
Triton, a Hypertext System for the Macintosh

by

Gary B. Terusaki
CS 501 - Master's Project
Oregon State University

Major Professor - Dr. Bill Bregar

March, 1992

Abstract

Until now, most hypertext systems have been implemented on large scale
computers. With improvements in microprocessors and development of graphical user
interfaces, personal computers can run systems that previously needed the power of a
mainframe. The low costs and widespread use of PCs will enable many people to use
hypertext technology. Triton is a hypertext system that runs on the Apple Macintosh
computer. It incorporates ideas from the Neptune hypertext system of Tektronix and from
the Dexter hypertext mcxlel. This paper presents the Dexter mcxlel, a survey of hypertext
systems, the implementation of Triton, and a list of features for future hypertext systems .

Acknowledgements

I would like to thank Dr. Bill Bregar of Tektronix for his help and guidance during

this project. I would also like to thank Mayer Schwartz of Tektronix for his advice and

Bruce Cohen of Tektronix for providing me with the Neptune source code. I am also

deeply indebted to Malek Daaboul of Sequent Computer Systems for his support and

encouragement during the course of my study.

Contents

1. Introduction 1

2 . The Dexter Hypertext Model 4
2.1 The Storage Layer of the Dexter Model 5
2.2 The Within-Component Layer and the Anchor Interface 7
2.3 The Runtime Layer and the Presentation Specification Interface 9
2.4 Application of the Dexter Model as a Standard 9
2.5 Weaknesses of the Dexter Model 10

2.5.1 Advanced Search Facilities 10
2.5.2 Dynamic Link Contruction 11
2.5.3 Version Control 11

3. Similar Hypertext Systems 12
3.1 The Neptune System 12
3.2 Guide 13
3.3 HyperCard 15

3. 3 .1 H yperCard Features 15
3. 3 .2 Comparing HyperCard Against the Dexter Model 17

3.4 Reg-in-a-Box 18
3.5 MAGNA 19

4. The Triton Hypertext System 20
4.1 Features of the Triton Implementation 21
4.2 Technical Details of the Triton Implementation 26
4.3 Problems Encountered During the Project 28
4.4 Triton's Adherence to the Dexter Model 29

5. Future Improvements to Triton and Other Hypertext Systems 31
5. 1 Dexter Architecture 31
5.2 Client-Server Database Systems 32
5.3 Open Architecture 32
5.4 Tools for the Hypertext Document Author 33
5.5 Conclusions 33

Bibliography

Appendix A - Instructions for Running Triton

35

A-1

Dedication

To my parents.

1 . Introduction

This paper documents the development of Triton, a hypertext system for the

Macintosh computer. Before discussing Triton, a brief discussion of hypertext and its

history is in order.

The concept of hypertext has existed since at least 1945. That year Vannevar Bush,

President Franklin Roosevelt's science adviser, wrote about a theoretical machine called

memex [3]. Memex was to be a repository of stored knowledge with the ability to cross

reference related items. Its storage media consisted of books, papers, photographs, and

microfilm. Navigation aids would allow the user to display pieces of information and

retrieve any items that were cross-referenced. Memex, as envisioned by Bush, was a

mechanical device that would access information in a quick manner. However, it was not

until the availability of electronic computers that his ideas became feasible to implement.

With the availability of large scale mainframe computers, researchers developed a

number of hypertext systems. While early systems such as Intermedia, NLS, and

Xanadu allow storage and retrieval of text, each has a different purpose . Intermedia [5],

which started as a research project at Brown University, is a general writing hypertext

system. Douglas Englehart first proposed NLS [5] as a tool to help people expand their

thinking processes with a computer. McDonnell Douglas now markets NLS as a tool that

supports electronic mail and software engineering artifacts. Xanadu [5] is a library

system for general literature that was created by Ted Nelson. Autodesk is currently

developing a commercial implementation of Xanadu for Sun workstations [8].

Because of the diversity of features and the different areas these systems addressed,

one of the questions that early researchers had to deal with was, "What is hypertext?"

They generally agreed that hypertext systems met the following criteria [5, 26]:

1. Hypertext systems are implemented on computers.

page I

2. Information is stored in files on magnetic disk.

3. Documents can have link indicators embedded in their text indicating
that another related document is available for inspection.

4. The system has commands that allow a user to browse various items
in an arbitrary manner. This feature is sometimes called non-linear
text.

5. A browser window displays a picture of how the documents are
linked together if the hardware supports a graphics terminal.

Figure 1-1 shows an example of such a system. There are two documents and a

browser window. The document labelled "Quicksort Algorithm" has a highlighted link,

"LINK 18," that points to an entry in the document labelled "References." In the browser

window, a line between the boxes "Quicksort Algorithm" and "References" represents

this link. By using navigational tools in the system, a user can select a link and request

that the related document be displayed on the screen.

Sort Hypergraph ~□~ Quick Sort Algorithm ~0~
1--------=----=--------t QUI CK SORT ALGORITHM

Radix Sort A 1 orithm
[LINK 4, Next Pagel

~~~N:l~~i ::: 1:i::n:tentsl 111111 

stand i sh IJIJJTbMlinklLIIA;; mm 
was re I at i ve I y easy to 1W1! 
understand and looked lliln 

References 

Quick Sort A 1 orithm 

s i mp I e to i mp I emen t . mm 
:===============================.=: Unfortunate I y i t works mm 

References on I y for arrays c:onta in i ng l!HH 
1------------------1 unique e I ements. Wh i I e fi\ 

[ L I NK 18, Ref erenc:e l i t i s I e ft as an ex ere i se !Hlil 
Thomas A. Standish, for the student to modify mm 

::: ::: 

Figure 1-1. Example of a hypertext system. 

Modern technology has spawned devices that were unavailable or unthought of at 

the time of these first systems. Advances in microprocessor technology, high resolution 

color graphical displays, and software engineering have enabled hypertext systems to be 

page 2 



developed for smaller computers. In addition, technologies that were previously thought 

of as being outside the scope of computers are contributing to the development of 

hypertext. Contemporary hypertext systems are starting to incorporate sound, animation, 

and video [22, 26]. The term hypermedia has been created to describe these technologies. 

Some writers make a distinction between hypermedia and hypertext. In this paper the 

scope of the term hypertext includes these new technologies. 

The Triton hypertext system runs on the Macintosh computer and is based on the 

Neptune system developed at Tektronix [6]. Neptune creates and maintains 

documentation for software engineering projects. Its data base mangement functions run 

on a VAX computer. The user manipulates documents from a workstation that runs a 

user interface written in Smalltalk. Neptune requires a large investment in hardware and 

sophisticated operating systems. One of the goals of the Triton project was to see if 

hypertext systems developed for a mainframe environment could be ported to a small 

) computer. 

) 

The example in figure 1-1 was created using Triton. Triton uses the standard 

Macintosh user interface to display nodes and browsers in regular Macintosh windows. 

These windows are similar to the displays prcxluced by Smalltalk. After selecting link 

markers with the mouse, the user can use menu commands to navigate to other nodes. 

While Triton satisifies the five basic criteria for early hypertext systems, advances 

in technology and user sophistication continue to elevate standards. The Dexter hypertext 

model [14] was created as a standard for future hypertext systems. This paper examines 

the Dexter model and uses it to compare Triton with several existing hypertext systems. 

Other sections of this paper discuss the features and implementation of Triton in detail. 

This paper concludes with a list of considerations for future hypertext systems. 

Documentation for running Triton is included in Appendix A. 

page 3 



2. The Dexter Hypertext Model 

In October 1988 a number of hypertext researchers gathered at the Dexter Inn in 

New Hampshire for the first of several workshops. The result of their efforts is the 

Dexter hypertext model [ 14]. The main purpose of this model is to define a set of features 

that hypertext systems should have and to provide a standard of interoperability and data 

exchange between two different hypertext systems. The model also defines a standard 

lexicon of terms for the components and features of these systems. By using the Dexter 

model as a standard, an attempt can be made to see if a system generally conforms to 

what can be called a hypertext system. The model can also be used to compare and 

contrast different hypertext systems. 

Runtime Lager Figure 2-1. 

\:::::::':f ~+:~f ~\+~\f ~--:: ¥,:~:~§~/~ /~1/f ~.\/:{:/:{/ Architecture 

Storage Lager o.f the 

::):\.e'.~i~f if ~~:}:{t}:/\:}:\:/\}{{\::}:{:?/{{\:\?: Dexter model. 

Within-Component Layer 

Figure 2-1 shows a diagram of the architecture of the Dexter model. There are three 

layers in the model: the storage layer, the within-component layer, and the runtime layer. 

The storage layer manages all data structures that contain hypertext information . The 

runtime layer provides the user interface. The within-component layer performs the actual 

function of the application (i.e., financial analysis, engineering design, etc.). There are 

two interfaces in the model. The presentation specification interface uses data from the 

storage layer to instruct the runtime layer on how information is to be displayed . The 

page 4 



anchoring interface maps data structures from the within-component layer onto the 

storage layer. 

The next sections cover the Dexter architecture in greater detail. This is followed by 

the application of the model as a standard. The last section discusses some weaknesses in 

the model. 

2.1 The Storage Layer of the Dexter Model 

The Dexter model places heavy emphasis on the storage layer. This is where actual 

data is stored At this level, all data is stored in a component (figure 2-2). Each 

component has a base component that may be an atom, link, or composite. An atom can 

be thought of as the equivalent of the data in a typical hypertext node or the information 

contained in a HyperCard card However, the storage layer does not know anything 

about the internal data structure of the atom or how it is to be displayed. All that is known 

is that the atom represents some piece of data. 

Component Information 
Attributes 
Presentation Spec. 
Anchors 

Base Component 

Figure 2-2. 

Structure of e. 
Component. 

A base component can also be a link (figure 2-3). A link is a series of two or more 

specifiers. Each specifier represents an endpoint of the link. At the most basic level, a 

page 5 



specifier would point to an atom and a displacement within the atom. A complete 

discussion of specifiers is deferred until the anchor interface. 

Most hypertext systems have only binary links; they are represented in the model by 

a link that has only two specifiers. The Dexter model allows a link to reference an 

arbitrary number of components. For example, a word defined in a glossary could be 

pointed to by all occurrences of that word in a book. 

Finally, a base component may be a composite. A composite consists of an 

arbitrary number of links, atoms, or other composites. No composite may either directly 

or indirectly contain itself. A node that represents a rolodex file can be modelled by a 

composite. If the node is represented as a Macintosh icon, opening the node can display a 

window containing the individual rolodex cards. Such cards form a group of related 

information, but they do not need links to show how they are related. 

Specifier 

Component Spec. Anchor ID Direction Presentation Spec. 

Link 

Specifier 1 Specifier2 • • • SpecifierN 

Anchor 

IAnchor ID I Anchor Value 

Figure 2-3. Data Structures in the Storage Layer. 

Each component has component information. This consists of attributes, 

presentation specifications, and anchors. The storage level considers these items to be 

atomic and has no knowledge of their internal structure. A discussion of the presentation 

specification and the anchors is deferred to their interface sections. 

page 6 



The attributes section of the component information represents an arbitrary number 

of attribute-value pairs. Each component can have an unlimited number of attribute-value 

pairs that contain either system or user information about the component For example, in 

a hypertext system that contains a number of books, typical attribute-value pairs for a 

particular component might include: AU1HOR="Goodman, Danny", TYPE="NON

FICTION", SUBJECT="COMPUTERS", TITLE="The Complete HyperCard 

Handbook." 

In the Dexter model, all components have exactly one attribute called a unique 

identifier (UID). The storage layer is responsible for insuring that each UID has exactly 

one value that is unique across all components. The model uses the UID to access a 

specific component. 

The storage layer has a set of functions for maintaining data that is similar to the 

functions provided by most database management systems: create component, delete 

component, and modify component. An additional set of functions allows adding, 

deleting and altering attribute-value pairs. There are also two functions for accessing 

components, a resolver and an accessor. The resolver function takes a set of component 

specifications as an argument and returns a UID if a matching component can be found. 

Component specifications are similar to the arguments of a database query. ff the given 

set of component specifications cannot be resolved to a particular UID, the resolver 

function will not return a value. Once a UID has been returned, it can be given to the 

accessor function to gain access to the component. 

2. 2 The Within-Component Layer and the Anchor Interface 

The within-component layer consists of the application software and a description 

of all components in the system. This description is the equivalent of a file definition or a 

schema. Because of the many data types available such as graphics, sound, and 

page 7 

.. 



animation, the Dexter model does not describe this layer in great detail. The model allows 

other developers to add existing standards to the model or to create new standards for 

future technologies. 

The anchor interface connects the storage layer to the within-component layer. 

Another look at figure 1-1 shows the graphical representation of links in the browser 

window. The two text windows show the link indicators embedded within the text. The 

link indicators notify the user that this part of the text is related to some other item. In a 

similar manner, the anchor interface is used to map an anchor in the storage layer to a 

piece of data in the within-component layer. The anchor interface shows where the 

endpoints of a link are located. 

An anchor designates a specific point within a base component. Each component 

may have an arbitrary number of anchors. The anchor interface divides each anchor into 

two parts, the anchor id and the anchor value. Anchor ids identify the individual anchors 

and are unique within each component. The anchor value represents the place within the 

base component that would be the endpoint of a link. The anchor value may be the 

number of words into a paragraph, a table index, the number of radians into a pie chart, 

or any other value that is appropriate. The anchor interface is responsible for making 

updates to the anchor value as changes are made to the data. 

The storage layer defines a link as a set of two or more specifiers. Each specifier is 

an endpoint of the link and contains four parts: the component specification, the anclwr 

id, the direction and the presentation specification. The component specification resolves 

to the UID of a particular component. Together with the anchor id, it identifies a specific 

anchor. The direction can indicate if the endpoint is either a source or destination, or if 

there is no direction. Discussion of the presentation specification is covered in the section 

on the runtime layer. 

page 8 



2. 3 The Runtime Layer and the Presentation Specification Interface 

The third layer is the runtime layer. This is the equivalent of the Macintosh user 

interface; it controls the way data is displayed and manipulated by the end user of the 

system. Because of the wide variety of hardware platforms available, the model does not 

attempt to describe a particular implementation of tools or features available to the user. 

Instead, this layer addresses the way data is to be presented to the user. 

When a user requests that a node be displayed, the runtime layer will call the 

present function. The present function sends a retrieve request to the storage layer for the 

desired component When the component is returned, the runtime layer will copy it and 

assign a unique instantiation identifier (IlD) for the request. The presentation specification 

interface will examine the presentation specifications of the component and instruct the 

runtime layer on how the data in the instantiation is to be displayed to the user. For 

example, assume that a component contains statistical information. A window could have 

link references that will display the same data in either tabular or pictorial format. 

The instantiation can be thought of as the equivalent of a database view. More than 

one instantiation of the same piece of data can exist at any one time; each instantiation has 

its own unique IID. The user can discard a given instantiation with the unpresent 

function. Updates to an instantiation can be applied to the storage layer by using the 

realize function. 

2. 4 Application of the Dexter Model as a Standard 

To see if a system can be called a hypertext system as defined by the Dexter model , 

one can apply the process of data reification as described by Jones [16]. To use this 

process, the architecture of the system in question must be specified in Z (Zed). Z [21] is 

a language that is used to formally specify the Dexter model. The process requires two 

page 9 



) steps. First, it must be possible to map the types and functions of the Dexter model to the 

target system. Next, it must be shown that there is at least one actual representation for 

each abstract value in the target 

According to the authors of the Dexter model, no work has yet started comparing 

the model to actual hypertext systems. A simpler way of insuring conformance to the 

model is to see if all functions in the Dexter model exist in the target system. This 

informal method will be used in this paper. 

When the Dexter model was first created, its abundance of features was meant to 

serve as a guide for future systems. As it exists now, the model includes features that are 

not found in other existing hypertext systems such as multiple endpoint links and 

composites. Because of this, it can be said that none of the existing hypertext systems 

conform to the model and therefore do not qualify as hypertext systems. To remedy this, 

the Dexter team is currently developing a standard that will specify a minimal set of 

features that a hypertext system should include. 

2. 5 Weaknesses of the Dexter Model 

Researchers have been debating about what features the next generation of 

hypertext systems should include. The following features are not a part of the Dexter 

model. 

2.5.1 Advanced Search Facilities 

A number of systems allow a user to search for a word within a node. Content 

search and structural search are advanced facilities that Halasz [13] has suggested for the 

next generation of hypertext systems. Content search allows a user to search for a word 

in all nodes of a hypertext document. Structural search allows a search for a string 

page 10 



depending upon the structure of the hypertext document A structural search might 

request string "ABC" in all nodes that are referenced by a node that contains string 

"XYZ." 

2.5.2 Dynamic Link Construction 

Links in most hypertext documents form a static network. The author of the 

document inserts links into nodes in an order that he thinks is important These links 

cannot be changed by the casual user of the system. 

Dynamic links allow the user to determine the way nodes should be linked together. 

If a hypertext system contains medical information, a doctor may wish to access the 

abstracts of all articles on a particular disease that were written after a certain date. A 

system that has dynamic linking capability will allow the doctor to request that a 

temporary link for such information be created. Watters and Shepherd [24] have 

suggested a model that provides such facilities using a relational database. 

2.5.3 Version Control 

Version control is desirable in hypertext systems that are continually being updated 

by a group of users. Changes that are made to a hypertext document can be traced to a 

specific user and time stamped. The section of this paper on Neptune discusses version 

control in more detail. 

page 11 



3. Similar Hypertext Systems 

This section discusses some of the hypertext systems that are similar to Triton. 

These include Neptune, Guide, and HyperCard. Neptune [6] is the system on which Triton 

is based. Guide [20] is a hypertext system that runs on both the IBM PC and the 

Macintosh. HyperCard [9, 10, 25] is the most widely known and used hypertext system 

for the Macintosh. For an in-depth discussion of several other hypertext systems, see 

Conklin [ 5]. 

3 .1 The Neptune System 

Neptune [6] is a hypertext system that was developed by Tektronix for keeping 

track of documents in a Computer Aided Design environment. It follows the layered 

architecture of the Dexter hypertext model very closely. Neptune's Hypertext Abstract 

Machine (HAM) implements the functions of the Dexter model's storage layer. HAM is 

written in C and runs on a UNIX mainframe as a client-server process. In addition to 

maintaining links and nodes in a hypertext document, HAM is a complete data base system 

that provides recovery from system failure and transaction synchronization for multiple 

users. Unlike the Dexter model, Neptune includes extensive support for version control. A 

user can edit several different versions of a link or document simultaneously. 

HAM provides two advanced query functions. LinearizeGraph takes a given node 

and constructs a linear subset of the graph by doing a depth first search on all outbound 

links of the node. A second function, getGraphQuery, returns nodes whose attribute-value 

pairs match queries supplied by the user. 

The Neptune user interface runs separately from the HAM and is written in 

Smalltalk. A user can view a diagram of a hypertext document in a graph browser. A node 

page 12 



browser displays the contents of the individual nodes . The getGraphQuery function returns 

a set of nodes that can be viewed in a docwnent browser. The window of the document 

browser contains several panes (figure 3-1 ). The smaller panes display a list of the nodes 

returned by getGraphQuery. A larger pane displays the current node selected from this list. 

Document Browser 

ntle 
Table of Contents 
Purpose 

Notes About nming Notes 
Quick Sort Al orithm Appendix 

The most difficult thing about the radix sort was the amount of programming effort it 
took. It became qufokly apparent that the sort was done at the expense of memory and 
programming effort . The final method for creating buckets for the sort involved using 
linked lists to hold the array numbers of the input array . During the sort, the list of 
array numbers are moved about while the input array itself is not moved except at the 
very end to put it into its fina 1 order . The use of a pointer structure to hold 
informatfon was choosen over stacks for three reasons. First, writing an algorithm to 

Figure 3-1. Example of a Neptune doc"W!lent browser. 

Neptune's application layer provides tools that support software and electrical 

engineering applications. This layer is the equivalent of the Dexter within-component layer. 

These tools include text editors, project management software, and compilers. 

3.2 Guide 

Guide [20] is a product of OWL International . It supports text nodes of unlimited 

length and a browser window. The user can create graphical images with a supplied desk 

accessory or can import them into the document. There are three types of link markers: the 

note, the reference , and the button. When the cursor is moved over a text window , it 

page 13 



·) changes shape as it passes over the different type of link markers. The cursor changes into 

an asterisk, crosshair, or arrow when it is above a link marker indicating a note, button, or 

reference, respectively. 

) 

The difference among the three types of link markers is cosmetic and is done for the 

benefit of the user. A note is a small window that contains a brief piece of text, such as a 

definition (figure 3-2). It can also be a command that the system executes. A button 

generally points to another node. References chain nodes in front to back order so that a 

document may be read in a sequential manner. 

□ SORT REPORT 

◊ 
COMMENTS ABOUT TIMING -

1 

One of the requirements of the assignment is en 
eveluet ion of the amount of time used by eeich 
el gori thm. To eccompl i sh this, two procedures from 
the ETurbo Pascal Program Library [ 11*1 are used. The 
procedure GetTime is celled before end efter eech file 

Reference me Di ff eel cul etes el epsed 
ime. 

[ 1 ] Tom Rugg & Phi 1 Feldmen, Q_ 
Turbo Pase el Program Library, ~ 
Que Corporet ion, lndianepolis, 
lndiene, 1986 

Figure 3-2. Example of a Guide l\Ote. 

page 14 



3. 3 HyperCard 

Since its introduction in 1987, HyperCard [9, 10, 25] has become the most popular 

hypertext system for the Macintosh. To promote the use of HyperCard, Apple Computer 

bundled the software with each new Macintosh it sold and provided the software free or at 

minimal cost through its dealers. The Complete HyperCard Handbook [10] provides 

extensive and well written documentation. This section examines the features of HyperCard 

and compares it to the Dexter hypertext model. 

3. 3 .1 HyperCard Features 

HyperCard stores data in one or more stacks. Each stack contains what would 

generally be one hypertext document. A stack consists of a collection of cards. The card is 

the basic unit of information; it is the equivalent of a node in other hypertext systems. Each 

card is a fixed size that covers the standard nine inch Macintosh screen. Variable size cards 

are supported in version two. 

Cards can contain graphics, text, fields, and buttons. The user can create graphics 

and text using tools included from MacPaint, or he can import drawings into the stack with 

the "import paint" command Cards are a fixed size and cannot be scrolled, however they 

can contain scrollable text fields. Fields defined on the card contain variable information. 

Buttons are used to execute small programs called scripts or to provide linking capability. 

Figure 3-3 shows an example of a card By clicking on the button labelled "Go to 

next Card," the user can navigate to another card. The button with the telephone executes a 

script that generates touchtone sounds. The bottom of the card contains the text "this text 

contains a button here." In this case, an invisible button has been defined around the word 

page 15 



here. By clicking on here, linking or script execution can be performed in a manner 

consistent with other hypertext systems. 

r • 0 • File Edit Go Tools bjects 

( Go to neHt Card) 

I Go to First Card I Sort Cards Button Phone Button 

0 -This is a field that contains D New Button 

0 New Button 
scrollable text. filfill 

0 

This text contains a but ton right here 

Figure 3-3 . Sample buttol'IS on a HyperCard card . 

Hypercard's scripting language is called HyperTalk:. Small scripts, English-like 

programs, can be attached to cards, fields or buttons. The scripts perform actions when 

they are activated by the user. HyperTalk: includes arithmetic and text manipulation 

functions. It can query or alter values in the fields of the stack. In addition to HyperTalk, 

separate programs written in C or Pascal can be added to a HyperCard stack; these 

programs, called XCMDs, provide added functionality. 

HyperCard was designed to be used by people with various levels of skill. The 

browsing and typing levels allow the casual user to examine and enter data into a stack. The 

painting and authoring levels allow the creation of a stack. The scripting level allows the 

stack author to use the functions of HyperTalk:. Linking between cards does not require a 

knowledge of HyperTalk:. 

Buttons are only one of the navigation aids that HyperCard provides. The Go menu 

contains several navigation commands. The "Recent" command displays a visual history of 

page 16 



) the last forty-seven cards that have been viewed (figure 3-4). The user can jump to any of 

these cards by clicking on its replica. 

:: .... : .. ::~· ··~ ::::: ... ::::--...2:....·.:...::... ............ _...,. -.; __ -. .... __ ...,. ----- -- - - -- -~~-z--:=:~-= z ·-:=J 
;'--=?~ ·_;·_=_·;; \::\tJ} ~i~~ -=~·.:·~-·::;·:·:;· .. ;: .: 

liiii-3 .... 
~---

"Ii -!~ -··· ········· -1,!!l!'::::':11 

Figure 3-4. Display of last recently viewed cards. 

3.3.2 Comparing HyperCard Against the Dexter Hypertext Model 

Since the program source for HyperCard is the property of Apple Computer, it is 

generally not known if HyperCard conforms to the layered architecture of the Dexter 

model. HyperCard links are equivalent to single directional links in the Dexter model. It is 

possible to attach attribute-value pairs to cards. This can be done by defining a field on a 

card for the attribute and using the data stored in the field for the value. 

One of the shortcomings of HyperCard is that it does not provide a browser 

window of all cards in a stack. Another problem is that it can not insert link markers into 

page 17 



) text such as other systems like Triton. Creation of hypertext-like links in the text of cards 

can be done, but it is tedious. Some authors have said that these shortcomings show that 

HyperCard does not meet the criteria for a hypertext system. However, these features are 

not a part of the Dexter model. Using a minimal standard, HyperCard does conform to the 

Dexter standard. 

3. 4 Reg-in-a-Box 

Reg-in-a-Box [8] is a hypertext application developed by the United States 

Environmental Protection Agency to distribute Federal regulations on underground storage 

tanks. The EPA created a version for the IBM PC using KnowledgePro and for the 

Macintosh using HyperCard. EPA's goal is to reduce environmental damage and its 

associated costs to business by making the regulations as readily available as possible. To 

do this, EPA gives the application away as freeware so that it will reach the greatest number 

of people . 

The HyperCard version features a picture of a typical storage tank. Invisible buttons 

on the picture provide links to other cards. When a user clicks on the tank, the button 

displays a card with an exact copy of the appropriate Federal statues for the selected part. 

Another button in the statues links to a plain English explanation of the regulation. 

William Fosket, the project manager for Reg-in-a-Box, had two complaints about 

the system [8]. The first is the need for tools to validate the targets of the links. During 

checking of the many links created, Fosket found that it was easy to point a link at the 

wrong destination. The second complaint was the need for links with multiple endpoints 

(i.e. the multiple link marker implementation as provided by Dexter). For example, a valve 

may have numerous regulations. In HyperCard, an invisible button covering the picture of 

the valve will only allow one destination. 

page 18 



3.5 MAGNA 

ABC News developed MAGNA, the Macintosh ABC General News Almanac [17, 

22], to help cover the 1988 presidential election. It is an extensive collection of HyperCard 

stacks that was used by newscasters and ABC support personnel. One card might contain 

information on a political candidate and his views. Another card could contain information 

on the delegates of a state. Pictures on another card could allow a newscaster to know the 

exact location of a state delegation on the convention floor . During the nominating process, 

the staff continually updated the stack with delegate counts. A HyperTalk script computed a 

count of total delegates for each candidate. 

The creation of MAGNA was the ideal of David Bohrman, a Senior Producer of 

ABC News. After the election Bohrman continued experimentation with HyperCard. With 

the help of an ABC engineer, he was able to connect a laser disk to a Macintosh. 

Eventually, what started out as a special interest project of Bohnnan's was spun off into 

ABC News Interactive. Their first product, "88 Election," contains HyperCard stacks, a 

video disk, and supplementary hardcopy material. Since that time, they have released 

products on AIDS, the San Francisco earthquake of 1989, and the "I Had a Dream" speech 

of Dr. Martin Luther King. With its extensive collection of film, ABC New Interactive is 

continuing to release new products that are aimed at the educational market. 

page 19 



4 . The Triton Hypertext System 

Triton started as an attempt to port the software engineering capabilities of the 

Neptune system over to the data processing facilities of Tektronix. Although the majority of 

business data processing at Tek runs on large scale IBM and VAX mainframes rather than 

workstations, there are many similarities between software engineering and creating 

effective business systems. Both disciplines require the creation and storage of many 

different documents such as proposals, data flow diagrams, software bug reports, 

specification sheets, and end user manuals. Large numbers of people work on such 

projects, and they need some method to keep track of all the documents that are created or 

updated. 

Unfortunately, installing Neptune by simply installing a workstation is not cost 

effective. The workstations that run Neptune are high end products that cost many ti.mes 

more than current terminals or personal computers. The cost for the number of 

workstations required to support the data processing staff, expenditures for learning ti.me, 

machine maintenance, and floor space is also considerable. 

The use of the IBM mainframe to run Neptune is also unfeasible. While abundant 

computing power is available, the mainframes do not run UNIX. Also, availability of 

graphics terminals is extremely limited because they are expensive and their capabilities are 

usually not required in a business environment. 

The Macintosh is a practical platform for several reasons. The graphical user 

interface provides displays similar to the ones on the workstations. Neptune is written in C, 

and several C compilers are available for the Mac. Low end Macintoshes are inexpensive 

and are common in the DP department. Many employees already use the Macintosh for 

word processing, spreadsheets, and presentation graphics. Because of the standard way 

that Macintosh applications work, users will regard Triton as just another program. They 

will not have to learn a new system on new hardware. 

page 20 



There were two attempts to implement Triton. The first attempt called for porting 

Neptune from the VAX to the Macintosh and for writing the user interface in C. The 

porting was abandoned after one month because of technical difficulties encountered. The 

Neptune source code was too large and too complex. In the second attempt, all Neptune 

code was discarded. The design of Triton focused on the user interface and on desirable 

hypertext features. 

The next section discusses the features in the final implementation of Triton. The 

remaining sections discuss technical details of the implementation and a list of problems 

encountered in the project Finally, Triton is compared to the standards of the Dexter 

model. 

4 .1 Features of the Triton Implementation 

This section uses "Sort Hypergraph," a sample hypertext document, to illustrate 

features of the final Triton implementation. A copy of "Sort Hypergraph" is on the Triton 

distribution disk. As used in this paper, the term hypergraph is defined to be a hypertext 

document created by Triton. At the implementation level, a hypergraph is a folder that 

contains a set of Macintosh documents. These documents include control information and 

node data. The hypertext author and casual user should view the hypergraph as an atomic 

entity. They must not attempt to individually manipulate the components of the 

hypergraph . The first part of this section discusses Triton features that a hypertext author 

will use. 

After a user launches Triton, he is prompted to enter his initials. The initials will be 

part of a timestamp that is used for version control. 

The creation of "Sort Hypergraph" starts by selecting "New Graph" from the file 

menu. Triton prompts the user for the name of the new hypergraph. After the name is 

entered, an empty browser window appears on the desktop. Next, the user selects "Add 

page 21 



) 

Node ... " from the node menu. Triton opens a window for the node and draws a box that 

represents the node in the browser window. Although the current version of Triton 

supports only text nodes, no restrictions are placed on the data that can be used. Future 

versions of Triton may have nodes that are managed by graphics editors or project 

management software. Triton text nodes are of arbitrary length. The windows are resizable 

and scrollable. 

The data in "Sort Hypergraph" was originally a computer science paper [23] created 

with Mac Write. Cut and paste operations transfer the text from Mac Write to the Triton 

nodes. The user can rearrange boxes in the browser window by clicking and dragging 

them. The original Mac Write document has many references, For example, the table of 

contents points to the various sections in the paper. There are references in the text to the 

bibliography. Each chapter logically follows the other, and chapters refer to tables in the 

appendix. These relationships provide a natural set of links. The hypertext author uses 

commands from the link menu to create hypertext links in a Triton hypergraph. 

Sort Hypergroph 

□ 
Table of Contents 

Tobie o 

FALL QUARTER 198 ,=,=,= 

I HSTRUCTOR - DR. CHARL llllll 

CLINK 0, Next Pagel CLINK 0, Next Pagel 

TABLE OF CONTENTS :·:·:.·.·:.;::.·::.·:.·:::.·.·:.·::::.·.·::.·::. 

CLINK 7, Table of Contents] Title 

Figure 4-1. An Example of a Triton Link 

To create a link, the author clicks on the piece of text where the link is desired and 

page 22 



· ') selects "Define From Link" from the link menu. The author then specifies the endpoint of 

the link. This may be in the same or a different node. The author clicks in the destination 

and selects "Define To Link." Triton inserts a link indicator at both endpoints in the text A 

line in the browser window shows the links between nodes (figure 4-1). 

) 

Triton supports binary links with up to four attributes. The user specifies the names 

of the attributes and which attributes will be assigned to a link by using the "Set Link 

Type" command from the link menu. Like Neptune, Triton always maintains link 

consistency. A link can be deleted either by selecting "Delete Link" for a particular link or 

implicitly by selecting "Delete Node" for a node containing one or more links. In either 

case, link references are deleted from all remaining nodes. "Dangling links" are not 

permitted. If text is added or deleted from a node, Triton will automatically update the 

location of link markers. 

16 Sort Hypergraph I 
Cl gbt 12/4/90 11.25.06 PM ~ 
Cl gbt 12/ 4/90 11.28.08 PM 
Cl gbt 12/ 4/90 11.45.30 PM 
Cl gbt 12/ 4/90 11.52.32 PM 
Cl gbt 12/5/90 12.00.56 RM 

Figure 4-2. Version Control in Triton 

c:, HRRDDISK 

[ l:je<t ] 

[ Driue ] 

[ Open ] 

[ Cancel ] 

When the author saves the hypergraph, Triton creates a new version. Later, when 

the author wants to update the hypergraph, Triton will display a list of all versions and will 

ask for the version to be used (figure 4-2). 

page 23 



) 

The rest of this section discusses features used by the hypertext reader. After a user 

opens a hypergraph, the browser window and any author designated nodes appear on the 

desktop. The windows follow standard Macintosh conventions. They can be scrolled, 

resized, activated, and closed. Triton supplements this by allowing windows to be activated 

from the browser window or by special menu commands. For example, a user can select 

the "Purpose" box in the browser window. He can then activate the "Purpose" window 

with the "Open Node" command Double clicking on the box will also activate the window. 

Since the browser window is used for navigation, it should be easily accessed. The 

"Show Graph Window" command in the browse menu activates the browser. The "Restack 

Windows" command rearranges all windows on the desktop. 

Triton provides two ways to traverse a link. After a user clicks inside a link marker, 

he can select "Go to Link" from the link menu. Triton will activate the target window and 

scroll to the location of the target link. Triton keeps track of the last one hundred link 

traversals. The user can return to the starting point of the last traversal by selecting "Return 

From Link." 

The user can use link attributes to assist in viewing the browser. Figure 4-3 shows 

all links defined in "Sort Hypergraph." A common complaint of hypertext systems is that 

numerous links can create a feeling of disorientation because of the amount of clutter in a 

browser window [19]. If a set of link attributes is defined (figure 4-4), the user can select 

"Display Link Type" from the link menu to restrict the types of links that are displayed 

(figure 4-5). 

page 24 



Sort Hypergn1ph 

Comments About Timin 

Pur ose 

.......... ............. ··················· .......................................... . . .. ........ .. ... . ............. .......... ........................... ...... ······················ ••'•• · · .. . . ...... ....... . .............. ......... ......... ........ . ...... ..... ....... . 

Figure 4-3. All of the Links in "Sort Hypergra.ph" 

Display Links with Rttributes 

□ NeHtPage 

□ Table of Contents 

D Misc 

181 Reference 

D Display all links 

~ 

€ OK 3 
( Cancel ) 

Figure 4-4 . Restricting Links Displayed in the Browser Window 

page 25 



Sort Hypergraph 

ITitlel Comments About Timin 

ITable of Contents I 

IPurposel 

IRadix Sort Algorithm I 
I Appendix A I 

References 

Figure 4-5. Displaying Links with the "Reference" Attribute 

4. 2 Technical Details of the Triton Implementation 

Triton is a standard Macintosh application. With the exception of the storage of 

hypergraphs and the definition of links, Triton obeys all Macintosh user interface 

guidelines [15]. The Triton source consists of eight files written in C. Each file contains 

code to handle a specific area, such as window management or menu command processing. 

There are approximately 8,000 lines of code. The application takes up 32K of disk space 

and consists of the Triton code and routines from the MacTraps library; it contains no other 

code or packages. 

Triton stores a hypergraph as a set of Macintosh documents within a folder. A 

given version of a hypergraph consists of a control document and a document for each 

node in the hypergraph. The folder contains all versions of the hypergraph. 

The document for each Macintosh node contains only data The control document 

contains all information for a single version of a hypergraph. This includes a list of all 

page 26 



.) ncxles and links in the graph, free lists for unallocated links and ncxles, and the names of 

the link attributes. 

The ncxle information entries are kept in a single array in the control document. 

Each entry specifies the Macintosh document name for the ncxle it represents and contains 

chain entries. A forward and backward chain links the ncxles in the hypergraph. A ncxle 

may be either on the list of free ncxles or on the list of allocated nodes. These lists are 

· anchored in the control document A similar array contains all links in the hypergraph. 

When Triton needs to create a new node or link, a subroutine returns a free entry and does 

all chaining. 

Use of arrays allows the data for all nodes and links to be grouped together in one 

document. This is efficient when writing the control record out to disk. Also, since storage 

is already allocated, Triton can avoid the overhead of malloc or GetNewHandle. By 

using index numbers rather than real addresses, Triton avoids relocation problems when 

the hypergraph is written to and from disk. 

Each node points to a list of its links. When a user clicks in a node, the Macintosh 

TEClick routine returns the location of the insertion point. Triton scans the list of links to 

determine if the click occurred within a link marker. Although the link array contains all 

links in the hypertext document, Triton scans only the links belonging to the node. Triton 

uses a linear list of the link entries because it is simple. Triton is a prototype and is not 

expected to handle large documents with hundreds of links. For large systems, Triton 

would need a more sophisticated method so that response time is acceptable to the user. 

Hash tables are fast but can waste disk space if the links are sparse. Since Triton already 

knows which node is being searched and the displacement of the link into the node, a better 

method would use some kind of index system. 

page 27 



4. 3 Problems Encountered During the Project 

Three problems were encountered during the project The first was with the way 

Triton stores hypergraphs . A word processing program will leave one document on a disk 

that can later be modified or dragged to the trash. Triton on the other hand, creates a folder 

with the name of the hypergraph . Each node and control document is stored as a separate 

. document within the folder . Discarding any document within the folder will destroy the 

hypergraph . Triton's way of storing a hypergraph, which is logically one document, is 

contrary to the Macintosh user interface guidelines. Since the objectives of the Triton 

project no longer focused on the HAM, this violation was ignored to simplify the project . 

Purpose 
I 

I 
PUI Comments About Timing 
CL COi RadiH Sort Algorithm [L 

CL RAI Quick Sort Algorithm 
Th CL 
te1 CL au RppendiH A 
tw1 On1 CL 

AP 
ln1 of [L References 
of th Th◄ [L 

RE1 tL Table of Conten1~ the Lil pr◄ [L 
Ge th◄ Th CL [L [L Title CL Th It St 

CL 
to th, wa TAI REI 

□ Sort Hypergraph 
It of uni RUI 

Th, Sil 
[L 

thi CL 
Un 

~ 

bu◄ IIBfil a• IComme - us on CL ap1 - ... : ,., ... , un - -

Figure 4-6. Crowding of Windows in a tfacintosh Screen. 

Triton's method of defining links created another problem. Once a define link 

operation is started, Triton will not allow the user to do anything until the end of the link is 

defined. The modeless program philosophy of the Macintosh dictates that the second part 

of the link definition should not prohibit any other operations . This violation was 

page 28 



) necessary to insure that anchors were consistently maintained in the text of each window. 

The final problem was caused by the small size of the standard Macintosh screen. 

"Sort Hypergraph" quickly revealed the problem of having many hypertext nodes crammed 

within the Mac's nine inch screen (figure 4-6). The "Show Graph Window" and "Restack 

Windows" options in the browse menu were added as afterthoughts. Since the browser 

window can be used as a navigation aid, it is convenient to make the graph window easily 

available. The "Restack Windows" option is standard in other products such as Microsoft 

Word and Excel. It was found to be a necessity because many more windows are usually 

opened under Triton. 

4. 4 Triton's Adherence to the Dexter Model 

This section discusses how well Triton conforms to the standards of the Dexter 

hypertext model [14]. The Triton project places its main emphasis on the user interface and 

the application layer. While the Dexter model concentrates on the storage layer, there are 

several features that can be compared. 

Triton does not follow the Dexter model's layered architecture. The functions for 

the application layer, storage layer, and user interface are divided among Triton's eight 

source files. In a typical Macintosh application, modules are grouped together based on the 

data types they handle. For example, a "window unit" contains all window operations. 

Since Triton is a single program that does not require client-server functions, it is simpler to 

structure Triton like a traditional Macintosh application. 

Triton's file system is similar to the Dexter model's storage layer. The file system 

does not need to know anything about the data except the version to be used. There are no 

restrictions on the data contained in nodes. 

Triton links are very similar to Dexter links. Although Triton supports only binary 

J links, they are equivalent to a Dexter link that has two specifiers. Triton links can have link 

page 29 



) 

attributes associated with them. Triton links contain anchors that specify both a node and a 

displacement as Dexter links do. 

While the storage layer features of Triton are very simple, Triton does have a 

minimal set of the Dexter features. 

page 30 



5. Future Improvements to Triton and Other Hypertext Systems 

This section discusses things that were learned during the development of Triton 

and how they might be used to improve existing and future hypertext systems. These areas 

include the use of the layered architecture of the Dexter model, client-server database 

systems, open software architecture, and tools for the hypertext document developer. 

5. 1 Dexter Architecture 

The use of the layered architecture of the Dexter model can provide flexibility in the 

design of hypertext systems. Neptune's developers have stated that they are usually 

referring to the HAM when they talk about Neptune. Since the HAM, like the Dexter 

storage layer, knows nothing about the data it's processing, this implies that Neptune could 

) be used for other applications . This can be done by replacing the within-component layer 

and modifying the user interface. For example, Neptune's strong version support would be 

very useful in a medical records system. Such systems require that the content of any 

change, the author, and time of change be identifiable. 

) 

The separation of the user interface layer from the within-component layer provides 

other advantages. By including things such as non-hardware specific tools, computational 

engines, and artificial intelligence capability in the within-component layer, we can port this 

layer to other platforms and to other types of applications without the need for extensive 

modification. Also, the user interface layer can handle the specific hardware without any 

need for a knowledge of the application. 

page 31 



5. 2 Client-Server Database Systems 

The attempt to port the Neptune HAM over to the Macintosh consumed much effort 

and was unsuccessful. To eliminate a major part of the development of a hypertext system, 

several researchers have proposed using relational databases to provide the functionality of 

the Dexter storage layer [24]. The Neptune HAM is a database management system that 

uses client-server communications. In addition to reducing development costs, keeping 

HAM on a mainframe has the advantage of providing computing power and multi-user 

synchronization not available on a Macintosh. 

Apple Computer has realized the importance of the client-server architecture and is 

creating a number of products to exploit this facility. A recent videotape called "Apple 

Seminar for One" [l] demonstrates some of these products. A Macintosh is connected to 

both a VAX and an IBM mainframe. A user formulates plain language database queries in a 

Macintosh dialog box. The Macintosh translates the request into the appropriate query 

language for the target processor. Information returned from the mainframe appears in a 

Macintosh window. Such information can be selected and copied to other applications on 

the Macintosh or to other mainframe servers. 

5. 3 Open Architecture 

One of the requirements for future hypertext systems is that they have an open 

architecture [18]. Allowing either Mac Write or Microsoft Word to process a Triton node 

while maintaining link integrity would be an example of such an architecture. Although 

most software companies are going to be unwilling to provide this capability for other 

vendors, open architecture is available to some extent on the Macintosh. A text file on a PC 

contains both text and control information that must be interpreted by the word processing 

program. A Macintosh document stores data differently. A document is stored in two parts, 

page 32 



) the data fork and the resource fork. The data fork contains the text data. The resource fork 

contains an arbitrary number of resource entries . Entries in the resource fork tell the 

Macintosh things about the document environment, such as which software application 

created the document. It is possible to add information such as link anchors to a Mac Write 

document by adding additional resource entries to the resource fork. The document can be 

edited with Mac Write or used with the hypertext system. Additional research is needed to 

see if hypertext control information can be updated after the document is edited. 

5. 4 Tools for the Hypertext Document Author 

While some studies have been done on the user interface and how it affects the user 

of a hypertext system [5, 19], little has been done for the author of hypertext documents. 

There is nothing in the current literature about a set of standard tools for the author. 

Three examples of problems caused by a lack of such tools have been discussed in 

this paper. The first is HyperCard's tedious and time consuming process for creation of 

hypertext like links. In the second example, the authors of Reg-in-a-Box have discussed 

the need for a tool to verify that links are properly targeted. The final example is the 

creation of the sample document for the Triton project. "Sort Hypergraph" has a large 

number of nodes that had to be constantly resized and moved about while constructing the 

document. The hypertext author needs a set of tools to control the clutter on the electronic 

desktop. 

5. 5 Conclusions 

At first, the idea of porting Neptune from the VAX to the Macintosh was appealing 

because of the benefits that would be provided to the end user. One of the things that 

became apparent was that the design of a hypertext system must consider the number of 

page 33 



) people that require concurrent access to a hypertext document and the type of access they 

need (i.e. read or update). The use of large mainframes that provide centralized control will 

be a necessity for large complex hypertext documents that are maintained by many people. 

) 

The Dexter hypertext model is a worthwhile tool. It can assist future hypertext 

system developers in two important ways. First, the model can provide a checklist of 

features that users will expect from a hypertext system. Second, the Dexter layered 

architecture can assist the developer in designing a system for a specific hardware platform 

and a specific user. For example, IBM and Apple Computer are currently designing 

hypertext systems for the educational market. While the authors of a particular product may 

require concurrent access for product development, the end user could be a single student. 

The student may be using a personal computer with the hypertext document on a CD-ROM. 

He will not require connection to a mainframe or the ability to update the document By 

using the Dexter layered architecture, appropriate features can be designed into a hypertext 

system that will support both the author and the user on the appropriate platform. 

Although there are many advantages to using the Dexter model, Triton does not use 

its layered architecture. Since Triton does not need client-server services and is not written 

in an object oriented language, it was easier to program Triton using the traditional 

Macintosh event-loop technique. As object oriented languages develop, it will be easier to 

implement the Dexter architecture on the Macintosh. 

page 34 

.., 



Bibliography 

[1] Adams, Douglas. "Pathways and Relationships", MacUser, December 1987, pp 
161-164. 

[2] Am,le Seminar for One. Video tape, Apple Computer, 1990 

[3] Bush, Vannevar. "As We May Think", Atlantic Monthly, July 1945, pp 101-105. 

[4] Carlson, David A. and Ram, Sudha. "Hyperlntelligence: The Next Frontier", 
Communications of the ACM, XXXIII (March 1990), pp 311-321. 

[5] Conklin, Jeff. "Hypertext: An Introduction and Survey", Computer, September 
1987, pp 17-41. 

[6] Delisle, Norman and Schwartz, Mayer. "Neptune: a Hypertext System for CAD 
Applications", Computer Research Laboratory, Tektronix, Inc., Beaverton, OR, 
1986. 

[7] Elmasri, Ramez and Navathe, Shamkant B. Fundamentals of Database Systems. 
Redwood City, CA: The Benjamin/Cummings Publishing Company, Inc., 1989. 

[8] Foskett, William H. "Reg-In-A-Box: a Hypertext Solution". AI Expert. February 
1990, pp 38-45. 

[9] Goodman, Danny. "The Two Faces of HyperCard", Macworld. October 1987, pp 
123-129. 

[10] Goodman, Danny. The Complete HyperCard Handbook, New York: Bantam 
Books, September 1987. 

[11] Goodman, Danny. Danny Goodman's HyperCard Developer's Guide. New York: 
Bantam Books, July 1988. 

[12] Glushko, Robert J. "Visions of Grandeur?", UNIX Review. VIII (February 1990), 
pp 70-80. 

[13] Halasz, Frank G. "Reflections on NoteCards: Seven Issues for the Next 
Generation of Hypermedia Systems", Communications of the ACM, XXXI (July 
1988), pp 836-852. 

[14] Halasz, Frank and Schwartz, Mayer. "The Dexter Hypertext Reference Model", 
Submitted to the NIST Hypertext Standardization Workshop, Gaithersburg, MD, 
January 16-18, 1990. 

[15] Inside Macintosh Volume I, New York: Addison-Wesley Publishing Co.1985, 
pp27-70. 

[16] Jones, C. B. Systematic Software Development Usin~ VDM. Hertforshire, 
England: Prentice-Hall International. 1986 

[17] Levy, Steven. "How ABC Elected HyperCard", Macworld, June 1989, pp 47-52. 

page 35 



[18] Meyrowitz, Norman. "The Link to Tommorrow", UNIX Review, VIlI (February 
1990), pp 58-67. 

[19] Nielsen, Jakob. "The Art of Navigating Through Hypertext". Communications of 
the ACM, XXXIII (March 1990), pp 296-310. 

[20] Rasmus, Daniel W. "Hypermedia, Guide 2.0", MacUser, April 1990, pp 70-72. 

[21] Spivey, J.M. The Z Notation, Hertforshire, England: Prentice-Hall International. 
1989 

[22] Stefanac, Suzanne and Weiman, Liza. "Multimedia, is it Real?", Macworld, April 
1990, pp 116-123. 

[23] Terusak:i, Gary B. "Report on Solution of Sorting Algorithms", Computer Science 
Paper, October 1986. 

[24] Watters, Carolyn and Shepherd, Michael. "A Transient Hypergraph-Based Model 
for Data Access", ACM Transactions on Information Systems, VIII (April 1990), 
pp 77-102. 

[25] Williams, Greg. "HyperCard 2.0- a good tool gets better", Apple Direct. May 
1990. 

[26] Winston, Alan. "The Age of Hypertext", UNIX World. November 1990, pp 86-
90. 

page 36 



I 

Appendix A - Instructions for Runnioe Triton 

Triton is a hypertext system that supports text nodes, a browser window, and 
linking capability. Triton will run on any Macintosh Plus or above. Permission is granted 
to copy and use Triton provided that the information in the "About Triton" dialog in the 
Apple menu is neither altered nor removed Triton is distributed free and without any 
warranties . Use it at your own risk. 

These instructions are divided into three sections: installation, tutorial, and menu 
reference . It is assumed that the user is familiar with operation of a Macintosh computer 
and has experience running several applications. It is also assumed that the user has some 
experience with hypertext systems. 

A 1. Installation 

Copy Triton to the disk or folder where it is to be installed. Triton is now ready to 
run . 

A 2. Tutorial 

Use this tutorial with the Triton software. You will become familiar with the 
capabilities of Triton by creating and navigating through a small hypertext document. 
Throughout this tutorial the terms hypenext document and graph are used interchangeably . 

1. Launch Triton by double clicking on its icon. A dialog will appear asking you to 
enter your initials. This is used for version control when the hypertext document is 
saved. 

2. Select "New Graph ... " from the file menu . A dialog will ask you to name the new 
graph . Specify a name of myGraph. A new FOLDER with this name will be created 
on your disk. 

WARNING - A Triton hypertext document is saved as a group of Macintosh 
documents in a folder. Do not use the Finder to move documents out of this folder. 

An empty window with the name "myGraph" is displayed on the screen. This is the 
browser window. It will contain a drawing of all nodes in the graph. 

3. Select "Add Node ... " from the node menu . You will be asked to name the node. 
Call it Able. A text window called "Able" appears. Now type the following lines 
into this window: 

This is line 1 of Able . 
This is line 2 of Able. 

4. Create a new node called Baker by repeating step 3. 

5 . Create a new node called Charlie by repeating step 3. 

6 . All the windows have zoom, close, and size boxes; they behave like standard 
Macintosh windows . Arrange the windows so they look similar to figure A-1. 

page A-1 



) myGroph oble 
this is I ine 1 of able 
this is I ine 2 of able 

~Ill 
chorlie 

boker this is I ine 1 of char-Ii e 
this is I ine 1 of baker- this is I i ne 2 of char- I i e 
this is I ine 2 of baker-

Figure A-1. Win.do~ layout after finishing step 6. 

7. Click on "myGraph," the browser window. 

8. Each of the nodes: Able, Baker, and Charlie are represented by small boxes in the 
browser window. Reposition the small box labelled Baker by clicking on it and 
dragging it approximately an inch to the right. Release the mouse button. In a 
similar manner, move the box labelled Able about half an inch to the right. 

9. Select "Set Link Type" from the link menu. You may define four different link 
attributes for your graph. Any or all of the four attributes may be assigned to a 
single link. 

Replace the field "Attribl" with myTypel. Replace the field "Attrib2" with 
myType2. Make sure that only the box labelled myTypel has a check mark. Click 
on the OK button. 

10. Click on the Able window. Set the text insertion point before the first line. Select 
"Define From Link" from the link menu. You will get a warning stating that the 
define link operation must be completed or cancelled before anything else can be 
done. 

Click on the Baker window. Set the text insertion point before the first line and 
then select "Define To Link" from the link menu. 

Link markers will be inserted in the Able and Baker windows. The links are 
numbered and contain the names of the attributes attached to the link. The browser 
window is updated with a line between the Able and Baker boxes indicating that a 
link has been established. 

page A-2 



11. Select "Set Link Type" from the link menu again. Remove the check mark from the 
myType 1 box. Place a check mark in the myType2 box. 

12. Set the insertion point at the end of the text in the Charlie text window. Select 
"Define From Link" from the link menu. 

Set the insertion point at the end of the text in the Able window. Select "Define To 
Link" from the link menu. Another link is drawn in the browser window between 
Able and Charlie. 

13. Click on the close box of the Baker and Charlie windows. Only the Able window 
and the browser window should be on the screen. 

14. Select "Display Link Type" from the link menu. Make sure only the myTypel box 
is checked. Click on OK. One of the links disappears from the browser window. 
The remaining link has an attribute of myTypel associated with it. 

Select "Display Link Type" from the link menu and check the box labelled "Display 
All Links." Click on OK. Both links should now be visible in the browser window. 

15. Click on the Able window. Place the insertion point at the end of the first line. Type 
several characters. Hit the backspace key as many times as possible. When you try 
to backspace over the link indicator, Triton will give you a warning. Deletion of 
links requires special operations from the link menu or browser window. 

16. Click on the first link in the Able window. The entire link marker is highlighted. 
Now select "Go to Link" from the browse menu. This link points to the Baker 
window, which will now be made visible. 

17. Click on the browser window. Double click on the small Charlie box in the browser 
window. Triton will now make Charlie the active window. All windows in the 
graph should now be visible. 

18. Click on the browser window. Select the small Able box by clicking on it; it should 
be highlighted. Select "Delete Node" from the node menu. The Able node has been 
discarded. It is removed from the screen and erased from the browser window. The 
link indicators in the other nodes are removed so that link consistency is 
maintained. 

This is the end of the tutorial. 

A3. Triton Menu Commands 

This section lists the commands in the Triton menus. 

FILE MENU 

New Graph - Prompts the user for the creation of a new hypertext document. A 
folder will be created using this name. All hypertext documents are composed of several 
Macintosh documents that are stored in this folder. DO NOT use the Finder to move any 
documents out of this folder. 

page A-3 



Open Graph - Opens a previous saved hypertext document. Triton saves previous 
versions of a document and allows the user to access any of the past versions. See figure 
A-2. 

la Sort Hypergraph I 
Cl gbt 12/-1/90 11.25.06 PM ~ 
Cl gbt 12/ 4/90 11.28.08 PM 
[) gbt 12/ 4/90 11.45.30 PM 
[) gbt 12/ 4/90 11.52.32 PM 
Cl gbt 12/5/90 12.00.56 AM 

Figure A-2. Open command in FILE menu. 

c:JHARDDISK 

[ (: j(~( t ] 

[ Driue ) 

[ Open ] 

[ Cancel ] 

Close Graph - Closes the current hypertext document Only one hypertext 
document may be open at any one time. 

Save Graph - Saves the current hypertext document. 

Save As - Saves the current hypertext document under a new name. 

Page Setup - Prompts the user for preferences to be used in printing any of the 
nodes. 

Print - Prints the currently active window. 

Quit - Quits Triton. 

EDITMENU 

This menu contains the standard items for Cut, Copy, Paste and Clear. The menu 
works only with text If you are using Multifinder you can import text into Triton from 
your word processing program. 

NODEMENU 

Add Node - Requests a new node name from the user and adds the node to the 
hypertext document. 

page A-4 



) 

Delete Node - Removes the current node from the hypertext document. Any links in 
this node will be removed from all other nodes. 

Open Node - When a node is selected in the browser window, this command will 
open the node and make it the current window. 

Close Node - Hides the current node window. This can also be accomplished by 
clicking on the close box of the node. 

Get Node Info - Displays information about the current node and allows the node 
name to be changed. 

LINK MENU 

Define From Link - This option is enabled when the insertion point is present in the 
current text node. This option starts the definition of a link. The operation must be 
completed by going to the destination of the link, placing the insertion point at the 
appropriate location, and selecting "Define To Link" from the link menu. 

Define To Link - Completes the definition of a link started by "Define From Link." 

Cancel Define Link - When a link definition has been started by "Define From 
Link," it can be cancelled with this option. The link marker for this operation will be 
removed from the starting node. 

Delete Link - When a link marker is highlighted in a node, this command will 
remove the link and erase the link markers in both the source and destination nodes. 

Set Link Type - Triton allows a link to have up to four attributes. This command is 
used to 1) set the names of the attributes and 2) allow any combination of the four attributes 
to be assigned to a link in the next "Define To Link" operation. 

To set the names of the attributes, type their names in the fields of the dialog. To set 
the attributes that will be assigned in the next "Define To Link" operation, click the check 
boxes for the attributes to be assigned. 

Display Link Type - This item controls which links are seen in the browser 
window. Only those links that have the selected attributes will be displayed. 

BROWSE MENU 

Go to Link - After selecting a link marker in a text node, this command will open 
the destination node and scroll to the marker's endpoint. 

Return from Link - Triton keeps track of the last 100 links that were traversed. This 
item will return the user to the origin of the last link traversed. 

Show Graph Window - Brings the browser window to the front and makes it the 
current window. 

Restack Windows - Resires and stacks all windows in the hypertext document. 

page A-5 



I ) 


