
Instability of Mapper Type Algorithms for Topological Data

Analysis

Danny Wentland
Advisor: Professor Christine Escher

Oregon State University May 2020

Contents

1 Introduction 3

2 Background 4
2.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Clustering 5

4 Mapper Construction 10

5 Clustering Instability 12

6 Mapper Instability 21

7 Bounds on Instability 28

8 Algorithms for Approximating Mapper Instability 33
8.1 Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Approximation Method for InStabMapper . . . . . . . . . . . . . . . . . . . . . . . . 36

9 Conclusion 37

1



Instability of Mapper Type Algorithms for TDA Wentland

ACKNOWLEDGEMENTS

This project was a rewarding venture that I could not have completed alone. I want to thank
my advisor, Professor Christine Escher, for her sincere interest in my success. She opened doors
for me that I did not even know existed and taught me what quality work looks like. My committee
members, Professors Bill Bogley and Ren Guo for their guidance in selecting a topic. I would like
to thank Professor Yevgeniy Kovchegov for his probabilistic expertise and my dear friend Benjamin
Sinkula for his corrections on Figure 3.2.
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1 Introduction

Our world is comprised of data. Each email sent, website visited, or transaction made generates
data that is stored in a database, waiting to be gleaned. In the internet age, the rate at which these
databases grow is astronomical, according to Devakunchari [6], in 2014 nearly 90% of the world’s
data had been generated between 2012 and 2014. It is well understood that we, as a scientific
community, have reached a data capacity in which traditional data analysis methods fall short.

Data in this volume has been termed “big data” and the commercial potential of understanding
big data has motivated several academic pursuits. In recent years the algebraic topology commu-
nity has successfully applied pure mathematics methods to this problem, and a new field known
as Topological Data Analysis (TDA) emerged. With several powerful players, such as Carlsson,
Edelsbrunner, Oudot, and de Silva, TDA has grown considerably in a short amount of time.

The goal of TDA is to extract shape from a collection of data, where a geometric or topological
structure may not be obvious. Once a topological structure is identified, the well-established
tools of algebraic topology are used to identify patterns within the data. Of course, how this
extraction should take place is not an easy question to answer, and there has been substantial work
in this area. Most methods assume the data is embedded in a topological space and use simplicial
complexes to approximate the underlying structure. We have Leopold Vietoris to thank for one
method, the Vietoris-Rips complex, which he developed in 1927 to apply homology theory to metric
spaces [12]. This method has gained popularity in TDA for its ability to extract shape while being
computationally inexpensive. There are several other methods in a similar vein as the Vietoris-Rips
complex, and Ghrist [7] gives an overview of them.

The focus of this expository Master’s paper is a method proposed by Singh, Memoĺı, and
Carlsson in 2007, known as Mapper [13]. Although Mapper uses simplices to approximate shape,
it differs from the constructions mentioned above in several key ways. Mapper depends on a real-
valued function on the given data to create a specially designed topological cover for the data. It
then leverages the machine learning tool known as clustering in its definition. This construction
has seen great success and, in 2008 led Carlsson, Sexton, and Singh to found the machine learning
and artificial intelligence company Ayasdi.

Clustering can be viewed as the practice of partitioning a collection of discrete points and is
known, within the machine learning community, to be unstable. Meaning that the choice of two
similar sets of parameters could result in two partitionings that are not closely related, for more
details see an overview by von Luxburg in [9]. In fact, due to the difficulty of finding stable
clusterings, the question is less about achieving stability and more about decreasing instability.
As the definition of Mapper depends heavily on clustering, it is natural to question how much
instability Mapper inherits from the clustering in its definition.

In this expository Master’s paper we examine the work of Belch́ı, Brodzki, Burfitt, and Niranjan
in their paper A Numerical Measure of the Instability of Mapper-Type Algorithms, [1]. In this article
Belch́ı et. al. propose a measure of Mapper instability based on the work of Ben-David and von
Luxburg on clustering instability [2]. We begin by providing necessary background definitions in
probability and topology in Section 2. In Section 3 we give a mathematical definition of clustering
followed by Section 4 where the Mapper construction is defined. In Section 5 we review the work of
[2] on clustering instability to demonstrate how Belch́ı et. al. apply it to Mapper in Section 6. In
Section 7 we provide a stability theorem for Mapper-type algorithms from [1]. Finally, in Section
8 we outline an algorithm from [1] to help compute Mapper instability.
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2 Background

In this section we provide definitions and necessary background information.

2.1 Topology

The background information for topology is taken from Munkres [10] and [11]. First, recall the
definition of the diameter of a bounded nonempty subset of a metric space.

Definition 2.1. Let (X, d) be a metric space with metric d and A a bounded nonempty subset of
X. The diameter of A is defined to be the real number

diam(A) = sup{d(a1, a2) | a1, a2 ∈ A}.

Voronoi cells are an important component for constructions in Sections 5 and 6. We alter the
classical definition by adding specificity for equidistant points.

Definition 2.2. Given a metric space (X, d) and x1, x2, . . . , xn ∈ X define the Voronoi Cell of
xi as

Vi = {x ∈ X | d(x, xi) ≤ d(x, xj) for j 6= i}.

If there exists a point x ∈ X that is equidistant from xi1 , xi2 , . . . , xik where each ij ∈ {1, 2, . . . , n}
then assign x to the Voronoi cell of xim where im < ij for each j = 1, 2, . . . , k and j 6= m. The
collection V1, V2, . . . , Vn is called the Voronoi Diagram of X, with respect to x1, x2, . . . , xn.

Remark 2.3. In this paper we will use the Voronoi Diagram to define functions and the alteration
we introduced ensures the functions will be well-defined. This alteration does not appear in [1].

We now provide the building blocks of our construction.

Definition 2.4. A k-simplex is the convex hull of the k+ 1 affinely independent points v0, . . . , vk
in Rn for k ≤ n. Here affinely independent means that the vectors v1 − v0, v2 − v0, . . . , vk − v0

are linearly independent.

As stated in the introduction, simplicial complexes serve as approximations in TDA and many
of these approximation methods use the definition of an abstract simplicial complex.

Definition 2.5. An abstract simplicial complex is a collection S of finite nonempty sets, such
that if A is an element of S, so is every nonempty subset of A. The vertex set of S is the union
of one-point sets of S and the dimension of an abstract simplicial complex is the cardinality of its
vertex set minus 1.

We conclude this section by giving the definition of a construction called the nerve as it is an
important tool in the Mapper construction.

Definition 2.6. Let A be a collection of subsets of a topological space X. Define an abstract
simplicial complex, called the nerve of A, denoted by N(A), as follows. The vertices of N(A) are
the elements of A and the n-simplices of N(A) are finite subcollections {A0, A1, . . . , An} of A such
that

A0 ∩A1 ∩ · · · ∩An 6= ∅.
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2.2 Probability

The background information for probability is taken from Bhattacharya and Waymire [5].
We recall the following standard terms from probability which will be used throughout the

paper.

Definition 2.7. A probability measure space is a triple (Ω,S, P ) where Ω is a nonempty set,
S is a σ-algebra of subsets of Ω, and P is a finite measure on the measurable space (Ω,S) with
P (Ω) = 1. The set Ω is referred to as the sample space and ω ∈ Ω as sample points.

Definition 2.8. A random variable X is a measurable map from a probability space (Ω,S, P ) into
a measurable space (D,D) called the state space. Here measurability of X means that X−1(B) ∈ S
for each B ∈ D. Unless stated otherwise, (D,D) will be (R,B) where B is the Borel σ−algebra.

Definition 2.9. Given a probability measure space (Ω,S, P ) and a P -integrable random variable
X, where R is given the Borel σ−algebra, the expected value or mean of X is defined as

E(X) =

∫
Ω
XdP.

Definition 2.10. Given a probability measure space (Ω,S, P ), a finite set of random variables
X1, X2, . . . , Xn and Borel sets B1, B2, . . . , Bn, we say X1, X2, . . . , Xn are independent if

P ({ω ∈ Ω | Xi(ω) ∈ Bi for 1 ≤ i ≤ n}) =
n∏
i=1

P ({ω ∈ Ω | Xi(ω) ∈ Bi}).

Definition 2.11. For a probability measure space (Ω,S, P ) and a random variable X the cumu-
lative distribution function F : R→ R of X is

F (x) = P ({ω ∈ Ω | X(ω) ≤ x}).

If X1, X2, . . . , Xn are random variables on (Ω,S, P ) and Fi for i = 1, 2, . . . , n are their correspond-
ing cumulative distribution functions, we say that X1, X2 . . . , Xn are identically distributed if
F1 = F2 = · · · = Fn. If X1, X2, . . . , Xn are identically distributed as well as independent, we say
that X1, X2, . . . , Xn are independent and identically distributed which is abbreviated as i.i.d..

Definition 2.12. Given random variables X1, X2, . . . , Xn from a probability space (Ω,S, P ) into
the same state space (D,D) define the empirical probability measure for measurable A ⊆ D
and fixed ω ∈ Ω as

Pn(A) =
n∑
i=1

1A(Xi(ω)),

where 1A(Xi) = 1 if Xi(ω) ∈ A and 0 if Xi(ω) /∈ A.

3 Clustering

We begin with a concept from machine learning and data analysis known as clustering which, in its
most simple form, is the practice of partitioning a set. We start with clustering because it plays an
important role in both the construction of the Mapper algorithm as well as in providing a measure
of the instability of the Mapper. In fact, we will see that the Mapper instability work of [1] builds
on the clustering instability work by [2], making clustering a logical first step.
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Definition 3.1. Let X be a set, a clustering function is a function

c : X→ {1, 2, . . . , s}.

The ith cluster of X with respect to c is Vi = c−1(i) which may be empty, and c(x) is called the
cluster label of x ∈ X. We refer to C = {V1, . . . , Vs} as the clustering of X.

Note that the above definition is very general, and as a result there are functions that sat-
isfy the definition, but are not practical as a tool for data analysis. For example, suppose X =
{x1, x2, . . . , xn} and that we apply the following clustering functions to X.

c1 :X→ {1} c2 : X→ {1, 2, . . . , n}
xi 7→ 1 ∀i xi 7→ i ∀i

The clustering function c1 results in a clustering that has only one cluster, namely X itself,
and the second function c2 assigns each point of X to its own cluster. An equally uninformative
clustering function is one where cluster membership is decided randomly. For instance, consider
rolling a six sided die for each of the n members of X and assigning xi to the result of the ith die
roll. In this way X is partitioned into at most six nonempty clusters, but the only feature that
members of a cluster have in common is a random occurrence. The commonality of these three
examples is that they do not exploit any relationship between the points of X, and at the heart of
data analysis is the search for such a relationship.

Generally, a clustering function, c, is defined after a process is performed on the set X that
determines c(x) for x ∈ X. In the die rolling example above, the clustering function that assigned
xi to the ith die roll was defined after the die was rolled n times. Rolling the die n times was a
process that was completed before the clustering function was defined. In practice, these processes
tend to be more sophisticated than rolling a die and we will refer to a process that determines a
clustering function as a clustering algorithm.

As there are numerous applications that generate data there are numerous clustering algorithms
tailored to these applications. Most clustering algorithms fall into categories that are determined
by several factors, including the goal of the analyst and the type of data being analyzed. We will
look at examples from two categories: density based clustering and centroid based clustering.

In density based clustering the goal is to determine the number of “accumulation”, or “high
density”, areas of the points of X, these areas will form the clusters of X. Points that are far from any
accumulation area are often regarded as not belonging to any one cluster and are labeled as outliers
by the algorithm. Here, “far” is relative to how dense each cluster is. Density based clustering is a
natural geometric method of partitioning a collection of discrete points which discretizes the notion
of path connectivity.

Our example of a density based clustering algorithm is known as Density Based Spatial Cluster-
ing with Application to Noise which is commonly referred to as DBSCAN. It depends on a number
of definitions.

Definition 3.2. Given X = {xi}ni=1 ⊂ X where X is a metric space with metric d, ε ∈ R+, and a
natural number minPts. Define a core point of X as x ∈ X such that

|B(x, ε) ∩X| ≥ minPts,

where Bd(x, ε) is the open ball of radius ε centered at x.

The following definitions relate to the core points of X = {xi}ni=1 ⊂ X.
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Figure 3.1: An example of DBSCAN identifying two areas of high density and ignoring four outlier
points, considering them as noise due to sampling error.

Definition 3.3. Given X = {xi}ni=1 ⊂ X, where X is a metric space.

• A point y ∈ X is directly reachable from a core point x, if y ∈ B(x, ε).

• A point y ∈ X is reachable from a point x ∈ X, if there exist core points c1, c2, . . . , ct
such that x is directly reachable from c1, y is directly reachable from ct, and ci+1 is directly
reachable from ci for all 1 ≤ i ≤ t− 1.

• Two points x, y ∈ X are connected, if there exists a point z ∈ X such that x and y are both
reachable from z.

• A point x ∈ X is a boundary point, if x is reachable from a point y ∈ X, y 6= x, but x is
not a core point.

• A point x ∈ X is considered an outlier, if it is not reachable by any other point of X.

The clustering of X is then determined by the areas of connectivity as defined in Definition 3.3.

Definition 3.4. Define the DBSCAN clustering, C = {V1, V2, . . . , Vs}, of X by setting

V1 = {x ∈ X | x is an outlier}

and V2, V3, . . . , Vs as the maximal subsets, with respect to set inclusion, of X such that any two
points x, y ∈ Vi are connected, but no point from Vi is connected to a point z /∈ Vi.

Figure 3.1 gives an example, where X is a collection of points in R2 with the Euclidean metric.
Two clusters are formed when ε = 4 and minPts = 3. We now discuss centroid based clustering.
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Definition 3.5. Given X = {x1, x2, . . . , xn} ⊆ Rd. A centroid based clustering is a choice of
points {z1, z2, . . . , zk} ⊆ Rd called centroids, and a clustering function f : X → {1, 2, . . . , k} that
minimizes ∑

x∈X
d(x, zf(x))

2.

The centroid based clustering algorithm we will discuss is known as naive k-means and is well
known in the machine learning community. Naive k-means uses an iterative process as follows.

Naive k-means Algorithm:

• Arbitrarily select k points of Rd, z(0)
1 , z

(0)
2 , . . . , z

(0)
k , not necessarily belonging to X.

• For each i ∈ {1, 2, . . . , k} define the 0th stage cluster as

V
(0)
i = {x ∈ X : ||x− z(0)

i ||
2 ≤ ||x− z(0)

j ||
2 for j 6= i}.

If there exists a point x ∈ X that is equidistant from z
(0)
i1
, z

(0)
i2
, . . . , z

(0)
il

for ij ∈ {1, 2, . . . , k},
then assign x to V

(0)
ip

where ip < ij for each j = 1, 2, . . . , l and j 6= p.

• For i = 1, 2, . . . , k and m ≥ 1 set

z
(m)
i =

1

|V (j−1)
i |

∑
x∈V (m−1)

i

x.

• Define the mth stage clusters for i = 1, 2, . . . , k as

V
(m)
i = {x ∈ X : ||x− z(m)

i ||2 ≤ ||x− z(m)
j ||2 for j 6= i}.

If there exists a point x ∈ X that is equidistant from z
(m)
i1

, z
(m)
i2

, . . . , z
(m)
il

for ij ∈ {1, 2, . . . , k},
then assign x to V

(m)
ip

where ip < ij for each j = 1, 2, . . . , l and j 6= p.

• For stage m define the clustering function f (m) : X → {1, 2, . . . , k} of X as

f (m)(x) = i such that x ∈ V (m)
i .

• Convergence is reached when V
(m)
i = V

(m+1)
i ∀i = 1, 2, . . . , k.

Figure 3.2 gives a schematic of the naive k-means algorithm.

There are several questions that arise with the naive k-means algorithm. Since our paper is
focused on topological data analysis, where clustering is a tool and not the primary focus, we do
not attempt to address questions associated with naive k-means or clustering in general, but have
provided sources on the subject for further reading [3][4][8][9].

We will use clustering in the next section to define an algorithm, called Mapper, that constructs
a simplicial complex from a collection of discrete points in a metric space. Ultimately, we will use
this simplicial complex as a topological approximation, so consequently we will be interested in
the stability of these approximations. It turns out that these approximations depend heavily on
clustering stability, which is the topic of Section 5.
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Figure 3.2: In this example X ⊆ R and k = 3. The centroids are denoted by open points, and the
points of X are denoted by solid points, which are colored according to their cluster assignment.
With each successive i the points are recolored according to their new cluster assignment. We
see that this schematic converges quickly, and that any further adjustment of centroids would not
result in new cluster assignments.
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4 Mapper Construction

Here begins the predominant topic of this paper, an algorithm, called Mapper, defined in [13], that
converts a finite set X residing in a metric space X into a simplicial complex, a Mapper complex,
intended for data analysis. First, we will present the algorithm such that the resulting simplicial
complex is of dimension at most one, and then generalize the construction to higher dimensional
simplicial complexes.

In this section, unless stated otherwise, we will assume that X is a metric space and X =
{xi}ni=1 ⊂ X such that each xi is drawn i.i.d. from X according to a probability measure P with
respect to the Borel σ-algebra.

Definition 4.1. Given X ⊂ X, we make the following definitions.

• A filter function is a function f : X → R.

• Z = [fmin, fmax] is the parameter space of f , where fmin and fmax are the smallest and
largest values attained by f . These values are defined because f is a function from a finite set
into a well-ordered set.

• L := length of Z.

We now generate a cover for Z by equal length intervals.

Definition 4.2. For a filter function f with parameter space Z, a resolution is a tuple (l, p) ∈
(0, L) × (0, 1) that determines a collection of intervals {I1, I2, . . . , In} such that l is the length of
each interval, p is the percentage overlap of successive intervals, and the following condition holds
for each i

Ii ∩ Ij = ∅, ∀j 6= i− 1 and j 6= i+ 1.

The resolution is then used to define a cover for Z.

Definition 4.3. Given a filter function f for X ⊂ X, a Mapper cover, Uf(l,p), is a collection of

intervals determined by a resolution (l, p) that covers Z = [fmin, fmax].

The following construction is similar to the nerve from Definition 2.6. Recall that the objective
is to construct a simplicial complex from the finite collection of points X, so we will construct a
cover for X rather than for X.

Definition 4.4. Let X = {xi}ni=1 be a finite subset of X. Then given a filter function f on X and

Mapper cover Uf(l,p) = {I1, I1, . . . , It} of Z = [fmin, fmax] define

Xi = f−1(Ii) i ∈ {1, 2, . . . , t}.

We call Xi the ith bin of Uf(l,p).

It is clear that X is contained in the union of the bins. At this point we could construct
a simplicial complex similar to the nerve as follows. Represent each bin as a zero simplex and
connect any two zero simplices with a one simplex whenever two bins share an element. However,
in practice the finite collection X is composed of an exceptionally large amount of data points,
and this method could condense information too much by treating the entire bin as a zero simplex.
The idea is to apply clustering to each of the t bins X1, . . . , Xt, which will condense the bins in a
meaningful way.
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Definition 4.5. For each bin Xi of Uf(l,p) define a clustering function for Xi as fi : Xi →
{(i, 1), (i, 2), . . . , (i, si)}. The clusters of each bin Xi are

V j
i = f−1

i ((i, j)) for j = 1, 2, . . . , si.

By construction we have not excluded the possibility that Xi∩Xj 6= ∅ for some choices of i and
j where i 6= j, which means that there could be members of X that have been assigned to clusters
of different bins. We will use this fact to construct a simplicial complex, Σ, as follows:

Definition 4.6. Given X = {xi}ni=1 ⊂ X, filter function f , a Mapper cover Uf(l,p), and (f1, f2, . . . , ft)
clustering functions for each bin Xi, we define the Mapper complex, Σ, as follows:

• For each cluster V j
i add a zero simplex to Σ.

• Whenever two clusters intersect, add a 1 simplex to Σ between the zero simplices that corre-
spond to the two intersecting clusters.

Remark 4.7. Due to the definition of a resolution for a Mapper cover Uf(l,p), a point f(xi) ∈ Z can

belong to at most two intervals of Uf(l,p). Furthermore, the clustering of each bin Xi is a disjoint
union. This fact together with the resolution restriction implies that at most two clusters can
intersect. This means that Σ is of dimension at most 1.

Next, we generalize the construction of a Mapper complex Σ to higher dimensions.

Definition 4.8. Let X = {xi}ni=1 ⊂ X. We define a k-dimensional filter function as

F : X → Rk

where F (x) = (g1(x), g2(x), . . . , gk(x)) and each gi : X → R. The k-dimensional parameter
space of F is

Z =

k∏
i=1

Zi,

where Zi = [gimin , gimax ] and Li = gimax − gimin.

The generalized Mapper cover for Z follows directly from the 1-dimensional case.

Definition 4.9. Given a choice of resolutions (li, pi) ∈ (0, Li)× (0, 1) for each i = 1, 2, . . . , k, and

let Ugi(li,pi)
be a Mapper cover for Zi. We define a k-dimensional Mapper Cover Uf(l,p) as the set

of all

I
(1)
j1
× · · · × I(k)

jk
such that ji = 1, 2, . . . , ti,

where I
(i)
ji

refers to the the jthi interval of the ith Mapper cover Ugi(li,pi)
, and for each i, ti is the

number of intervals in Ugi(li,pi)
.

Remark 4.10. If we denote the product t1t2 · · · tk by t, then there are t elements in Uf(l,p). This

implies that there are t bins of X, defined as Xi = F−1(Ai), where Ai ∈ Uf(l,p).

We are now ready to define the Mapper complex in higher dimensions.

Definition 4.11. Given X = {xi}ni=1 ⊂ X, a k-dimensional filter function F , a k-dimensional

Mapper cover Uf(l,p), and (f1, f2, . . . , ft) clustering functions for each bin Xi. We define the Map-
per complex, Σ, of X as follows:

11
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• For each cluster V j
i add a zero simplex to Σ.

• Whenever m + 1 clusters intersect, add an m simplex to Σ between the zero simplices that
correspond to the m+ 1 intersecting clusters.

We now illustrate the definition with an example.

Example 4.12. Let X = Z and X = {1, 2, 3, 6, 7, 9}. Suppose f : X → ZR is given by

1 7→ 0, {3, 9} 7→ 4, {2, 6, 7} 7→ 7.

Then Z = [0, 7]. Let (l, p) = (5, 0.4) be the resolution of Uf(l,p). Then Uf(l,p) = {[0, 5), (3, 8)} with
bins

f−1([0, 5)) = X1 = {1, 3, 9}, f−1((3, 8)) = X2 = {2, 3, 6, 7, 9}.
Suppose the clustering algorithm partitions each bin into

V 1
1 = {1}, V 2

1 = {3, 9}, V 1
2 = {2, 3, 7}, V 2

2 = {6, 9},

then the resulting Mapper complex, Σ, is

Here the isolated vertex corresponds to V 1
1 , and the vertex with degree two corresponds to V 2

1 .

Remark 4.13. There are certain aspects of this construction that warrant additional consideration,
one being the dependence of the cover Uf(l,p) on the choice of resolution (l, p). The correct choice
of resolution ensures a maximum dimension for Σ, as well as prevents an abundance of cluster
connections, see Figure 4.1.

5 Clustering Instability

Clustering is known to be unstable, meaning that small changes in parameters do not always imply
small changes in the resulting cluster assignments. In order to quantify this instability a metric
on clustering functions is needed. We also present a method to measure the appropriateness of a
clustering algorithm given a specific application.

To avoid technicalities arising from the wide variety of known clustering algorithms, for the
remainder of the paper, unless stated explicitly, we make the following general assumptions. Assume
that X = {xi}ni=1 ⊂ X, where X is a metric space, and each xi ∈ X is drawn i.i.d. according to a
probability measure P on X with respect to the Borel σ-algebra.

Definition 5.1. Given a metric space X, let F be the set of all functions
{
f | f : X→ {1, 2, . . . , s}

}
.

We define an equivalence relation on F by f ∼ g for f, g ∈ F if and only if there exists π ∈ Ss such
that f = π ◦ g. Here Ss is the symmetric group on s elements. We denote the set of equivalence
classes by F := F/ ∼, and by a slight abuse of notation we will call elements of F clustering
functions.
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Figure 4.1: The above Mapper complexes were all constructed using the Kepler-Mapper library
in Python [14] from the point cloud above that resembles two concentric circles. The filter func-
tion used in each case was a projection onto the x-coordinate, the clustering algorithm used was
DBSCAN with ε = .1 and minPts = 2 using the Euclidean metric. In each case, all parameters
were kept constant except for p in the resolution. The p values for the top row are .01, .25 and .5,
and the bottom row are .75 and .99. We see that for a very small overlap no structure is formed.
On the other hand, for large overlap there is far too much connectivity, and information about the
original shape is lost.
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For finite subsets of X we use the following definition.

Definition 5.2. If X = {xi}ni=1 ⊂ X, let Fn =
{
f | f : X → {1, 2, . . . , s}

}
. We define an

equivalence relation on Fn by

f ∼ g for f, g ∈ Fn ⇐⇒ ∃ π ∈ Ss such that f = π ◦ g.

Denote by Fn := Fn/ ∼, and again we will call elements of Fn clustering functions.

We follow the work of [2], and define two metrics on Fn in order to develop a measurement of
clustering instability.

Definition 5.3. Given X = {xi}ni=1 ⊂ X, the minimal matching distance is a function Dm :
Fn ×Fn → R, given by:

Dm(f, g) = min
π∈Ss

(
1

n

n∑
j=1

1f(xj) 6=(π◦g)(xj)

)
,

where 1f(xj) 6=(π◦g)(xj) = 1 if f(xj) 6= (π ◦ g)(xj) and 0 otherwise.

The minimal matching distance is an established metric in the machine learning community.
As the literature did not provide us with a proof we provide it here.

Lemma 5.4. The minimal matching distance is a metric on Fn.

Proof. Let f, g, h ∈ Fn, we prove each condition of a metric.

• Clearly Dm(f, g) ≥ 0 because it is defined as the sum of indicator functions.

• Dm(f, g) ≤ 1 because the summation

n∑
j=1

1f(xj)6=(π◦g)(xj) ≤ n.

• Observe that Dm(f, g) = 0 if and only if there exists a π ∈ Ss such that 1f(xj)6=(π◦g)(xj) = 0
for each j = 1, 2, . . . , n. However, this is true if and only if f(xj) = (π ◦ g)(xj) for each j,
which is the definition of f = π ◦ g. Then there exists a π ∈ Ss such that f = π ◦ g if and
only if f ∼ g in Fn. Thus, Dm(f, g) = 0 if and only if f ∼ g.

• For symmetry suppose that σ ∈ Ss is the minimizing permutation for Dm(f, g), and τ ∈ Ss is
the minimizing permutation for Dm(g, f). Suppose to the contrary that Dm(f, g) 6= Dm(g, f).
Without loss of generality we may assume that Dm(f, g) < Dm(g, f). Then

1

n

n∑
j=1

1f(xj)6=(τ◦g)(xj) <
1

n

n∑
j=1

1g(xj)6=(σ◦f)(xj).

However, this implies that

1

n

n∑
j=1

1(τ−1◦f)(xj)6=g(xj) <
1

n

n∑
j=1

1g(xj)6=(σ◦f)(xj)

which contradicts the definition of σ. Thus, Dm(f, g) = Dm(g, f).

14
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• Finally, for the triangle inequality, suppose that σ ∈ Ss is the minimizing permutation for
Dm(f, h) and τ ∈ Ss is the minimizing permutation for Dm(h, g). Further, let δ indicate the
discrete metric on {1, 2, . . . , s}. By definition we have for any π ∈ Ss

Dm(f, g) ≤ 1

n

n∑
j=1

1f(xj)6=(π◦g)(xj) =
1

n

n∑
j=1

δ
(
f(xj), (π ◦ g)(xj)

)
.

Using the triangle inequality for the discrete metric we have that for any j

δ
(
f(xj), (π ◦ g)(xj)

)
≤ δ
(
f(xj), (σ ◦ h)(xj)

)
+ δ
(
(σ ◦ h)(xj), (π ◦ g)(xj)

)
.

It follows that

Dm(f, g) ≤ 1

n

n∑
j=1

δ
(
f(xj), (σ ◦ h)(xj)

)
+ δ
(
(σ ◦ h)(xj), (π ◦ g)(xj)

)
= Dm(f, h) +

1

n

n∑
j=1

δ
(
(σ ◦ h)(xj), (π ◦ g)(xj)

)
.

Since π was arbitrary we can choose π to be σ ◦ τ which gives

Dm(f, g) ≤ Dm(f, h) +
1

n

n∑
j=1

δ
(
(σ ◦ h)(xj), (σ ◦ τ ◦ g)(xj)

)
.

Notice that for any j

δ
(
(σ ◦ h)(xj), (σ ◦ τ ◦ g)(xj)

)
= δ
(
h(xj), (τ ◦ g)(xj)

)
which implies

Dm(f, g) ≤ Dm(f, h) +
1

n

n∑
j=1

δ
(
h(xj), (τ ◦ g)(xj)

)
= Dm(f, h) +Dm(h, g).

Therefore, Dm is a metric. �

In practice, computation of this metric is difficult due to finding a permutation π ∈ Ss that
minimizes the summation in Definition 5.3. Later we will apply this metric to Mapper complexes,
and we will provide an example of its computation.

The second clustering metric is presented by [2] as a distance based on cluster boundaries. To
follow the assumptions and notation of [2] we assume that X is a compact subset of (Rk, d), where
d is a metric.

Definition 5.5. Let X be a compact subset of (Rk, d). We define the boundary of a clustering
function f ∈ F as its set of discontinuities:

∂(f) = {x ∈ X | f is discontinuous at x}.

Moreover, for γ > 0 the γ-tube of f is the set

Nγ(f) = {x ∈ X | d(x, ∂(f)) ≤ γ},

where d(x, ∂(f)) = inf{d(x, y) | y ∈ ∂(f)}. For γ = 0, set N0(f) = ∂(f).

15



Instability of Mapper Type Algorithms for TDA Wentland

Remark 5.6. If f ∼ g, in F then there exists a π in Ss such that f = π◦g, and hence, ∂(f) = ∂(g).
On the other hand, if ∂(f) = ∂(g), there may not exist a π in Ss such that f = π ◦ g. However,
if ∂(f) = ∂(g) and there exists a π in Ss such that f = π ◦ g for all x /∈ ∂(g), then the two
clustering functions f and g are essentially the same, except for possible discrepancies on their
shared boundary.

According to the equivalence relation given in Definition 5.1, the clustering functions in the
above situation are not equivalent. However, in order for some of the following proofs to be valid,
including the proof of Proposition 5.11, it is necessary that these clustering functions are equivalent.
To achieve this, we define a new equivalence relation on F , where f ∼∂ g if and only if ∂(f) =
∂(g) =: ∂f,g and there exists a π in Ss such that f = π ◦ g for all x /∈ ∂f,g. This is in fact an
equivalence relation where the reflexive and symmetric properties are immediate. For transitivity,
if f, g, h ∈ F such that f ∼∂ g and g ∼∂ h, then ∂(f) = ∂(g) = ∂(h) = ∂f,h and we have π, σ ∈ Ss
such that

f = π ◦ g and g = σ ◦ h for all x /∈ ∂f,h.

It follows that f ∼∂ h. We denote F/ ∼∂ by F∂. Then f ∼ g in F implies that f ∼ g in F∂.
However, if f ∼ g in F∂, then f and g may not be equivalent in F . Hence F is a stronger equivalence
relation than F∂. In the remainder of this paper, the equivalence relation ∼∂ is primarily used for
technical reasons. Then, at the risk of confusion, but to avoid even more decorations, we will refer
to F∂ also as F . We introduced this new equivalence relation to add clarity to the work of [1], as
such, the definitions provided here differ from those in [1].

We now prove a technical lemma regarding Definition 5.5, which was implicitly used but not
proved in [2].

Lemma 5.7. Let X be a compact subset of (Rk, d) then, for γ > 0 Nγ(f) is closed in X with respect
to the metric topology on X.

Proof. Suppose y ∈ Nγ(f)c, the complement of Nγ(f), then by definition d(y, ∂(f)) > γ. Let

ε = d(y,∂(f))−γ
2 and suppose there exists a z ∈ Bd(y, ε) ∩ Nγ(f), where Bd(y, ε) is the open ball

around y with radius ε. Then d(y, z) < ε and there exists some x ∈ ∂(f) such that d(z, x) ≤ γ.
Using the triangle inequality we have

d(y, x) ≤ d(y, z) + d(z, x) < ε+ γ < d(y, ∂(f))− γ + γ = d(y, ∂(f)).

This contradicts the definition of d(y, ∂(f)) and hence, no such z exists. Therefore, Nγ(f)c is open
in X and Nγ(f) is closed in X. �

Intuitively, elements of ∂(f) are the points in X where the cluster labels change, meaning for
any neighborhood U of x there exists y, y′ ∈ U such that f(y) 6= f(y′). The γ-tube around a
clustering function f will be used as an error margin to compare two clustering functions.

Definition 5.8. For f, g ∈ F we say that f is in the γ-tube of g if for all x, y /∈ Nγ(g) we have

f(x) = f(y) ⇐⇒ g(x) = g(y).

This relationship is denoted by f / Nγ(g).

See Figure 5.1 for a diagram exhibiting when f /Nγ(g). We are now ready to define the second
metric.
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Figure 5.1: Above, both the solid line and the dashed line represent clustering functions, g and f
respectively, from the space [0, 100] into three clusters. When the dashed line is above the solid line,
it is to be understood that both f and g are assigning that portion of [0, 100] to the same cluster
label. The solid black points at x = 30, 60, 80 are ∂(g) and the dotted neighborhoods around
∂(g) represent N5(g). In this diagram f / N5(g) because the only discrepancy between the two
assignments occurs within N5(g). It is important to note that because of the equivalence relation
in F it is not necessary that if f / Nγ(g), then f and g assign points outside of Nγ(g) to the same
cluster label, rather that outside of Nγ(g) there exists a permutation such that f = π ◦ g.

Definition 5.9. Let f, g ∈ F and γ > 0. Then the boundary distance between f and g is given
by

Db(f, g) = inf
γ>0
{γ | f / Nγ(g) and g / Nγ(f)}.

We will use the following lemma to prove that the function Db : F × F → R is a metric.

Lemma 5.10. Let f, g ∈ F and diam(X) > γ > 0. If f / Nγ(g), then ∂(f) ⊆ Nγ(g).

Proof. Assume to the contrary that ∂(f) 6⊆ Nγ(g). Then there exists some x ∈ ∂(f) such that
x /∈ Nγ(g). By definition of ∂(f) we know that x is a discontinuity of f . But x /∈ ∂(g) since Nγ(g)
contains ∂(g). Hence x is not a point of discontinuity of g. By Lemma 5.7 there exists an open ball
B centered at x such that B 6⊆ Nγ(g). Since x is a point of discontinuity of f there exists a y ∈ B
such that f(x) 6= f(y). But f / Nγ(g) by assumption which implies that g(x) 6= g(y) by definition
of f / Nγ(g). Hence we found an open ball B ⊆ Nγ(g)c centered at x with a y ∈ B such that
g(x) 6= g(y). So x is a point of discontinuity of g, a contradiction. Therefore, ∂(f) ⊆ Nγ(g). �

We now have the tools to prove that Db is a metric.

Proposition 5.11. The function Db is a well-defined metric on F .

Proof. Let X ⊆ (Rk, d) be a compact subset and let f and g belong to F . To show that Db is
well-defined, we notice that Db does not depend on the cluster labels of f and g but only on their
boundaries. Both ∂(f) and ∂(g) are defined by the discontinuities of f and g, and reassigning
cluster labels will not change these points of discontinuity. Thus, if f ′ = π ◦ f and g′ = σ ◦ g, then
∂(f ′) = ∂(f) and ∂(g′) = ∂(g), which implies that

Db(f, g) = Db(f
′, g) = Db(f, g

′) = Db(f
′, g′),

17
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and Db is well-defined. We now check the conditions for a metric.

• We assumed that X is compact, so diam(X) = λ is finite and we have that f / Nλ(g) and
g / Nλ(f) vacuously, as there are no points outside of Nλ(f) or Nλ(g). Thus, Db(f, g) <∞.

• By definition of Db, γ > 0 and so Db is the infimum of positive numbers which implies
Db(f, g) ≥ 0.

• Clearly Db(f, f) = 0.

• Db(f, g) = inf
γ>0
{γ | f / Nγ(g) and g / Nγ(f)} = inf

γ>0
{γ | g / Nγ(f) and f / Nγ(g)} = Db(g, f),

which proves symmetry.

• Suppose that Db(f, g) = 0. Since f/N0(g) we have, by Lemma 5.10, that ∂(f) ⊆ N0(g) = ∂(g)
and similarly ∂(g) ⊆ ∂(f), hence ∂(f) = ∂(g). Call this shared boundary ∂f,g. We have by
definition that for all x, y /∈ ∂f,g:

f(x) = f(y) ⇐⇒ g(x) = g(y). (1)

For each i such that g−1(i) is non-empty, choose xi ∈ g−1(i) such that x /∈ ∂f,g and define
π ∈ Ss as the product of transpositions:

π = (1f(xi))(2f(x2)) · · · (sf(xs)).

Here we deleted the terms (jf(xj)) such that g−1(j) = ∅. For any x ∈ X\∂f,g, g assigns some
label to x. Suppose that g(x) = i for some i = 1, 2, . . . , s, then

(π ◦ g)(x) = π(i) = f(xi)

by definition of π. Now, g(xi) = i = g(x) by of the choice of xi. Then by (1) we must have
f(xi) = f(x) because xi, x /∈ ∂f.g. Hence for π defined above we have that f = π ◦ g for all
x /∈ ∂f,g, and by definition f ∼ g in F . On the other hand, if f and g belong to the same
equivalence class of F , we have shown that Db is well defined. Hence

Db(f, g) = Db(g, g) = 0.

We conclude that, Db(f, g) = 0 ⇐⇒ f ∼ g in F .

• For the triangle inequality assume that Db(f, g) = γ1, Db(g, h) = γ2 and let γ = γ1 + γ2. Let
x ∈ Nγ2(g). Then there exists some y0 ∈ ∂(g) such that d(x, y0) ≤ γ2. By Lemma 5.10,
g /Nγ1(f) implies that ∂(g) ⊆ Nγ1(f). Hence, there exists z0 ∈ ∂(f) such that d(y0, z0) ≤ γ1.
Using the triangle inequality for the metric d on X we have

d(x, z0) ≤ d(x, y0) + d(y0, z0) ≤ γ2 + γ1 = γ.

Hence x ∈ Nγ(f). Then, by contraposition,

x /∈ Nγ(f) =⇒ x /∈ Nγ2(g) (2)

Using (2) we have that if x and y do not belong to Nγ(f), then x and y do not belong to
Nγ2(g). Hence, by definition of Db(g, h) = γ2 we have h(x) = h(y) if and only if g(x) = g(y)
when x, y /∈ Nγ(f). Furthermore, if x, y /∈ Nγ(f), then x, y /∈ Nγ1(f) since γ ≥ γ1. Then using
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the assumption that Db(f, g) = γ1 and the definition of Db(f, g), we have that if x, y /∈ Nγ(f)
then f(x) = f(y) if and only if g(x) = g(y). Thus, by transitivity, if x, y /∈ Nγ(f) then
f(x) = f(y) ⇐⇒ h(x) = h(y), or h / Nγ(f). A similar argument shows that

x /∈ Nγ(h) =⇒ x /∈ Nγ1(g),

and hence f / Nγ(h). We obtain that

Db(f, h) ≤ γ = γ1 + γ2 = Db(f, g) +Db(g, h)

and the triangle inequality is proved. Therefore Db is a well-defined metric on F .

�

In order to measure the appropriateness of a clustering algorithm for an application we define
clustering quality functions. In what follows we have adapted the work of [1].

Definition 5.12. Let (X, d) be a metric space and let M1(X) denote the set of all probability
measures on X with respect to the Borel σ-algebra. A clustering quality function is a function

Q : F ×M1(X)→ R.

A clustering quality function assigns to a clustering function f and a probability measure P
a real value. This value can be thought of as the cost, or error, of the clustering function f with
respect to the probability measure P .

For finite subsets X = {xi}ni=1 ⊂ X recall from Definition 2.12 that if Y1, Y2, . . . , Yn are i.i.d. ran-
dom variables with respect to a state space S and probability measure P the empirical probability
measure Pn is given by

Pn(A) =
1

n

n∑
i=1

1A(Yi)

where A is a measurable subset of S. If we view X as the state space S, then each element of
X can be viewed as the outcome of a random variable Yi with respect to X and P . In this way,
when a finite sample, X, is drawn from X with respect to P , X determines an empirical probability
measure Pn. Then the definition of a clustering quality function for a finite subset is as follows.

Definition 5.13. Let X = {x1, . . . , xn} be a finite subset of X drawn i.i.d. with respect to a
probability measure P. Then an empirical clustering quality function, Qn, is a function

Qn : F × Xn → R.

Remark 5.14. We assume the order of x1, . . . , xn does not matter, and the use of Xn instead of
the set of all probability measures, as in the case for X, is justified by the above discussion.

Example 5.15. Recall from Definition 3.5, that for X = {xi}ni=1 ⊂ X = Rd the goal of the k-means
clustering algorithm is to place k points, z1, z2, . . . , zk ∈ Rd that minimize∑

x∈X
d(x, zx)2.

Then for a finite sample X of X an empirical clustering quality function for the naive k-means
clustering algorithm is given by

Qn(f,X) =
1

n

n∑
i=1

k∑
j=1

1f(xi)=jd(xi, zj).
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We see that Qn averages the sum of the distances d(xi, zxi), where zxi is the centroid for the cluster
that xi was assigned to. If f1 and f2 are two clustering functions, defined by applying the naive
k-means algorithm twice to X such that Qn(f1, X) < Qn(f2, X), then f1 should be viewed as the
superior clustering function.

The infinite version of Qn is the corresponding clustering quality function Q for X and is given
by

Q(f, P ) =
k∑
j=1

∫
x∈X

1f(x)=jd(x, zj)dP (x).

Example 5.15 illustrates how the clustering quality function can be used to find an optimal
clustering function.

Definition 5.16. For a fixed P ∈ M1(X), the optimal clustering function for X with respect
to a clustering quality function Q is the function cP ∈ F such that

cP = argmin
f∈F

Q(f, P ).

Here argmin refers to the the argument that minimizes the function Q. The optimal clustering
function induces a map

C : M1(X)→ F where P 7→ cP .

We restrict our discussion to clustering quality functions Q(f, P ) for which a unique global mini-
mum exists, otherwise the function C would not be well-defined.

Remark 5.17. Restricting to clustering quality functions that have a unique global minimum is
not an unreasonable assumption, because it has been shown that the existence of multiple global
minimums implies instability, see [3] for more information.

Again we consider the finite subset X ⊂ X.

Definition 5.18. Suppose X = {xi}ni=1 ⊂ X and let f ∈ Fn. Let Qn be an empirical clustering
quality function for X. The optimal empirical clustering with respect to Qn is the clustering
function cn such that

cn = argmin
f∈Fn

Qn(f,X)

Again, we have an induced map

Cn : Xn → Fn where X 7→ cn.

Before we close this section with a method to assess the instability of a clustering we need an
idea introduced in [1], which we make more precise in the following definition.

Definition 5.19. Given two finite subsets X(1) = {x(1)
i }ni=1, X

(2) = {x(2)
i }ni=1 ⊂ X, and a clustering

function f ∈ Fn. Partition X into the Voronoi diagram with respect to the points x
(1)
1 , x

(1)
2 , . . . , x

(1)
n

and define the clustering function f : X→ {1, 2, . . . , s} by

f(x) = f(x
(1)
i ) where x belongs to the Voronoi cell of x

(1)
i .

Hence, f ∈ F . Restrict f to X(1) ∪ X(2) and refer to this restriction as f for simplicity. Then
define iv : Fn ↪→ F2n as

iv(f) = f.
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Now we have all the necessary tools to define a measurement of the instability of a clustering.

Definition 5.20. Let Qn be a clustering quality function for X. Then we define the function IQn

as the composition

IQn : Xn × Xn Cn×Cn−−−−−→ Fn ×Fn
iv×iv−−−→ F2n ×F2n

Dm−−→ R.

The composition of Definition 5.18 can be described as follows. View X(1), X(2) ∈ Xn as two
finite subsets of X, where each of their elements are drawn i.i.d. with respect to the same probability
measure P . Then Cn(X1) = c1 and Cn(X2) = c2 are the optimal clustering functions in Fn of X(1)

and X(2) respectively. Using the function iv from Definition 5.19, we extend c1 to c1 ∈ F using
the Voronoi diagram of X with respect to the elements of X(1) and extend c2 to c2 ∈ F using the
Voronoi diagram of X with respect to the elements of X(2). This inclusion is necessary because we
can now view both c1 and c2 as clusterings on the same finite subset, X(1)∪X(2), in order to apply
the minimal matching distance as the last term of the composition.

In the appendix of [1] the writers provide conditions for the empirical clustering quality function
Qn to ensure IQn is a measurable function with respect to the Borel σ-algebra on R and the
probability measure Pn × Pn on Xn × Xn. In other words, [1] contains a theorem stating that
if Qn satisfies the assumption of the theorem, then IQn is a random variable with respect to the
probability product measure P × P × · · · × P = Pn. From probability theory we know that Pn is

a probability measure on Xn because we are viewing each of the x
(1)
i and x

(2)
i as outcomes of i.i.d.

random variables with respect to P . This leads to our measurement of clustering instability.

Definition 5.21. Let (X, d) be a metric space equipped with a probability measure P , along with an
empirical clustering quality function Qn. Then the instability of a clustering of X = {xi}ni=1 ⊂ X
with respect to Qn is given by

InStabclustering = E(IQn)

where E denotes the expected value of a random variable. The expectation is taken over P on pairs
of points in Xn.

In the next section we will generalize this definition to provide a measure of the instability of
the Mapper algorithm. Then we will use the metrics presented in this section to provide a bound
of that measure.

6 Mapper Instability

As a Mapper complex depends heavily on a choice of clustering for the bins, it is natural that the
work above on measuring clustering instability should be applied to developing a measure of the
instability of a Mapper complex. In the following we describe the work of [1], in which they apply
the results of [2] on clustering instability to express the instability of a Mapper complex as the
expected value of a random variable.

We first list our assumptions. Let X be a compact metric space equipped with a probability
measure P ∈M1(X) with respect to the Borel σ-algebra, where M1(X) is the set of all probability
measures on X. Let X = {xi}ni=1 be a finite subset of X where xi, i = 1, 2, . . . , n, are drawn i.i.d.
with respect to P .

Furthermore, in the construction of a one dimensional Mapper complex, the finite set X is
covered by bins X1, X2, . . . , Xt such that Xi = f−1(Ii) where Ii is the ith interval of the Mapper
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cover Uf(l,p). In order to follow [1] we relax this condition and cover X by letting U = {Ui}ti=1 be a

cover of X, not necessarily an open coven, and defining BU = {Xi = X ∩ Ui}ti=1. We will continue
to call Xi the ith bin of X for simplicity. The following definitions will be similar to the definitions
in Section 5, but we are now applying them to each individual Ui ∈ U .

The set of all clustering functions on Ui will be denoted by F (i), where a clustering function
fi ∈ F (i) is of the form

fi : Ui → {(i, 1), (i, 2), . . . , (i, si)},

and si will always denote the number of clusters of Ui. We define an equivalence relation on F (i)

as follows. For fi, gi ∈ F (i)

fi ∼ gi ⇐⇒ ∃ πi ∈ Ssi such that fi = πi ◦ gi,

where Ssi is the symmetric group on si elements.
Then for each bin Xi = X ∩ Ui we define a clustering function on Xi as a function

fi : Xi → {(i, 1), (i, 2), . . . , (i, si)},

and denote the collection of all clustering functions on Xi as F
(i)
ni where |Xi| = ni. We denote by

F (i)
ni the set of equivalence classes, F (i)

ni = F
(i)
ni / ∼, where fi ∼ gi if and only if fi = πi ◦ gi for

πi ∈ Sni .
For a given probability measure P ∈M1(X) the probability measure induced on Ui is given by

Pi =
P

P (Ui)
,

and Pi belongs to M1(Ui). Each finite collection Xi of ni points from Ui determines an empirical
probability measure Pni(A) = 1

ni

∑ni
j=1 1A(xi), where A ⊆ Ui and xj ∈ Xi for j = 1, 2, . . . , ni. We

then define a clustering quality function for Ui by

Q(i) : F (i) ×M1(Ui)→ R,

which induces a map

C(i) : M1(Ui)→ F (i) where P 7→ argmin
fi∈F(i)

Q(i)(fi, P ).

Then, an empirical clustering quality function with respect to Ui and F (i)
ni is a function

Q(i)
ni

: F (i)
ni
× Uni

i → R.

The definition is justified just as Definition 5.13 was justified. The empirical clustering quality
function induces a map

C(i)
ni

: Uni
i → F

(i)
ni

where Xi 7→ c(i)
ni

= argmin
fi∈F

(i)
ni

Q(i)
ni

(fi, Xi).

Here, the clustering function c
(i)
ni is the optimal clustering of Xi with respect to the empirical

clustering quality functionQ
(i)
ni . Again, we restrict our attention to those clustering quality functions

and empirical clustering quality functions that have a global minimum, to ensure that C(i) and C
(i)
ni

are well-defined. We now define a Mapper complex as a function.
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Definition 6.1. Let U = {Ui}ti=1 be a cover of X and let fi ∈ F (i) be clustering functions for each
Ui ∈ U . A Mapper function on a metric space X with respect to U is a function

m : X→ P
( t⋃
i=1

{(i, 1), (i, 2), . . . , (i, si)}
)

where x 7→ {fi(x) for all i such that x ∈ Ui},

where P refers to the power set. When considering X = {xi}ni=1 ⊂ X and clustering functions

fi ∈ F (i)
ni for i = 1, 2, . . . , t, a Mapper function on a finite set X ⊂ X with respect to U is a

function

m : X → P
( t⋃
i=1

{(i, 1), (i, 2), . . . , (i, si)}
)

where x 7→ {fi(x) for all i such that x ∈ Xi = X ∩ Ui}.

The set of all Mapper functions on X will be denoted by M , and the set of all Mapper functions on
X will be denoted by Mn.

The following lemma is useful for it allows us to view Mapper functions as the product of
clustering functions.

Lemma 6.2. Given a cover U = {Ui}ti=1 of X and clustering functions fi ∈ F (i) for i = 1, 2, . . . , t,
there is a bijective correspondence between M and Πt

i=1F
(i).

Proof. Let Φ be the map Φ : M → Πt
i=1F

(i) given by

m 7→ (g1, . . . , gt)

where each gi : Ui → {(i, 1), (i, 2), . . . , (i, si)} is defined by gi(x) = m(x) ∩ {(i, 1), (i, 2), . . . , (i, si)}.
Then Φ is well defined because for each i, fi(x) = (i, j) for some j = 1, 2, . . . , si. For each i the
intersection m(x) ∩ {(i, 1), (i, 2), . . . , (i, si)} is a singleton set. Each gi(x) belongs to F (i) because
each is a function from X to {(i, 1), (i, 2), . . . , (i, si)}. Now, define Φ−1 : Πt

i=1F
(i) →M by

(g1(x), g2(x), . . . , gt(x)) 7→ {gi(x) for all i ∈ {1, 2, . . . , t} such that x ∈ Xi = X ∩ Ui}.

The right hand side is by definition a Mapper function. Hence, we have that Φ ◦ Φ−1 = IdΠt
i=1F

(i)

and Φ−1 ◦ Φ = IdM . �

An equivalence relation on M is defined as follows. Two Mapper functions m1 = (f1, f2, . . . , ft)
and m2 = (g1, g2, . . . , gt) in M are equivalent if and only if there exists a permutation π = ⊕ti=1πi ∈
⊕ti=1Ssi such that fi = πi ◦ gi for each i where πi ∈ Ssi . Define the set of equivalence classes as
M = M/ ∼ and similarly for the finite case Mn = Mn/ ∼.

We now provide a metric on Mn similar to the minimal matching distance for clustering func-
tions.

Definition 6.3. Let X be a finite subset of X and define DM :Mn ×Mn → R by

DM (m1,m2) = min
π∈⊕t

i=1Ssi

(
1

n

n∑
j=1

1m1(xj)6=(π◦m2)(xj)

)

where π = ⊕ti=1πi and πi ∈ Ssi. The equality between m1(xj) and π ◦m2(xj) refers to set equality.

Before we prove that DM is a metric on Mn we provide an example.
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Example 6.4. Let X = R and X = {1, 2, 3, 6, 7, 9} where X is sampled according to a probability
measure on X. Let U = {U1, U2} where U1 = (−∞, 2) ∪ (2, 4) ∪ (8,∞) and U2 = (R \ U1) ∪ {3, 9}.
Then the bins of X are given by

X ∩ U1 = X1 = {1, 3, 9}, X ∩ U2 = X2 = {2, 3, 6, 7, 9}

Now, suppose we have the output of two mapper functions m1,m2 ∈M6:

m1(1) = {(1, 1)} m1(2) = {(2, 1)} m1(3) = {(1, 2), (2, 1)}
m1(6) = {(2, 2)} m1(7) = {(2, 1)} m1(9) = {(1, 2), (2, 2)}

and

m2(1) = {(1, 1)} m2(2) = {(2, 2)} m2(3) = {(1, 1), (2, 1)}
m2(6) = {(2, 2)} m2(7) = {(2, 1)} m2(9) = {(1, 2), (2, 1)}.

Recall the meaning of this notation, for instance m1(3) = {(1, 2), (2, 1)} means that 3 is assigned
to the second cluster of X1 and the first cluster of X2.

Then to compute DM (m1,m2) we must list all possibilities for π. For this we consider the
total number of clusters for each bin according to m2. We see that the highest index in the second
coordinate for m2 when i = 1 is 2. This implies there are two clusters of bin X1 with respect to
m2, which we call V 1

1 (m2) and V 2
1 (m2). The same is true when i = 2, and we call the clusters of

X2 with respect to m2, V 1
2 (m2) and V 2

2 (m2). So we have

X1 = V 1
1 (m2) ∪ V 2

1 (m2), where V 1
1 (m2) = {1, 3} and V 2

1 (m2) = {9}.

Also,
X2 = V 1

2 (m2) ∪ V 2
2 (m2), where V 1

2 (m2) = {3, 7, 9} and V 2
2 (m2) = {2, 6}.

Then the possibilities for π are

(1)⊕ (1), (1, 2)⊕ (1), (1)⊕ (1, 2), (1, 2)⊕ (1, 2)

where the first permutation in each direct sum refers to permuting the upper indices of V 1
1 (m2) and

V 2
1 (m2), and the second permutation refers to permuting the upper indices of V 1

2 (m2) and V 2
2 (m2).

We then let π = (1, 2)⊕ (1) and compute π ◦m2:

π ◦m2(1) = {(1, 2)} π ◦m2(2) = {(2, 2)} π ◦m2(3) = {(1, 2), (2, 1)}
π ◦m2(6) = {(2, 2)} π ◦m2(7) = {(2, 1)} π ◦m2(9) = {(1, 1), (2, 1)}.

When π = (1)⊕ (1, 2):

π ◦m2(1) = {(1, 1)} π ◦m2(2) = {(2, 1)} π ◦m2(3) = {(1, 1), (2, 2)}
π ◦m2(6) = {(2, 1)} π ◦m2(7) = {(2, 2)} π ◦m2(9) = {(1, 2), (2, 2)}.

When π = (1, 2)⊕ (1, 2):

π ◦m2(1) = {(1, 2)} π ◦m2(2) = {(2, 1)} π ◦m2(3) = {(1, 2), (2, 2)}
π ◦m2(6) = {(2, 1)} π ◦m2(7) = {(2, 2)} π ◦m2(9) = {(1, 1), (2, 2)},
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and when π = (1)⊕(1), π◦m2 = m2. Now, for each possibility of π we compute 1
6

∑6
j=1 1m1(xj)6=π◦m2(xj).

We have then:

When π = (1)⊕ (1), 1
6

∑6
j=1 1m1(xj)6=π◦m2(xj) = 3/6

When π = (12)⊕ (1), 1
6

∑6
j=1 1m1(xj)6=π◦m2(xj) = 3/6

When π = (1)⊕ (12), 1
6

∑6
j=1 1m1(xj)6=π◦m2(xj) = 3/6

When π = (12)⊕ (12), 1
6

∑6
j=1 1m1(xj)6=π◦m2(xj) = 5/6.

Thus, DM (m1,m2) = 3/6 = 1/2.

We now prove that DM is in fact a metric. Keep in mind that si denotes the number of clusters
of the ith cover element Ui and ni is the number of elements in the ith bin Xi, so we have that
n1 +n2 + · · ·+nt = n. The following proposition was stated without proof in [1], and so we provide
one of our own.

Proposition 6.5. The function DM :Mn ×Mn → R given by

DM (m1,m2) = min
π∈⊕t

i=1Ssi

(
1

n

n∑
j=1

1m1(xj)6=(π◦m2)(xj)

)

is a metric on Mn.

Proof. The proof follows along similar lines as the proof for the minimal matching distance in
Lemma 5.4. Suppose that m1 = (f1, f2, . . . , ft),m2 = (g1, g2, . . . , gt),m3 = (h1, h2, . . . , ht) ∈ Mn.
Then the following hold.

• DM (m1,m2) ≤ 1 because
∑n

j=1 1m1(xj) 6=π◦m2(xj) ≤ n for |X| = n.

• DM (m1,m2) ≥ 0 because DM is defined using indicator functions.

• DM (m1,m2) = 0 if and only if there exists a permutation π = ⊕ti=1πi such that

m1(xj) = π ◦m2(xj)

for all j = 1, 2, . . . , ni. This is true if and only if fi(xj) = πi ◦ gi(xj) for all j, which implies
that m1 ∼ m2 in Mn. Then DM (m1,m2) = 0 if and only if m1 ∼ m2.

• Suppose that σ ∈ ⊕ti=1Ssi is the minimizing permutation for DM (m1,m2) and τ ∈ ⊕ti=1Ssi is
the minimizing permutation for DM (m2,m1). Suppose to the contrary that DM (m1,m2) 6=
DM (m2,m1). Without loss of generality suppose that DM (m1,m2) < DM (m2,m1). Then

1

n

n∑
j=1

1m1(xj) 6=(τ◦m2)(xj) <
1

n

n∑
j=1

1m2(xj)6=(σ◦m1)(xj).

However this implies that

1

n

n∑
j=1

1(τ−1◦m1)(xj)6=m2(xj) <
1

n

n∑
j=1

1m2(xj) 6=(σ◦m1)(xj),

which contradicts the definition of σ. Thus, DM (m1,m2) = DM (m2,m1).
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• For the triangle inequality let δ be the discrete metric on P
(⋃t

i=1{(i, 1), (i, 2), . . . , (i, si)}
)

.

Hence, for x,y ∈ P
(⋃t

i=1{(i, 1), (i, 2), . . . , (i, si)}
)

δ(x,y) = 1 if x 6= y and δ(x,y) = 0 if x = y,

where equality here refers to set equality. Then

1

n

n∑
j=1

1m1(xj) 6=(π◦m2)(xj) =
1

n

n∑
j=1

δ(m1(xj), (π ◦m2)(xj)).

Further, suppose that σ ∈ ⊕ti=1Ssi is the minimizing permutation for DM (m1,m3) and that
τ ∈ ⊕ti=1Ssi is the minimizing permutation for DM (m3,m2). By definition, for any π ∈
⊕ti=1Ssi

DM (m1,m2) ≤ 1

n

n∑
j=1

δ
(
m1(xj), (π ◦m2)(xj)

)
.

Using the triangle inequality for the discrete metric we have that for any j

δ
(
m1(xj), (π ◦m2)(xj)

)
≤ δ
(
m1(xj), (σ ◦m3)(xj)

)
+ δ
(
(σ ◦m3)(xj), (π ◦m2)(xj)

)
.

It follows that

DM (m1,m2) ≤ 1

n

n∑
j=1

δ
(
m1(xj), (σ ◦m3)(xj)

)
+ δ
(
(σ ◦m3)(xj), (π ◦m2)(xj)

)
= DM (m1,m3) +

1

n

n∑
j=1

δ
(
(σ ◦m3)(xj), (π ◦m2)(xj)

)
.

Since π was arbitrary we can choose π to be σ ◦ τ which gives

DM (m1,m2) ≤ Dm(m1,m3) +
1

n

n∑
j=1

δ
(
(σ ◦m3)(xj), (σ ◦ τ ◦m2)(xj)

)
.

Notice that for any j

δ
(
(σ ◦m3)(xj), (σ ◦ τ ◦m2)(xj)

)
= δ
(
m3(xj), (τ ◦m2)(xj)

)
which implies

DM (m1,m2) ≤ DM (m1,m2) +
1

n

n∑
j=1

δ
(
m3(xj), (τ ◦m2)(xj)

)
= DM (m1,m3) +DM (m3,m2).

Therefore, DM is a metric.
�

We now give a the analogue of Definition 5.19 for Mapper functions.
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Definition 6.6. Given a cover U = {Ui}ti=1 of X, two finite sets X(1) = {x(1)
i }ni=1 and X(2) =

{x(2)
i }ni=1 ⊂ X such that |X(1)

i | = ni and |X(1)
i | = li. For a Mapper function m = (f1, f2, . . . , ft) ∈

Mn, where each fi ∈ F (i)
ni , we define the injection iv : Mn ↪→M2n as follows. Subdivide each Ui

into the Voronoi diagram with respect to X
(1)
i = {x(1)

i1
, x

(1)
i2
, . . . , x

(1)
ini
} and extend each fi to fi ∈ F (i)

by defining

fi(x) = fi(x
(1)
ij

) for x ∈ Ui such that x belongs to the Voronoi cell of x
(1)
ij
.

Then for each i restrict fi to X
(1)
i ∪X

(2)
i , refer to this restriction as fi for simplicity and define

iv(m) = (f1, f2, . . . , ft) = m.

In other words, for each Ui ∈ U we use Definition 5.19 to extend fi to fi ∈ F (i)
ni+li

, where fi is a

clustering of the finite subset X
(1)
i ∪X

(2)
i of X.

Remark 6.7. For each i we have that each x ∈ Ui belongs to exactly one Voronoi cell of of the

Voronoi diagram for Ui with respect to X
(1)
i . This implies that fi is well defined.

We now have the necessary components to give the main definition of this section.

Definition 6.8. Given a cover U = {Ui}ti=1 of X, let X(1), X(2) ⊆ X be finite sets of size n. Choose

the size of each bin, |X(1)
i | = ni and |X(2)

i | = li, then choose the collection Qn =
{(
Q

(1,i)
ni , Q

(2,i)
li

)}t
i=1

such that Q
(1,i)
ni is an empirical clustering quality function for X

(1)
i and Q

(2,i)
li

is an empirical

clustering quality function for X
(2)
i . Then each Q

(1,i)
ni and Q

(2,i)
li

induce functions C
(1,i)
ni and C

(2,i)
li

respectively, that send X
(j)
i , for j = 1, 2, to the optimal clustering function with respect to the

appropriate empirical clustering quality function.
Now, define a function IQn as the composition

IQn : Xn × Xn
Πt

i=1C
(1,i)
ni
×Πt

i=1C
(2,i)
li−−−−−−−−−−−−−−→Mn ×Mn

iv×iv−−−→M2n ×M2n
DM−−→ R.

Then if P ∈M1(X), the instability of a Mapper complex on X ⊂ X with respect to the collection of
quality functions Qn is given by

InStabMapper(Qn, P} = E(IQn),

where the expectation is taken with respect to the probability product measures of P on pairs of
samples from X.

The composition of IQn can be described as follows. First draw two finite subsets, X(1) and
X(2) of n points from X according to a probability measure P ∈ M1(X). Then construct the bins
for both X(1) and X(2) according to the cover U of X,

BU (X(j)) =
{
X

(j)
i = X(j) ∩ Ui

}t
i=1

for j = 1, 2,

where |X(1)
i | = ni and |X(2)

i | = li. Next, apply C
(1,i)
ni to each bin of X(1) and C

(2,i)
li

to each bin of

X(2) to obtain the optimal clustering of each bin with respect to Q
(1,i)
ni and Q

(2,i)
li

. Recall that there
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is a bijective correspondence between Mapper functions and the Cartesian product of clustering
functions and so

t∏
i=1

C(1,i)
ni

(
X

(1)
i

)
and

t∏
i=1

C
(2,i)
li

(
X

(2)
i

)
describe optimal Mapper functions. The injection is as described in Definition 6.6. We then restrict

our attention to the clustering labels of only the point (X
(1)
i , X

(2)
i ) ∈ Xni+li where

∑t
i=1 ni =∑t

i=1 li = n. Then we have two Mapper functions on a finite set of 2n elements, and we apply the
Mapper distance DM to them. The expectation is with respect to the initial random drawing of
the two finite sets X(1) and X(2).

The appendix of [1] gives a justification that the functions I
Q

(1,i)
ni

and I
Q

(2,i)
li

, which are defined

in Definition 5.20, are random variables. Meaning that they are measurable functions from the
sample space Uni

i × U
ni
i with respect to the Borel σ-algebra on R. The authors of [1] show that

IQn is measurable if and only if both I
Q

(1,i)
ni

and I
Q

(2,i)
li

are measurable for each choice of i. Hence

choosing clustering quality functions such that each of these functions are random variables will
ensure that IQn is also a random variable.

In the next section we provide a bound from [1] on the instability measure in Definition 6.8 as
well as a stability theorem.

7 Bounds on Instability

We now apply the boundary distance between clustering functions discussed in Section 5 to Mapper
functions in order to develop a bound on InStabMapper(Qn, P ). In the following we describe results
from Sections 6 and 7 of [1]. We assume that X is a compact metric space with a probability
measure P and cover U = {Ui}ti=1 such that each Ui 6= X, is connected, bounded, and P (Ui) 6= 0.
We begin with an alternate definition of the boundary of a clustering function.

Definition 7.1. Let U = {Ui}ti=1 be a cover of X and fi ∈ F (i) for each i = 1, 2, . . . , t. Define the
boundary of fi to be

∂(fi) = ∂(V 1
i ) ∪ ∂(V 2

i ) ∪ · · · ∪ ∂(V si
i ) ∪ ∂(Ui),

where V j
i = f−1

i ((i, j)) and ∂(V j
i ) and ∂(Ui) refer to the topological boundary of the cluster V j

i and
the set Ui as subsets of X.

Then the generalization to Mapper functions is given by the following definition.

Definition 7.2. Let U = {Ui}ti=1 cover X. Given a Mapper function m = (f1, f2, . . . , ft) ∈ M
where fi ∈ F (i), we define the boundary of m as

∂(m) =

t⋃
i=1

∂(fi).

Now, we generalize the γ-tube idea introduced in Section 5 to Mapper functions.

Definition 7.3. Let m = (f1, f2, . . . , ft) ∈ M be a Mapper function on (X, d) with cover U =
{Ui}ti=1. Then for γ > 0 define the γ-tube around a Mapper function m to be

Nγ(m) = {x ∈ X | d(x, ∂(m)) ≤ γ},
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where d(x, ∂(m)) = min{d(x, ∂(fi)) for all i ∈ {1, 2, . . . , t} such that x ∈ Ui}. For γ = 0 set
Nγ(m) = ∂(m). Alternatively, for γ > 0 the γ-tube around a Mapper function m can be defined as

Nγ(m) =
t⋃
i=1

Nγ(fi).

Just as the γ-tube was used as an error margin in clustering functions, the same is applied to
Mapper functions.

Definition 7.4. Given a finite cover U of X and two Mapper functions m1,m2 ∈ M. For γ > 0
we say m1 is in the γ-tube of m2 if for all x, y /∈ Nγ(m2)

m1(x) = m1(y) ⇐⇒ m2(x) = m2(y).

This relationship is denoted by m1 / Nγ(m2).

Since m1 = (f1, f2, . . . , ft) and m2 = (g1, g2, . . . , gt) we can give the following alternative for-
mulation of Definition 7.4, which is stated without proof in [1].

Lemma 7.5. Given a cover U = {Ui}ti=1 of a metric space X and two Mapper functions m1 =
(f1, . . . , ft),m2 = (g1, . . . , gt) ∈M, then

m1 / Nγ(m2) ⇐⇒ fi / Nγ(gi) ∀i ∈ {1, 2, . . . , t}.

Proof. If m1 / Nγ(m2) then by definition for all x, y /∈ Nγ(m2) we have

m1(x) = m1(y) ⇐⇒ m2(x) = m2(y).

However, for i = 1, 2, . . . , t, if x, y /∈ Nγ(gi), then x, y /∈ Nγ(m2) =
⋃t
i=1Nγ(gi). Furthermore,

m1(x) = m1(y) if and only if fi(x) = fi(y) for all i = 1, 2, . . . , t, and m2(x) = m2(y) if and only if
gi(x) = gi(y) for all i = 1, 2, . . . , t. Hence, for each i and for all x, y /∈ Nγ(gi)

fi(x) = fi(y) ⇐⇒ gi(x) = gi(y),

which is the definition of fi /Nγ(gi). Now, suppose that fi /Nγ(gi) for each i ∈ {1, 2, . . . , t}. Then
if x, y /∈ Nγ(m2) =

⋃t
i=1Nγ(gi), then x, y /∈ Nγ(gi). Furthermore, for each i we have by definition

of fi / Nγ(gi) that if x, y /∈ Nγ(gi), then

fi(x) = fi(y) ⇐⇒ gi(x) = gi(y).

This implies that
m1(x) = m1(y) ⇐⇒ m2(x) = m2(y).

Hence, for all x, y /∈ Nγ(m2) we have

m1(x) = m1(y) ⇐⇒ m2(x) = m2(y),

and, m1 / Nγ(m2), which proves the lemma. �

We define a metric on M in much the same way that Db was defined for clustering functions.

Definition 7.6. Given Mapper functions m1,m2 ∈ M for the space (X, U = {Ui}ti=1, d). The
boundary distance between two Mapper functions is given by the function D∂ :M×M→ R,
where

D∂(m1,m2) = inf
γ>0
{γ | m1 / Nγ(m2) and m2 / Nγ(m1)}.
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The contents of the following lemma and proposition were stated without proof in [1], but are
necessary to prove that D∂ is a metric on M. The proofs provided here are our own.

Lemma 7.7. Given Mapper functions m1,m2 ∈ M for the space (X, U = {Ui}ti=1, d), we have
that

D∂(m1,m2) = max
i
{Db(fi, gi)}.

Proof. By definition

D∂(m1,m2) = inf
γ>0
{γ | m1 / Nγ(m2) and m2 / Nγ(m1)}.

Then using Lemma 7.5 we can replace m1 /Nγ(m2) and m2 /Nγ(m1) by fi /Nγ(gi) and gi /Nγ(fi)
for all i = 1, 2, . . . , t. We then have

D∂(m1,m2) = inf
γ>0
{γ | fi / Nγ(gi) and gi / Nγ(fi) for all i = 1, 2, . . . , t}.

Now, we make a general observation on clustering functions for a general metric space Y. Consider
clustering functions c1 and c2 from Y to the set of labels {1, 2, . . . , s}. If for some λ > 0 we have
that c1 /Nλ(c2), then for λ < ξ we have c1 /Nξ(c2). This is because if λ < ξ then Nλ(c2) ⊆ Nξ(c2)
and if x, y /∈ Nξ(c2), then x and y do not belong to Nλ(c2) and we have

c1(x) = c1(y) ⇐⇒ c2(x) = c2(y).

Then the condition for c1 /Nξ(c2) is satisfied. Similarly we show that if λ < ξ and c2 /Nλ(c1), then
c2 / Nξ(c1). With this in mind we can rewrite D∂(m1,m2) as

D∂(m1,m2) = max
i

{
inf
γ>0
{γ | fi / Nγ(gi) and gi / Nγ(fi)}

}
= max

i
{Db(fi, gi)}

�

Proposition 7.8. Given a cover U = {Ui}ti=1 for a compact metric space X. The function

D∂(m1,m2) = inf
γ>0
{γ | m1 / Nγ(m2) and m2 / Nγ(m1)}

is a metric on M.

Proof. We prove each criteria of a metric.

Let m1 = (f1, . . . , ft),m2 = (g1, . . . , gt),m3 = (h1, . . . , ht) ∈M.

• By Lemma 7.7 D∂(m1,m2) = Db(fj , gj) for some j ∈ {1, 2, . . . , t}. Since Db is a metric by
Proposition 5.8, D∂(m1,m2) = Db(fj , gj) ≥ 0.

• Using Lemma 7.7 D∂(m1,m2) = 0 if and only if Db(fi, gi) = 0 for each i = 1, 2, . . . , t. By
Proposition 5.8 this is true if and only if fi ∼ gi which is true if and only if there exist
permutations πi ∈ Ssi such that fi = πi ◦ gi for each i. Then by definition m1 ∼ m2. Thus,
D∂(m1,m2) = 0 if and only if m1 ∼ m2.

• For symmetry we again use the fact that Db is a metric and have

D∂(m1,m2) = max
i
{Db(fi, gi)} = max

i
{Db(gi, fi)} = D∂(m2,m1).
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• For the triangle inequality let Db(fj , gj) = max
i
{Db(fi, gi)}, Db(fk, hk) = max

i
{Db(fi, hi)},

and Db(hl, gl) = max
i
{Db(hi, gi)}. Then,

D∂(m1,m2) = Db(fj , gj) ≤ Db(fj , hj) +Db(hj , gj)

≤ Db(fk, hk) +Db(hl, gl)

= D∂(m1,m3) +D∂(m3,m2).

Therefore D∂ is a metric. �

We now provide the last definition needed for the main results of [1].

Definition 7.9. Given a cover U = {Ui}ti=1 and clustering quality functions Q(1), Q(2), . . . , Q(t) for
each Ui, we define the optimal Mapper function of X with cover U by

p =
t∏
i=1

C(i)(Pi),

where C(i)(Pi) = argmin
fi∈F(i)

Q(i)(fi, Pi). Furthermore, for a finite set of n points X of X, denote the

bins of X according to U as X1, X2, . . . , Xt. If Q
(1)
n1 , Q

(2)
n2 , . . . , Q

(t)
nt are empirical clustering quality

functions for the bins Xi, i = 1, 2, . . . , t, let pn denote the optimal empirical Mapper function
for a finite set X of n points of X defined as

pn =
t∏
i=1

C(i)
ni

(Xi),

where |Xi| = ni and C
(i)
ni (Xi) = argmin

fi∈F
(i)
ni

Q
(i)
ni (fi, Xi).

The following two theorems from [1] provide conditions to produce a stable Mapper complex
with respect to the instability measure defined in Definition 6.8. We state them without proof, but
inform the reader that in the previous pages of this paper we have proved the necessary tools on
which the proofs of Theorems 7.1 and 8.5 in [1] depend on.

Theorem 7.10. Given a compact metric space X, P ∈ M1(X), and a cover U = {Ui}ti=1 of X
such that each Ui is bounded, connected, P (Ui) 6= 0, and Ui 6= X for all i. Let X = {xi}ni=1 ⊂ X
such that each xi is drawn i.i.d. with respect to P . Further, assume that p is the optimal Mapper
function for X and pn is the optimal empirical Mapper function for X. Then for γ ≥ 0

InStabMapper(Qn, P ) ≤ 2
(
P (Nγ(p)) + P (D∂(pn, p) > γ) + P (ni = 0)

)
,

where

• P (Nγ(p)) is the probability measure of the set Nγ(p).

• P (D∂(pn, p) > γ) is the probability that D∂(pn, p) > γ.

• P (ni = 0) is the probability that ni = 0 for some i = 1, 2, . . . , t.

We will set 2
(
P (Nγ(p)) + P (D∂(pn, p) > γ) + P (ni = 0)

)
= BoundD∂

(γ).
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The proof of Theorem 7.10 depends largely on probability theory. We can compute
InStabMapper(Qn, P ) using the Lebesgue integral definition of the expectation of a random variable
given in Definition 2.9. By using the triangle inequality on DM , which Proposition 6.5 justifies, we
can provide an initial bound on InStabMapper(Qn, P ). Then, this bound can be refined by dividing
X into the three subsets:

• M≤γ , the set of all X ⊂ X for which D∂(pn, p) ≤ γ,

• M>γ , the set of all X ⊂ X for which D∂(pn, p) > γ,

• and M∅, the set of all X ⊂ X for which D∂(pn, p) is not defined.

Evaluating the Lebesgue integral of Definition 2.9 over these subsets and summing the result gives
the desired bound.

The following theorem gives conditions under which InStabMapper(Qn, P ) approaches zero. As
a result, we can view it as a Stability Theorem for Mapper type algorithms and the main theoretical
result of [1].

Theorem 7.11. Stability Theorem Let X be a compact metric space along with a probability
measure P and finite cover U = {Ui}ti=1 of X. For each i choose clustering quality functions Q(i)

and empirical clustering quality functions Q
(i)
ni defined on a subset of ni points from Ui. Suppose

the following are satisfied.

• Each Ui is bounded, connected, compact, and Ui 6= X for each i.

• Each Q(i) and Q
(i)
ni have unique global minimizers.

• Each empirical clustering quality function Q
(i)
ni is continuous with respect to the topology on

Fni × U
ni
i given by the metric D∂.

• For all ε > 0 and δ > 0 there exists an N ∈ N such that for all n ≥ N and for all Pi ∈M1(Ui)
and for each i = 1, 2, . . . , t

Pi(|Q(i) −Q(i)
ni
| > ε) ≤ δ

• Each (Pi, Q
(i)) is a proper pair on (Ui, d), where proper pair means

Pi

(
∂
(

argmin
g∈F(i)

Q(i)(g, Pi)
))

= 0.

Then, for all ε ∈ (0, 1) there exists γ > 0 and N ∈ N such that for all n ≥ N

0 ≤ InStabMapper(Qn, P ) ≤ BoundD∂
(γ) ≤ ε.

According to [1], the conditions of Theorem 7.11 are satisfied by most choices of parameters for
a Mapper complex. For instance, choosing a continuous filter function and using closed intervals in
the Mapper cover will provide compact bins immediately. The more difficult conditions to satisfy
are those regarding the chosen probability measure P .
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8 Algorithms for Approximating Mapper Instability

In this section we present an algorithm from [1] to compute DM for two Mapper functions and
then a k-fold cross validation method to give an approximate value of the instability measure from
Definition 6.8.

Recall that DM is given by

DM (m1,m2) = min
π

1

n

n∑
j=1

1m1(xj)6=π◦m2(xj),

and that a ‘by hand’ calculation requires checking each permutation π = ⊕ti=1πi, where πi is
a permutation of the numbers (1, 2, . . . , si). The algorithm given in this section is slightly more
efficient by considering the symmetric difference between clusters instead of searching for an optimal
permutation. We state the assumptions for the algorithm, provide an explanation of the algorithm,
and end with an example.

Given X = {xi}ni=1 ⊂ X, a cover U = {Ui}ti=1 of X, and m1,m2 ∈ Mn. Then each bin
Xi = X ∩ Ui is clustered according to m1 = (f1, f2, . . . , ft) and m2 = (g1, g2, . . . , gt) as

V 1
i (m1), V 2

i (m1), . . . , V ki
i (m1) and V 1

i (m2), V 2
i (m2), . . . , V ki

i (m2)

respectively, where ki = max{s(1)
i , s

(2)
i } and s

(j)
i is the number of clusters of Ui with respect to mj

for j = 1, 2. If ki is larger than s
(j)
i for some j, then the additional ki − s(j)

i clusters are assumed
to be empty.

8.1 Algorithm 1

The first step of the algorithm is to re-index the clusters of X with respect to m1 as

(V η1
ε1 (m1), V η2

ε2 (m1), . . . , V
ηp
εp (m1), . . . , V ηl

εl
(ml)),

where |V η1
ε1 (m1)| ≥ |V η2

ε2 (m1)| ≥ · · · ≥ |V ηp
εp (m1)| ≥ · · · ≥ |V ηl

εl (ml)| and l =
∑t

i=1 ki. Then a
value p that begins as p = 1 and moves to p = l will indicate which cluster with respect to m1

in the above list will be compared, via symmetric difference, to a cluster of Xεp with respect to
m2. The value p will increase by one every time the algorithm moves on from comparing V

ηp
εp (m1)

with clusters of Xεp with respect to m2. For each value of p the symmetric difference is taken
between V

ηp
εp (m1) and an arbitrary cluster from the set Mat(Xεp), which consists of clusters of

the bin Xεp with respect to m2 that have not yet been compared to V
ηp
εp (m2). This means that

Mat(Xεp){V 1
εp(m2), V 2

εp(m2), . . . , V
kε1
εp (m2)} and clusters are removed from Mat(Xεp) once they

are compared to V
ηp
εp (m1). When a cluster from Mat(Xεp) is compared to V

ηp
εp via set difference,

the result is collected into the set D, known as the mismatch set. When the algorithm is first
initialized D = ∅ and its cardinality increases as more clusters are compared. A value B which is
set to B = n at initialization will serve as an upper bound for |D|, and the goal of the algorithm is
to use a recursive backtracking procedure to decrease B. When the algorithm terminates, B will
be decreased as much as possible and we will have that DM (m1,m2) = B/n.

The procedure of the algorithm is as follows. We set B = n, p = 1, D = ∅ and compute the
symmetric difference between V η1

ε1 (m1) and an arbitrary cluster from Mat(Xε1), which in this first

stage will be equal to the set {V 1
ε1(m2), . . . , V

kε1
ε1 (m2)}. Then update the set D to include any

points of this symmetric difference. Note that at this point in the algorithm |D| may be larger
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than zero. We then compare |D| with B and we have two options: if |D| ≥ B, we must backtrack
and choose a different cluster of Mat(Xε1) to compare with V η1

ε1 (m1). If |D| < B, then we update
p to p + 1, remove the cluster of Xε1 with respect to m2 that we compared with V η1

ε1 (m1) from
Mat(Xε1), and complete the same procedure for V η2

ε2 (m1). We continue this process such that if
the size of D exceeds B before p = l, then the algorithm backtracks to the previous comparison
and tries a different matching to keep |D| less than B. If the value of p reaches l and |D| < B then
we re-initialize the entire algorithm, resetting all parameters to their initial state except for B. We
set B = |D| where |D| is taken from the last step of the previous initialization when p = l and
|D| < B. We continue in this fashion until every possible matching causes |D| ≥ B. The resulting
value for B will be n-times DM (m1,m2).

We provide an example to demonstrate the algorithm. For ease we will use the Mapper functions
from Example 6.4 where X = {1, 2, 3, 6, 7, 9} ⊆ R and the bins X1 and X2 with respect to a cover
U are X1 = {1, 3, 9} and X2 = {2, 3, 6, 7, 9}. Given the outputs of m1 and m2 we first construct
the clusters that they specify.

m1(1) = {(1, 1)} m1(2) = {(2, 1)} m1(3) = {(1, 2), (2, 1)}
m1(6) = {(2, 2)} m1(7) = {(2, 1)} m1(9) = {(1, 2), (2, 2)}

and

m2(1) = {(1, 1)} m2(2) = {(2, 2)} m2(3) = {(1, 1), (2, 1)}
m2(6) = {(2, 2)} m2(7) = {(2, 1)} m2(9) = {(1, 2), (2, 1)}.

Recall, that the first number in each ordered pair indicates which bin x belongs to, and the second
number in the ordered pair indicates which cluster of that bin x belongs to. With this in mind we
have that:

V 1
1 (m1) = {1}, V 2

1 (m1) = {3, 9}, V 1
2 (m1) = {2, 3, 7}, V 2

2 (m1) = {6, 9}
and

V 1
1 (m2) = {1, 3}, V 2

1 (m2) = {9}, V 1
2 (m2) = {3, 7, 9}, V 2

2 (m2) = {2, 6}.
We see that

V 1
1 (m1) ∪ V 2

1 (m1) = X1 = V 1
1 (m2) ∪ V 2

1 (m2)

V 1
2 (m1) ∪ V 2

2 (m1) = X2 = V 1
2 (m2) ∪ V 2

2 (m2).

The clusters that each Mapper function specify are necessary, because the algorithm uses the actual
cluster and not just the assignments made to each point x ∈ X.

Now, we order the clusters from both X1 and X2 with respect to m1 in decreasing order by
size, while assigning an arbitrary order to ties. Completing this with our above example gives the
following ordering

(V 1
2 (m1), V 2

1 (m1), V 2
2 (m1), V 1

1 (m1)),

and we have:

ε1 = 2, ε2 = 1, ε3 = 2, ε4 = 1

η1 = 1, η2 = 2, η3 = 2, η4 = 1.
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In the following steps of the algorithm we use the symbol → to indicate that a variable is given
a new value, for example the expression D∪{2, 9} → D in the first step means that the old value of
D along with the set {2, 9} will be the value of D for the next step of the algorithm. The number
on the far left indicates which step of each initialization we are on; backtracking results in repeated
numbers on the left.

1st p = 1, l = 4, B = 6, D = ∅, ε1 = 2, η1 = 1,Mat(X2) = {V 1
2 (m2), V 2

2 (m2)}

Compute: D ∪ (V 1
2 (m1)∆V 1

2 (m2)) = D ∪ ({2, 3, 7}∆{3, 7, 9}) = D ∪ {2, 9} → D
Compare: |M | = 2 < B and p 6= l
Update: p+ 1→ p,Mat(X2)− {3, 7, 9} →Mat(X2)

2nd p = 2, l = 4, B = 6, D = {2, 9}, ε2 = 1, η2 = 2,Mat(X1) = {V 1
1 (m2), V 2

1 (m2)}

Compute: D ∪ (V 2
1 (m1)∆V 1

1 (m2)) = D ∪ ({3, 9}∆{1, 3}) = D ∪ {1, 9} → D
Compare: |D| = 3 < B and p 6= l
Update: p+ 1→ p,Mat(X1)− {1, 3} →Mat(X2)

3rd p = 3, l = 4, B = 6, D = {1, 2, 9}, ε3 = 2, η3 = 2,Mat(X2) = {V 2
2 (m2)}

Compute: D ∪ (V 2
2 (m1)∆V 2

2 (m2)) = D ∪ ({6, 9}∆{2, 6}) = D ∪ {2, 9} → D
Compare: |D| = 3 < B and p 6= l
Update: p+ 1→ p,Mat(X2)− {2, 6} →Mat(X2)

4th p = 4, l = 4, B = 6, D = {1, 2, 9}, ε4 = 1, η4 = 1,Mat(X1) = {V 2
1 (m2)}

Compute: D ∪ (V 1
1 (m1)∆V 2

1 (m2)) = D ∪ ({1}∆{9}) = D ∪ {1, 9} → D
Compare: |D| = 3 < B and p = l
Update: |D| → B

Since p = l and |D| < B, the algorithm reduces the bound B from 6 to 3, but this does not mean
that the algorithm has computed the correct Mapper distance. The algorithm is reinitialized using
the new bound of B = 3 and returning all parameters back to their original states.

1st p = 1, l = 4, B = 3, D = ∅, ε1 = 2, η1 = 1,Mat(X2) = {V 1
2 (m2), V 2

2 (m2)}

Compute: D ∪ (V 1
2 (m1)∆V 2

2 (m2)) = D ∪ ({2, 3, 7}∆{2, 6}) = D ∪ {3, 6, 7} → D
Compare: |D| = 3 = B
Backtrack
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This matching resulted in the size of the mismatch set D to meet the bound B, so the algorithm
backtracks one step to attempt another matching using the same B value.

1st p = 1, l = 4, B = 3, D = ∅, ε1 = 2, η1 = 1,Mat(X2) = {V 1
2 (m2), V 2

2 (m2)}

Compute: D ∪ (V 1
2 (m1)∆V 1

2 (m2)) = D ∪ ({2, 3, 7}∆{3, 7, 9}) = D ∪ {2, 9} → D
Compare: |D| = 2 < B and p 6= l
Update: p+ 1→ p,Mat(X2)− {3, 7, 9} →Mat(X2)

2nd p = 2, l = 4, B = 3, D = {2, 9}, ε2 = 1, η2 = 2,Mat(X1) = {V 1
1 (m2), V 2

1 (m2)}

Compute: D ∪ (V 2
1 (m1)∆V 1

1 (m2)) = D ∪ ({3, 9}∆{1, 3}) = D ∪ {1, 9} → D
Compare: |D| = 3 = B
Backtrack

Here |D| = B so the algorithm backtracks one step and attempt another matching.

2nd p = 2, l = 4, B = 3, D = {2, 9}, ε2 = 1, η2 = 2,Mat(X1) = {V 1
1 (m2), V 2

1 (m2)}

Compute: D ∪ (V 2
1 (m1)∆V 2

1 (m2)) = D ∪ ({3, 9}∆{9}) = D ∪ {3} → D
Compare: |D| = 3 = B
Terminate

Finally, no matter the choice of matching the bound B cannot be further reduced, thus, the
algorithm terminates with DM (m1,m2) = 3

6 = 1
2 . Notice this is the same value computed by the

definition in section 6.

8.2 Approximation Method for InStabMapper

We now present the procedure of [1], based on k-fold cross validation, to approximate the instability
between two Mapper functions. This method is presented in [1] without justification of its validity
as an approximation for Definition 6.8, however, we provide it in order to give a complete picture
of the work of [1]. As earlier, suppose we have a sample X = {xi}ni=1 drawn i.i.d. from X with
respect to P , and suppose we are given two mapper functions m1 and m2. Now, choose m, k ∈ N
such that n = mk and divide the sample X into k sub-samples by

Ei = X − {xm(i−1)+1, xm(i−1)+2, . . . , xmi).

Then compute DM (m1,m2) for m1 and m2 restricted to each Ei ∩Ej for i 6= j and sum the results

for each choice of i and j, i 6= j. The claim is that by dividing this sum by k(k+1)
2 one obtains an

approximate value for the instability between m1 and m2.
This method takes a single sample X drawn from X and divides it into sub-samples, then

computes Mapper distances on those sub-samples. Averaging the Mapper distances between these
sub-samples is effectively a discretized version of Definition 6.8, because Definition 6.8 depends on
the expected value, or mean, of a random variable, which is defined by computing the Mapper
distance between two random samples from X. We now demonstrate this approximation with an
example.
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Recall the previous example where X = {1, 2, 3, 6, 7, 9}, so n = 6 and we will assume the
ordering is given by increasing value. We choose m = 2 and k = 3. The sub-samples are as follows

E1 = X − {x1, x2} = {3, 6, 7, 9}, E2 = X − {x3, x4} = {1, 2, 7, 9}, E3 = X − {x5, x6} = {1, 2, 3, 6}

Now calculate DM (m1,m2) for each intersection.

E1 ∩ E2 = {7, 9}
m1(7) = {(2, 1)} m1(9) = {(1, 2), (2, 2)}
m2(7) = {(2, 1)} m2(9) = {(1, 2), (2, 1)}

For this case, the permutations that results in the minimum mismatch are (1)⊕ (1) or (1)⊕ (12).
This is because before permuting m2 there is only one disagreement that occurs in the clustering
of X2 for x = 9. If a permutation corrects this disagreement it would generate another
disagreement for the point 7. It follows that the Mapper distance in this case is 1/2.

E1 ∩ E3 = {3, 6}
m1(3) = {(1, 2), (2, 1)} m1(6) = {(2, 2)}
m2(3) = {(1, 1), (2, 1)} m2(6) = {(2, 2)}

In this case the permutation (12)⊕ (1) provides a relabeling that reduces the mismatch to zero, so
the Mapper distance is 0.

E2 ∩ E3 = {1, 2}
m1(1) = {(1, 1)} m1(2) = {(2, 1)}
m2(1) = {(1, 1)} m2(2) = {(2, 2)}

In this case the permutation (1)⊕ (12) provides a relabeling that reduces the mismatch to zero,
and thus the Mapper distance is 0.

Then to complete the estimation compute

1/2 + 0 + 0
3(3+1)

2

=
1/2

6
= 1/12

as the estimate of the instability between m1 and m2.

9 Conclusion

The work of Belch́ı et.al. in [1] provides stability conditions for the Mapper algorithm with respect
to an instability measure that is formulated as the expected value of a random variable. This
proposed framework for measuring the validity of a Mapper output is presented generally, in the
sense that it can be applied to any simplicial approximation algorithm that relies on a clustering for
a finite cover of a finite set of points from a metric space. We saw that if a filter function, resolution,
and Mapper cover are fixed, then a Mapper complex can be represented as a function that depends
solely on the clustering of each bin. This fact demonstrates the importance of clustering for a
Mapper complex and validates viewing instability in terms of clustering. This expository paper
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focused on the theoretical work of [1] that built off of the work of [2]. Moreover, Belch́ı et.al.
provide experimental results that defend the practicality of their theoretical work, see [1] Sections
5 and 9.

The definition of a Mapper complex requires that multiple choices other than clustering be
made, and each choice influences the resultant complex. Quantifying the influence of a particular
parameter, as [1] has done for clustering, is a natural next step for Mapper instability. We now list
specific areas for further research within the instability work of [1] and the Mapper definition in
[13].

• The original definition of Mapper in [13] does not specify a standard choice for the left
endpoint of I1 in a 1-dimensional Mapper cover. As the Mapper complex depends on this
cover, this choice would influence the final Mapper complex.

• Recall from Section 4 that a resolution (l, p) must result in a collection of intervals such that
each interval only intersects with its immediate neighbors. This means there must be an
algebraic relationship between l, p and the number of intervals needed to cover the parameter
space Z. We are not aware if this relationship has been formulated.

• Could a framework be developed to make informed choices for a filter function that results
in stable Mapper complexes?

• The algorithm in Section 8.1 that calculates DM (m1,m2) for two Mapper functions requires
a proof. The method proposed by [1] to approximate InStabMapper, which we give in Section
8.2, needs justification.

TDA is a fast growing and increasingly important field, and stability of simplicial approxima-
tions is only a small part of the whole. As TDA becomes more robust we will begin to see more
algebraic topology being called upon to answer the questions of big data. It is an exciting time in
both data analysis and algebraic topology.
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