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Abstract 

A multiparadigm language is one which combines features of different language 

paradigms. Leda is a strongly typed, compiled, multiparadigm language with facilities for 

imperative, functional, object oriented and relational programming. This report describes the type 

checker of the Leda compiler and the implementation of first class functions required for functional 

programming. Closure analysis is done to determine if a function can outlive its defining context. 

If the defining context is not on the activation stack at the time of the function invocation, the 

context is allocated on the heap . Type checking rules for Leda are presented. These rules illustrate 

the interaction between the different paradigms. The report also describes the development of the 

Leda compiler using an object oriented paradigm. 
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Chapter 1 

Introduction 

Leda is a strongly typed, compiled, multiparadigm language. This work involves the 

implementation of first class functions for programming in the functional paradigm and the 

implementation of the type checker of the compiler. 

1.1 Language Paradigms and Multiparadigrn Languages 

Programming languages can be classified into different groups on the basis of the 

underlying programming model. Each programming model presents a different way to view 

programming. Each of these models is called a paradigm. 

Languages like C, Pascal and Fortran use the imperative paradigm. Programming in this 

paradigm emphasizes assignments to variables. An assignment changes the state of the machine by 

changing the value of a location in memory. Imperative programming languages therefore provide 

) a convenient programming mcxlel of the underlying machine. Such languages usually have 

structured control flow statements like loops and conditionals. Fig 1.1 shows a fragment of C ccxle 

which computes the factorial of 9. 

void main(void) 
{ 

int x, fact; 

X = 9; 
fact = 1; 
while (x > 1) { 

fact = fact • x; 
X = X -1; 

} 
} 

r find the factorial of 9 */ 

Fig 1.1 The Imperative Paradigm (C) 

Languages using the functional paradigm include Lisp, Scheme and ML. They have 

functions as values and use functional composition to develop higher order functions. A higher 

order function is one whose arguments or results are themselves functions. In pure functional 

J programming the value of an expression depends only on the values of its subexpressions, if any. 
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) There are no side effects in pure functional programming and therefore no assignments. Many of 

the functional languages however do allow assignments but programming in them largely follows 

the pure functional style [Set89]. Storage management is usually taken care of by the system in 

these languages. Fig 1.2 shows an example of a filter function in ML which copies a binary tree 

(btree) of integers, applying the filter function to each of the elements as they are copied. The btree 

is defined in ML as 

datatype btree = leaf I node of int * btree *btree. 

If x is a btree, the result of map(x, sq) is a new tree in which each value is squared. 

fun sq(value) = value*value; 

tun map(leaf, filterFun) = 
leaf 

map(node(value, left, right), filterFun) = 
node(filterFun(value), map(left, filterFun), map(right, filterFun)); 

Fig 1.2 The Functional Paradigm (ML) 

In the object oriented paradigm, the language views data items as representatj.ons of real 

) world objects, which interact with each other by sending and receiving messages. These data 

items, called objects, are instances of classes. The messages which an object can respond to is 

determined by its class. Objects are seen as representing independent communicating agents in the 

object-oriented style of programming. Inheritance and data encapsulation are also major concepts. 

Inheritance allows new classes to be defined as extensions of previously defined ones. Data 

encapsulation is provided by classes. Methods are provided as the means to manipulate data in a 

class. This hides the representation of data from the user. Since the representation of data is often 

unnatural, this data encapsulation enables a programmer to think more in the abstract rather than in 

terms of a concrete data representation [Kam90]. Smalltalk, Object Pascal and C++ are examples 

of object-oriented languages. Fig 1.3 shows a C++ example of a class point and its subclass 

circle. 

) 

The logical paradigm emphasizes relationships between objects. An example of a logical 

language is Prolog. In logic programming relations are used instead of functions. Relations are 

used to represent facts and rules provided by the programmer. The languages use deduction to 

answer queries. A relation treats arguments and results the same. In other words flow of data in a 

relation is bi-directional. Backtracking is used to find solutions and unification is used to allow the 

use of variables as place holders for data to be filled in later [Set89]. Fig 1.4 shows Pro log code to 

represent information about family relationships and queries about the realationships. 

A particular paradigm may be chosen to solve a problem because it results in a more 
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class point { II declaration of class point 
protected: 

int x; II fields x and y are protected and can be accessed only through methods 
int y; 

public: 

} ; 

point(int v1, int v2) { x = v1; y = v2;} 
void print() { cout « x « y;} 

II constructor for class point 
II print is a method 

class circle : public point { II circle is a subclass of point 
protected: 

int radius; 
public: 

circle(int v1, int v2, int v3) : (v1, v2) {radius = v3;} II constructor for class circle 
void print() {cout « x « y « radius;} 

II this print overriddes in the declaration in the class point 
} ; 

point p1 (5, 6); 
circle c1 (0, 1,5); 

p1 .print(); 
c1 .print(); 

II create a point 
II create a circle 

II print the point 
II print the circle 

Fig 1.3 The Object-Oriented Paradigm (C++) 

mother(MOM, KID) :- child(KID, MOM, DAD). 
child(helen, leda, zeus). 
child(hermione, helen, menelaus). 
child(castor, leda, tyndareus). 
child(pollux, leda, zeus). 
child(aeneas,aphrodite,anchises). 

?- mother(leda, helen). 
yes 
?-mother(leda, X). 
X = helen; 
X = castor; 
X = pollux; 
no 

Rules and facts 

Queries 

Fig 1.4 The Relational Paradigm (Prolog) 
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succinct, efficient and easy implementation compared to another paradigm. For large problems it is 

conceivable that different parts of a problem may be best programmed in different paradigms. This 

requires a language which has features that allow different paradigms to be used in solving a 

programming problem. Such a language is called a multiparadigm language [Hai86][Kor86]. 

1.2 Leda 

Leda is a multiparadigm language that attempts to combine features of four common 

language paradigms - imperative, functional, object-oriented and logical. Each paradigm represents 

a particular outlook of the world as described in the previous section. Leda was designed to enable 

programming in any of the above four paradigms or in a combination of paradigms [Bud89c] 

[Bud9la]. 

Leda is a strongly typed, compiled language. Functions can be passed to other functions 

and returned from functions and so are first class values. All values are objects. This allows 

different data types to be treated uniformly. A class hierarchy is provided to enable the user to 

define new types. Relations are provided to support the relational paradigm. These features enable 

programming in different paradigms. The different paradigms are illustrated by examples 

below. 

var // find the factorial of 9 
fact, x : integer; 

begin 
X: = 9; 
fact : = 1: 
while (x > 1) 

begin 
fact := fact • x; 

end; 
end; 

Fig 1.5 Imperative Programming in Leda 

Fig 1.5 shows imperative programming in Leda. while, for and repeat-until loops and 

if-then-else statements are the structured control flow structures available. 

Fig. 1.6 shows an example of object oriented programming in Leda. Each class has a 

shared part which is common to all instances of the class and an unshared part which is unique to 

each instance of a class. point is a class with one shared method, print. circle is a subclass of 

point and it overrides the definition of print. The methods themselves can be assigned to in the 

body of the program (as circle.print is) or declared in a procedural style (as point.print is). 

pl.new() creates a new point and values can be assigned to the unshared portion. 
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type 
point := class 

x : integer; 
y : integer; 

shared 
print : method(); 

end; 

circle := class of point 
radius : integer; 

shared 
print : method(); 

end; 
var 

p1 : point; 
c1 : circle; 

method point.print(); 
begin 

x.print(); 
y.print(); 

end; 

begin 

circle.print := function(c : circle); 
begin 

c. x.print(); 
c.y.print(); 
c. radius.print(); 

end; 
p1 := point.new(); 
p1 .x == 5; 
p1.y == 6; 
p1 .print(); 

c1 := circle.new(); 
c1 .x := O; 
c1 .y := 1; 
c1 .radius := p1 .x; 
c1 .print(); 

end; 

// circle is a subclass of point 

// define a point and a circle 

II conversion of function to method 

II create a new point 

II print the point 

II create a new circle 

II print the circle 

Fig 1.6 Object Oriented Programming in Leda 

5 



) 

Functional programming in Leda is illustrated in Fig 1.7. A binary tree (btree) in Leda can 

be defined by two classes leaf and node which are subclasses of a general class btree. In a ML 

like language, btree would be defined as 

datatype btree = leaf I node of int * btree * btree. 

map is defined on the btree data structure. If xis the binary tree, the result of x.map(sq) is a 

new tree in which each value is squared. map can be passed a function of type 

function(integer)->integer [Set89] [Bud89c] 

function sq ( value : integer)->integer; 
begin 

return value*value; 
end; 

method leaf.map(filterFunc function(integer)->integer)->btree; 
begin 

return self; // return the receiver of the message 
end; 

method node.map(filterFunc : function(integer)->integer)->btree; 
begin 

return node.new(filterFunc(value ), left.map(filterFunc), right.map(filterFunc)); 
end; 

Fig 1. 7 Functional programming in Leda 

relation child(var name, mother, father : names); 
begin 

child(helen, leda, zeus). 
child(hermione, helen, menelaus). 
child(castor, leda, tyndareus). 
child(pollux, leda, zeus). 
child ( aeneas,aph rodite,anch ises). 

end; 

A Relation consisting of only facts 

relation mother(var mom, kid : names); 
var dad : names; 
begin 

mother(mom, kid) :- child(kid, mom, dad). 
end; 

Fig 1.8 Relational programming in Leda 
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Relational programming in Leda is provided by a procedural abstraction called the relation. 

The body of the relation consists of rules similar to Prolog. The rules can be either facts or rules of 

inference as illustrated in Fig 1.8. var parameters allow the flow of information in either direction. 

Implicit backtracking is invoked when more than one answer is possible [Bud91a]. 

One of the difficult parts of multiparadigm language design is to provide a language in 

which the different paradigms easily blend together . This is more than interfacing features of 

different paradigms. There must be some internal consistency so that the different paradigms work 

well together and independently . Leda is a step in this direction of providing a combination of 

paradigms which is more than the sum of its parts. 
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Chapter 2 

First Class Functions 

2.1 The Upward and Downward Funarg Problem 

In block structured languages, the environment in which a function is defined can be the 

main program or any other function. This causes complications when functions are passed as 

arguments or when functions are returned as values of other functions . This is called the funarg 

(functional argument) problem. 

Consider the Leda program shown in Fig 2.1. The environment of function D is function 

C. The variable x that is incremented in function D is defined in function C. This variable must be 

var 
A : function(); 

begin 
A := function() 

var 
B : function(f : function()); 
C : function(); 

begin 
8 := function(f : function()); 

begin 
f(); 

end; 

C := function(); 
var 

x : integer; 
D : function(); 

begin 

end; 
C(); 

end; 

D := function(); 
begin 

X := X +1; 
end; 

B(D); 

Fig 2.1 The Downward Funarg Problem 
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accessible to function D when D is passed as a parameter to B. Since B is invoked from C, the 

activation record for C is on the stack at the time of the invocation of B. The activation record of C 

contains the variable x which must be accessible to function D when it is invoked from within B. 

This can be done by passing along with the functional argument D, a pointer to its environment i.e. 

a pointer to the activation record of C. The downward funarg problem can therefore be solved by 

passing a closure which contains a pointer to the code of the function and a pointer to its 

environment. The environment of a function is guaranteed to be on the stack or in the global area 

when the function is passed as an argument. [Aho86] 

type 
intfun := function(integer)->integer; 

var 
A : function(integer)->intfun; 
C : intfun; 
ans : integer; 

begin 
A := function(a : integer)->intfun; 

begin 
return function (b : integer)->integer; 

begin 

end; 
C := A(5); 
ans := C(7); 

end; 

return a + b; 
end; 

Fi!! 2.2 The Uoward Funari?: Problem 

Solving the problem of allowing functions to be returned from other functions (the upward 

funarg problem) is more difficult. In this case the activation record which is the environment of the 

function being returned may no longer be on the stack. Consider the Leda program in Fig 2.2. 

Function A returns a pointer to a function which accesses a, the parameter of A. This function is 

assigned to C. The storage for the parameter a is destroyed once the invocation of A has been 

completed. The function assigned to C however requires the value of a when it is invoked. Solving 

this problem requires some additional mechanism to keep the activation record of A around even 

after its invocation. 

2.2 Functions and Methods in Leda 

Since Leda supports the functional programming style, functions are first class data types. 

Functions are therefore no different from other data values. Consider the class declaration in Fig 
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2.3. line is a class with one unshared function lineFunction which holds the line equation and 

three shared methods drawTransform, getNewEndPoints and isVisible. The shared data is 

common to all instances of a class while the unshared data is different for each instance of the 

class. lineFunction holds the line equation, drawTransform draws the transformation of a 

line, getNewEndPoints transforms a line and obtains its intersections with a graphics screen and 

is Visible indicates if a line is visible. 

The difference between methods and functions is as follows. The method 

drawTransform has an instance of line as an implicit receiver. The transformation is done on this 

receiver. A method can access the class fields of its receiver. A function on the other hand has no 

line := class 
lineFunction : function(real, real)->boolean; 

shared 
drawTransform : method(transform); 
getNewEndPoints : method(transform, var point, var point); 
isVisible : function()->boolean; 

end; 

Fig 2.3 Declaration of class line 

var 
aline : line; 
t : transformation; 

method line.drawTransform ( t : transform); 
{ transforms a line and draws the part which falls within the screen } 

var start, end : point; 
begin II get screen Intersections of transformed line 

self.getNewEndPoints(t, start, end); 
MoveTo(start); II draw transformed line 
DrawTo(end); 

end; 

function line.isVisible() -> boolean; 
{ indicates if a line is visible} 

begin 
return true; 

end; 

begin 
aline := line.new(); 

end; 

II create an instance of Line 

Fig 2.4 Definition of Methods and Functions 

10 



) 

var 
aline : line; 
t : transformation; 

method line.drawTransform ( t : transform); 
{ transforms a line and draws the part which falls within the screen } 

var start, end : point; 
begin II get screen Intersections of transformed line 

self.getNewEndPoints(t, start, end); 
MoveTo(start); II draw transformed line 
DrawTo(end); 

end; 

begin 

line.isVisible := function () -> boolean; 
begin 

return true; 
end; 

aline := line.new(); II create an instance of Line 
aline.lineFunction := function(xCord , yCord : real)->boolean; 

end; 

{ checks if point (xCord, yCord) is on the line } 
begin 

end; 

if (4*xCord + 3*y = 8) then 
return true; 

else return false; 

Fig 2.5 Alternate Initialization of Methods and Functions 

var 
aline : line; 
t : transformation; 

begin 
II assign a function to a method. Allowed since the first 
II parameter of the function matches the receiver of the 
II method drawTransform 

line.drawTransform :=function(thisline : line; t : transform); 

end; 

{ transforms a line and draws the part which falls within the screen } 
var start, end : point; 

begin 
thisline.getNewEndPoints(t, start, end); 
MoveTo(start); 
DrawTo(end); 

end; 

Fig 2.6 Assigning a function to a method 

11 



' ) implicit receiver. 

Fig 2.4 shows one form of definition of shared functions and methods. This is merely 

syntactic sugar for assigning a value to the field. In the case of shared class fields, the function or 

method name must be prefixed by the name of the class. For example, since drawTransform is a · 

field of the class line, it is qualified by the class name. Functions or methods which are fields of a 

class must be declared in the class declaration before being defined (as in Fig 2.3). Functions 

which are not class fields can also be defined using this syntax and need not be declared earlier. 

Functions and methods defined using this form can be reassigned other values later in the program 

using assignment. 

Fig 2.5 shows alternate syntax for defining methods and functions by assignment. Shared 

data fields must be qualified by the class name and unshared data fields must be qualified by the 

name of the instance of the class when they are being assigned to. Thus line.is Visible is legal 

but line.lineFunction is not as targets for assignment. line.lineFunction can however be 

used as a value of an expression. Functions (but not methods) can also be created as nameless 

values. These values can be passed as arguments, returned from other functions as values and 

assigned to variables. 

Functions can be converted to methods . This is illustrated in Fig 2.6. The first parameter of 

) the function must correspond to the receiver of the method Methods can also be converted to 

functions . The receiver of the method must correspond to the first parameter of the function 

[Bud9lb] . 

Functions or methods can be invoked in the postfix style object oriented fashion or in a 

prefix style functional fashion. Thus aLine.drawTransform(t) can also be invoked as 

drawTransform(aLine, t). 

2.3 Representation of Functions and Methods 

Functions and methods in Leda are represented as objects. Each object is an instance of a 

funtion class. The layout in memory of a method or function is shown in Fig 2.7. The reference 

count indicates the number of variables that refer to the object. This is required since Leda uses 

pointer semantics. The object can be garbage collected when the reference count falls to zero. 

Garbage collection is not done in the current implementation. The shared field points to a shared 

table of fields which all instances of a class share. Functions and methods do not have any shared 

table. The next field points to the code of the function and the last field points to the context in 

which the function was defined. This can be a pointer to an activation record on the stack or a 

J context allocated on the heap, as will be discussed in the next section. 
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Reference Count 

Shared Table Pointer 

Function Code Pointer 

Function Environment Pointer 

Fig 2. 7 Representation of Methods and Functions in Leda 

class programASTnode : public scope { II holds mainprogram, functions & methods 
protected: 
DTnode 
DTnode 
DTnode 
DTnode 
DTnode 
ASTnode 

ASTnode 
esclnd 
ASTnode 

public: 

}; 

*args; 
*constantdefs; 
*typedefs; 
*variabledefs; 
*reciever; 
*subprogram Type; 

*statements; 
closurelnd; 
*parentlevel; 

II formal parameters 
II constant definitions 
II type definitions 
II local variable declarations 
II receiver in the case of a method 
II a type constructor including the receiver, 

II parameter and return types 
II list of statements that make up the subprogram 
II indicates if there is an escaping closure 
II pointer to the enclosing subprogram 

Fig 2.8 C++ Class Representation of a Subprogram in the Leda Compiler 

class funcType : public classType { 
private: 
typeArgsNode 

ASTnode 
public: 

} ; 

*params; 
* return Type; 

class methType : public classType { 
private : 
ASTnode 

typeArgsNode 
ASTnode 

public: 

}; 

*receiverType; 
*para ms; 
*returnType; 

II type of a function 

II types of parameters (including passing mode) 
II return Type. A function need not return a value. 

II type of receiver 
II types of parameters (including passing mode) 
II return Type. A method need not return a value. 

Fig 2.9 C++ Class Representation of Function and Method Types in the Leda Compiler 
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. ) The compiler represents functions and methods as C++ classes. The class holds the formal 

parameters, local variable declarations, local constant and type definitions, statements in the 

subprogram, type of the receiver (in the case of a method), the subprogram type and a closure 

indicator to indicate if there is an escaping closure (discussed in the next section). Fig 2.8 shows 

the class which represents a function or method. 

The function or method type is also represented in the compiler as a C ++ class. These 

classes are shown in Fig 2.9. Type checking involves checking each parameter and the the return 

type. The reciever type is also type checked in the case of a method. 

2.4 Implementation of First Class Functions 

Every function in Leda is a closure, that is, an object with a pointer to the code and a 

pointer to the function environment. Before a function is invoked, its environment pointer is 

pushed on the stack. This forms the static link. Solving the downward funarg problem is trivial 

since every function carries with it its environment pointer. Traversing the static link gains access 

to the environment. 

Solving the upward funarg problem is more difficult. Closure analysis is first done to 

determine whether any nested function can outlive the context in which it is defined. This is called 

an escaping closure. Closure analysis is done as follows. Every assignment statement is analysed 

to see if a function is assigned to a variable outside the current block. Every return statement is 

analysed to determine if a function is being returned. In either case the current function is flagged 

as having an escaping closure. If a nested function has an escaping closure, the current function is 

also flagged as having an escaping closure. This is because a block forms part of the environment 

of any nested block. Closure analysis is done during the first pass [Kra88]. 

If a function is flagged as having an escaping closure, space is allocated on the heap for its 

parameters, local variables, return address, static link and dynamic link. The parameters which 

were pushed on the stack by the calling subprogram are then copied to the heap. No space is 

allocated on the stack for the local variables since the space on the heap is used. The environment 

on the heap has the same layout as an activation record as shown in Fig 2.10. The return address 

and dynamic link fields of the environment on the heap are however unused.This allows uniform 

treatment of activation records and heap environments when the off sets of the parameters and local 

variables are calculated. In the current implementation which generates 68000 code, register a4 

holds the pointer to the current function environment. This could be either a pointer to the 

activation record (if there is no escaping closure) or it could be a pointer to environment on the 

heap (if there is an escaping closure) . 

14 



parameters 

static link 

return address 

dynamic link 

local 

variables 

Fig 2.10 Layout of environment on heap and stack 

Consider the Leda program in Fig 2.11 which defines a curry. A curry of a binary function 

permits the arguments to the function to be bound one at a time. In this example x is a curry of the 

binary function plus. When x is invoked with a single argument 5, it returns a function of one 

argument with f bound to plus and a bound to 5. When this function is invoked with argument 7, 

it returns the sum of 5 and 7. 

Closure analysis of the curry example results in curry and the function it returns to be 

flagged as having escaping closures since both of them return functions. When curry is invoked, 

its context (environment) is allocated on the heap. The parameter f which was pushed on the stack, 

is copied to the heap. The function object returned by curry and assigned to xis shown in Fig 

2.12. On completion of the invocation, the dynamic link and the return address on the stack are 

used to return to the caller. When x is invoked , it creates a second context on the heap. This 

context holds parameter a and its static link points to the earlier context . The function object 

returned by x and assigned toy is shown in Fig 2.13. Fig 2.14 shows the program state when y 

is invoked. The context for y is on the stack since it has no escaping closure . The static link points 

to the parent context of y which is on the heap. This context holds the parameter b and inturn 

points to its calling context which is also on the heap. This context holds the function f which is 

bound to plus [Bud89a]. When f(a,b) is invoked from within y, the list of contexts is searched 

to find the values that f, a and b are bound to. Since f is bound to plus, a to 5 and b to 7, 12 is 

) assigned to i the main program. 
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type 

var 

begin 

) 

end; 

) 

binaryFunction := function(integer, integer)->integer; 
unaryFunction := function(integer)->intFunction; 
intFunction := function(integer)->integer; 

x : unaryFunction; 
y : intFunction; 
plus : binaryFunction; 

curry : function(binaryFunction)->unaryFunction; 
i : integer; 

plus := function(a, b : integer)->integer; 
begin 

return a+b; 
end; 

curry := function(f : binaryFunction) -> unaryFunction; 
begin 

return function(a : integer)->intFunction; 
begin 

return function (b:integer)->integer; 
begin 

end; 
end; 

x := curry(plus); 
y := x(5); 
i := y(7); 
i.print(); 

return f(a,b); 
end; 

Fig 2.11 Curry Implementation 

f 

codePtr static 

environ ptr ... unused 

~ unused 

Fig 2.12 Function object assigned to x 
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-- plus code ptr 

plus environ pt, 



a t - plus code ptr -
coae ptr static -~ static plus environ pt 

environ ptr unused unused 

~~ unused unused 

Fig 2.13 Function object assigned to y 

b a f - plus code ptr -
static ... static -~ static plus environ pt1 

~ ret addrs unused unused 

dynamic unused unused 

Stack Heap 

Fig 2.14 When y is invoked 
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Type Checking 

3.1 Data Types in Leda 

Data Types in Leda are divided into 4 categories - standard system types, enumerated 

types, subprogram types and class types. All types can have aliases. 

Standard system types are integer, real and boolean. 

Enumerated types can be defined by explicitly listing the values that the type defined. 

The syntax is as follows . 

type 

var 
spectrum:= (violet, indigo, blue, green, yellow, orange, red); 

color : spectrum; 

Subprogram types can be functions, methods or relations as noted in section 1.2. 

Subprograms are first class values and hence variables can be declared of this type, passed as 

arguments and returned from subprograms as values. Parameters can be passed by name or 

reference (using var). In type declarations only the types of the arguments, the passing mode and 

the return type is specified. 

type 
binaryFun := function(integer, var integer)->integer; 

Class types are the major data structuring mechanism in Leda. A class encapsulates 

representation dependent code. A class can have many instances. All instances of a class can share 

a common data area. The syntax for a class definition is shown in Fig 3.1. 

Data fields which follow the shared key word, are shared by all instances of the class . 

The variable self can be used to refer to the object itself. The new message can be sent to a class 

to create an instance of the class. Subclasses can be created by using the of keyword as shown in 

Fig 3.1. 

A Subclass inherits the data fields of its superclass . The subclass can override any of the 

data fields . In the above example circle overrides the print method in point. 

18 
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type 

var 

point := class 
x : integer; 
y : integer; 

shared 
print : method(); 

end; 

circle := class of point 
radius : integer; 

shared 
print : method(); 

end; 

p1 : point; 
c1 : circle; 

begin 

p1 := point.new(); 

II circle is a subclass of point 

II define a point and a circle 

II create a new point 

Fig 3.1 Class Definition Syntax 

Parameterized Classes are supported in Leda. The parameters can be instantiated with 

type values to create a new class. This is illustrated below. 

type 

var 

list := class(T) 
item: T; 
next : list(n; 

end; 

A list of integer can be declared as follows:

integerList: list(integer); 

All variables are undefined before the first assignment This can be checked using a system 

defined boolean function defined(x) [Bud89b]. 
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3.2 Type Checking Rules 

The following type checking rules are used in Leda. 

Integers, Reals and Booleans 

Integers match integers, reals match reals and booleans match booleans. No other 

combinations involving these types match. Integers are automatically coerced to reals on 

assignments, expressions and function/method calls and returns. There are no other automatic 

coercions. 

Enumerated Types 

Instances of the same enumerated type match. 

Functions and Methods 

Functions match functions if the types, the passing modes and number of the parameters 

match . The types of the corresponding parameters must match exactly or must be aliases. 

Methods match methods if the types, the passing modes and number of the parameters 

) match and if the type of the receivers match. The types must match exactly or be aliases. 

Functions match methods if the first parameter of the function matches the implicit receiver 

of the method and if all the remaining parameters of the function match the parameters of the 

method. The types must match exactly or be aliases. The passing mode of the first parameter of the 

function must be call by value for it to match the method receiver. 

All methods/functions in Leda are virtual in the C++ sense, that is, the method/function 

invoked when a message is sent to a variable will depend on the type of object held by the variable 

at that point (dynamic type) and not on the static type of the variable. 

Because of pointer semantics, even if an object is passed by value, its individual fields are 

passed by reference. This means that changing the field of an object passed by value will change 

the corresponding field of the actual parameter. Of course, since the object itself is passed by 

value, assigning to the formal parameter will not change the actual parameter. 

Classes 

Class A matches class B if either of the following is true. 

1. The class numbers of class A and class B are the same. 

2. Class A is a subclass of class B. Note that in this case class B does not match class A. 

Consider the functions in Fig 3.2 which use the classes in Fig 3.1. Circle is a subclass of 

point. If a circle is passed as the parameter to printXCoord instead of a point, no problems are 
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caused since a circle also has a field x which can be sent the print message. Subclasses can 

therefore be assigned to variables, passed as parameters and returned from functions or methods. 

However if a point is passed to the function printRadius which expects a circle as the 

parameter, the function will attempt to print the radius field of the parameter and fail. This is 

because a point does not have a radius field. 

Vct.l 

p1, p2, p3 : point; 
c1, c2, c3 : circle; 

function printXCord(p : point); 
begin 

p.x .print(); 
end; 

function printRadius(c : circle); 
begin 

c.radius .print(); 
end; 

function addPoints(pntA, pntB : point)->point; 
begin 

end; 

function addCircles(crclA, crclB circle)->circle; 
begin 

end; 

p1 := addPoints(p2, p3); 
p1 .x.print(); 
c1 := addCricles(c2,c3); 
c1 .radius.print(); 

Fig 3.2 Subclasses can be passed, returned or assigned instead of their superclasses 

Binary Expressions 

For binary expressions involving the built in types, the types of the left and right 

subexpressions must be identical after allowing for coercion of integers to reals. 

User defined types can use the arithmetic operators+,-,* and/. These operators 

correspond to the methods plus, minus, times and slash in the user defined class. In this case, the 

corresponding method must exist, the type of the left subexpresssion must match the type of the 

receiver of the method and the type of the right subexpression must match the type of the first 

parameter of the method. 
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The type of the binary expression is the return type of the method corresponding to the 

binary operator. 

Unary Expressions 

The type of the unary expression is the type of the subexpression. 

Assignments 

The type of the rvalue must match the type of the lvalue. Type aliases match. Assignment 

of a class to its superclass is allowed. Functions and methods can be assigned to each other if they 

match. A warning is generated if the lvalue and the rvalue have types which are aliases. 

Assignment to a shared field of the class requires that the field be prefixed by the name of 

the class. Assignment to an unshared field of a class requires that the field be prefixed by the name 

of an instance of the class. 

Function/Method Invocation 

If a receiver exists, the type of the receiver must match the type of the class in which the 

function/method is defined. Functions and methods can be invoked in a postfix style object 

) oriented fashion or in a prefix style functional fashion as discussed in section 2.2. Thus 

aLine.drawTransform(t) can also be invoked as drawTransform(aLine, t). If the latter 

style is used, the first parameter corresponds to the receiver of the class. When 

drawTransform(aLine, t) is seen by the compiler, a function called drawTransform which is 

not a class field and with the correct number and type of parameters is searched for. If it is not 

found, a class field called drawTransform is searched for in the class of the first parameter. 

The types of the actual parameters must match the types of the formal parameters. The 

types of the corresponding parameters can be aliases and subclasses of the formal parameter can be 

passed. Functions and methods can be passed to each other if they match. 

The number of actual parameters must match the number of formal parameters except when 

the alternate invocation style is used. In this case the first actual parameter corresponds to the 

receiver and the number of remaining actual parameters must match the number of formal 

parameters. 

Return Expressions 

The type of a return expression must match the type of the return type of the 

function/method in which it appears. Type aliases match. A subclass of the return type can be 

) returned. Functions and methods match if the criteria discussed earlier holds. 

Consider again the functions in Fig 3.2 which use the classes in Fig 3.1. If a circle is 
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· ") returned from addPoints instead of a point, no problems are caused since a circle also has a field x 

which can be sent the print message after the invocation. However if a point is returned from 

addCircles instead of a circle, printing the radius field of the returned value will fail. This is 

because a point does not have a radius field . Subclasses of the return type can therefore be 

returned but not superclasses of the return type. 

Class Fields 

The identifier after a period must be a field of the object or class which precedes the period . 

The exception to this rule is the new message to a class which is used to create an instance of a 

class . 

A shared field can be prefixed by the name of the instance if the value of the field is only 

going to be used in an expression. However it cannot be assigned to. Assigning to a shared field 

requires that the field be prefixed by the class name. Similarly assigning to an unshared field 

requires that the field name be prefixed by the name of the instance . 

Use of an unshared field without a prefixed instance name is allowed within a method 

declaration. In this case, the instance to which the field belongs is implicitly the receiver of the 

method. For example in Fig 3.3, the field x of class point is not prefixed by a name. Since xis 

) neither a local variable nor a parameter, it is searched for among the class fields of point and its 

superclasses. If it is not found there it is searched for in the enclosing block . 

J 

Classes can override shared fields defined in the superclass. Fields which are not shared 

cannot be overridden. The subclass cannot move a overridden field from the shared to the unshared 

portion or vice-versa. With the exception of argument lists in overridden fields in methods and 

functions, the types of the overridden fields must be identical to the types in the superclass. Issues 

of covariance and contravariance allow the argument of an overridden method to be enlarged to a 

more general type [Coo89][Bud91b] . Similarly the return type of an overridden method can be 

declared as less generalized than in the parent method. This is illustrated in Fig 3.4. Assume that 

point.plus := method(p : point)->point; 
var 

q: point; 
begin 

q := point.new(); 
q.x := x + p.x; // self is optional 
q.y := self.y + p.y; 

return q; 
end; 

Fig 3.3 Class fields which are not prefixed 
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' ) the method getArea in class circle is defined to take a parameter of type circle rather than shape. 

Suppose sl, a variable declared of type shape, is assigned a circle. It is legal for sl to accept a 

square as the parameter to the method getArea. This leads to a type incorrect situation since the 

method getArea in class circle will be passed a square instead of a circle. This does not arise if the 

parameters in the overridden method are generalized. Similarly a return type can be declared in an 

overridden method as less generalized but not as more generalized. 

type 
shape := class 

xCord, yCord : integer; 
shared 

getArea : method(s : shape); 
end; 

circle := class of shape 
radius : integer; 

shared 
getArea : method(s : shape); 

end; 
square := class of shape 

sidelength : integer; 
end; 

Fig 3.4 Enlarging parameter types and restricting return types in overridden methods 

3.3 Type Checking Implementation 

Leda allows a programmer to construct types from the basic types. The basic types are real, 

integer and boolean. Examples of the constructed types are class, function, method and relation. 

Representation of Types 

Type checking for Leda is done in an object oriented fashion. All types are subclasses of 

an abstract type class. Real, integer and boolean are internally represented as classes. As a result 

they can be treated very similar to user defined classes for the purpose of type checking. 

Constructed types are also subclasses of this abstract class. Each type has a unique class number 

which is used to compare types. 

In the implementation, a special C++ class called classID (class identifier) is used to hold 

the information required to type check. This information consists of the name of the type, the type 

itself and a list of class parameters to store information about instantiated parameterized types (if 

they exist). Each of the parameters holds the same information. 

The structure of the C++ class classID is shown in Fig 3.3. classIDiist is a list of classID. 
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class classlD { 
protected: 
char 
classType 
classlDlist 

public: 

II unique identifier of class used for typechecking 

*className; 
*classStructure; 
*classArgs; 

// name of the class 
II type 
// types of class parameters 

Fig 3.3 Class used to Type Check 

Type checking two types is done by first checking if the ,types held by the classStructure 

fields match. If they do, the classNames are checked for equality. If they do not match the types 

held in classStructure are aliases. The class parameters held in classArgs are then checked for 

matches. If they match, the two types match. 

Constructed Types 

Constructed types are described below along with the type information they hold. 

User Defined Class Types 

This type holds the types of the data fields of the user defined class, the name of the 

superclass and the types of the parameters in the case of a parameterired class. The data fields are 

divided into shared variables and unshared variables. 

Typechecking classes is done by first comparing the unique class numbers. If the class 

numbers are different, the class number of the superclass is fetched and compared. This continues 

until a match is found or until the top of the class heirarchy is reached without a match. 

Parameterized Class Types 

Typechecking two parameterized class types is done by first type checking the template of 

the class using the unique class numbers. Once the template is found to match, each of the 

parameters is type checked. 

Functions 

The function type holds type information about the parameters and the return type. 

Methods 

The method type holds information about the parameters, return type and the type of the 

receiver. 
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Constructors and Type Checking 

Each statement and expression in the intermediate representation of the compiler is an 

instance of a C++ class. Every expression has a type which can be obtained by sending a message 

to the class representing the expression. The type of the expression is set by the constructor of the 

class representing the expression according to the type checking rules. 

Assignment statements, subprogram invocations and return statements are also represented 

by instances of C++ classes, the constructors of which do the appropriate type checking. 
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Chapter 4 

Writing a compiler in an object oriented style 

The implementation of Leda was done in C++ using an object oriented style of 

programming. The intermediate representation is an abstract syntax tree made up of nodes . Each 

node is a subclass of an abstract node. Every expression and statement is represented by such a 

subclass. A part of the class heirarchy is shown in Fig 4.1. 

Abstract Node 
Assignment Statement 
Subprogram Invocation Statement 
Conditional Statement 
While Loop Statement 
For Loop Statement 
Repeat Until Loop Statement 
Identifier Expression 
Integer Constant Expression 
Real Constant Expression 
Binary Expression 
Unary Expression 
Subprogram Expression 

Types 

Method 
Function 
Relation 

Integer Type 
Real Type 
Enumerated Type 

Boolean Type 
Function Type 
Method Type 
Relation Type 
User Defined Class Type 

Abstract Declaration Node 
Integer Constant Definition 
Real Constant Definition 
Type Definition 

Parameterized Type 
Variable Declaration 
Formal Parameter Declaration 

Fig 4.1 Class Heirarchy used in the Leda Compiler 
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) Each subclass representing an expression or a statement has methods to type check and 

generate code . In addition all expression classes have methods to coerce types. All types are also 

subclasses of an abstract class. The generic messages to generate code, check types and to coerce 

can therefore be sent to a node without knowledge of the expression or statement the node 

represents. 

Types are checked by sending a message to one of the types with the other type as a 

parameter. Every type class has code to check if the type which is passed to it is the same as or 

compatible with itself. Most type checking is done by the constructors, so that most errors are 

flagged as soon as the line with the error is encountered in the program . As a result the line number 

of the error need not be stored in most cases to be output as part of the error message. 

Code is generated by sending a message to an expression or statement. The expression or 

statement in tum will send code generation messages to the components of the class or/and will 

generate code. 

Coercion is done by sending a message to an expression with the type to be coerced to as 

the parameter. 

These messages mean very different things to different classes. The classes thus form an 

excellent abstraction mechanism which is valuable for the compiler writer. 

) Fig 4.2 shows part of the class which represents the if-then-else statement and pseudocode 

J 

class ifthenelseStatem : public ASTnode { 
private: 
ASTnode 
ASTnode 
ASTnode 

*condition; 
*thenStatements; 
* elseStatements; 

public: 
ASTnode *genCode(); 

}; 

ASTnode *ifthenelseStatem ::genCode() 
{ 

} 

condition->genCode(); 
<generate branch /abe!S> 

thenStatements->genCode(); 
<generate branch /abe!S> 

elseStatements->genCode(); 
<generate branch /abe/S> 

II if-then -else statement 

II generate code for the if-then-else statement 

Fig 4.2 Code Generation for the if-then-else Statement 
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) for generating code for the statement. Code generation involves sending the generic gen Code() 

message to the condition . The appropriate labels are then generated, the genCode() message is 

sent to the statements which form the then part, labels are generated again and the genCode() 

message is sent to the statements which form the else part. Different statements and condition 

expressions will interpret the genCode() message in different ways. The code generation routine 

for the the if-then-else statement does not need to know the kind of statements and expressions 

which are its components. 

) 

) 

class binaryExpNode : public ASTnode { II if-then-else statement 
protected: 
char 

ASTnode 
ASTnode 
ASTnode 
public: 

} ; 

*operator; 
*leftChild; 
*rightChild; 
*node Type; 

II operator of binary expression 
II left sub expression 
II right sub expression 
II type of this binary expression (set after typechecking) 

II constructor for the binary expression class does the type checking 
binaryExpresssion::binaryExpression(ASTnode *expleft, ASTnode *expRight, char *op) 

{ 
<set the operator, left and right sub expressions to the parameters of this constructor> 

leftType = leftChild->getNodeType(); II get subexpression types 
rightType = rightChild->getNodeType(); 
typeCheckResult = leftType->checkType(rightType); II checksubexpression types 

<set the type of this binary expression according to precedence ruleS> 
} 

Fig 4.3 Type Checking a Binary Expression 

Fig 4.3 shows the class representation of a binary expression and simplified pseudocode 

for typechecking the expression. The typechecking is done by the constructor of the binary 

expression class. Typechecking involves sending the generic message getNodeType() to the 

left and right sub expressions. The left type is then sent the generic checkType(rightType) 

message with the right type as the parameter . checkType() checks if the two types match and 

returns a value which indicates the result of the check. The type of the binary expression is then set 

according to precedence rules. This type will be returned when this expression receives the 

getNodeType() message. As in the case of the conditional statement, the binary expression does 

not need to know the kind of sub expressions which are its components. 

29 



) Chapter 5 

) 

Conclusions 

A simple approach to implementing first class functions has been demonstrated. Type 

checking for a strongly typed multiparadigm language has also been demonstrated. The type 

checking rules are quite different from those for conventional languages because of the interaction 

between paradigms. Efficiency of the target code was not a primary motive for this compiler . 

Nevertheless the fact the system is compiled rather than interpreted should suggest fast execution. 

The system requires a garbage collector to collect objects whose reference count has fallen to zero 

and to collect function environments on the heap. The implementation does not create debugging or 

linkage information for a debugger or linker. A programming environment with features like 

browsers and debuggers would also be required for serious programming. 
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