
)

Implementation of First Class Functions and Type
Checking for a Multiparadigm Language

by

Vinoo Cherian

A research paper submitted in partial fulfilment of the degree of
Master of Science

Major Professor: Dr. Timothy A Budd

Department of Computer Science
Oregon State University, Corvallis, Oregon

May 23, 1991

)

J

Abstract

A multiparadigm language is one which combines features of different language

paradigms. Leda is a strongly typed, compiled, multiparadigm language with facilities for

imperative, functional, object oriented and relational programming. This report describes the type

checker of the Leda compiler and the implementation of first class functions required for functional

programming. Closure analysis is done to determine if a function can outlive its defining context.

If the defining context is not on the activation stack at the time of the function invocation, the

context is allocated on the heap . Type checking rules for Leda are presented. These rules illustrate

the interaction between the different paradigms. The report also describes the development of the

Leda compiler using an object oriented paradigm.

I

)

)

Acknowledgements

I would like to thank my advisor Tim Budd and the other members of the Leda compiler

development project, Wolfgang Pesch and Jim Shur, for all their help and encouragement.

Table of Contents

1 Introduction

1.1 Language Paradigms and Multiparadigm Languages

1.2 Leda

2 First Class Functions

2.1 The Upward and Downward Funarg Problem

2.2 Functions and Methods in Leda

2.3 Representation of Functions and Methods

2.4 hnplementation of First Class Functions

3 Type Checking

3 .1 Data Types in Leda

3.2 Type Checking Rules

3. 3 Type Checking hnplementation

) 4 Writing a Compiler in an Object Oriented Style

5 Conclusions

References

)

1

1

4

8

8

9

12

14

18

18

20
24

27

30

31

Chapter 1

Introduction

Leda is a strongly typed, compiled, multiparadigm language. This work involves the

implementation of first class functions for programming in the functional paradigm and the

implementation of the type checker of the compiler.

1.1 Language Paradigms and Multiparadigrn Languages

Programming languages can be classified into different groups on the basis of the

underlying programming model. Each programming model presents a different way to view

programming. Each of these models is called a paradigm.

Languages like C, Pascal and Fortran use the imperative paradigm. Programming in this

paradigm emphasizes assignments to variables. An assignment changes the state of the machine by

changing the value of a location in memory. Imperative programming languages therefore provide

) a convenient programming mcxlel of the underlying machine. Such languages usually have

structured control flow statements like loops and conditionals. Fig 1.1 shows a fragment of C ccxle

which computes the factorial of 9.

void main(void)
{

int x, fact;

X = 9;
fact = 1;
while (x > 1) {

fact = fact • x;
X = X -1;

}
}

r find the factorial of 9 */

Fig 1.1 The Imperative Paradigm (C)

Languages using the functional paradigm include Lisp, Scheme and ML. They have

functions as values and use functional composition to develop higher order functions. A higher

order function is one whose arguments or results are themselves functions. In pure functional

J programming the value of an expression depends only on the values of its subexpressions, if any.

1

) There are no side effects in pure functional programming and therefore no assignments. Many of

the functional languages however do allow assignments but programming in them largely follows

the pure functional style [Set89]. Storage management is usually taken care of by the system in

these languages. Fig 1.2 shows an example of a filter function in ML which copies a binary tree

(btree) of integers, applying the filter function to each of the elements as they are copied. The btree

is defined in ML as

datatype btree = leaf I node of int * btree *btree.

If x is a btree, the result of map(x, sq) is a new tree in which each value is squared.

fun sq(value) = value*value;

tun map(leaf, filterFun) =
leaf

map(node(value, left, right), filterFun) =
node(filterFun(value), map(left, filterFun), map(right, filterFun));

Fig 1.2 The Functional Paradigm (ML)

In the object oriented paradigm, the language views data items as representatj.ons of real

) world objects, which interact with each other by sending and receiving messages. These data

items, called objects, are instances of classes. The messages which an object can respond to is

determined by its class. Objects are seen as representing independent communicating agents in the

object-oriented style of programming. Inheritance and data encapsulation are also major concepts.

Inheritance allows new classes to be defined as extensions of previously defined ones. Data

encapsulation is provided by classes. Methods are provided as the means to manipulate data in a

class. This hides the representation of data from the user. Since the representation of data is often

unnatural, this data encapsulation enables a programmer to think more in the abstract rather than in

terms of a concrete data representation [Kam90]. Smalltalk, Object Pascal and C++ are examples

of object-oriented languages. Fig 1.3 shows a C++ example of a class point and its subclass

circle.

)

The logical paradigm emphasizes relationships between objects. An example of a logical

language is Prolog. In logic programming relations are used instead of functions. Relations are

used to represent facts and rules provided by the programmer. The languages use deduction to

answer queries. A relation treats arguments and results the same. In other words flow of data in a

relation is bi-directional. Backtracking is used to find solutions and unification is used to allow the

use of variables as place holders for data to be filled in later [Set89]. Fig 1.4 shows Pro log code to

represent information about family relationships and queries about the realationships.

A particular paradigm may be chosen to solve a problem because it results in a more

2

)

)

class point { II declaration of class point
protected:

int x; II fields x and y are protected and can be accessed only through methods
int y;

public:

} ;

point(int v1, int v2) { x = v1; y = v2;}
void print() { cout « x « y;}

II constructor for class point
II print is a method

class circle : public point { II circle is a subclass of point
protected:

int radius;
public:

circle(int v1, int v2, int v3) : (v1, v2) {radius = v3;} II constructor for class circle
void print() {cout « x « y « radius;}

II this print overriddes in the declaration in the class point
} ;

point p1 (5, 6);
circle c1 (0, 1,5);

p1 .print();
c1 .print();

II create a point
II create a circle

II print the point
II print the circle

Fig 1.3 The Object-Oriented Paradigm (C++)

mother(MOM, KID) :- child(KID, MOM, DAD).
child(helen, leda, zeus).
child(hermione, helen, menelaus).
child(castor, leda, tyndareus).
child(pollux, leda, zeus).
child(aeneas,aphrodite,anchises).

?- mother(leda, helen).
yes
?-mother(leda, X).
X = helen;
X = castor;
X = pollux;
no

Rules and facts

Queries

Fig 1.4 The Relational Paradigm (Prolog)

3

succinct, efficient and easy implementation compared to another paradigm. For large problems it is

conceivable that different parts of a problem may be best programmed in different paradigms. This

requires a language which has features that allow different paradigms to be used in solving a

programming problem. Such a language is called a multiparadigm language [Hai86][Kor86].

1.2 Leda

Leda is a multiparadigm language that attempts to combine features of four common

language paradigms - imperative, functional, object-oriented and logical. Each paradigm represents

a particular outlook of the world as described in the previous section. Leda was designed to enable

programming in any of the above four paradigms or in a combination of paradigms [Bud89c]

[Bud9la].

Leda is a strongly typed, compiled language. Functions can be passed to other functions

and returned from functions and so are first class values. All values are objects. This allows

different data types to be treated uniformly. A class hierarchy is provided to enable the user to

define new types. Relations are provided to support the relational paradigm. These features enable

programming in different paradigms. The different paradigms are illustrated by examples

below.

var // find the factorial of 9
fact, x : integer;

begin
X: = 9;
fact : = 1:
while (x > 1)

begin
fact := fact • x;

end;
end;

Fig 1.5 Imperative Programming in Leda

Fig 1.5 shows imperative programming in Leda. while, for and repeat-until loops and

if-then-else statements are the structured control flow structures available.

Fig. 1.6 shows an example of object oriented programming in Leda. Each class has a

shared part which is common to all instances of the class and an unshared part which is unique to

each instance of a class. point is a class with one shared method, print. circle is a subclass of

point and it overrides the definition of print. The methods themselves can be assigned to in the

body of the program (as circle.print is) or declared in a procedural style (as point.print is).

pl.new() creates a new point and values can be assigned to the unshared portion.

4

type
point := class

x : integer;
y : integer;

shared
print : method();

end;

circle := class of point
radius : integer;

shared
print : method();

end;
var

p1 : point;
c1 : circle;

method point.print();
begin

x.print();
y.print();

end;

begin

circle.print := function(c : circle);
begin

c. x.print();
c.y.print();
c. radius.print();

end;
p1 := point.new();
p1 .x == 5;
p1.y == 6;
p1 .print();

c1 := circle.new();
c1 .x := O;
c1 .y := 1;
c1 .radius := p1 .x;
c1 .print();

end;

// circle is a subclass of point

// define a point and a circle

II conversion of function to method

II create a new point

II print the point

II create a new circle

II print the circle

Fig 1.6 Object Oriented Programming in Leda

5

)

Functional programming in Leda is illustrated in Fig 1.7. A binary tree (btree) in Leda can

be defined by two classes leaf and node which are subclasses of a general class btree. In a ML

like language, btree would be defined as

datatype btree = leaf I node of int * btree * btree.

map is defined on the btree data structure. If xis the binary tree, the result of x.map(sq) is a

new tree in which each value is squared. map can be passed a function of type

function(integer)->integer [Set89] [Bud89c]

function sq (value : integer)->integer;
begin

return value*value;
end;

method leaf.map(filterFunc function(integer)->integer)->btree;
begin

return self; // return the receiver of the message
end;

method node.map(filterFunc : function(integer)->integer)->btree;
begin

return node.new(filterFunc(value), left.map(filterFunc), right.map(filterFunc));
end;

Fig 1. 7 Functional programming in Leda

relation child(var name, mother, father : names);
begin

child(helen, leda, zeus).
child(hermione, helen, menelaus).
child(castor, leda, tyndareus).
child(pollux, leda, zeus).
child (aeneas,aph rodite,anch ises).

end;

A Relation consisting of only facts

relation mother(var mom, kid : names);
var dad : names;
begin

mother(mom, kid) :- child(kid, mom, dad).
end;

Fig 1.8 Relational programming in Leda

6

Relational programming in Leda is provided by a procedural abstraction called the relation.

The body of the relation consists of rules similar to Prolog. The rules can be either facts or rules of

inference as illustrated in Fig 1.8. var parameters allow the flow of information in either direction.

Implicit backtracking is invoked when more than one answer is possible [Bud91a].

One of the difficult parts of multiparadigm language design is to provide a language in

which the different paradigms easily blend together . This is more than interfacing features of

different paradigms. There must be some internal consistency so that the different paradigms work

well together and independently . Leda is a step in this direction of providing a combination of

paradigms which is more than the sum of its parts.

7

I

)

)

Chapter 2

First Class Functions

2.1 The Upward and Downward Funarg Problem

In block structured languages, the environment in which a function is defined can be the

main program or any other function. This causes complications when functions are passed as

arguments or when functions are returned as values of other functions . This is called the funarg

(functional argument) problem.

Consider the Leda program shown in Fig 2.1. The environment of function D is function

C. The variable x that is incremented in function D is defined in function C. This variable must be

var
A : function();

begin
A := function()

var
B : function(f : function());
C : function();

begin
8 := function(f : function());

begin
f();

end;

C := function();
var

x : integer;
D : function();

begin

end;
C();

end;

D := function();
begin

X := X +1;
end;

B(D);

Fig 2.1 The Downward Funarg Problem

8

)

accessible to function D when D is passed as a parameter to B. Since B is invoked from C, the

activation record for C is on the stack at the time of the invocation of B. The activation record of C

contains the variable x which must be accessible to function D when it is invoked from within B.

This can be done by passing along with the functional argument D, a pointer to its environment i.e.

a pointer to the activation record of C. The downward funarg problem can therefore be solved by

passing a closure which contains a pointer to the code of the function and a pointer to its

environment. The environment of a function is guaranteed to be on the stack or in the global area

when the function is passed as an argument. [Aho86]

type
intfun := function(integer)->integer;

var
A : function(integer)->intfun;
C : intfun;
ans : integer;

begin
A := function(a : integer)->intfun;

begin
return function (b : integer)->integer;

begin

end;
C := A(5);
ans := C(7);

end;

return a + b;
end;

Fi!! 2.2 The Uoward Funari?: Problem

Solving the problem of allowing functions to be returned from other functions (the upward

funarg problem) is more difficult. In this case the activation record which is the environment of the

function being returned may no longer be on the stack. Consider the Leda program in Fig 2.2.

Function A returns a pointer to a function which accesses a, the parameter of A. This function is

assigned to C. The storage for the parameter a is destroyed once the invocation of A has been

completed. The function assigned to C however requires the value of a when it is invoked. Solving

this problem requires some additional mechanism to keep the activation record of A around even

after its invocation.

2.2 Functions and Methods in Leda

Since Leda supports the functional programming style, functions are first class data types.

Functions are therefore no different from other data values. Consider the class declaration in Fig

9

)

)

2.3. line is a class with one unshared function lineFunction which holds the line equation and

three shared methods drawTransform, getNewEndPoints and isVisible. The shared data is

common to all instances of a class while the unshared data is different for each instance of the

class. lineFunction holds the line equation, drawTransform draws the transformation of a

line, getNewEndPoints transforms a line and obtains its intersections with a graphics screen and

is Visible indicates if a line is visible.

The difference between methods and functions is as follows. The method

drawTransform has an instance of line as an implicit receiver. The transformation is done on this

receiver. A method can access the class fields of its receiver. A function on the other hand has no

line := class
lineFunction : function(real, real)->boolean;

shared
drawTransform : method(transform);
getNewEndPoints : method(transform, var point, var point);
isVisible : function()->boolean;

end;

Fig 2.3 Declaration of class line

var
aline : line;
t : transformation;

method line.drawTransform (t : transform);
{ transforms a line and draws the part which falls within the screen }

var start, end : point;
begin II get screen Intersections of transformed line

self.getNewEndPoints(t, start, end);
MoveTo(start); II draw transformed line
DrawTo(end);

end;

function line.isVisible() -> boolean;
{ indicates if a line is visible}

begin
return true;

end;

begin
aline := line.new();

end;

II create an instance of Line

Fig 2.4 Definition of Methods and Functions

10

)

var
aline : line;
t : transformation;

method line.drawTransform (t : transform);
{ transforms a line and draws the part which falls within the screen }

var start, end : point;
begin II get screen Intersections of transformed line

self.getNewEndPoints(t, start, end);
MoveTo(start); II draw transformed line
DrawTo(end);

end;

begin

line.isVisible := function () -> boolean;
begin

return true;
end;

aline := line.new(); II create an instance of Line
aline.lineFunction := function(xCord , yCord : real)->boolean;

end;

{ checks if point (xCord, yCord) is on the line }
begin

end;

if (4*xCord + 3*y = 8) then
return true;

else return false;

Fig 2.5 Alternate Initialization of Methods and Functions

var
aline : line;
t : transformation;

begin
II assign a function to a method. Allowed since the first
II parameter of the function matches the receiver of the
II method drawTransform

line.drawTransform :=function(thisline : line; t : transform);

end;

{ transforms a line and draws the part which falls within the screen }
var start, end : point;

begin
thisline.getNewEndPoints(t, start, end);
MoveTo(start);
DrawTo(end);

end;

Fig 2.6 Assigning a function to a method

11

') implicit receiver.

Fig 2.4 shows one form of definition of shared functions and methods. This is merely

syntactic sugar for assigning a value to the field. In the case of shared class fields, the function or

method name must be prefixed by the name of the class. For example, since drawTransform is a ·

field of the class line, it is qualified by the class name. Functions or methods which are fields of a

class must be declared in the class declaration before being defined (as in Fig 2.3). Functions

which are not class fields can also be defined using this syntax and need not be declared earlier.

Functions and methods defined using this form can be reassigned other values later in the program

using assignment.

Fig 2.5 shows alternate syntax for defining methods and functions by assignment. Shared

data fields must be qualified by the class name and unshared data fields must be qualified by the

name of the instance of the class when they are being assigned to. Thus line.is Visible is legal

but line.lineFunction is not as targets for assignment. line.lineFunction can however be

used as a value of an expression. Functions (but not methods) can also be created as nameless

values. These values can be passed as arguments, returned from other functions as values and

assigned to variables.

Functions can be converted to methods . This is illustrated in Fig 2.6. The first parameter of

) the function must correspond to the receiver of the method Methods can also be converted to

functions . The receiver of the method must correspond to the first parameter of the function

[Bud9lb] .

Functions or methods can be invoked in the postfix style object oriented fashion or in a

prefix style functional fashion. Thus aLine.drawTransform(t) can also be invoked as

drawTransform(aLine, t).

2.3 Representation of Functions and Methods

Functions and methods in Leda are represented as objects. Each object is an instance of a

funtion class. The layout in memory of a method or function is shown in Fig 2.7. The reference

count indicates the number of variables that refer to the object. This is required since Leda uses

pointer semantics. The object can be garbage collected when the reference count falls to zero.

Garbage collection is not done in the current implementation. The shared field points to a shared

table of fields which all instances of a class share. Functions and methods do not have any shared

table. The next field points to the code of the function and the last field points to the context in

which the function was defined. This can be a pointer to an activation record on the stack or a

J context allocated on the heap, as will be discussed in the next section.

12

)

)

Reference Count

Shared Table Pointer

Function Code Pointer

Function Environment Pointer

Fig 2. 7 Representation of Methods and Functions in Leda

class programASTnode : public scope { II holds mainprogram, functions & methods
protected:
DTnode
DTnode
DTnode
DTnode
DTnode
ASTnode

ASTnode
esclnd
ASTnode

public:

};

*args;
*constantdefs;
*typedefs;
*variabledefs;
*reciever;
*subprogram Type;

*statements;
closurelnd;
*parentlevel;

II formal parameters
II constant definitions
II type definitions
II local variable declarations
II receiver in the case of a method
II a type constructor including the receiver,

II parameter and return types
II list of statements that make up the subprogram
II indicates if there is an escaping closure
II pointer to the enclosing subprogram

Fig 2.8 C++ Class Representation of a Subprogram in the Leda Compiler

class funcType : public classType {
private:
typeArgsNode

ASTnode
public:

} ;

*params;
* return Type;

class methType : public classType {
private :
ASTnode

typeArgsNode
ASTnode

public:

};

*receiverType;
*para ms;
*returnType;

II type of a function

II types of parameters (including passing mode)
II return Type. A function need not return a value.

II type of receiver
II types of parameters (including passing mode)
II return Type. A method need not return a value.

Fig 2.9 C++ Class Representation of Function and Method Types in the Leda Compiler

13

.) The compiler represents functions and methods as C++ classes. The class holds the formal

parameters, local variable declarations, local constant and type definitions, statements in the

subprogram, type of the receiver (in the case of a method), the subprogram type and a closure

indicator to indicate if there is an escaping closure (discussed in the next section). Fig 2.8 shows

the class which represents a function or method.

The function or method type is also represented in the compiler as a C ++ class. These

classes are shown in Fig 2.9. Type checking involves checking each parameter and the the return

type. The reciever type is also type checked in the case of a method.

2.4 Implementation of First Class Functions

Every function in Leda is a closure, that is, an object with a pointer to the code and a

pointer to the function environment. Before a function is invoked, its environment pointer is

pushed on the stack. This forms the static link. Solving the downward funarg problem is trivial

since every function carries with it its environment pointer. Traversing the static link gains access

to the environment.

Solving the upward funarg problem is more difficult. Closure analysis is first done to

determine whether any nested function can outlive the context in which it is defined. This is called

an escaping closure. Closure analysis is done as follows. Every assignment statement is analysed

to see if a function is assigned to a variable outside the current block. Every return statement is

analysed to determine if a function is being returned. In either case the current function is flagged

as having an escaping closure. If a nested function has an escaping closure, the current function is

also flagged as having an escaping closure. This is because a block forms part of the environment

of any nested block. Closure analysis is done during the first pass [Kra88].

If a function is flagged as having an escaping closure, space is allocated on the heap for its

parameters, local variables, return address, static link and dynamic link. The parameters which

were pushed on the stack by the calling subprogram are then copied to the heap. No space is

allocated on the stack for the local variables since the space on the heap is used. The environment

on the heap has the same layout as an activation record as shown in Fig 2.10. The return address

and dynamic link fields of the environment on the heap are however unused.This allows uniform

treatment of activation records and heap environments when the off sets of the parameters and local

variables are calculated. In the current implementation which generates 68000 code, register a4

holds the pointer to the current function environment. This could be either a pointer to the

activation record (if there is no escaping closure) or it could be a pointer to environment on the

heap (if there is an escaping closure) .

14

parameters

static link

return address

dynamic link

local

variables

Fig 2.10 Layout of environment on heap and stack

Consider the Leda program in Fig 2.11 which defines a curry. A curry of a binary function

permits the arguments to the function to be bound one at a time. In this example x is a curry of the

binary function plus. When x is invoked with a single argument 5, it returns a function of one

argument with f bound to plus and a bound to 5. When this function is invoked with argument 7,

it returns the sum of 5 and 7.

Closure analysis of the curry example results in curry and the function it returns to be

flagged as having escaping closures since both of them return functions. When curry is invoked,

its context (environment) is allocated on the heap. The parameter f which was pushed on the stack,

is copied to the heap. The function object returned by curry and assigned to xis shown in Fig

2.12. On completion of the invocation, the dynamic link and the return address on the stack are

used to return to the caller. When x is invoked , it creates a second context on the heap. This

context holds parameter a and its static link points to the earlier context . The function object

returned by x and assigned toy is shown in Fig 2.13. Fig 2.14 shows the program state when y

is invoked. The context for y is on the stack since it has no escaping closure . The static link points

to the parent context of y which is on the heap. This context holds the parameter b and inturn

points to its calling context which is also on the heap. This context holds the function f which is

bound to plus [Bud89a]. When f(a,b) is invoked from within y, the list of contexts is searched

to find the values that f, a and b are bound to. Since f is bound to plus, a to 5 and b to 7, 12 is

) assigned to i the main program.

15

type

var

begin

)

end;

)

binaryFunction := function(integer, integer)->integer;
unaryFunction := function(integer)->intFunction;
intFunction := function(integer)->integer;

x : unaryFunction;
y : intFunction;
plus : binaryFunction;

curry : function(binaryFunction)->unaryFunction;
i : integer;

plus := function(a, b : integer)->integer;
begin

return a+b;
end;

curry := function(f : binaryFunction) -> unaryFunction;
begin

return function(a : integer)->intFunction;
begin

return function (b:integer)->integer;
begin

end;
end;

x := curry(plus);
y := x(5);
i := y(7);
i.print();

return f(a,b);
end;

Fig 2.11 Curry Implementation

f

codePtr static

environ ptr ... unused

~ unused

Fig 2.12 Function object assigned to x

16

-- plus code ptr

plus environ pt,

a t - plus code ptr -
coae ptr static -~ static plus environ pt

environ ptr unused unused

~~ unused unused

Fig 2.13 Function object assigned to y

b a f - plus code ptr -
static ... static -~ static plus environ pt1

~ ret addrs unused unused

dynamic unused unused

Stack Heap

Fig 2.14 When y is invoked

17

) Chapter 3

)

Type Checking

3.1 Data Types in Leda

Data Types in Leda are divided into 4 categories - standard system types, enumerated

types, subprogram types and class types. All types can have aliases.

Standard system types are integer, real and boolean.

Enumerated types can be defined by explicitly listing the values that the type defined.

The syntax is as follows .

type

var
spectrum:= (violet, indigo, blue, green, yellow, orange, red);

color : spectrum;

Subprogram types can be functions, methods or relations as noted in section 1.2.

Subprograms are first class values and hence variables can be declared of this type, passed as

arguments and returned from subprograms as values. Parameters can be passed by name or

reference (using var). In type declarations only the types of the arguments, the passing mode and

the return type is specified.

type
binaryFun := function(integer, var integer)->integer;

Class types are the major data structuring mechanism in Leda. A class encapsulates

representation dependent code. A class can have many instances. All instances of a class can share

a common data area. The syntax for a class definition is shown in Fig 3.1.

Data fields which follow the shared key word, are shared by all instances of the class .

The variable self can be used to refer to the object itself. The new message can be sent to a class

to create an instance of the class. Subclasses can be created by using the of keyword as shown in

Fig 3.1.

A Subclass inherits the data fields of its superclass . The subclass can override any of the

data fields . In the above example circle overrides the print method in point.

18

)

J

type

var

point := class
x : integer;
y : integer;

shared
print : method();

end;

circle := class of point
radius : integer;

shared
print : method();

end;

p1 : point;
c1 : circle;

begin

p1 := point.new();

II circle is a subclass of point

II define a point and a circle

II create a new point

Fig 3.1 Class Definition Syntax

Parameterized Classes are supported in Leda. The parameters can be instantiated with

type values to create a new class. This is illustrated below.

type

var

list := class(T)
item: T;
next : list(n;

end;

A list of integer can be declared as follows:

integerList: list(integer);

All variables are undefined before the first assignment This can be checked using a system

defined boolean function defined(x) [Bud89b].

19

3.2 Type Checking Rules

The following type checking rules are used in Leda.

Integers, Reals and Booleans

Integers match integers, reals match reals and booleans match booleans. No other

combinations involving these types match. Integers are automatically coerced to reals on

assignments, expressions and function/method calls and returns. There are no other automatic

coercions.

Enumerated Types

Instances of the same enumerated type match.

Functions and Methods

Functions match functions if the types, the passing modes and number of the parameters

match . The types of the corresponding parameters must match exactly or must be aliases.

Methods match methods if the types, the passing modes and number of the parameters

) match and if the type of the receivers match. The types must match exactly or be aliases.

Functions match methods if the first parameter of the function matches the implicit receiver

of the method and if all the remaining parameters of the function match the parameters of the

method. The types must match exactly or be aliases. The passing mode of the first parameter of the

function must be call by value for it to match the method receiver.

All methods/functions in Leda are virtual in the C++ sense, that is, the method/function

invoked when a message is sent to a variable will depend on the type of object held by the variable

at that point (dynamic type) and not on the static type of the variable.

Because of pointer semantics, even if an object is passed by value, its individual fields are

passed by reference. This means that changing the field of an object passed by value will change

the corresponding field of the actual parameter. Of course, since the object itself is passed by

value, assigning to the formal parameter will not change the actual parameter.

Classes

Class A matches class B if either of the following is true.

1. The class numbers of class A and class B are the same.

2. Class A is a subclass of class B. Note that in this case class B does not match class A.

Consider the functions in Fig 3.2 which use the classes in Fig 3.1. Circle is a subclass of

point. If a circle is passed as the parameter to printXCoord instead of a point, no problems are

20

)

caused since a circle also has a field x which can be sent the print message. Subclasses can

therefore be assigned to variables, passed as parameters and returned from functions or methods.

However if a point is passed to the function printRadius which expects a circle as the

parameter, the function will attempt to print the radius field of the parameter and fail. This is

because a point does not have a radius field.

Vct.l

p1, p2, p3 : point;
c1, c2, c3 : circle;

function printXCord(p : point);
begin

p.x .print();
end;

function printRadius(c : circle);
begin

c.radius .print();
end;

function addPoints(pntA, pntB : point)->point;
begin

end;

function addCircles(crclA, crclB circle)->circle;
begin

end;

p1 := addPoints(p2, p3);
p1 .x.print();
c1 := addCricles(c2,c3);
c1 .radius.print();

Fig 3.2 Subclasses can be passed, returned or assigned instead of their superclasses

Binary Expressions

For binary expressions involving the built in types, the types of the left and right

subexpressions must be identical after allowing for coercion of integers to reals.

User defined types can use the arithmetic operators+,-,* and/. These operators

correspond to the methods plus, minus, times and slash in the user defined class. In this case, the

corresponding method must exist, the type of the left subexpresssion must match the type of the

receiver of the method and the type of the right subexpression must match the type of the first

parameter of the method.

21

The type of the binary expression is the return type of the method corresponding to the

binary operator.

Unary Expressions

The type of the unary expression is the type of the subexpression.

Assignments

The type of the rvalue must match the type of the lvalue. Type aliases match. Assignment

of a class to its superclass is allowed. Functions and methods can be assigned to each other if they

match. A warning is generated if the lvalue and the rvalue have types which are aliases.

Assignment to a shared field of the class requires that the field be prefixed by the name of

the class. Assignment to an unshared field of a class requires that the field be prefixed by the name

of an instance of the class.

Function/Method Invocation

If a receiver exists, the type of the receiver must match the type of the class in which the

function/method is defined. Functions and methods can be invoked in a postfix style object

) oriented fashion or in a prefix style functional fashion as discussed in section 2.2. Thus

aLine.drawTransform(t) can also be invoked as drawTransform(aLine, t). If the latter

style is used, the first parameter corresponds to the receiver of the class. When

drawTransform(aLine, t) is seen by the compiler, a function called drawTransform which is

not a class field and with the correct number and type of parameters is searched for. If it is not

found, a class field called drawTransform is searched for in the class of the first parameter.

The types of the actual parameters must match the types of the formal parameters. The

types of the corresponding parameters can be aliases and subclasses of the formal parameter can be

passed. Functions and methods can be passed to each other if they match.

The number of actual parameters must match the number of formal parameters except when

the alternate invocation style is used. In this case the first actual parameter corresponds to the

receiver and the number of remaining actual parameters must match the number of formal

parameters.

Return Expressions

The type of a return expression must match the type of the return type of the

function/method in which it appears. Type aliases match. A subclass of the return type can be

) returned. Functions and methods match if the criteria discussed earlier holds.

Consider again the functions in Fig 3.2 which use the classes in Fig 3.1. If a circle is

22

· ") returned from addPoints instead of a point, no problems are caused since a circle also has a field x

which can be sent the print message after the invocation. However if a point is returned from

addCircles instead of a circle, printing the radius field of the returned value will fail. This is

because a point does not have a radius field . Subclasses of the return type can therefore be

returned but not superclasses of the return type.

Class Fields

The identifier after a period must be a field of the object or class which precedes the period .

The exception to this rule is the new message to a class which is used to create an instance of a

class .

A shared field can be prefixed by the name of the instance if the value of the field is only

going to be used in an expression. However it cannot be assigned to. Assigning to a shared field

requires that the field be prefixed by the class name. Similarly assigning to an unshared field

requires that the field name be prefixed by the name of the instance .

Use of an unshared field without a prefixed instance name is allowed within a method

declaration. In this case, the instance to which the field belongs is implicitly the receiver of the

method. For example in Fig 3.3, the field x of class point is not prefixed by a name. Since xis

) neither a local variable nor a parameter, it is searched for among the class fields of point and its

superclasses. If it is not found there it is searched for in the enclosing block .

J

Classes can override shared fields defined in the superclass. Fields which are not shared

cannot be overridden. The subclass cannot move a overridden field from the shared to the unshared

portion or vice-versa. With the exception of argument lists in overridden fields in methods and

functions, the types of the overridden fields must be identical to the types in the superclass. Issues

of covariance and contravariance allow the argument of an overridden method to be enlarged to a

more general type [Coo89][Bud91b] . Similarly the return type of an overridden method can be

declared as less generalized than in the parent method. This is illustrated in Fig 3.4. Assume that

point.plus := method(p : point)->point;
var

q: point;
begin

q := point.new();
q.x := x + p.x; // self is optional
q.y := self.y + p.y;

return q;
end;

Fig 3.3 Class fields which are not prefixed

23

') the method getArea in class circle is defined to take a parameter of type circle rather than shape.

Suppose sl, a variable declared of type shape, is assigned a circle. It is legal for sl to accept a

square as the parameter to the method getArea. This leads to a type incorrect situation since the

method getArea in class circle will be passed a square instead of a circle. This does not arise if the

parameters in the overridden method are generalized. Similarly a return type can be declared in an

overridden method as less generalized but not as more generalized.

type
shape := class

xCord, yCord : integer;
shared

getArea : method(s : shape);
end;

circle := class of shape
radius : integer;

shared
getArea : method(s : shape);

end;
square := class of shape

sidelength : integer;
end;

Fig 3.4 Enlarging parameter types and restricting return types in overridden methods

3.3 Type Checking Implementation

Leda allows a programmer to construct types from the basic types. The basic types are real,

integer and boolean. Examples of the constructed types are class, function, method and relation.

Representation of Types

Type checking for Leda is done in an object oriented fashion. All types are subclasses of

an abstract type class. Real, integer and boolean are internally represented as classes. As a result

they can be treated very similar to user defined classes for the purpose of type checking.

Constructed types are also subclasses of this abstract class. Each type has a unique class number

which is used to compare types.

In the implementation, a special C++ class called classID (class identifier) is used to hold

the information required to type check. This information consists of the name of the type, the type

itself and a list of class parameters to store information about instantiated parameterized types (if

they exist). Each of the parameters holds the same information.

The structure of the C++ class classID is shown in Fig 3.3. classIDiist is a list of classID.

24

')

)

)

class classlD {
protected:
char
classType
classlDlist

public:

II unique identifier of class used for typechecking

*className;
*classStructure;
*classArgs;

// name of the class
II type
// types of class parameters

Fig 3.3 Class used to Type Check

Type checking two types is done by first checking if the ,types held by the classStructure

fields match. If they do, the classNames are checked for equality. If they do not match the types

held in classStructure are aliases. The class parameters held in classArgs are then checked for

matches. If they match, the two types match.

Constructed Types

Constructed types are described below along with the type information they hold.

User Defined Class Types

This type holds the types of the data fields of the user defined class, the name of the

superclass and the types of the parameters in the case of a parameterired class. The data fields are

divided into shared variables and unshared variables.

Typechecking classes is done by first comparing the unique class numbers. If the class

numbers are different, the class number of the superclass is fetched and compared. This continues

until a match is found or until the top of the class heirarchy is reached without a match.

Parameterized Class Types

Typechecking two parameterized class types is done by first type checking the template of

the class using the unique class numbers. Once the template is found to match, each of the

parameters is type checked.

Functions

The function type holds type information about the parameters and the return type.

Methods

The method type holds information about the parameters, return type and the type of the

receiver.

25

')

)

Constructors and Type Checking

Each statement and expression in the intermediate representation of the compiler is an

instance of a C++ class. Every expression has a type which can be obtained by sending a message

to the class representing the expression. The type of the expression is set by the constructor of the

class representing the expression according to the type checking rules.

Assignment statements, subprogram invocations and return statements are also represented

by instances of C++ classes, the constructors of which do the appropriate type checking.

26

)

Chapter 4

Writing a compiler in an object oriented style

The implementation of Leda was done in C++ using an object oriented style of

programming. The intermediate representation is an abstract syntax tree made up of nodes . Each

node is a subclass of an abstract node. Every expression and statement is represented by such a

subclass. A part of the class heirarchy is shown in Fig 4.1.

Abstract Node
Assignment Statement
Subprogram Invocation Statement
Conditional Statement
While Loop Statement
For Loop Statement
Repeat Until Loop Statement
Identifier Expression
Integer Constant Expression
Real Constant Expression
Binary Expression
Unary Expression
Subprogram Expression

Types

Method
Function
Relation

Integer Type
Real Type
Enumerated Type

Boolean Type
Function Type
Method Type
Relation Type
User Defined Class Type

Abstract Declaration Node
Integer Constant Definition
Real Constant Definition
Type Definition

Parameterized Type
Variable Declaration
Formal Parameter Declaration

Fig 4.1 Class Heirarchy used in the Leda Compiler

27

) Each subclass representing an expression or a statement has methods to type check and

generate code . In addition all expression classes have methods to coerce types. All types are also

subclasses of an abstract class. The generic messages to generate code, check types and to coerce

can therefore be sent to a node without knowledge of the expression or statement the node

represents.

Types are checked by sending a message to one of the types with the other type as a

parameter. Every type class has code to check if the type which is passed to it is the same as or

compatible with itself. Most type checking is done by the constructors, so that most errors are

flagged as soon as the line with the error is encountered in the program . As a result the line number

of the error need not be stored in most cases to be output as part of the error message.

Code is generated by sending a message to an expression or statement. The expression or

statement in tum will send code generation messages to the components of the class or/and will

generate code.

Coercion is done by sending a message to an expression with the type to be coerced to as

the parameter.

These messages mean very different things to different classes. The classes thus form an

excellent abstraction mechanism which is valuable for the compiler writer.

) Fig 4.2 shows part of the class which represents the if-then-else statement and pseudocode

J

class ifthenelseStatem : public ASTnode {
private:
ASTnode
ASTnode
ASTnode

*condition;
*thenStatements;
* elseStatements;

public:
ASTnode *genCode();

};

ASTnode *ifthenelseStatem ::genCode()
{

}

condition->genCode();
<generate branch /abe!S>

thenStatements->genCode();
<generate branch /abe!S>

elseStatements->genCode();
<generate branch /abe/S>

II if-then -else statement

II generate code for the if-then-else statement

Fig 4.2 Code Generation for the if-then-else Statement

28

) for generating code for the statement. Code generation involves sending the generic gen Code()

message to the condition . The appropriate labels are then generated, the genCode() message is

sent to the statements which form the then part, labels are generated again and the genCode()

message is sent to the statements which form the else part. Different statements and condition

expressions will interpret the genCode() message in different ways. The code generation routine

for the the if-then-else statement does not need to know the kind of statements and expressions

which are its components.

)

)

class binaryExpNode : public ASTnode { II if-then-else statement
protected:
char

ASTnode
ASTnode
ASTnode
public:

} ;

*operator;
*leftChild;
*rightChild;
*node Type;

II operator of binary expression
II left sub expression
II right sub expression
II type of this binary expression (set after typechecking)

II constructor for the binary expression class does the type checking
binaryExpresssion::binaryExpression(ASTnode *expleft, ASTnode *expRight, char *op)

{
<set the operator, left and right sub expressions to the parameters of this constructor>

leftType = leftChild->getNodeType(); II get subexpression types
rightType = rightChild->getNodeType();
typeCheckResult = leftType->checkType(rightType); II checksubexpression types

<set the type of this binary expression according to precedence ruleS>
}

Fig 4.3 Type Checking a Binary Expression

Fig 4.3 shows the class representation of a binary expression and simplified pseudocode

for typechecking the expression. The typechecking is done by the constructor of the binary

expression class. Typechecking involves sending the generic message getNodeType() to the

left and right sub expressions. The left type is then sent the generic checkType(rightType)

message with the right type as the parameter . checkType() checks if the two types match and

returns a value which indicates the result of the check. The type of the binary expression is then set

according to precedence rules. This type will be returned when this expression receives the

getNodeType() message. As in the case of the conditional statement, the binary expression does

not need to know the kind of sub expressions which are its components.

29

) Chapter 5

)

Conclusions

A simple approach to implementing first class functions has been demonstrated. Type

checking for a strongly typed multiparadigm language has also been demonstrated. The type

checking rules are quite different from those for conventional languages because of the interaction

between paradigms. Efficiency of the target code was not a primary motive for this compiler .

Nevertheless the fact the system is compiled rather than interpreted should suggest fast execution.

The system requires a garbage collector to collect objects whose reference count has fallen to zero

and to collect function environments on the heap. The implementation does not create debugging or

linkage information for a debugger or linker. A programming environment with features like

browsers and debuggers would also be required for serious programming.

30

)

References

[Aho86] Aho, A.V., Sethi, R., Ullman, J.D., Compilers: Principles, Techniques and Tools,
Addison Wesley, 1986

[Bud89a] Budd, T.A., Leda: Low Cost First Class Functions, Technical Report 89-60-12,
Department of Computer Science, Oregon State University, June 1989

[Bud89b] Budd, T.A., Data Structures in Leda, Oregon State University, Technical Report 89-
60-17, Department of Computer Science, Oregon State University, August 1989

[Bud89c] Budd, T.A., Functional Programming in a Object Oriented Language, Technical
Report 89-60-16, Department of Computer Science, Oregon State University,
August 1989

[Bud9la]

[Bud9lb]

[Coo89]

[Hai86]

[Kam90]

[Kor86]

[Kra88]

[Set89]

Budd, T.A., Blending Imperative and Relational Programming, IEEE Software, Vol
8(1) :58-65 , January 1991

Budd, T.A., Sharing and First Class Functions in Object Oriented Languages,
February 1991

Cook, W.R., A Proposal for Making Eiffel Type Safe, ECOOP'89, Cambridge
University Press 1989

Hailpern, B., Multiparadigm Languages and Environments. IEEE Software, Vol
3(1):6-9, January 1986

Kamin, S.N., Programming Languages: An Interpreter-Based Approach, Addison
Wesley, 1990

Korth, H.F., Extending the Scope of Relational Languages, IEEE Software, Vol
3(1):19-28, January 1986

Kranz, D.A., ORBIT : An Optimizing Compiler for Scheme, PhD Thesis, Yale
University, 1988

Sethi, R., Programming Languages: Concepts and Constructs, Addison Wesley,
1989

31

j

