

Scootr Studio:
Serverless on Wheels

By Braden Hitchcock

Final Master’s Project Report

Submitted to

Oregon State University

In partial fulfillment of
the requirements for the degree of

Master of Science in Computer Science

Presented 17 March 2020

Commencement March 2020

Abstract

Significant increases in the amount of data being streamed, collected, and processed have

resulted in widespread adoption of the use of microservices to build scalable software

applications. Unfortunately, current tools and frameworks are often insufficient at providing a

simple, unified experience for the design, development, and deployment of microservices. They

also have the tendency to be overly-complicated, resource intensive, and vendor-specific. This

Master’s Project Report introduces Scootr Studio, the first in a class of next-generation

integrated development environments (IDEs) for microservice-based applications. Scootr Studio

unifies the design, development, and deployment of microservice-based applications through the

use of a small set of abstractions. These abstractions create an Event-Driven Application

Architecture Model (EDAAM) that minimizes hosting-provider dependence. A laboratory study

showed that software developers are able to build microservice-based applications 4.4 times

faster using Scootr Studio than their existing IDE of choice. These users’ experiences also

illustrate how the use of Scootr Studio eliminates common errors encountered during deployment

of microservice-based applications. Participants in the laboratory study also completed a

usability survey, where Scootr Studio was given favorable ratings for its learnability,

memorability, efficiency, and error rate reduction. These promising results serve as a starting

point for creating tools that provide a simpler, more holistic development experience for agile

software development teams looking to properly utilize microservices in their systems.

Page 1

1 - Introduction

Microservices are mainstream [NGINX, 2016][Ford, 2018]. Significant increases in the

amount of data being streamed, collected, and processed have resulted in a greater need for

building scalable software applications that provide high-availability and consistency. In a recent

survey conducted by Red Hat, a world leader in enterprise open source solutions, 69 percent of

respondents say that they use microservices to re-architect their existing applications as much as

they use them to build their brand new products [Red Hat, 2018]. This widespread adoption of

microservices for providing services to customers has sparked the creation of numerous tools and

frameworks aimed at easing the process of microservice-based application development.

Unfortunately, 99 percent of individuals adopting microservices report that there are still

significant challenges to their use [Dimensional Research, 2018]. What’s more, microservices

are inherently difficult to implement, with 87 percent of Red Hat survey respondents indicating

that they are cobbling together multiple technologies for their microservice-based applications

[Red Hat, 2018]. The complexities of interdependent moving parts and the technical expertise

required to deploy and manage the supporting infrastructure have left many software developers

scratching their heads on where to even start with building microservice-based applications.

Traditionally, Software Architects would design a system and pass the design off to

Software Developers for implementation. The deployment of the finished product was then

handled by IT Administrators. However, the adoption of agile software development

methodologies has collapsed barriers between teams within small and mid-sized organizations,

placing more of a responsibility for controlling the entire lifecycle of an application squarely on

Page 2

the shoulders of a smaller application engineering team [Abrahamsson et al., 2002]. Despite this

added responsibility, existing tools have not provided a sufficiently holistic solution to simplify

the process of designing, developing, and deploying microservice-based applications for agile

software teams. Furthermore, no representation of physical resources as an architectural model

that abstracts the components of a microservice-based application while reducing vendor-specific

dependencies exists. This results in a high entry-barrier into the world of microservices that

discourages their use in an agile development environment, forcing smaller teams to use

inadequate technologies to support their business logic.

This Master’s Report presents Scootr Studio, the first in a class of next-generation

integrated development environments (IDEs) that aims to simplify the design, development, and

deployment of microservice-based applications. The system is designed specifically with

less-experienced cloud-based application software developers in mind. It is intended to (1)

enable these users to more efficiently develop microservice-based applications, (2) reduce the

number of errors associated with their deployment, and (3) increase the overall usability of the

cloud for software developers. Scootr Studio is based on a combination of principles from

Model-Driven Engineering (MDE), Domain-Driven Design (DDD), and Event Storming for

building highly scalable and maintainable software [Schmidt, 2006][Evans, 2003][Brandolini,

2019]. These principles result in a small set of abstractions that create an Event-Driven

Application Architecture Model (EDAAM) that represents microservice-based systems in a way

that minimizes vendor-specific dependencies. Users build EDAAMs from a model-driven IDE.

An EDAAM is then sent to backend services and fed into provider-specific drivers that manage

the deployment of the application and associated resources to the cloud.

Page 3

A laboratory study involving 7 students from the Oregon State University Software

Innovation Track was used to evaluate the efficiency of Scootr Studio over alternative methods.

Evaluation participants then completed a survey to assess the overall usability of the system

compared to alternatives. The combined laboratory results and the usability survey show that the

highly usable nature of Scootr Studio successfully increases the efficiency of developing

microservice-based applications while eliminating common deployment errors.

The remainder of this document is organized as follows. Section 2 presents related work

and existing solutions in the areas of microservice design, development, and deployment

respectively. Section 3 contains greater implementation details about Scootr Studio. Section 4

reports the methodologies and results from the laboratory study and usability survey used to

evaluate Scootr Studio. Finally, Section 5 draws conclusions and summarizes opportunities for

future work.

2 - Related Work

Industrial solutions to the development of microservices are quickly increasing in

quantity and quality [Baldini et al, 2017]. As more individuals adopt microservices as their

architecture of choice, companies and open-source organizations alike are developing a myriad

of tools, frameworks, languages, and services to increase the ease and efficiency of designing,

developing, and deploying their services. While these solutions alleviate many of the pains

associated with developing distributed, cloud-based systems, they still require significant

amounts of background knowledge, complicate application development, and introduce vendor

lock-in.

Page 4

2.1 - Microservice Design Techniques

Good software starts with good design, and the design of a microservice-based system is

no exception. Traditionally, “PowerPoint” software architects have discussed the design of

software systems and then handed off the design to software developers to implement [Rehman

et al., 2018]. In recent years, the adoption of Agile Development processes has shattered the

barriers between software architects and software developers, often merging the two together in a

closely-knit team. Nonetheless, the distinct role of an architect versus developer introduces a

communication failure point and increases the potential for new bugs to enter the system

[Rehman et al., 2018].

A number of tools can assist with the creation of designs and help architects effectively

communicate the system specifications to the developers. LucidChart and Draw.io are popular

online options that provide dozens of shapes and a drag-drop canvas with connectors. Both also

have cloud-storage integration and multi-user sharing, making it easy for teams to collaborate on

designs [Lucidchart website, 2020][Draw.io website, 2020]. However, the representations are

static and cannot be translated to code without the use of additional tooling such as Visual

Paradigm [Visual Paradigm website, 2020]. Making changes in the architecture then requires

revising the implementation, testing it, and potentially making further changes. New tools could

facilitate the transition from design to development of microservice-based application

development by more seamlessly translating architecture to code [Spillner, 2017].

Page 5

2.2 - Microservice Development Processes

In order to create a scaffold for the microservice that they can subsequently fill in with

application-specific details, developers can begin coding microservices by focusing on parts of

the application not directly associated with the business logic. This scaffolding can include

components such as authentication/authorization, message brokers, IPC, logging, monitoring,

failure detection, and security. Many of these components can be replicated across multiple

systems without significant changes to their code, which means that continually implementing

this code for each microservice amounts to reinventing the wheel over and over again.

Implementing this “boilerplate” is not as trivial as simply copy-pasting from an old application

due to the fact that the names and APIs of microservices differ from application to application.

Therefore, many languages, libraries, frameworks, and tools have sprung up to help

alleviate the pains associated with repetitive aspects of implementing microservices. For

example, Micro (written for the Go programming language) aims to provide much of the

boilerplating required for microservice development [Micro website, 2020]. It even features

pluggable components that allow developers to customize their technology stack. A similar tool

is the Ballerina programming language, which is written specifically for microservice

development. Programs written in Ballerina compile to JVM byte-code and help take care of

distributed communication, recovery, and coordination [Ballerina website, 2020]. Ballerina even

introduces network-level abstractions in the language to facilitate the use of networks in the

system.

Page 6

While both of these options heavily reduce the amount of boilerplate code that

development teams must write to use microservices, they still require developers deploy the

microservices on their own. Moreover, such tool suites tend to work only on one specific

platform (such as Ballerina on JVM), which means that developers are locked in to particular

runtime platforms (such as Google Cloud, which natively supports JVM runtimes, versus Azure,

which requires time-consuming initial configuration and ongoing management).

A more recently, widely-adopted process involves the use of “serverless” functions

[Baldini et al., 2017]. Serverless development, as the name implies, involves developing an

application with a strict focus on code that implements the application business logic and without

much regard to how that code is eventually run. The hardware and supporting infrastructure is

not considered. In this sense, it focuses on the what rather than the how of microservices. This

process significantly reduces the amount of time and money it takes to develop

microservice-based applications [Adzic et al., 2017]. However, each hosting provider has their

own way of providing a serverless service, increasing the risk of vendor lock-in [Adzic et al.,

2017].

2.3 - Microservice Deployment Tools

Another challenging aspect of developing microservices is infrastructure provisioning. In

recent years, hosting providers such as Amazon Web Services (AWS), Microsoft Azure Cloud,

Google Cloud Platform, and others have emerged to bear the burden of IT management for

corporations and projects world-wide.

Page 7

Currently, the most widely used infrastructure provider is AWS, which owns

approximately 50% of the market share of cloud infrastructure and service providers [Su, 2019].

The usage of AWS over self-hosting creates significant cost reductions. In fact, using the AWS

TCO calculator, a system configuration of 10 compute VMs and 3 database VMs, each with 4

cores and 32 GB of RAM, in addition to a total storage capacity of 100 TB can cost up to 52%

less on AWS than in a self-hosted model [AWS TCO website, 2020].

All providers also allow fine-grained tuning of the system resources through web

dashboards, but many of these low-level details are often very similar across different

applications, meaning that developers unnecessarily learn the nuances of specific hosting

providers while trying to accomplish the same bootstrapping of the infrastructure to support their

applications. Some of these nuances can be removed by using containerization technology such

as Docker to create isolated execution environments that are the same during development as

they are in production [Docker website, 2020]. Containers can even be orchestrated and managed

using a service such as Kubernetes, which can help coordinate and configure multiple services in

the presence of failure [Kubernetes website, 2020]. Many hosting providers offer Kubernetes as a

service, making it somewhat easier to set up a cluster and have pods running without manual

intervention. However, proper use of tools such as Kubernetes require copious amounts of

training study, and practice, increasing the cost of starting with or migrating to a

microservice-based architecture.

Almost all hosting providers also offer platform services that simplify much of the

low-level configuration needed for deploying applications. These Platform as a Service (PaaS)

providers simplify the deployment process by attempting to help the developer only worry about

Page 8

their code and a few configuration options. However, crucially, there currently does not exist a

PaaS provider that offers a platform-independent implementation for microservice deployment.

Therefore, using these deployment tools inherently creates vendor lock-in.

Some declarative frameworks exist to help ease the process of microservice-based

systems using specific cloud providers and help to illustrate the lock-in issues discussed above.

An example of this is Stackery, a tool that helps teams to quickly build and manage serverless

infrastructure [Stackery website, 2020]. As a type of serverless acceleration software, Stackery

utilizes a visual approach to representing the configuration of serverless applications on AWS.

Under the hood, Stackery uses the AWS Serverless Application Model (SAM) to represent

serverless applications. By using a visual approach, Stackery is able to provide a high-level view

of the system and merge the design and deployment stages of a serverless application. It even

comes with a Visual Studio Code extension, allowing the coding of the microservice to be

included in the development process. Stackery works well as an initial attempt to merge the

design, development, and deployment of microservice-based applications. However, it is built

only for AWS and utilizes AWS SAM, meaning a developer has to learn how AWS SAM works

on top of learning how Stackery works, creating a steeper learning curve when onboarding new

developers. It also lacks additional abstractions on top of AWS SAM, meaning it has an

extremely narrow infrastructure application context. And, as mentioned above, it is only for

AWS: once a developer team has committed to using Stackery, they will find migrating to

another platform extremely difficult.

Another tool called Architect sports an internal domain specific language (DSL) that can

be used to represent the configuration of a microservice-based system. The framework interprets

Page 9

the DSL and provisions the proper resources on AWS [Architect website, 2020]. The use of a

DSL is one step towards simplifying the deployment process of microservices; however, similar

to the Stackery model, the DSL is built around the AWS serverless ecosystem, which results in

vendor lock-in and a requirement for understanding certain details about how AWS serverless

works.

Still another popular tool is the Serverless Framework (also simply known as Serverless)

[Serverless website, 2020]. Serverless features a small set of abstractions for configuring

serverless functions inside of a YAML file. It then interprets the YAML configuration and

deploys the appropriate resources to the hosting providing of choice. These configurations make

deploying simple serverless applications extremely simple and efficient. Serverless also provides

tooling and plugins for local development and configuration transformation to help simplify the

process of developing for specific cloud providers. Most of the configuration is vendor-agnostic;

however, if the function being deployed depends on any additional resources (such as a database

or message queue), then those resources must be included in the YAML file using the

infrastructure templating syntax specified by the target hosting provider. For example, using

AWS as the provider requires the use of CloudFormation templates inside the Serverless YAML

file. This implies that more knowledge about specific providers is required in order to build a

system of significant value, which hinders the vendor-agnostic feature of the framework.

In addition to vendor-specificity, serverless also only supports serverless functions, which

by their nature are short-lived, narrowly scoped processes. If the application calls for a zero

downtime component, then the Serverless Framework cannot guarantee those requirements will

Page 10

be met without additional knowledge of design-patterns for accomplish such a system setup

using serverless functions.

3 - Solution

Scootr Studio is the first system to effectively combine the design, development, and

deployment of cloud applications into one visual tool. The system’s ability to enable efficient

development of microservices lies in its architectural abstractions. These abstractions create an

architectural model of the desired system called the Event-Driven Application Architecture

Model (EDAAM). As shown in Figure 1, users create a description of the EDAAM using the

model-based IDE user interface. During deployment, the IDE sends the description of the

EDAAM to a collection of backend services called the Studio Services via the Studio Services’

API Controller. The Controller queues the request for later processing by the Deployment

Processor. Once the Deployment Processor transforms this description into a valid EDAAM, it

feeds the model into a driver that allocates and configures the required infrastructure on the

user’s selected hosting provider. Progress of the deployment is communicated back to the IDE

via an event stream for the user to view.

Page 11

Figure 1: Sequence of events as a user interacts with Scootr Studio.

3.1 - A Model-Based Approach

The need to improve the process of building microservices has led to research about how

to support Model-Driven Engineering (MDE) within development of distributed systems

[Steinegger et al., 2017]. MDE consists of two primary components: (1) a domain-specific

modeling language, and (2) transformation engines and generators that can analyze the model

and synthesize various types of artifacts (e.g. code, binaries, infrastructure resources, etc.)

[Schmidt, 2006]. Using these two components, MDE has the potential to reduce system

complexity and the number of errors that occur post-deployment due to robust model validation

and artifact generation. An additional benefit of using MDE to describe complex systems is that

the use of visual elements that relate directly to a specific domain not only helps flatten learning

curves, but also invites a broader range of subject matter experts to the table to help ensure that

the software meet their requirements [Schmidt, 2006].

Page 12

MDE fits hand-in-hand with the use of Domain-Driven Design (DDD), an approach to

software design that divides a system into components that share similar functionality, known as

domains [Evans, 2003]. The core domain is the domain that holds the primary business logic of

the system that gives the system its competitive advantage. All domains, including the core

domain, can be represented using model-based abstractions that are then fed into a generator of

some kind to produce the application. Such an approach facilitates the unification of the design,

development, and deployment of microservice applications.

3.2 - Architectural Abstractions

Scootr Studio is built on a small set of logical abstractions that represent collections of

physical cloud resources. The abstraction boundaries are largely influenced by the process of

Event Storming, a companion to DDD for determining the design of complex software systems

[Brandolini, 2019]. Event Storming prompts the developer to think of events as the core

component driving system design. Scootr Studio builds on this idea by breaking up events and

the resources that handle them into six separate abstractions: Application, Event (subclassed with

External and Internal), Compute, Trigger, Storage, and Reference. These abstractions allow us to

represent microservice-based systems in a manner that significantly reduces the amount of

hosting provider-specific configuration required to run the application.

For example, assume we are creating a simple e-commerce system as shown in Figure 2.

Our application will have two External Events exposed as a RESTful HTTP endpoints: one for

getting a user’s orders (GetOrders), and another for allowing a user to order another item

(OrderItem). The functional requirement for the Compute resource that handles the GetOrders

Page 13

event (GetOrdersHandler) is trivial: simply read the user’s orders from a Storage resource

(OrderStorage) and return a list of past and current orders. For the OrderItem event, a separate

Compute resource (OrderItemHandler) first needs to add the order to OrderStorage. Then

OrderItemHandler will trigger shipping of the item. It does this by emitting an Internal Event

(ItemOrdered) on an internal message broker. A separate Compute resource

(ItemOrderedHandler) listens for this event, executing some business logic involving a separate

Storage resource containing shipping information for orders (ShippingStorage).

Figure 2: An e-commerce system represented using the Event-Driven Application Architecture
Model.

3.2.1 - Application

An Application represents the collection of architectural components that compose a

microservice-based application. It contains metadata about the system and determines the

provider that will host the infrastructure used for the application, as well as the region to which

the application will be deployed. The entire system represented in Figure 2 is considered the

Application.

Page 14

3.2.2 - Event

The Event abstraction logically represents actual events that trigger actions within the

application. These events can be sourced from outside the application itself (classed as External

Events) or from resources within the configuration (classed as Internal Events). External events

are the entry point for the application, whereas Internal Events are communication channels

between different resources in the application. This subclassing of the Event abstraction

facilitates the creation of event-driven systems, which are easier to maintain and enhance than

their more tightly-coupled counterparts [Michelson, 2011].

External events primarily represent HTTP requests on RESTful API endpoints. Internal

events can be events emitted over an internal message broker. Users configure the Event’s type

and any additional type-specific configuration, such as HTTP path and method or the broker

used for internal events. The Event abstraction’s configuration is vendor-agnostic up to the point

that hosting-provider specific methods are not used as External Event sources or as the broker for

Internal Events. For example, if the application uses Amazon SNS as the internal event broker,

then that configuration would not be valid on another hosting provider such as Microsoft Azure

or Google Cloud Platform.

Our e-commerce example contains two External Events (GetOrders and OrderItem) and

one Internal Event (ItemOrdered).

3.2.3 - Compute

The Compute resource executes actions within the system in response to events. The key

configuration values supplied by the user for Compute resources include the code used to handle

Page 15

the event and the runtime environment that code will be executed in. Realistically, the Compute

resource can represent any kind of processing infrastructure (virtual machine instances, Docker

containers, Kubernetes pods, serverless functions, etc.). Currently, the implementation of the

abstraction supports configuration fields that allow a driver to easily create a serverless function

(see section 3.6). Additional supported physical Compute resource configuration fields (such as

containers) are under active development. Similar to Events, the Compute resource is

provider-agnostic up to the point that the code does not contain references to hosting

provider-specific SDKs or APIs.

Our e-commerce example has three Compute resource instances: (1) GetOrdersHandler,

(2) OrderItemHandler, and (3) ItemOrderedHandler.

3.2.4 - Trigger

Triggers are connections from an Event to a Compute resource. As the name implies,

they create the configuration that will tell the hosting-provider to “trigger” the Compute resource

action whenever the Event is emitted. Triggers are considered a trivial abstraction in that they do

not require any additional configuration outside of the source resource (an Event) and the target

resource (a Compute).

In our example e-commerce application, there are three triggers represented by dashed

lines: (1) from GetOrders to GetOrdersHandler, (2) from OrderItem to OrderItemHandler, and

(3) from ItemOrdered to ItemOrderedHandler.

Page 16

3.2.5 - Storage

Storage resources represent locations where data can be persisted by Compute resources.

They exist independent of the Compute resources that use them, increasing the compositionality

of the system. There are currently two main types of Storage resources: Key-Value and

Relational. Each type allows the user to configure a database engine that is used to persist the

data fed to the resource by the Compute resources in the application. Any additional required

configuration for the Storage resource depends on the type. For instance, Key-Value Storage

resources only require the database collection name, primary key field name and primary key

field data type. On the other hand, a Relational Storage resource requires the user to provide the

entire schema for the database table or tables the driver will ultimately create.

The e-commerce example at the beginning of this section contains two Storage resources:

(1) OrderStorage and (2) ShippingStorage.

3.2.6 - Reference

References are the connections from a Compute resource to Storage resources and

Events. References are considered a different type of connection from Triggers because they give

Compute resources access to other resources in the application. As such, this access needs to be

secured. References can be configured to allow create, read, update, or delete actions on the

target resource, ensuring the architecture can conform with the principle of least-privileged

access [Ma et al., 2011].

In our e-commerce example, there are three references represented by solid lines: (1)

from GetOrdersHandler to OrderStorage, which would have read permission on the

Page 17

OrderStorage resource; (2) from OrderItemHandler to OrderStorage, which would have create

permission on the OrderStorage resource; and (3) from OrderItemHandler to the ItemOrdered

event, which corresponds to the use of an internal message broker and has create permission for

that resource.

3.3 - User Interface

From a user’s perspective, Scootr Studio is a single-page web application IDE user

interface (IDE UI) built using JavaScript and the React Framework. It’s goal is to merge the

design, development, and deployment of microservices into a single view. To accomplish this, it

features a drag-and-drop canvas on the left (design) and a details pane for configuration on the

right (development). Deployment is managed by the toolbar above the drag-and-drop canvas.

Page 18

Figure 3: Screenshot of a completed application using the Scootr Studio user interface.

Much of the web application is built entirely with React, including state management.

However, some third-party library integrations for blueprint canvas and code editing were

developed as custom React hooks for use within the system.

3.3.1 - State Management

State for the application is handled exclusively by React hooks and the Context API.

Both hooks and context are React concepts used for state management by many existing

libraries. Using native features of the framework as opposed to any one of these libraries helps

reduce dependencies and minimize the attack surface of the application, which is important when

building software that creates software and provisions infrastructure [Zhang et al., 2015]. It also

Page 19

allows the code to be more easily written in a functional style, which increases the modularity of

the system and reduces complexity [Bosch et al., 2010][Bitman, 1997].

Scootr Studio uses three separate contexts to manage state: the Application Context, the

Status Context, and the Workspace Context. The Application context manages general

application configuration (i.e. for the Application abstraction in the EDAAM). The Status

Context manages the state of notifications and status bar messages for the entire application. The

Workspace Context manages the remainder of the state as controlled by the drag-drop canvas and

the configuration pane, including the rest of the EDAAM description configuration and

validation. The motivation behind using separate contexts boils down to performance. React

triggers a re-render for all components that subscribe to a specific state context whenever that

context changes. If all the state existed in single context, the entire application would re-render

each time state changed. This can get expensive, so to reduce memory overhead and give more

of the CPU back to the computer, Scootr Studio splits the state into subsets that reduce

magnitude of each re-render.

Updating state in the Application and Status Contexts is trivial, as it is a simple

replacement of the current state object with a new state object containing the most up-to-date

values. However, the Workspace Context requires a little more work to update, wherein the

following algorithm is used: (1) create a new resource or connection state object (depending on

what type of resource has changed value), (2) merge the new values in with the old resource

state, (3) validate all the properties of the new resource or connection state, (4) create a new

Workspace state object and copy the previous state values into it, (5) merge the new resource or

connection state into the new Workspace state object, (6) validate the names and fields for all

Page 20

resources and connections that are required to be unique across the EDAAM, and (7) update the

selected resource or connection reference (if it is not null).

The steps involving validation are the most expensive in the algorithm, mainly because

they require looping over all of the fields of a resource and then over all of the resources in the

state tree. If a resource has f fields, and there are r resources and c connections, then updating

state in the Workspace Context has a runtime complexity of O(f + r + c) , which simplifies to

linear complexity. In reality, most EDAAMs are relatively small, and each resource has only a

few fields, so the added time complexity due to validation doesn’t manifest itself as lag during a

re-render. This allows front-end validation to provide a better user experience to the developer

before deployment, eliminating the need to deploy an invalid configuration and wait for the

server to respond with the errors.

The final step in the algorithm is critical for preventing memory leaks and stale

references, particularly when the resource or connection being updated in the state tree is

currently selected. If the selected resource or connection is not updated, then the reference in the

state tree will be to the object in the previous state, which can lead to state-corruption and

potential unresponsiveness of the application.

For the purposes of assessing the innovative nature of Scootr Studio, state is currently

persisted across browser sessions through the use of local storage, removing the need for a

database in the backend to store user and application information. Future iterations of Scootr

Studio will produce lockfiles to be committed with source code as a means for storing

application configuration and state, leaving everything in the control of the developer.

Page 21

3.3.2 - Blueprint Canvas

The blueprint canvas provides a visually appealing way of constructing a valid EDAAM.

Under the hood, it’s implemented using the HTML 5 Draggable API and jsPlumb, a library for

visually connecting HTML DOM elements [Mozilla website, 2020][jsPlumb website, 2020].

Custom React hooks are used to implement drag-and-drop, whereas a single instance of jsPlumb

is used to implement visual connectivity between resources on the canvas. React integration for

jsPlumb had a difficult API, so a newer library (react-plumb) was developed in parallel to work

being done on Scootr Studio. react-plumb uses React hooks for interfacing a React application

with an instance of jsPlumb efficiently. The use of this library enables the creation of Triggers

and References for the EDAAM from Scootr Studio.

Figure 4: Screenshot of the blueprint canvas where model objects are dropped and connected.

3.3.3 - Code Editor

The code editor on the Compute resource details pane utilizes the Monaco Code Editor

by Microsoft [Microsoft Monaco website, 2020]. This is the same editor engine used in the

Page 22

popular text editor Visual Studio Code. Scootr Studio uses the Singleton Pattern to improve the

performance of having multiple editor views for different Compute resources [Gamma et al.,

1994]. There is a single, global instance of a monaco editor for the entire application. Each

Compute resource has its own view model that is loaded when the Compute resource is selected.

Figure 5: Screenshot of the code editor for Compute resources in the right panel of Scootr Studio

3.3.4 - Testing and Monitoring

Scootr Studio provides testing for External Events and log monitoring for Compute

resources. This allows users to troubleshoot issues in their code without needing to access the

hosting provider dashboards. It also allows faster debugging in the absence of a full-featured

Page 23

local development environment that mimics the hosting provider of choice, which is not

available in the current version of Scootr Studio.

Figure 6: Screenshots of the test pane (left) for an Event and the log pane (right) for a Compute
resource.

3.4 - Studio Services

Once a user has successfully built an EDAAM description and clicked on the “Deploy”

button in the toolbar, the IDE UI sends the description to a collection of backend services called

the Studio Services. These services (shown in Figure 7) communicate with each other over IPC

and an event stream to collectively transform the EDAAM description into an actual EDAAM

capable of being processed by a driver. The EDAAM is subsequently deployed by the driver to

the user’s selected hosting provider.

Page 24

Figure 7: System design and components of Studio Services

All requests made by Scootr Studio to the Studio Services go through the API Controller,

which acts as the gateway through which Scootr Studio interacts with the backend services. The

Studio Services are stateless, so they use encrypted and signed session tokens (stored as cookies

in the IDE UI) in order to keep track of the client they are communicating with.

The API Controller communicates with other services to fulfill requests made by Scootr

Studio. These other services, such as the Log Monitor and Deployment Processor, relay

information and progress through IPC back to endpoints initialized by the API Controller. These

endpoints transmit the information to Scootr Studio using separate event streams. These streams

are implemented using Server Sent Events (SSE), a unidirectional event stream over HTTP from

server to client [Mozilla website, 2019]. Studio Services use SSE instead of web sockets because

Page 25

Scootr Studio is not making real-time requests to the Studio Services, only occasional ones. This

means that the bidirectional stream offered by the WebSocket API is not necessary, and so we

reduce complexity and maintain a clean interface by not using it.

A key component of the Studio Services is the Deployment Processor, which uses the

Scootr runtime library to process a request containing an EDAAM description (see section 3.5).

This process runs outside of the main API Controller event loop, increasing the concurrency

capabilities of the Studio Services. The Deployment Processor is also in charge of spawning the

Serverless Framework process that will ultimately handle deployment. Communication between

the two processes is handled over standard input and output, with output from the Serverless

Framework process being parsed and cleanly formatted for status reporting inside of the Studio

Services. The system also utilizes logging to capture it’s behavior and provide a reference for

troubleshooting issues. These logs are emitted as JSON-formatted event packets on the Studio

Services standard output pipe, allowing other processes to determine how to handle and display

the logs.

In order for users to view the logs for the applications they are building, the log monitor

captures log events and streams them back to the client once a subscribing connection has been

established. Logs are polled once every second after a connection has been established and sent

to the client using SSE.

3.5 - Scootr Runtime Library

The key architectural abstractions are implemented as a runtime library called Scootr.

The library provides a chainable API that simplifies the representation of a system’s architecture

Page 26

as code. This API is currently supported in Node.js. Each object in the API allows for complex

configuration by using the Builder Pattern for constructing instances of objects with multiple

properties (some required and others optional) [Gamma et al., 1994].

The API hides the creation of Triggers and References behind the creation of Compute

and Storage resources that use Events. This increases the expressiveness and chainability of the

API by creating the representation of an application architecture using a more declarative style of

programming [Lloyd, 1994].

When the Deployment Processor receives an EDAAM description, it uses the Scootr

runtime library to transform the description into a valid EDAAM capable of being processed by

a driver. Figure 8 shows the result of transforming our EDAAM description from the IDE UI for

our e-commerce application into a valid EDAAM using the Scootr runtime library.

Page 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

const { application, compute, storage, http, topic,
 types, actions } = require(‘scootr’);
const { driver, enums } = require(‘scootr-aws’);

const orderStorage = storage(‘OrderStorage’ , types.KeyValueStorage)
 .engine(enums.Storage.DynamoDB)
 .collection(‘Orders’)
 .key(‘oid’)
 .keytype(enums.Storage.Number);

const shippingStorage = storage(‘ShippingStorage’ , types.KeyValueStorage)
 .engine(enums.Storage.DynamoDB)
 .collection(‘ShippingInfo’)
 .key(‘iid’)
 .keytype(enums.Storage.Number);

const getOrdersEvent = http(‘GetOrders’).method(‘GET’).path(‘/orders’);

const orderItemEvent = http(‘OrderItem’).method(‘POST’).path(‘/orders’);

const itemOrderedEvent = topic(‘ItemOrdered’)
 .broker(enums.Brokers.SNS)
 .name(‘item-ordered’);

application(‘ECommerceExample’)
 .with(
 compute(‘GetOrdersHandler’)
 .runtime(enums.Runtimes.Node_12_x)
 .code(/* Event-handler code here */)
 .on(getOrdersEvent)
 .use(orderStorage, actions.Read, ‘GetOrdersStorageRef’)
)
 .with(
 compute(‘OrderItemHandler’)
 .runtime(enums.Runtimes.Node_12_x)
 .code(/* Event-handler code here */)
 .on(orderItemEvent)
 .use(orderStorage, actions.Create, ‘OrderItemStorageRef’)
 .use(itemOrderedEvent, actions.Create, ‘ItemsOrderedRef’)
)
 .with(
 compute(‘ItemOrderedHandler’)
 .runtime(enums.Runtimes.Node_12_x)
 .code(/* Event-handler code here */)
 .on(itemOrderedEvent)
 .use(shippingStorage, actions.All, ‘ShippingStorageRef’)
)
 .deploy(driver, enums.Regions.UsWest2);

Figure 8: The example e-commerce application’s EDAAM in Node.js using the Scootr library

Page 28

3.6 - Drivers

The Scootr runtime library exposes a function called “deploy” that begins the process of

application deployment. The first argument the deploy function accepts is the driver used to

deploy the configuration. The second argument is the region to which that application should be

deployed. When the “deploy” function is called, the Scootr runtime library systematically feeds

the EDAAM into the supplied driver (see Figure 9). The runtime library first provides all of the

Events in the system, followed by the Compute and Storage resources. Finally, Triggers and

References are provided to the driver.

The order of abstraction delivery to the driver is important. As the core abstraction and

the source of action in applications built using Scootr, Events must be provisioned first. This is

especially important because Compute resources depend on events, and so the events must be

configured properly before they can be used. Compute resources must come before Storage

resources for this same reason. Finally, all the connections between the resources in the system

come after resource provisioning.

While drivers are primarily responsible for application configuration deployment, they

also are responsible for generating the boilerplate code used to successfully run the

microservice-based application on the target hosting provider. Delegating the creation of

boilerplate code to the driver helps relieve an additional burden on users of the system and

encourages reusable code across multiple applications.

Drivers are pluggable, which enable the same EDAAM to be deployed to multiple

hosting providers with minimal changes to configuration. This means that, given suitable drivers,

Page 29

a programmer could create a single program with Scootr Studio, then build and deploy it on

multiple platforms (e.g., AWS and Azure). The current version of Scootr requires that certain

configuration be changed depending on the driver used. For example, if one driver deploys to

Azure, a Key-Value Storage resource configuration that uses AWS DynamoDB as its database

engine would not be valid and would need to be changed. In this way, EDAAMs are guaranteed

to be provider-agnostic up until the point of utilizing services offered by a specific provider.

The driver used in evaluations for Scootr Studio was the AWS driver (see section 4). This

driver uses the Serverless Framework (see Section 2.3) to deploy resources to AWS. The driver

constructs a workspace directory and the source-code root to add all of the necessary Compute

configurations and dependencies, then builds the YAML configuration file used by Serverless to

provision infrastructure on AWS. The advantage to implementing the AWS driver using an

existing framework is the reliability that comes with an professionally backed, open-source

product, along with the agility to focus on developing better abstractions and a cleaner user

interface to increase the usability of the EDAAM.

Figure 9: The EDAAM is fed into a hosting-provider-specific driver that manages the
deployment of resources to the cloud.

Page 30

Another advantage of using Serverless as the framework for the driver is the ability to

rollback on failures. Serverless for AWS uses CloudFormation, an AWS service that allows the

declarative creation and maintenance of infrastructure, to provision resources [Amazon Web

Services website, 2020]. CloudFormation allows failed deployments to be rolled back to the

most recently successfully deployment. These failures are reported to the driver so that it can

report back to the Scootr library on the reason for failure.

Due to insufficient time to create more drivers, the only available driver for the Scootr

runtime library is the AWS driver. Although the current lack of drivers for platforms other than

AWS prevents Scootr Studio from deploying users’ code onto other platforms (e.g., Azure), the

abstractions noted above will make it straightforward to add support for additional platforms. In

particular, supporting a new platform only requires implementing a new Driver for that platform,

including support for mapping events and storage references to appropriate platform-specific

APIs, as well as support for deploying executables to the cloud. Implementing the Driver for

AWS took approximately 2 weeks of work. As it was the first to be implemented, it is likely that

implementing a Driver for another platform would take even less effort.

4 - Evaluation

Evaluations consisted of two parts: a laboratory study followed by a usability survey. The

laboratory study aimed to analyze the efficiency and advantages of using Scootr Studio over

other methods of microservice-based application development. The usability survey gave

participants the opportunity to assess Scootr Studio on the aspects of learnability, memorability,

efficiency, and error rates.

Page 31

4.1 - Laboratory Study

The laboratory study investigated how quickly participants were able to create a RESTful

API using Scootr Studio as opposed to their preferred IDE. The goal was to explore how much

the unification of the design, development, and deployment stages of microservice-based

application development reduces the amount of time it takes to build these systems.

The study specifically focused on the following two questions: (1) How much more

quickly could individuals build microservice-based applications using Scootr Studio? (2) How

many fewer errors would participants report while building a microservice-based application

using Scootr Studio?

The skills required to complete the evaluation task, in addition to the length of each

evaluation (for several hours), resulted in a lower number of participants than would typically be

expected for statistically significant results. As such, the goal was not to uncover statistically

significant differences between Scootr Studio and other tools. Instead, the evaluations looked at

whether developers were at least several times faster with Scootr Studio than existing IDEs. This

is because (from the perspective of increasing adoption of Scootr Studio among software

developers) such differences play a more important role than small differences that would only

be significant in a large sample.

4.1.1 - Methodology

Participants: Students from the Software Innovation (SWI) Track at Oregon State

University (N=7) were recruited via email. The SWI Track is home to students who have

Page 32

industry experience developing software applications. As such, many of the students have

professional experience with cloud-based application development, making them viable

candidates for the study.

Procedure: Scootr Studio was installed on four Windows 10 machines in the Oregon

State University EUSES Laboratory. The required libraries and processes were started in the

background prior to the participants’ arrival, along with the necessary API keys required for

interacting with isolated AWS accounts for each machine. Participants were invited to attend one

of three sessions during which the evaluation would take place. Food and refreshments were

provided throughout the duration of the evaluation.

Participants were asked to build the RESTful API for a simple todo-list application. The

API had four endpoints: (1) creating an item, (2) getting a list of items, (3) updating a single

item, and (4) deleting a single item. They were provided with in-depth descriptions of the

functionality of each endpoint, as well as example HTTP request/response pairs mimicking

successful calls to the API. They were instructed that the items must adhere to the format

specified in the evaluation task, be persisted in a database, and be publically accessible via their

API (i.e. no “localhost” services). Once participants had completed the task, their

implementations were tested using scripts powered by Postman, a RESTful API development

tool [Postman website, 2020].

Participants were asked to complete the evaluation task in two ways: (1) using Scootr

Studio, for which they were given a time limit of one hour, and (2) using whatever method they

preferred, for which they were given a time limit of four hours. For this comparison method,

participants were free to use any language, framework, database, and hosting provider they

Page 33

desired, along with any online resources they could find. Following a counterbalanced study

format, approximately half of the participants (N=3) completed the evaluation using Scootr

Studio first, followed by their preferred method. The other half (N=4) used their preferred

method first, followed by Scootr Studio.

When completing the evaluation task using Scootr Studio, participants were shown a

five-minute demonstration of the system. They were then asked to complete a 20 minute tutorial

that walked them through the process of building a simple web application with two RESTful

API endpoints. This allowed them to familiarize themselves with Scootr Studio before

attempting to accomplish the evaluation task. This was not considered an unfair advantage, as

participants already had prior experience developing RESTful APIs using the tools they would

ultimately use for their method of choice. It also allowed a more accurate assessment of the

learnability of Scootr Studio using the post-evaluation usability survey (see section 4.2).

Data acquisition: Participants were timed using a stopwatch during the use of Scootr

Studio (after the tutorial), as well as during the use of their preferred method.

Whenever a participant asked a question or reported an error, the question or error was

recorded so as to assess the types of questions and the frequency of errors reported by

participants during their attempts to complete the evaluation task.

Analysis: The time it took for participants to complete the task was converted to seconds

and rounded up to the nearest whole second. Results were then computed and converted to

decimal representations of minutes. The speedup of using Scootr Studio over using the

participant’s preferred method was then calculated by dividing the time it took to complete the

task using the method of choice by the time it took to complete the task using Scootr Studio.

Page 34

All questions and errors reported by were systematically separated into three categories

based on their topic: design, development, and deployment. The design category contained

questions and errors that had to do with the overall understanding and architectural

representation of the application before any coding took place. Development issues were those

involving the actual writing of code to implement the business logic required to complete the

task. Issues classified as deployment issues were, as the name implies, those that involved the

use of a hosting provider and the attempts to deploy the locally tested and built application to the

cloud. The frequency of each type of question and error was compared in each category to create

an additional aspect of efficiency achieved by using Scootr Studio—that is, minimization of

errors.

4.1.2 - Results

(1) Average speedup when using Scootr Studio : Only 3 participants were able to complete

the task using their chosen method within the 4 hour time limit. On average, they took 151.71

minutes. For the remaining 4 participants, 4 hours was used in the analysis as their nominal time

to complete the application with their preferred methods, even though they didn’t actually finish;

thus, the speedup reported below with Scootr Studio is actually a conservative estimate. With

this caveat, the average completion time for all participants using their preferred method was

202.16 minutes.

In contrast, all of the participants were able to complete the task using Scootr Studio. The

average completion time for using Scootr Studio was 45.68 minutes.

Page 35

Therefore, on average, using Scootr Studio allowed the development of a

microservice-based application to happen 4.4 times faster than when using alternate methods. As

explained above, this is a conservative estimate. That said, even if only the 3 participants who

successfully completed the task using their preferred method are considered, the use of Scootr

Studio still results in the completion of the task an average of 4.1 times faster than the use of

their preferred method.

(2) Reductions in error reporting : Table 1 presents the resulting error classification totals

and averages for the 7 participants in the evaluations. All deployment errors were eliminated by

the use of Scootr Studio. There was 1 design error reported when using Scootr Studio, but upon

further discussion with the participant it was discovered that this was intentional and ultimately

due to a difference of philosophy about how RESTful APIs should be built and what

best-practices were for developing APIs, as opposed to an actual error.

Table 1: Total and averages for the three types of errors reported by final evaluation participants
during the completion of the evaluation task.

 Chosen Method Scootr Studio

 Total Average Total Average

Design 2 0.29 1 0.14

Development 7 1 29 4.14

Deployment 8 1.33 0 0

Interestingly, although Scootr Studio eliminated deployment errors, participants did

experience more development errors with the unfamiliar Scootr Studio as opposed to their

alternate method. Upon further investigation, it was discovered that this was due to the

Page 36

participants’ lack of experience with some of the AWS APIs they used in order to accomplish the

task using Scootr Studio (AWS Lambda integration and DynamoDB SDKs). The nature of

Compute resource configuration allows the user to supply the code that will be run in response to

an event. Such an approach allows greater flexibility in what types of systems can be built using

Scootr Studio; however, it also introduces a point of hosting provider dependence if the user

decides to use services offered exclusively by a single hosting provider (such as DynamoDB). As

will be seen in the results of the usability survey in section 4.2, many of the participants

expressed a desire for more supporting tools for development of the application business logic to

increase the usability of Scootr Studio and ease the burden on developers.

4.2 - Usability Survey

A usability survey with three main sections was developed and used to capture

information about the participants and their opinions regarding Scootr Studio: (1) participant

background information, (2) a series of agree/disagree statements, and (3) general ratings and

feedback. The second section was further split into four areas: (a) learnability, or how quickly

and easily a user can figure out how to use the system; (b) memorability, or how easy it is to

remember how to use the system without extra effort; (c) efficiency, or how quickly users can

accomplish tasks with the system; and (d) error rates, or how successfully users can accomplish

tasks with the system.

Page 37

4.2.1 - Methodology

Upon completion of the laboratory study), participants were asked to complete a short

survey following the outline above. The survey focused on learnability, memorability, efficiency,

and error rates as key indicators of the system’s usability. These questions, located in the second

section of the survey, were 5-option agree/disagree Likert scale response questions as outlined in

Table 2.

Table 2: Agree/Disagree statements included in the usability survey

Learnability

Learning to use Scootr Studio took less time than learning my preferred method of
microservice development.

Learning to use Scootr Studio required learning fewer concepts than my preferred method of
microservice development.

Memorability

Scootr Studio makes it easier to visualize my system as a whole than with my preferred
method.

Scootr Studio naturally prompts me towards building microservices better than my preferred
method.

Efficiency

Scootr Studio makes it more efficient to develop microservices than my preferred method.

Scootr Studio makes it more efficient to deploy microservices than my preferred method.

Error Rates

I make fewer errors developing microservices with Scootr Studio than I do using my preferred
method.

It is easier to tell when the configuration of my microservices is not correct using Scootr
Studio as opposed to my preferred method.

Page 38

Additional questions were included in the first section of the survey to determine how

long the participants had been developing cloud based applications and what tools and resources

they used for their preferred method during the evaluation. The final section gave participants the

opportunity to rate the overall usability and efficiency of the system on a scale from 1-10. It also

allowed them to provide feedback on what parts of the system they wished to see improved and

what features they wanted to see added.

4.2.2 - Results

(1) Participant background information : A large proportion of participants had less than

1 year of experience with developing cloud-based applications, as outlined in Figure 10. Overall,

these participants performed approximately as well as participants who had more 2 or more years

of experience, indicating that Scootr Studio is effective at flattening learning curves and reducing

overhead when building microservice-based applications. No participants had only between 1

and 2 years of experience.

Page 39

Figure 10: Distribution of cloud-application development experience among participants

(2) Agree/disagree statements : In general, participants strongly agreed that Scootr Studio

was an improvement in the areas of learnability, memorability, efficiency, and error rates when

compared to their method of choice. As indicated in Table 3, almost every response was positive

(above neutral, meaning that participants selected “Agree” or “Strongly Agree”). With the

exception of one neutral participant, all participants strongly agreed that Scootr Studio

significantly reduced the number of errors encountered when developing microservice-based

applications.

Page 40

Table 3: Participant responses to agree/disagree statements about Scootr Studio’s usability
(Strongly Agree = 3, Agree = 2, Disagree = 1, Strongly Disagree = 0)

 Average Score
(out of 3)

Responses Above
Neutral

Learnability 2.86 13 of 14

Memorability 2.69 13 of 14

Efficiency 2.77 13 of 14

Error Rates 3 13 of 14

(3) Ratings and Feedback : Overall, participants gave an average rating of 9.29 out of 10

for both Scootr Studio’s usability and efficiency. This serves as a testament to the ability for

Scootr Studio to not only increase the speed and ease of microservice-based application

development, but also to its ability to simplify the usage of cloud-providers and flatten the entry

barrier for developing applications for the cloud. The summary of responses to the ratings can be

seen in Figures 11 and 12.

Page 41

Figure 11: Overall usability ratings for Scootr Studio.

Figure 12: Overall efficiency ratings for Scootr Studio.

The most common feature request for future iterations of Scootr Studio was the addition

of a local testing environment. Although the deployment process was simplified significantly by

Scootr Studio, participants wished they could have tested their code locally first before deploying

Page 42

to increase the speed of development and mitigate many of the reported development errors. The

most common improvement suggested for an existing feature was the addition of better linting

and auto-completion to the code editor. This was also desired in an attempt to reduce the sharp

rise in development errors due to the current lack of a sufficiently powerful development

environment.

5 - Conclusion

Scootr Studio is a next-generation IDE and the first of its class that successfully unifies

the design, development, and deployment of microservice-based applications. It enables

developers to build microservices faster than alternate methods while eliminating common

deployment errors. Scootr Studio accomplishes this by utilizing principles from Domain-Driven

Design, Event Storming, and Model-Driven Engineering to create a hosting-provider agnostic

Event-Driven Application Architecture Model (EDAAM) that provides helpful abstractions for

increasing the speed and agility of application development [Evans, 2003][Brandolini,

2019][Schmidt, 2006].

The system performed successfully during evaluation. Laboratory tests showed a

favorable increase in microservice-based application development speed, with users successfully

using Scootr Studio to build a microservice-oriented RESTful API 4.4 times faster than with

alternate methods. They also showed valuable reductions in design and deployment errors while

developing the application. Although errors encountered while writing the code for the API

increased when using Scootr Studio, it was discovered that this was primarily due to a lack of

experience with using the Amazon Web Services APIs required when using the AWS driver with

Page 43

the system. This metric also indicates that users are able to spend more time developing, testing,

and successfully debugging their system using Scootr Studio instead of wasting valuable time

deploying their infrastructure.

The usability survey indicated that, overall, users find Scootr Studio to be highly usable

in all four areas of learnability, memorability, efficiency, and error rates. Furthermore, users

strongly agree that Scootr Studio reduces the number of errors encountered when building and

deploying microservice-based applications. Users rated both the overall usability and the overall

efficiency of Scootr Studio aa 9.29 out of 10. They suggested that features such as a local

development environment and better code support (linting, autocompletion, etc.) would further

increase the usability of the system.

Overall, these results indicate that Scootr Studio could serve as a valuable means of

easing the burden of microservice development for software engineers. Flattening the learning

curve has the potential to increase the adoption of microservices, especially among smaller teams

that lack the technical expertise and experience necessary to build high-quality

microservice-based systems. The use of the EDAAM also tremendously simplifies the

representation of microservices and encourages software developers to think about their system

from a high level before implementing any business logic, further increasing the quality of

resulting systems.

The results also indicate the Scootr Studio provides a viable basis for expansion into a

full-featured integrated development environment (IDE). This will require the addition of new

features.

Page 44

First, the lack of a supported local development environment makes testing without

deployment impossible in the current version of Scootr Studio. This is less than ideal in a

production scenario, as requiring a full deployment before any testing wastes development time

and consumes unnecessary deployment resources. This feature was also requested by several

participants in the system’s evaluations. Such a feature could help Scootr Studio better conform

with best practices, reduce the overall cost of developing an application, and further increase the

speed of application development by minimizing the number of deployments.

Second, the current limitations of the code editor make development of the business logic

more complicated for software developers who are not familiar with driver APIs or Scootr Studio

implementation details. Since Scootr Studio uses the Monaco code editor from Microsoft (the

same editor used in the popular extendable text editor Visual Studio Code), the system has the

potential to handle additional linting, autocompletion, extensions, and general coding support if

the editor is configured to do so during initialization. Such feature additions would further

increase development speed by helping Scootr Studio have more of a native IDE feel, prompting

users towards valid code that represents their business logic.

Third, the present lack of Continuous Integration/Continuous Deployment (CI/CD)

integration also makes additional automation of the development process challenging. Users

would have to utilize the hosting-providers built-in CI/CD services or provision their own

resources to set up their preferred method of automating their deployments and testing. One way

Scootr Studio can help bridge the gap is through integration with Git source code repository

providers such as GitHub. Allowing the code and configuration created by Scootr Studio to be

Page 45

available as version controlled files owned by the developer provides an easy point of integration

for triggering builds and running tests on code produced by the system.

Finally, Scootr Studio is targeted primarily at the development of backend technologies.

It does not focus on nor have a representation of user interfaces required to use the system being

developed, such as web, mobile, and desktop applications. While the details of front-end

development is outside the scope of designing, developing, and deploying the architectural

representation of microservice-based application, this crucial part of providing software as a

service could be provided by another system that integrates with Scootr Studio. Such a system

could utilize a similar model-driven user interface for building the layout of front-ends with a

built-in code editor allowing the business-logic of each component to be fully customized by the

developer.

In conclusion, Scootr Studio is an innovation focused on simplifying the process of

microservice-based application development and enabling software developers with various

levels of experience to more quickly build their applications and serve their customers. It

successfully increases the speed of application development while eliminating errors encountered

during the deployment. The addition of new features has the potential to flatten the learning

curve of the system and reduce the burden of microservice development on software engineers

and architects by a greater degree. The integration of Scootr Studio with additional tools for

CI/CD and front-end development has the potential to lead to a revolution in traditional software

development methods and the introduction of a new era of agile cloud software development.

Page 46

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002) “Agile software

development methods: Review and Analysis”. VTT Publications 478 .

2. Adzic, G. and Chatley, R. (2017) “Serverless Computing: Economic and Architectural

Impact”. 11th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software Engineering

3. Amazon Web Services (2020) AWS CloudFormation - Infrastructure as Code & AWS

Resource Provisioning. visited 15 Feb 2020. https://aws.amazon.com/cloudformation/

4. Amazon Web Services (2020) TCO Calculator. visited 1 Dec 2019.

https://awstcocalculator.com/

5. Architect (2020) Architect serverless framework. visited 10 Feb 2020. https://arc.codes/

6. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Mitchell, N., Muthusmay, V.,

Rabbah, R., and Slominski, A. (2017) “Serverless Computing: Current Trends and Open

Problems”. Research Advances in Cloud Computing , 1-20

7. Ballerina. 2020. Let’s Learn Ballerina!. visited 12 Feb 2020.

https://ballerina.io/v1-1/learn/

8. Bitman, W.R. (1997) “Balancing Software Composition and Inheritance to Improve

Reusability, Cost, and Error Rate”. John Hopkins APL Technical Digest , 18(4), 485-500

9. Bosch, J., Bosch-Sijtsema, P. (2010) “From integration to composition: On the impact of

software product lines, global development and ecosystems”. Journal of Systems and

Software , 83(1), 67-76

Page 47

https://aws.amazon.com/cloudformation/
https://awstcocalculator.com/
https://arc.codes/
https://ballerina.io/v1-1/learn/

10. Brandolini, A. (2019) Event Storming . LeanPub

11. Dimensional Research (2018) “Global Microservices Trends Report”. LightStep.

https://go.lightstep.com/global-microservices-trends-report-2018.html

12. Docker (2020) Docker Documentation. visited 12 Feb 2020. https://docs.docker.com

13. Draw.io (2020) Online Diagramming. visited 12 Feb 2020. https://about.draw.io/

14. Evans, E. (2003) Domain-driven design: tackling complexity in the heart of software .

Addison-Wesley Professional.

15. Ford, N. (2018) The State of Microservices Maturity: Survey Results . O’Reilly Media.

16. Gamma, E., Helm R., Johnson, R., Vlissides, J. 1994. Design Patterns: Elements of

Reusable Object-Oriented Software . Addison-Wesley.

17. jsPlumb (2020) jsPlumb Community Edition Documentation. visited 15 Feb 2020.

http://jsplumb.github.io/jsplumb/home.html

18. Kubernetes (2020) Kubernetes Documentation. visited 12 Feb 2020.

https://kubernetes.io/docs/home/

19. Lloyd, J.W. (1994) “Practical Advantages of Declarative Programming”. Joint

Conference on Declarative Programming

20. Lucidchart (2020) Online Diagramming Software and Visual Solution. visited 12 Feb

2020. https://www.lucidchart.com/pages/

21. Ma, X., Li, R., Lu, Z., Lu J., Dong, M. (2011) “Specifying and enforcing the principle of

least privilege in role‐based access control”. Concurrency and Computation: Practice

and Experience 32(12), 1313-1331. Wiley Online Library

Page 48

https://go.lightstep.com/global-microservices-trends-report-2018.html
https://docs.docker.com/
https://about.draw.io/
http://jsplumb.github.io/jsplumb/home.html
https://kubernetes.io/docs/home/
https://www.lucidchart.com/pages/

22. Michelson, B. (2011) “Event-Driven Architecture Overview”. Elemental Links Research,

Patricia Seybold Group Research Service

23. Micro (2020) Docs | Micro. visited 12 Feb 2020. https://micro.mu/docs/index.html

24. Microsoft Monaco (2020) Monaco Editor. visited 15 Feb 2020.

https://microsoft.github.io/monaco-editor/

25. Mozilla (2019) Server Sent Events - Web APIs | MDN. visited 15 Feb 2020.

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events

26. Mozilla (2020) HTML Drag and Drop API - Web APIs | MDN. visited 15 Feb 2020.

https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API

27. NGINX (2016) “The Future of Application Development and Delivery is Now:

Containers and Microservices Are Hitting the Mainstream”. NGINX Application

Development Survey. https://www.nginx.com/resources/library/app-dev-survey/

28. Postman (2020) Postman | The Collaboration Platform for API Development. visited 14

Feb 2020. https://postman.com

29. Red Hat (2018) “The State of Microservices”. Red Hat Blog.

https://www.redhat.com/en/blog/state-microservices

30. Rehman, I., Mirakhorli, M., Nagappan, M., Uulu, A.A., and Thornton, M. (2018) “Roles

and impacts of hands-on software architects in five industrial case studies”. 40th

International Conference on Software Engineering (ICSE ’18), 117-127

31. Schmidt, D.C. (2006) “Model-Driven Engineering”. IEEE Computer Magazine 39(2),

25-31. IEEE Computer Society

Page 49

https://micro.mu/docs/index.html
https://microsoft.github.io/monaco-editor/
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://www.nginx.com/resources/library/app-dev-survey/
https://postman.com/
https://www.redhat.com/en/blog/state-microservices

32. Serverless (2020) Serverless - The Serverless Application Framework. visited 12 Feb

2020. https://serverless.com/

33. Spillner, J. (2017) “Practical Tooling for Serverless Computing”. 10th International

Conference on Utility and Cloud Computing (UCC’17), 5–8

34. Stackery (2020) Introduction to Stackery - Stackery Documentation. visited 12 Feb 2020.

https://docs.stackery.io/docs/using-stackery/introduction/

35. Steinegger, R., Giessler P., Hippchen B., and Abeck S. (2017) “Overview of a

Domain-Driven Design Approach to Build Microservice-Based Applications”.

SOFTENG: The Third International Conference on Advances and Trends in Software

Engineering

36. Su, J. (2019) “Amazon Owns Nearly Half of the Public-Cloud Infrastructure Market

Worth Over $32 Billion: Report”. Forbes

https://www.forbes.com/sites/jeanbaptiste/2019/08/02/amazon-owns-nearly-half-of-the-p

ublic-cloud-infrastructure-market-worth-over-32-billion-report/#5d76fad729e0

37. Visual Paradigm (2020) UML/Code Generation Software. visited 12 Feb 2020.

https://www.visual-paradigm.com/features/code-engineering-tools/

38. Zhang S., Zhang X., Ou X., Chen L., Edwards N., Jin J. (2015) “Assessing Attack

Surface with Component-Based Package Dependency”. Network and System Security.

(NSS ‘15). Lecture Notes in Computer Science , 9408(), 405-417

Page 50

https://serverless.com/
https://docs.stackery.io/docs/using-stackery/introduction/
https://www.forbes.com/sites/jeanbaptiste/2019/08/02/amazon-owns-nearly-half-of-the-public-cloud-infrastructure-market-worth-over-32-billion-report/#5d76fad729e0
https://www.forbes.com/sites/jeanbaptiste/2019/08/02/amazon-owns-nearly-half-of-the-public-cloud-infrastructure-market-worth-over-32-billion-report/#5d76fad729e0
https://www.visual-paradigm.com/features/code-engineering-tools/

