used in R-Learning, shown in Equation 4.4, except that we do this update to

the linear function that corresponds to the location features of the trucks in the

current state.

To find thee'.. update for AH-Learning, begin with noting that the TD-error

for AH-Learning is

n

r + I:[P(s'ls, a)H(s')] - p - H(s).
j=l

I

43

Following the process found in Section 4.1.1, find the derivative of the mean

squared error with respect to i/4:
n

V 0~MSE = (r + L[P(s'ls, a)H(s')] - p - 0~ · ¢~)(-¢~),
j=l

and move this into the gradient descent update for the parameter 1f

n

et:1 ~ i/4 + {J(r + L[P(s'ls, a)H(s')] - p - i/4 · ¢~)¢~.
j=l

)

j

j

)

j

44

7. RESULTS

The purpose of this study was to investigate the strange behavior that

AR-Learning was found to exhibit in [22]. In Tang's study, both table-based

and function-approximated versions of H-Learning were compared to table -based

versions of R-Learning, AR-Learning, and AH-Learning. In his study, both R­

Learning and AR-Learning never found policies as good as those found by H and

AH-Learning. In our study, AH-Learning was compared to AR-Learning. Our

goal was to get AR-Learning to perform comparably to AH-Learning.

7.1. Table-based

AR-Learning was found to perform just as well as AH-Learning in table­

based domains, and was observed to ultimately learn the optimal policy for the

largest environment in which it was tried.

Figure 7.1 shows the results of both table-based and function approximated

versions of AH and AR-Learning for an environment of 2 trucks, 2 shops. All plots

shown in this section plot time on the x-axis and the average reward per time step

on the y-axis, and are the result of an average of 10 runs. Here the trucks are

only allowed 2 different load levels, and the same is true of the shop inventory

levels. AH and AR-Learning achieve approximately the same average reward in

the same number of iterations.

7.2. Function Approximation

Note the function-approximated versions of AR- and AH-Learning in Fig­

ure 7.1. The average reward found by both algorithms is lower than the average

0,-----------------------------~

--- ------ ----

-0.8

··· ·· ···- -· --· · ·· · -·· · · · ·-·--- ----· ----·--·· ··· ··· ·······--· -----

AR-­
AH ------­
fAH ········
fAR - ·- ·- ·-

-1 ~-------------------------'
time = 50 million steps

45

FIGURE 7.1. Versions of AH and AR-Learning in the product delivery environ­

ment for 2 trucks, 2 shops, and binary inventory levels.

reward found by the table -based methods, with AR-Learning noticeably so. Our

hypothesis for the cause of this is the reliance of our piecewise linear function

approximation on the values of the state features. In Figure 7.1, all state fea­

tures have only two possible values. We bring up the idea of the simplest linear

threshold unit, which tries to fit a linear representation to approximate the value

function [5]. Perhaps the true value function does not take the form of this rep­

resentation. However, when it is possible for state features take on more values,

the piecewise linear approx imation allows for a representation that can simulate

nonlinear functions in order to represent the value function. This allows for the

ability to approximate more equat ions with better accuracy; an ability that is

)

)

)

)

46

refined with the number of features. In Figure 7.2 (notice that, in this figure and

the next, part (a) has a range for its x-ax is of 50 million time steps, and part

(b) has a range for its x-axis of 100 million time steps), features have 3 possible

values each, and in Figure 7.3 features have 5 possible values each . Notice how the

average rewards of the function approximated methods increase with the number

of state features .

0.------------------, 0.----------------~

- ----- ---------- ----- ----- ----- -

.• , r: ::::.:.-.::: ··
·0 .2

·0.4 1

-0.6

-0.8

AR­
AH -- ----­
fAH ·· •· ··· ·

-0.4

-0.6

-0.8

fAR - ·- ·- ·-
-1 L----------------~ -1 ~--------------~

time - 50 million steps time - 100 million steps

(a) (b)

FIGURE 7.2. AH and AR-Learning in the product delivery environment with 2

trucks, 2 shops, and 3 different different inventory levels.

In domains with higher numbers of possible values for state features,

function-approximated versions of both AR- and AH-Learning learn policies only

slightly lower than the policy obtained by the tab le-based versions mentioned

above, which is approximated as optimal (shown in figure 7.3). This is reasonable

because the use of any function-approximation method will alter the resulting

values from the non-approximated version.

47

0.-------------------, o~--------------~

-0.4

-0.6

-0.8

AR­
AH ------­
fAH --------

-0.2

-0.4

-0.6

-0.8

-1 '-----------------' -1 '-----------------'
time - 50 million steps time - 100 million steps

(a) (b)

FIGURE 7.3. AH and AR-Learning in the product delivery environment with 2

trucks, 2 shops, and 5 different different inventory levels.

Due to extreme ly finicky parameters and the sub-optima l behavior of

function-approximated AR-Learning in environments with binary features, (which

we did not immediate ly recognize as unique to lesser quantities of features), we

exper ienced severe difficulties in getting function-approximated AR-Learning to

reach an average reward comparab le to the one learned by function-approximated

AH-Learning. Noting similar difficulties in the adjustment of the parameters al­

pha and beta in R-Learning in [10], we tried a method similar (but not equivalent)

to Mahadevan's tab le-based beta [10] in our function-approximated AR-Learning.

Mahadevan used a table of learning parameters rather than a single variable beta

to multiply the different members of the value function. Our 'beta-tab le' was in­

dexed by feature and value of that feature . Even with this adjustment, function-

)

)

)

)

48

approximated AR-Learning did not work as well as function-approximated AH­

Learning. However, it scaled much better than the latter method (which is un­

derstandable, seeing as it requires less space for keeping models and also fewer

calculations) and ran in one-third to one-quarter of the time that AH-Learning

required.

0----------------, 0.----------------~

-0.2 1 - -0.2

-0.4 -0.4

-0.6 -0.6

-0.8 -0.8

fAH- fAR-
-1 '----------------~ -1 ~--------------~

time - 1 0 million steps time - 100 million steps

(a) (b)

FIGURE 7.4. Function approximated versions AH and AR-Learning for 2 trucks,

5 shops, and 5 possible inventory levels.

By decreasing the value of beta dramatically (to somewhere between 10- 4

and 10- 6), keeping the beta fixed, and increasing the number of iterations which

the AR algorithm was run by tenfold, function-approximated AR-Learning was

finally able to attain around the same average reward as function-approximated

AH-Learning. Figure 7.4 (note part (a) has and x-range of 10 million steps whereas

part (b) has an x-range of 100 million steps) shows a comparison between function­

approximated AR (notated as fAR) and function-approximated AH (notated as

49

fAH). The curve that is labeled 'fAR-beta' represents function-approximated AR­

Learning, using the beta adjustment mentioned above. Each curve represents

an average of 10 runs and is carried out in an environment containing 2 trucks,

5 shops, and 5 different possible levels of both shop inventory and truck loads.

This is the same environment attempted in (22], which exhibited the abnormality

of AR-Learning that we set out to investigate. The only difference between the

environment of the shown plot and the environment of the mentioned study is the

probability function representing how often a shop's inventory might decrease.

)

j

50

8. CONCLUSIONS AND FUTURE WORK

Auto-exploratory R-Learning is a relatively simple algorithm. It gets rid

of the need for inflicting exploration using an E-greedy step as well as the random

steps and sub-optimal returns that come as a result. AR-Learning, as does its non­

auto -exploratory counterpart, R-Learning, suffers from a sensitivity of parameters

that can be both frustrating and time-consuming . Compared to AH-Learning,

AR-Learning also takes more iterations to converge. AR-Learning's improvement

in latter iterations is deceptively slow, and therefore seems to be halted earlier

than it actually converges. Even though the number of iterations required to reach

ultimate convergence is nearly ten times that of AH-Learning, AR-Learning still

requires less temporal time to run, due to the smaller number of computations

and the lesser number of tables required by this algorithm. These differences are

based on the fact that AH-Learning is a model-based method, while AR-Learning

is model-free.

We noted a severe difference between table-based and function­

approximated AR-Learning as to the difficulty in discovering the parameters that

would yield optimal results. Perhaps this difficulty was caused, in part, by the

function approximation method. A potential area for future work might include

attempting different function approximation methods with AR-Learning.

51

BIBLIOGRAPHY

[1] L. Baird, "Residual Algorithms: Reinforcement Learning with Function Ap­
proximation," International Conference on Machine Learning, 1995.

[2] A.G. Barto, S.J. Bradtke, S.P. Singh, "Learning to act using real-time dy­
namic programming," Artificial Intelligence, vol. 73(1), pp.81-138, 1995.

[3] J.A. Boyan, A.W. Moore, "Generalization in Reinforcement Learning: Safely
Approximating the Value Function," Advances in Neural Information Pro­
cessing Systems, vol. 7, 1995.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algo­
rithms, Second Edition, The MIT Press, 2001.

[5] T.G. Dietterich, Notes and slides from CS 534, Machine Learning, Oregon
State University, 2003.

[6] T.G. Dietterich, "Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition," Journal of Artificial Intelligence Research, vol. 9,
pp.227-303, 2000.

[7] T.G. Dietterich, "An Overview of MAXQ Hierarchical Reinforcement Learn­
ing," Oregon State University, 2000.

[8] T. Estlin, I. Volpe, D. Mutz, F. Fisher, B. Engelhardt, S. Chien, "Decision­
Making in a Robotic Architecture for Autonomy," JPL online library, Jet
Propulsion Laboratory, 2001.

[9] L.P. Kaelbling, M.L. Littman, A.W. Moore, "Reinforcement Learning: A
Survey," Journal of Artificial Intelligence Research, vol. 4, pp.237-285, 1996.

[10] S. Mahadevan, "Average Reward Reinforcement Learning: Foundations, Al­
gorithms, and Empirical Results," Machine Learning, vol. 22, pp.159-196,
1996.

[11] S. Mahadevan, "To Discount or Not to Discount in Reinforcement Learn­
ing: A Case Study Comparing R Learning and Q Learning", International
Conference on Machine Learning, pp.164-172, 1994.

[12] D. Ok P. Tadepalli, "Auto-exploratory Average Reward Reinforcement Learn­
ing," Proceedings) 14th International Conference on Artificial Intelligence,
pp.881-888, 1996.

[13] R. Parr, S. Russell, "Reinforcement Learning with Hierarchies of Machines,"
Advances in Neural Information Processing Systems, vol. 10, pp.1043-1049,
1997.

J

)

)

52

[14] S. Proper, P. Tadepalli, H. Tang, R. Logendran, "A Reinforcement Learning
Approach for Product Delivery by Multiple Vehicles," Oregon State Univer­
sity.

[15] D.E. Rumelhart, G.E. Hinton, R.J. Williams, "Learning representations by
back-propagating errors," Nature, vol. 323, p.533-536, 9 October, 1986.

[16] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice
Hall, Inc., 1995.

[17] A. Schwartz, "A Reinforcement Learning Method for Maximizing Undis­
counted Rewards," Proceedings of the Tenth International Conference on Ma­
chine Learning, 1993.

[18] S. Seri, P. Tadepalli, "Model-based Hierarchical Average-reward Reinforce­
ment Learning," Oregon State University, 2002.

[19] R.S. Sutton, "Generalization in Reinforcement Learning: Successful Exam­
ples Using Sparse Coarse Coding," Advances in Neural Information Process­
ing Systems, vol. 8, pp.1038-1044, 1996.

[20] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, The MIT
Press, 2000.

[21] P. Tadepalli, D. Ok, "Model-based Average Reward Reinforcement Learning,"
Artificial Intelligence, vol. 100, pp.177-224, 1998.

[22] H. Tang, "Average-reward Reinforcement Learning for Product Delivery by
Multiple Vehicles," MS Project Report, Oregon State University, 2002.

[23] G. Tesauro, "Temporal Difference Learning and TD-Gammon," Communica­
tions of the ACM, vol. 38(3), 1995.

[24] S. Thrun, A. Schwartz, "Issues in Using Function Approximation for Rein­
forcement Learning," Proceedings of the Fourth Connectionist Models Sum­
mer School, 1996.

[25] J.N. Tsitsiklis, B. Van Roy, "Feature-Based Methods for Large Scale Dynamic
Programming," Machine Learning, vol. 22, pp.59-94, 1996.

[26] C.J. Watkins, "Learning from Delayed Rewards," Ph.D. thesis, King's Col­
lege, 1989.

[27] E.W. Wolfram, "Math World A Wolfram Web Resource",
http:j /mathworld. wolfram. com.

