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ABSTRACT 

This study describes the software metrics analysis of 10 releases of an embedded real­

time telephone switching system developed by a German telecommunications firm. 

The micro-controlled application was written in a C-like macro assembly language. 

We developed a metrics program that computes the standard complexity metrics plus a 

number of information flow metrics. 

The releases of the real-time software satisfies published laws of software evolution, 

e.g. continuing change, increasing entropy, and total change is not uniform over the 

changed modules. The data also supports Harrison and Cook's program maintenance 

decision model [7]. We propose the change standard deviation as a threshold for their 

model. 

A multivariate analysis of the metrics computed with our metric analyzer program 

identified four underlying complexity domains: size, information flow into functions, 

information flow out of functions and control flow. We also found that the information 

flow metrics characterize real-time complexity better than the standard software 

complexity metrics, e.g. Halstead's Software Science, LOC, McCabe's Cyclomatic 

Complexity. We also investigated the relations between programming hours for the 

various releases and the program changes and changes in metric values. 
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1. INTRODUCTION 

Real-time software is generally designed to control a process interactively, as the 

process unfolds in time. Examples are control of airplanes (avionics), control of 

transportation systems (e.g. BART), and control in automobiles and appliances. The 

unique feature of real-time software is the time constraint - all subtasks must meet 

individual timing requirements. 

Real-time software is considered to be different from other software. The timing 

constraint may mean a different design or testing methodology. In this paper we 

investigate the evolution and complexity of real-time software. The basic questions 

we address are: 

1. Can we characterize the evolution of real-time programs? 

2. What are the underlying complexity domains in real-time programs? 

2. What types of software metrics identify the complex parts of real-time programs? 

3. What is the relation between programming effort and program changes? 

In an attempt to answer these questions we analyzed 10 releases of a real-time 

telephone switching system program developed by a German telecommunications 

finn. We developed a software metrics tool that computed a variety of measures. 

From the measures we were able to study the changes between successive releases for 

all 10 releases. We also investigated the relation between the programming hours for 

the 10 versions and software metrics. 

In chapter 2 we describe the real-time program and give an overview of the system 

design and development process. We will show that the software can be characterized 

as a reactive and embedded hard real-time system. 

In Chapter 3 we give an introduction to software complexity and software complexity 

metrics. We describe some of the most common metrics out of the four traditional 

classes of software complexity metrics: size metrics, data structure metrics, control 

flow metrics and information flow metrics. 

I 
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Chapter 4 describes the metric analyzer program we developed and the metrics it 

computes. Note that our tool computes the traditional software complexity metrics 

plus a number of information flow metrics. 

Chapter 5 investigates the evolution of the program. Characterizing the evolution of 

the program both in terms of the number of functions changed and the amount they 

are changed has important implications for both software maintenance and 

development. For example, Harrison and Cook [7] proposed a maintenance change 

model to determine whether a given software module can be effectively modified or 

whether it should be completely redesigned and rewritten. Complete redesign and 

rewrite is expensive, but it is even more expensive if the module structure has 

seriously deteriorated with severe ripple effects. From software evolution data they 

found that a few modules account for most of the total amount of maintenance 

changes. Since a module's complexity increases and its structure deteriorates with 

changes, it is important to detect modules that will undergo a large number of 

changes. The early identification of a these change prone modules will allow a 

complete redesign and rewrite of the module and thereby greatly reduce the cost of 

later changes to the module. They suggested early identification of the change prone 

modules through changes in software metrics across release cycles and proposed 

setting a threshold. Once the total change to a module exceeds the threshold the 

module is classified as change prone and is redesigned and rewritten the next time it 

undergoes maintenance. Our results confirm this maintenance change model and 

suggests using the standard deviation of the Halstead's Volume changes as a 

threshold. 

In chapter 6 we studied the internal structure of the set of metrics computed with the 

analyzer tool. In order to understand the relation among metrics, we applied a 

statistical technique known as factor analysis. Munson and Khoshgoftaar [ 16, 17, 18] 

found that most metrics are measuring the same elements of a rather small set of 

orthogonal complexity domains. There are relatively few distinct sources of variation 

among metrics. Our results show that the 18 metrics map onto four underlying 

complexity domains: size, information flow into functions, information flow out of 
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functions and control flow. We found that the infonnation flow metrics contribute 

considerable variation to the factor model and characterize real-time complexity 

better than the standard complexity metrics. The real-time functions have a much 

higher average in and out flow of infonnation than non-real-time functions. 

In the chapter 7 we relate programming hours for the various releases to program 

changes and the software metrics. Our conclusions and future work are discussed in 

chapter 8. 

3 
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2. REAL-TIME SYSTEMS 

In this chapter we will give an overview of the system design and the development 

process of the software used in this study. We will show that the application can be 

classified as a reactive and embedded hard real-time system. 

2.1 REACTIVE EMBEDDED REAL-TIME SYSTEMS 

A real-time system is a system whose correctness depends on timeliness as well as 

logical correctness . Real-time systems must satisfy explicit bounded response time 

constraints or it is assumed that it will fail. A failure is defined as the inability of the 

system to perform according to system specification. In the case of the Space Shuttle 

or a nuclear power plant it is painfully obvious when a failure has occurred. Failure to 

respond quickly to a nuclear reactor over-temperature problem, could result in a melt­

down. For other systems, such as a telephone switching system, the notion of a failure 

is less clear. A telephone switching system for example must be able to handle a peak 

rate of incoming internal and external calls, when all subscribers try to make a call at 

once. 

Real-time systems are often reactive or embedded systems. Reactive systems are 

those which have some ongoing interaction with their environment. One system 

constantly reacts to buttons pressed asynchronously by an operator. Embedded 

systems are those used to control specialized hardware and lack an operating system 

and associated devices for general user interface. For example the software used to 

control the Space Shuttle is reactive and highly embedded. 

Further , literature distinguishes between soft and hard real-time systems [10]. Soft 

real-time systems are systems where performance is degraded by failure to meet 

response time constraints. For example an airline reservation system may degrade 

under heavy load, but it will eventually process all passenger requests accurately. 

Systems where failure to meet response time constraints leads to catastrophic results 
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are called hard real-time systems. The telephone switching system described in this 

section is a reactive embedded hard real-time system. 
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2.2 DEVELOPMENT OVERVIEW 

In this study we analyzed ten versions of an embedded micro-controlled telephone 

switching system program developed by a German telecommunications firm over a 

period of two years. The programming team consisted of 3 experienced programmers. 

The detailed hardware design was completed before software development started. 

Thus, the software design was constrained by the given hardware resources. 

A fully functional a-version of the size 10,577 lines of code and 223 functions in 13 

modules was released in December 1990. Up to this date 1,771 programming hours 

were spent on system design, coding, testing and system integration. Most of the 

change activity for the 9 later versions can be characterized as perfective maintenance. 

The last version which consists of 13,621 line of code and 359 functions was released 

in June 1992. Over the nine releases 1,456 hours were spent on maintenance. Figure 

2.1 shows the release dates and cumulative hours for each release starting with the 

first release. 
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Figure 2.1. Development Schedule 
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2.3 SYSTEM OVERVIEW 

The telephone switching system supports up to four telephone sets. Each telephone 

set may be used independently of the other sets. A subscriber can either communicate 

with one of the other telephone units or connect to an external dial-up network. 

The software controls about 50 input and output lines connected to a single-chip 

micro controller. Some of the it;lputs are checked frequently and deadlines to evaluate 

incoming events must be met within milliseconds. For example the frequency of 

incoming calls has to lie in a well defined range of frequencies in order to be identified 

as a call. Further the call must have a specific signal pattern to be valid. This is 

necessary to distinguish between valid calls and noise on telephone lines. 

Similar time constraints are defined for all external in- and outgoing signals to ensure 

fail safe operation of the system. Every telephone switching system has to pass a fmal 

admission test, similar to the FCC regulations, where all time requirements are 

checked carefully. If response time constraints are not met within the specified range 

the system will fail. Accordingly the application can be classified as a hard real-time 

system. Since the micro controller lacks an operating system as well as system 

software for interface handling the software is highly embedded. Further, several 

hardware resources are mutually exclusive and non-preemptive. For instance the 

single tone dial unit is shared between the four telephone units. Hence concurrency 

control has to be provided among processes. 

The underlying software implementation is based on finite automata with a total of 39 

finite automata and 8 interrupt-handler. The main application program for all four 

telephone sets checks the current state of execution for each process (telephone unit) 

every ten milliseconds. Each process has its own set of global variables to store state, 

incoming external events, and additional information about the process. The real-time 

control part checks incoming and outgoing external signals every millisecond. All 

input and output drivers of the micro controlled hardware were completed prior to 

the first release in December 1990. Few changes to the interface modules were made 

during program maintenance. 
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Events to and from the real-time control to the main application are also passed via 

global memory. Because of limited storage space (typically less than 512 bytes of 

RAM in today's single-chip micro controller chips) parameters are not passed using 

the processor's stack, but instead information is exchanged through global memory or 

processor registers. This is one reason why information flow and information flow 

density turn out to be important complexity metrics for this real-time system. 

2.4 THE STRUCTURED MACRO ASSEMBLY LANGUAGE 

The software was written in a structured relocatable macro assembly language. The 

basic instruction set of the assembler language contains the following C-like control 

structures: ASSIGNMENT, IF-THEN-ELSE, FOR-NEXT, DO-WHILE , SWITCH­

CASE, BREAK and CONTINUE statements: 

ASSIGNMENT Statement: 

C = 0 
BIT_A5 = 0 
[WORK] = 10 
[WORKl] = [WORK2] 

IF - ELSE - ENDIF Statement: 

IF [FLAG] 
[WORK] = 1 

ELSE 
[WORK] = 2 

ENDIF 

FOR - NEXT Statement: 

FOR [FLAG] 
JSR OUTPUT 

NEXT 

DO - WHILE Statement: 

DO 
JSR OUTPUT 

WHILE [FLAG] 
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SWITCH - CASE - ENDS Statement: 

SWITCH [WORK] 
CASE 1 

JSR OUTPUTl 
BREAK 

CASE 2 
JSR OUTPUT2 
BREAK 

CASE 3 
JSR OUTPUT3 
BREAK 

DEFAULT 
JSR OUTPUT4 

ENDS 

With these structured commands it is possible to program without using GOTO 

statements such as BRANCH and JUMP statements of the assembler language. For 

example the use of an IF-THEN-ELSE statement eliminates the need to create labels. 

This greatly simplifies programming and leads to easy to read Single-Entry-Single­

Exit structured programs. GOTO statements were almost entirely avoided in this 

project. Most of the code is written using only the structured macro language. Only 

when necessary were assembly language statements used. 

9 
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A code sample is given below: 

.FUNC CLRKPT 
·****************************************************************** I 

CLRKPT 
PARAMETER 
GLOBAL 
RETURN 

CLEAR KPT 
VOID 
VOID 
VOID 

· ****************************************************************** I 

CLRKPT 
X = 0 
y = 0 

DO 
DO 

A= y 
[PORT2] =AI [KPTKTZ,X] 
IF [PORT2] == $20 

[STROBE] = 1 
ELSE 

[STROBE] = 0 
ENDIF 

WHILEY< 16 
y = 0 

X = ++X 
WHILE X < 8 
[OUTBLl] = 0 
[OUTBL2] = 0 
[PROMFF] = [PROMFF] & $F0 
RTS 

.ENDFUNC CLRKPT 

10 
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3. SOFTWARE COMPLEXITY METRICS 

Software complexity metrics are objective measures of how complex source code is 
and how difficult it may be for a programmer to test, maintain, or understand 

programming source code [4]. Software complexity metrics do not measure the 

complexity itself, but instead measure the degree to which those characteristics 

thought to contribute to complexity exist within the source code [19]. Many different 

complexity metrics have been proposed and there is no agreement as to which 

program characteristics contribute most to the complexity of a program . However, 

there are four traditional classes of software complexity metrics that characterize 

different aspects of program complexity: size metrics, data structure metrics, control 

flow metrics and information flow metrics . In the following sections of this chapter 

we describe some of the most common metrics out of each group. 

3.1 SIZE METRICS 

Almost everyone agrees that the amount of effort necessary to construct a program 

depends upon the number of lines that are written. Thus the line of code measure is 
probably the most widely used metric in software complexity analysis. It is an 

important factor in many models of software development and easy to compute after 

the program is completed. Although lines of code seem to be a simple measure, there 

is no general agreement about what constitutes a line of code. But most researchers 

agree on the following two definitions: 

1. LOC (lines of code) is any line of program text that is delivered to the customer 

and includes comment and blank lines. Sometimes also referred to as DSL 

(deliverable source lines). 

2. NCSL (non commentary source lines) is any line of a program that is not 

exclusively a comment or a blank line. 

Size measure of larger and smaller granularity have been proposed . For example, in a 

large program, the number of functions is commonly used. At the other extreme , the 
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number of tokens is a size measure that accounts for differences in the number of 

components in a line of code. The token count is like a weighted line count. 

Halstead [6] proposed a large family of size metrics called Software Science based on 

token counts. His theory of Software Science [6] is probably the best known and 

most thoroughly studied composite measures of software complexity. Software 

Science measures are based on four counts of primitive tokens in the program: 

nl = the number of unique operators that appear in a program 

n2 = the number of unique operands that appear in a program 

Nl = the total number of operator occurrences 

N2 = the total number of operand occurrences 

One composite measure of size, called length, is the total number of tokens, which is 

the sum of the total operator and operand count: N = Nl + N2. Halstead also defines 

the term vocabulary, the sum of unique operators and operands: n = nl + n2. Further 

he hypothesized that the length of a well-structured program, Nhat, is a function of 

the number of unique operator and operand: Nhat = nl log2 nl + n2 log2 n2. 

Halstead suggested another commonly used measure for the size of a program, called 

Volume: V = N log2 n. Volume may also be interpreted as the number of mental 

comparisons needed to write a program of length N. Another metric from this family 

is Effort, which is based on the program Volume and the program Level, where Level 

is a measure of abstraction in a particular implementation of an algorithm. Effort is 

defined as: E = V / L = (nl N2 N log2n) / (2 n2). 

12 
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3.2 DATA STRUCTURE METRICS 

Data structure metrics capture the amount of data, the usage of data in a module, and 

the degree to which data is shared among modules. Like to size metrics there are 

various methods to measure data structure in a program. One simple way for 

determining the amount of data is to count the number of entries in the cross­

reference list generated by compilers and assemblers. Such a count of variables is 

referred to as VARS. Other popular data structure measures are Halstead's n2 and 

N2. 

3.3 CONTROL FLOW METRICS 

Control metrics measure the complexity of the logic structure of the program. By far 

the most popular control flow metric is the Cyclomatic Complexity V(G) proposed by 

McCabe [12]. V(G) is a count of the number of linearly independent paths through a 

program and is a measure of the programs control flow. It is calculated from the 

formula: V(G) = e - n + 2, where e is the number of edges and n is the number of 

· nodes in the flow graph. It turns out that McCabe's Cyclomatic Complexity can be 

easily computed by simply adding one to the total count of decisions in a program. 

Other control metrics are nesting depth and number of distinct paths in a program. 

3.4 INFORMATION FLOW METRICS 

Information flow metrics measure directly the system connectivity by observing the 

flow of information or control among system components. They focus on the 

interface between the major levels in a hierarchically structured program. By 

observing communications among the system components measurements for 

complexity, module coupling and module interaction can be defined. Henry and 

Kafura [8] proposed an information flow metric based on module length, fan-in and 

fan-out. They defined the fan-in of a module as the number of modules that pass data 

directly or indirectly to the module. Similarly the fan-out of a module is the number of 

modules to which data is passed either directly or indirectly. They have shown that 

13 
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information flow of system interconnectivity gives reasonable results in measuring 

changes to large-scale systems. 

A major drawback of Henry and Kafura's information flow metric is that it is not 

easily computed.·A more readily available measure of interconnectivity is given by the 

function call chart, which reflects the hierarchical structure of modules within a 

program. 

14 
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4. SOFTWARE METRICS TOOL 

We wrote a software metrics analyzer program that computed a variety of standard 

software complexity metrics [3] (Lines of Code (LOC), Noncommentary Source 

Lines (NCSL), Halstead's Software Science measures (V,E), and McCabe's V(G)). 

These were straightforward to compute since much of the program was written using 

the C-like control structures. Since communication among system components is an 

important aspect in real-time systems we also included a set of information flow 

metrics. In the following sections we will define the metrics calculated by our analyzer 

tool. We will explain how the tool can be used and provide an overview of its 

software design. 

4.1 METRICS COMPUTED BY THE ANALYZING TOOL 

The software metrics analyzer program computes a number of traditional software 

complexity metrics. The abbreviations for the complexity metrics used in our study 

are given below: 

nl = 

n2= 

Nl= 

N2= 

Nhat= 

V= 

E= 

V(G) = 
LOC= 

NCSL= 

Number of unique operators 

Number of unique operands 

Total number of operator occurrences 

Total number of operand occurrences 

Halstead's Length 

Halstead's Volume 

Halstead's Effort 

McCabe's Cyclomatic Complexity 

Line of Code 

Noncommentary source lines 
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We included two metrics that measure interconnectivity among modules within a 

program: 

FIN= 

FOUT= 

Number of times a function is called by another function 

Number of times a function calls another function 

Because of indirect calls, FIN and FOUT counts are only approximations to the actual 

number of calls. 

Since this was a real-time application in which considerable information is passed via 

global data, we counted the number of global and resource variables referenced 

and/or changed. Notice that we differentiate between resource and global variables. 

The resource variables refer to the variable identifiers through which the programmer 

accesses timers, I/O ports, serial interfaces, interrupt inputs, and special registers. 

These are assigned by the system. Global variables are programmer defined variables. 

The following information flow metrics are computed: 

VOUT = Number of times global variables are changed 

VIN= Number of times a global variables are referenced 

UV OUT = Number of unique global variables changed 

UVIN = Number of unique global variables referenced 

VROUT = Number of times global and resource variables are changed 

VRIN = Number of times global and resource variables are referenced 

UVROUT = Number of unique global and resource variables changed 

UVRIN= Number of unique global and resource variables referenced 

16 
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4.2 How TO USE THE ANALYZER TOOL 

The metric analyzer program metric.exe is written for IBM-PC and compatible 

systems. It analyses structured relocatible assembly language code of Mitsubishi's 

micro-controller series MELPS 740 [13, 14]. The metric tool requires the file op.txt 

where the operators of the assembly language are specified. All other tokens are 

considered as operands. 

The program can analyze a single input file as well as an entire project. The output file 

in form of a table has one output-line for each function. The first output-line is a 

column header, the second is a summary for the complete module (input file) followed 

by the metric counts for individual functions. The printout of the detailed metric count 

for each function can be suppressed by specifying a command line parameter. A 

function is identified by the pseudo-command .FUNC function-name (see also 

example in chapter 4 and Mitsubishi's User's Manual [13]). 

The metric analyzer allows the use of the following command line parameters: 

metric [[@]filename] [-mh] 

Where filename is a single input file, @filename is a project file that contains one or 

more input files. If there is no input file specified the analyzer reads from standard 

input. Parameter -m suppresses the output of the metrics for individual functions and 

reports modules only. Parameter -h prints out a help screen. The report is printed to 

standard output and can be easily redirected into a file. Since all table entries are 

separated by tabulators the report file can be read into standard spreadsheet 

applications. 

It is important to know that the metrics reported in the summary for an entire module 

are not always the simple sum of the metrics for individual functions. In particular 

Halstead's nl, n2 and the unique information flow metrics for the module summary 

are based on the entire input file for the module summary. Hence, Halstead's Length 

Nhat, Volume V and Effort E are also different for the module summary output. 
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It should also be noted that the computation of the function call hierarchy (metrics 

FIN and FOUT) is for an entire project. Otherwise function calls to and from a single 

input file from other project files can not be considered. 

4.3 IMPLEMENTATION DETAILS 

The metric analyzer is written in C and runs under DOS and IBM-PC compatible 

systems. The tool contains 3 source files with 1.SK deliverable source lines. It is 

written and compiled with Borland C++ 3.1. 

The lexical analysis of the input files is performed with a tool called FLEX. FLEX is 

an lexical analyzer similar to the UNIX tool lex and was developed by the University 

of California, Berkeley. The FLEX tool is portable to various platforms like UNIX , 

DOS, MACINTOSH etc. The analyzer processes each input file twice. This is 

necessary to calculate the function call hierarchy across multiple input-files. Since the 

semantics of assembly language is not complex, the entire language structure is 

recognized by using state variables. 

The major data structure in the analyzer tool is a symbol table that holds all 

recognized tokens of the assembly as well as the C-like macro language. For fast 

access an open addressing hashing scheme is used. A double hashing algorithm is used 

to avoid clustering in the hash table . Once the symbol table is complete most metrics 

are computed by scanning through the symbol table. 

The entire project consists of the following source files (a complete printout is given 

in Appendix A): Metric.c and metric.h contain the main program, functions to process 

input files, functions to output the metric counts and the data structures to count the 

metrics. Metric.[ holds the lexical definitions for the analyzer tool and serves as an 

input to FLEX. The output file produced with the FLEX compiler is named lexyy. c. 

Hash.c and hash.h implement functions to build and manipulate the symbol table. The 

project build file includes the files metric.c, hash.c and lexyy.c. The huge memory 

model should be used to recompile the software. 

18 
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It is interesting to note that we discovered inconsistencies in programming style in a 

variety of functions during development of the metric analyzer tool. When verifying 

the functionality of the analyzer tool we were sometimes puzzled that very different 

programming techniques were used. For example, within an indexed addressing 

scheme programmers used the index register as the base address and manipulated the 

base address for index calculations. The inconsistencies appear in some but not all 

functions and are probably due to a lack of coding standards. It is very likely that 

missing coding standards lead to code that is difficult to comprehend and therefore 

hard to maintain. Unfortunately it is very difficult to recognize these inconsistencies 

with a metric analyzer tool. 
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5. PROGRAM EVOLUTION 

In this section we look at the evolution of the program. The first question we 

addressed was to characterize the evolution of the program. In particular we were 

interested in the distribution of changes that were made during program maintenance. 

Did the changes coincide with what other software maintenance studies have found? 

Or were they different because the program was a real-time application? In the last 

part of this section we show that our data supports the maintenance change model 

proposed by Harrison and Cook and suggests using the standard deviation of the 

changes in volume as a threshold. 

5.1 EVOLUTION OF THE REAL-TIME SOFTWARE 

There were ten versions of the program. The first version of the program was 

released in December 1990 and the tenth in June 1992. The time between versions 

ranged from twelve days to several months. The final version of the program is made 

up of thirteen modules each of which consists of one or more functions. For each 

version, Table 5.1 gives the release date, and number of functions in each module. 

Lehman [11] and Belady and Lehman [l] studied the program maintenance changes in 

a variety of software systems over a period of years. Since software does not wear 

out or break, they felt that the term "software evolution" more accurately described 

the pattern of changes to the programs. From their observation they formulated Laws 

of Program Evolution. The two most important and universally accepted of these 

laws are: 

1. All useful programs undergo continuing change. Useful programs are 

continually improved through the addition of new features as evidenced by the 

number of commercial products (MS DOS, Lotus 1-2-3, UNIX, etc.) that have 

evolved through a number of major release cycles. 

2. Over time, programs exhibit increasing entropy. As changes are made to a 

program, its structure degrades and its size increases, resulting in increased 
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complexity. Lehman and Belady [l] cite an IBM operating system that increased from 

3,682 modules to 4,800 modules over four major release cycles. Increasing entropy 

makes program maintenance increasingly more difficult. Ultimately, the program will 

need to undergo a major and expensive overhaul or will be replaced by another 

program. One sign of entropy is an increasing ripple effect as a change to one part of 

the software affects a higher percentage of the other parts of the software 

In a study of a successive versions of a real-time embedded software system, Harrison 

and Cook [7] noticed that most of the total change was concentrated in a few 

modules. This led them to propose another law of software evolution. 

3. Total program change is not uniform over the changed modules. Most studies 

of software evolution look at the number of modules changed in successive versions. 

These studies have found that less than half of the modules are changed. Harrison and 

Cook looked more closely at the amount of changes in successive versions. They 

found that changes to 10% of the modules accounted for 60% of the total change. 

Our data for the 10 versions supports all of these laws. Table 5.1 gives an overview of 

all metrics computed with our metric tool for the ten versions. The following Figures 

5.1 to 5.6 show the evolution of various metrics normalized by the metric values of 

the last version for successive releases. The data in Table 5.1 and Figure 5.1 clearly 

confirms the first two laws of program evolution. The program experienced continual 

change and increasing entropy (complexity and size) between successive versions. 

The number of functions increased from 223 in version 1 to 359 in version 10; the 

lines of code (LOC) continually increased (Figure 5.3). With few exceptions, the 

Halstead measures (V, E) and McCabe's Cyclomatic complexity V(G) increased as 

well (Figure 5.4). However, note the unusually large increase in FIN, FOUT, and in 

the number of functions, between versions 4 and 5 (Figure 5.2). This occurred 

because by version 4 the available 16K of memory was nearly exhausted so that in 

version 5 macro calls were changed to function calls to recover memory. Each change 

from a macro call to a function call saved two bytes. Also note the drop in V(G) 

between versions 4 and 5 and the considerable fluctuation in E (Figure 5.4). 
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In figure 5.5 we can identify an evolution trend similar to the traditional metrics for 

information flow out of functions (VOUT, UVOUT, VROUT and UVROUT). 

Interestingly the evolution of metrics that measure inflowing information into 

functions is very different (VIN, UVIN, VRIN and UVRIN) from the metrics that 

measure information flow out of functions. They do not increase steadily throughout 

development and two metrics (VRIN, UVIN) reach their maximum value already in 

the second version. It suggests that information flow into and out of functions are not 

measuring the same attributes in program evolution and thus should be treated as two 

different metrics. 
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VERSION DATE FUNC nl Nl n2 N2 Nhat 

l 2-Dec-90 223 301 11468 2118 10812 18199 
2 13-Feb-91 226 297 11664 2193 11024 18899 
3 27-Feb-91 226 295 11683 2191 11029 18872 
4 ll-Mar-91 246 294 12004 2229 11090 19234 
5 23-Apr-91 300 298 12861 2340 11025 20366 
6 8-May-91 310 297 13176 2387 11320 20831 
7 28-Jun-91 333 289 13656 2433 11725 21247 
8 17-Feb-92 353 289 13586 2492 11634 21875 
9 6-Mar-92 355 286 13650 2502 11667 21965 
10 2-Jun-92 359 292 13840 2507 11784 22074 

VERSION DATE V E VG LOC NCSL FIN FOUT 

l 2-Dec-90 183928 33364792 1070 10577 7451 372 377 
2 13-Feb-91 188386 34370032 1135 10755 7425 403 400 
3 27-Feb-91 188609 34501848 1134 10791 7420 397 394 
4 l l-Mar-91 192627 34499792 1144 11458 7613 525 524 
5 23-Apr-91 201589 33159330 1092 11978 7605 791 812 
6 8-May-91 208130 34760768 1147 12106 7827 813 787 
7 28-Jun-91 217276 36516008 1197 12807 8132 871 819 

) 8 17-Feb-92 217460 35628968 1244 13309 8224 926 863 
9 6-Mar-92 218388 34464764 1246 13398 8240 933 865 
10 2-Jun-92 221555 36357788 1280 13621 8365 953 871 

VE=RSION DATE VOUT VIN UVOUT UVIN VROUT VRIN UVROUT UVRIN 

l 2-Dec-90 362 992 134 226 740 1570 276 404 
2 13-Feb-91 354 1042 127 238 771 1661 286 436 
3 27-Feb-91 354 1056 126 239 768 1670 283 436 
4 l l-Mar-91 393 1078 137 224 763 1513 289 413 
5 23-Apr-91 403 1075 144 232 799 1474 305 427 
6 8-May-91 407 1088 148 233 816 1513 310 436 
7 28-Jun-91 432 1151 149 234 860 1577 328 445 
8 17-Feb-92 439 1073 153 235 847 1515 330 457 
9 6-Mar-92 449 1077 158 236 867 1526 339 463 
10 2-Jun-92 453 1098 158 242 864 1564 327 467 

Table 5.1. Project Overview 

) 
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Harrison and Cook [7] based their law on data from only two successive versions. 

Our data shows that their law holds for 10 successive versions. The number of 

functions, number of functions changed, new functions added, deleted functions, and 

number of functions with major change for each version is given in Table 5.2. We 

define a major change to a function as an increase or decrease in Halstead's V of at 

least 218, the standard deviation for the volume changes. We selected V because 

Harrison and Cook used V in their paper although LOC and Halstead's E give the 

same results. The percentages in the"% MAJOR CHANGES" column are the percent 

of changes that were major changes. We see that between successive versions, with 

one exception far less than half of the functions were changed and that between 7% 

and 22% of the changed functions experienced major change. 

VERSION FUNC CHANGES % CHANGES NEW DELETED MAJOR % MAJOR HOURS 

CHANGES CHANGES 

l 223 - - 223 - - - 1771 
2 226 123 54.4 12 9 12 9.8 339 
3 226 14 6.2 0 0 l 7.1 77 
4 246 79 32. l 23 3 17 21.5 145 
5 300 101 33.7 54 0 16 15.8 190 
6 310 25 8.1 12 2 3 12.0 135 
7 333 101 30.3 26 3 16 15.8 382 
8 353 81 22.9 23 3 7 8.6 92 
9 355 24 6.8 2 0 2 8.3 42 
10 359 28 7.8 4 0 4 14.3 54 

TOTAL 2931 576 19.7 379 20 78 13.5 3227 

Table 5.2. Changes Between Successive Versions 
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Table 5.3 gives the change frequency and major change frequency over the 10 

versions. Nearly 60% of the functions were changed at most once. Two functions 

were changed in all 9 new releases . Over the 10 versions more than 86% of the 

functions did not undergo a major change . 50 functions accounted for the 78 major 

changes . Only one function experienced four major changes and 22 functions 

experienced two or more major changes. Notice that the 379 totals for columns two 

and four include the 20 deleted functions. 

FREQUENCY CHANGES %CHANGES MAJOR % MAJOR 

CHANGES CHANGES 

0 145 38.3 329 86.8 
1 88 23.2 28 7.4 
2 61 16.1 17 4.5 
3 30 7.9 4 1.1 
4 25 6.6 1 0.3 
5 13 3.4 0 0.0 
6 13 3.4 0 0.0 
7 1 0.3 0 0.0 
8 1 0.3 0 0.0 
9 2 0.5 0 0.0 

TOTAL 379 100 379 100 

Table 5.3. Frequency of Changes 
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Table 5.4 gives the total change in V, major change in V, and percentage of the total 

change in V that was major change between successive versions. 

Vl:RS!ON VOLUME CHANGE VOLUME CHANGE % VOLUME CHANGE 

MAJOR CHANGES MAJOR CHANGES 

l - - -
2 11243 5549 49.4 
3 1108 312 28.2 
4 8957 5893 65.8 
5 15895 13303 83.7 
6 2803 2093 74.7 
7 11009 8089 73.5 
8 7279 2189 30. l 
9 1679 333 19.8 
10 2829 2012 71. l 

TOTAL 62802 39773 63.3 

Table 5.4. Changes in Volume Between Successive Versions 

Tables 5.2 and 5.4 show that even though only 13.5% of the changes were major 

changes, the major changes account in average for over 63% of the total change in V 

over the 10 versions. 

We also found the change concentrated in few of the 13 modules in the system. The 

largest module, TLNUPS, accounted for the bulk of the change. The total number of 

functions increased by 136 from version 1 to version 10. TLNUPS increased from 91 

to 219 functions, an increase of 128. The total system increase in LOC and V between 

version 1 and 10 is 3,044 and 37,627 respectively; the increase in LOC and V for 

TLNUPS was 2,966 and 36,498 respectively. There was very little change in the eight 

smallest modules as the number of functions in versions 1 and 10 are identical and the 

LOC and V for these functions changed very little. 

We also investigated the size characteristics of the changed functions. For each 

version we evenly divided the functions into four classes on the basis of Halstead's 

Volume. Class I contained the one-fourth of the functions with the largest V, Class II 

the one-fourth with the next largest V, and so forth. See Figure 5.7. The functions in 
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Class I accounted for over 60% of the total change in V for each version. Class II 

functions accounted for 25% or less. Hence most of the change occurs in the large 

functions. 
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Figure 5.7. Characteristics of Changed Functions 

Thus the data does support the findings of Harrison and Cook that the change is not 

uniform and that most of the total change is concentrated in a small number of 

functions and modules. 
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5.2 IDENTIFYING CHANGE PRONE MODULES 

When making a change to a program module during program maintenance, a 

programmer frequently must decide whether to make an isolated change to the 

module or to completely redesign and rewrite the module. Complete redesign and 

rewrite is expensive, but it is even more expensive if entropy has taken its toll, e.g. the 

module structure has seriously deteriorated with severe ripple effects. This is not a 

simple decision and the wrong choice may have expensive consequences . Completely 

overhauling a module that will not be modified again may mean delaying or not 

servicing other maintenance requests. On the other hand, performing a series of 

isolated changes is wasting resources and just postponing the major overhaul. 

Harrison and Cook [7] proposed a maintenance change model to determine whether a 

given software module can be effectively modified or whether it should be completely 

redesigned and rewritten. They called a module that is likely to experience significant 

maintenance changes change-prone. The change-prone classification identifies 

modules that will undergo significant maintenance activity over the release cycle. 

Maintenance should be performed differently on change-prone modules than on non­

change-prone modules. Namely, change-prone modules should receive an early major 

overhaul so that the future changes to these modules will be relatively inexpensive. 

Unfortunately which modules will become change-prone cannot be predicted. 

However, the third law of program evolution indicated that changes to a small 

number of modules accounted for most of the total change. Hence these modules are 

likely candidates for change prone modules. They measured the cumulative change to 

a module during program evolution. The decision rule proposed by Harrison and 

Cook was to establish a change threshold. Once the total change to a module exceeds 

this threshold it was classified as change-prone and hence should receive a major 

overhaul. They used Halstead's Volume (V) as the change measure and suggested the 

threshold value be adjusted to the "risk taking behavior of the manager". 

We used V and found that using the volume change standard deviation as a threshold 

worked well in identifying the few functions that experienced major changes. The 78 
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function changes it identified as major accounted for 63.3% of the total change in V. 

We found that 22 of functions were involved in multiple major changes. 

Thus we recommend the Halstead volume change standard deviation as a threshold 

for identifying change prone functions since it evolves with the program changes, is 

not subject to large fluctuation , and is a relative rather than absolute measure. One 

should have in mind that if the threshold is chosen to high we may delay recognizing 

the change prone modules and if it is chosen to low we may classify to many function 

as change prone. Therefore we were interested in identifying a safe range for the 

threshold value. It turned out that this value can be easily calculated by considering 

the volume change of previous versions. Since we used changes of all previous 

versions the threshold stabilizes when we move on from one to the next release (Table 

5.5) . Note the big jump between version 4 and 5 due to large volume changes. We 

also found that the LOC and Halstead's E measures with the change standard 

deviation as the threshold worked nearly as well as V. 

VERSION STANDARD 

DEVIATION 

2 146 
2 142 
3 150 
4 242 
5 243 
6 241 
7 241 
8 220 
9 218 

Table 5.5. Evolution of the Volume Threshold 
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6. SOFTWARE METRICS 

In this chapter we study the internal structure of the set of metrics computed with the 

analyzer tool. In order to understand the relation among metrics, we applied a 

statistical technique known as factor analysis. Our results show that the 18 metrics 

map onto four underlying complexity domains: size, information flow into functions, 

information flow out of functions and control flow. We found that the information 

flow metrics contribute considerable variation to the factor model. We will show that 

information flow metrics characterize real-time complexity better than the standard 

complexity metrics. We also propose new real-time complexity metrics. 

6.1 CHARACTERISTICS OF REAL TIME SOFTWARE 

In a typical real-time application the program continually monitors sensors and upon 

receiving an input must complete the appropriate processing within a certain fixed 

time period. This time constraint is the unique feature of real-time software. All of the 

subtasks that are part of the processing must be scheduled to meet individual timing 

requirements. Hence real-time programs are characterized by a large amount of 

monitoring and communication. 

Our real-time telephone switching application epitomizes these characteristics. The 

main application program for all four telephone sets is controlled by one automaton 

with a total of 51 different states (located in module TLNST) which checks the 

current state of execution for each process (telephone unit) every 10 ms and takes an 

action depending on the current state of the process. This action is a call to one or 

more of the 219 functions in module TLNUPS. 

The real-time control part is in modules TLNATM and TLNINT. Incoming and 

outgoing external signals are controlled by 38 small but complex finite automata 

located in module TLNATM. Each automaton is served every 1 ms by its scheduler. 

Events to and from these automata to the main application are also passed via global 

memory and resource variables. In addition there are 8 interrupt controlled 
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subroutines located in module TLNINT. Their functionality is similar to the automata 

in module TLNATM. 

Thus global and resource variables play a key communication and monitoring role in 

this application. Each telephone unit has its own global variables. Functions share 

global data and parameters are passed between functions via global variables and 

processor registers. The program accesses timers, I/O ports, serial interfaces, 

interrupt inputs, and special registers through resource variables. This is the reason 

we developed information flow metrics that counted functions calls and global and 

resource variables referenced and/or changed. 

6.2 ANALYSIS OF SOFTWARE COMPLEXITY METRICS 

As mentioned in Chapter 4 we computed a variety of standard software complexity 

metrics: Halstead's Software Science (nl, n2, Nl, N2, Nhat, V, E), McCabe's V(G), 

LOC, and NCSL, and information flow metrics (Unique and total number of global 

and resource variables changed and/or referenced). Because of the problem with 

accurately computing indirect references, we omitted the FIN and FOUT metrics 

from our analysis. 

Some of the metrics listed above are primitive and cannot be decomposed further into 

other metrics. The unique operator count nl, is an example of a primitive metric. 

Other metrics are non-primitive metrics and composites of other primitive metrics. 

For instance, the program length N is computed out of the primitive metrics by the 

sum N = Nl + N2. From a statistical perspective it is questionable whether the linear 

combination of two primitive metrics contribute any new variability in the 

measurement of program attributes. 

Munson and Khoshgoftaar [16, 17, 18] found that in practice most metrics are 

measuring the same elements of a rather small set of orthogonal complexity domains. 

They noticed that there are relatively few distinct sources of variation among metrics 

and that the functional aspects of a large set of metrics can be reproduced by a small 

set of primitive metrics. They have shown that some metrics do not contribute 
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anything new to the understanding of the differences among programs. Further, 

adding metrics that are already represented by other metrics is likely to introduce a 

noise component to the underlying model. In order to examine the basic sources of 

variation in a set of metrics Munson and Khoshgoftaar applied factor analysis. They 

have shown that many sets of software complexity metrics map onto less than six 

underlying complexity domains. All of the existing metrics appear to be representable 

as linear combinations of these few factor domains. 

Since we introduced two new sets of information flow metrics (global and resource 

variables referenced and changed), we were interested in whether these metrics are 

measuring something not measured by the traditional metrics. In addition, we 

investigated how many different complexity domains are present in our data. 

We computed the correlations of all of the metrics for all functions for the latest 

version of the program. A grouping of metrics by highest correlation partitioned the 

metrics into three groups: traditional metrics (Table 6.1), global and resource 

variables changed (Table 6.2), and global and resource variables referenced (Table 

6.3). Metrics in each group are highly correlated with each other and have smaller 

correlation with metrics in the other groups. Note that nl, V(G) and E in Table 6.1 

have noticably smaller correlation with the other metrics. They are placed in Table 6.1 

because they have a higher correlation with the metrics in Table 6.1 than with the 

information flow metrics in Table 6.2 and Table 6.3. In order to understand the basic 

sources of variation in our set of metrics, a statistical technique known as factor 

analysis is used. 
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nl 1.00 
Nl 0.47 1.00 
n2 0.26 0.78 1.00 
N2 0.36 0.93 0.94 1.00 
Nhat 0.28 0.76 0.99 0.94 1.00 
V 0.33 0.93 0.93 0.99 0.94 1.00 
E 0.50 0.86 0.54 0.76 0.54 0.76 1.00 
VG 0.63 0.53 0.25 0.38 0.23 0.37 0.63 1.00 
LOC 0.39 0.83 0.92 0.93 0.90 0.91 0.70 0.47 1.00 
NCSL 0.52 0.90 0.85 0.92 0.83 0.90 0.81 0.64 0.95 1.00 

Table 6.1. Correlations Traditional Metrics 

METRIC VOUT UVOUT VROUT UVROUT 

VOUT 1.00 
UVOUT 0.88 1.00 
VROUT 0.76 0.78 1.00 
UVROUT 0.55 0.69 0.90 1.00 

) Table 6.2. Corellations Outflowing Information 

METRIC VIN UVIN VRIN UVRIN 

VIN 1.00 
UVIN 0.84 1.00 
VRIN 0.92 0.76 1.00 
UVRIN 0.75 0.85 0.86 1.00 

Table 6.3. Correlations Inflowing Information 
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6.2.1 THE EXPLORATORY FACTOR ANALYSIS TECHNIQUE 

Of various approaches for studying the internal structure of a set of indicators factor 

analysis is probably most powerful [20]. Factor analysis refers to a family of analytic 

techniques designed to identify factors, or dimensions, that underlie the relations 

among a set of observed variables. The observed variables are the indicators 

presumed to reflect the construct, i.e. factors. Factor analysis is usually applied to the 

correlations among indicators. An estimate of the relation between each indicator and 

a factor - referred to as a factor loading - is obtained. A factor loading is the weight of 

an indicator on the factor. Generally speaking, the higher the factor loading, the more 

meaningful it is, or the greater is the impact of the factor on the indicator. A factor 

loading may vary from zero (no relation between the indicator and the factor) to plus 

or minus one (perfect relation between the indicator and the factor). The square of 

such a factor loading indicates the proportion of variance of a given indicator 

accounted for by the factor. For example, a loading of .4 means that .16 (.42) , or 

16% of the variance of the indicator is accounted for by the factor. Complexity 

metrics with similar aspects of variability will tend to have high factor loadings on a 

single factor and are thus associated with the underlying complexity domain 

represented by the factor [20]. 

In the following data analysis an exploratory factor analysis is used. Exploratory 

factor analysis is concerned with the question of how many factors are necessary to 

explain relations among a set of indicators and with the estimation of the factor 

loadings. The essential purpose of this technique is to describe the covariance 

relationship among variables in terms of a few underlying, but understandable, 

random quantities. 

Factor analysis can be considered as an extension of principal component analysis 

[20]. Both can be viewed as attempts to approximate the covariance matrix, l'r. 

However, the approximation based on the factor analysis model is more elaborate. 

The primary question in factor analysis is whether the data is consistent with a 

prescribed structure. In the case of complexity metrics, this structure represents 
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orthogonal complexity domains. That is, many existing complexity metrics map onto a 

reduced set of orthogonal complexity measures. 

To simplify interpretation of the extracted factor loadings new common factors can be 

found through orthogonal rotation of the factor structure. The process of orthogonal 

factor rotation produces a set of new factors that also satisfy the factor model. Many 

different techniques are used for these orthogonal rotations. To rotate factors 

orthogonally, means to rotate them so that they remain at right angles to each other 

and that variables or vectors that are orthogonal are not correlated. By far the most 

widely used orthogonal rotation is the varimax rotation. Varimax is aimed at 

maximizing variances of the factors . Only a subset of factors from the original pattern 

is chosen for rotation. The selection of factors for varimax rotation is generally based 

on the factor's eigenvalue [20]. 

6.2.2 RESULTS OF THE PRINCIPAL COMPONENT FACTOR ANALYSIS 

Figure 6.1 is a plot of the eigenvalues A in descending order of magnitude - referred 

to as a scree plot [2, 20]. The scree plot is an aid to determine the number of factors 

to be retained. Cattell [2] suggested that the plot of the A's be examined to identify a 

clear break between large A's and small ones. Considering factors with small A's as 

trivial, Cattell labeled this criterion for the number of factors to be retained as a scree 

test. Others suggest using the criterion of eigenvalues A larger than one. 
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Figure 6.1. Factor Scree Plot 

Table 6.4 shows the results of the principal component factor analysis. We used a 

varimax rotation on the original factor structure and selected four factors for rotation. 

In the scree plot we can identify a break, akin to an elbow, between the fourth and the 

fifth eigenvalue. The latter, trivial eigenvalues appear to lie on a horizontal line and 

are not considered. The last two rows in Table 6.4 contain the eigenvalues and the 

amount of variance explained by each factor in the rotated factor domain, 

respectively. The four factors of Table 6.4 account for 88.8% of the total amount of 

variance explained by the original set of metrics. 
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METRIC FACTOR l FACTOR 2 FACTOR 3 FACTOR4 

n2 0.973 0.142 0.068 -0.054 
NHAT 0.970 0.111 0.055 -0.046 
V 0.962 0.107 0.077 0.184 
N2 0.959 0.140 0.099 0.186 
LOC 0.913 0.157 0.146 0.202 
NCSL 0.841 0.262 0.155 0.401 
Nl 0.822 0.171 0.158 0.414 
UVIN 0.163 0.924 0.179 0.065 
UVRIN 0.224 0.863 0.201 0.177 
VIN 0.166 0.794 0.357 0.330 
VRIN 0.204 0.765 0.338 0.414 
UVROUT 0.130 0.101 0.913 -0.022 
VROUT 0.142 0.189 0.906 0.229 
UVOUT 0.081 0.437 0.799 0.173 
VOUT 0.084 0.363 0.725 0.330 
VG 0.201 0.354 0.182 0.792 
E 0.608 0.131 0.157 0.662 
nl 0.183 0.364 0.338 0.587 
EIGENVALUES 9.852 3.744 1.433 0.963 
%VARIANCE 54.7 20.8 8.0 5.4 

Table 6.4. Varimax Factor Analysis 

It is interesting that most of the traditional metrics (n2, Nhat, V, N2, LOC, NCSL, 

Nl) are associated with the first factor. In particular all size metrics are grouped into 

factor one. Hence, factor one represents the size complexity domain. Many of the 

traditional complexity metrics are members of this factor. This suggests for prediction 

purposes that combinations of members of the size domain would be just as good as 

simple size measures such as lines of code. 

The second factor contains all metrics where global and resource variables are 

referenced (UVIN, UVRIN, VIN, VRIN). This factor measures the inflowing 

information into program modules. 

The third factor consists solely of metrics that change global and resource variables 

(VROUT, UVROUT, UVOUT, VOUT). Similar to the previous factor the third 

factor measures the outflowing information. 
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Finally the fourth factor contains McCabe's V(G), Halstead's E and nl. The factor 

loading is highest for McCabe's V(G). It is conceivable that this factor represents 

control flow of the program. 

We should mention that our results differ from those reported by Munson and 

Khoshgoftaar [16, 17, 18]. From their factor analysis of several metric data sets they 

found McCabe's V(G), and Halstead's E were placed together into the size factor. 

Analysis of our data separated McCabe's V(G), Halstead's E and nl into a factor 

domain distinct from the size factor. However, some of this difference may be 

explained by there was only one information flow metric in two of their data sets and 

we considered six information flow metrics. 

The factor analysis revealed that the traditional software metrics contribute about one 

half of the total variance in the set of metrics we applied to our data. Both sets of 

information flow metrics are associated with their own complexity domain and 

account for almost 29% of the total variance. The observations indicate that 

information flow into and out of functions is an important aspect in real-time software 

systems. Further, information flow into and out of functions are radically different. 

The results suggest to treat them separately and not combining information flow into 

one compound metric. 

6.2.3 RELATIVE COMPLEXITY METRICS 

The initial objective of the factor analysis was to achieve a reduction in dimensionality 

of the problem. In addition, Munson and Khoshgoftaar [16] defined a relative 

complexity metric, that can be computed out of the factor score coefficient matrix 

given by the factor analysis. The factor score coefficient matrix F is constructed to 

send an associated matrix of standardized complexity metrics, z, onto the underlying 

orthogonal factor dimensions. The factor score coefficient matrix for mapping the 

original 18 metrics onto four orthogonal factor domains is shown in Table 6.5. 
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METRIC FACTOR l FACTOR 2 FACTOR 3 FACTOR4 

n2 0.208 0.047 0.012 -0.248 
NHAT 0.207 0.031 0.010 -0.230 
V 0.170 -0.038 -0.012 -0.032 
N2 0.168 -0.025 -0.009 -0.042 
LOC 0.155 -0.028 0.008 -0.032 
NCSL 0.105 -0.024 -0.038 0.121 
Nl 0.102 -0.077 -0.020 0.159 
UVIN -0.006 0.445 -0.111 -0.245 
UVRIN -0.008 0.375 -0.104 -0.145 
VIN -0.043 0.266 -0.037 -0.008 
VRIN -0.047 0.230 -0.053 0.069 
UVROUT 0.027 -0.129 0.426 -0.202 
VROUT -0.013 -0.147 0.367 -0.010 
UVOUT -0.025 0.027 0.273 -0.100 
VOUT -0.046 -0.041 0.229 0.067 
VG -0.093 -0.064 -0.101 0.530 
E 0.020 -0.158 -0.049 0.418 
nl -0.066 -0.035 0.003 0.331 

Table 6.5. Factor Score Coefficient Matrix 

From these new orthogonal measures of program complexity Munson and 

Khoshgoftaar [16] derived a relative complexity metric Cr. For each function the raw 

data vector is converted to a new standard score vector z as follows: 

metric value-µ 
zscore = ----­

a 

Table 6.6 shows the mean and standard deviation for the original set of metrics 

respectively. 
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METRIC AVERAGE STDEV 

nl 10.40 5.74 
Nl 38.55 67.09 
n2 32.59 28.87 
N2 32.59 65.71 
Nhat 106.32 247.74 
V 391.31 989.94 
E 8719.89 25028.25 
VG 3.57 4.93 
LOC 37.25 51.17 
NCSL 23.28 32.20 
VOUT 1.26 2.65 
VIN 3.06 5.72 
UVOUT 0.79 1.35 
UVIN 1.55 2.70 
VROUT 2.41 4.70 
VRIN 4.36 7.61 
UVROUT 1.58 3.25 
UVRIN 2.42 3.75 

Table 6.6. Metric Means and Standard Deviations 

Then, for each data vector a new vector of factor scores, f, is calculated: 

J=zF 

The relative complexity, Cr, of the factored program modules is represented as 

follows: 

where A is a vector of eigenvalues associated with the specific factor dimensions. 

From the vector Cr of relative complexity metrics, the ith entry Cr, represents the 

relative complexity of the ith program module. 
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The relative complexity metric Cr is normally distributed with a mean of zero and a 

variance of: 

j 2 
V(Cr) = LA; 

i=l 

where j represents the number of factors in the rotated factor pattern, and Ai is the 

eigenvalue associated with the ith factor. The relative complexity metric represents 

each raw complexity metric in proportion to the amount of unique variation 

contributed by that complexity metric. 

Munson and Khoshgoftaar [16] suggested a scaled version of the relative complexity 

metric and defined it as follows: 

C = lOCr; + 50 
T ,JV(C,) 

The scaled metric has a mean of 50 and a standard deviation of 10. 

We computed factor scores and the relative complexity values for all 359 function of 

the last version of the program. Each relative complexity value is a unitary measure of 

program complexity. Table 6.7 shows some sample relative complexity values for the 

least, average and most complex modules. Figure 6.2 shows the distribution of 

relative complexity for all 359 modules sorted by size. It is interesting to note that 

there are some functions with very high relative complexity value. It suggests that 

these modules are extreme outliers and hence should be watched carefully in the 

development process. There are no outliers with exceptionally low complexity value. 
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FUNCTION Cr' CLOW) FUNCTION Cr' (AVERAGE) FUNCTION Cr' (HIGH) 

275 44.06 59 49,88 272 69.47 
279 44.06 27 49.89 251 70.46 
280 44.06 139 49.89 262 74.72 
281 44.06 10 49.90 235 80.42 
336 44.16 142 49.91 236 84.57 
282 44.22 291 50.05 257 85.37 
284 44.22 226 50.15 126 89.43 
286 44.22 19 50.15 317 90.78 
96 44.23 135 50.15 353 99.71 
130 44.23 263 50.55 321 174.66 

Table 6.7. Sample Relative Complexity V aloes 

Four out of the ten functions with highest relative complexity value are real-time 

functions . Two functions (321, 353) contain data tables , are large in size and 

reference many gloabl variables. The reset function is also one of the functions with 

high relative complexity. The remaining three functions are fairly complex states of 

the overall control automata. 
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Figure 6.2. Distribution of Relative Complexity Metrics 
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6.2.4 METRICS REDUCTION 

As mentioned earlier additional metrics appear to be contributing nothing new in the 

understanding of the differences among programs. It is likely that a subset of all 

metrics is sufficient to capture the same attributes of the program that are described 

by the original set of metrics. 

For each complexity domain the metric with the highest strength of association was 

selected for a second factor analysis. Table 6.4 shows that Halstead's n2, unique 

variables referenced UVIN, unique global variables and resources changed UVROUT 

and McCabe's V(G) have the highest factor loading in its domain, respectively. Again 

the factor analysis was performed and the four factors n2, UVIN, UVROUT and 

V(G) were extracted out of the entire data set. Table 6.8 shows the matrix of the 

rotated factor loadings for the subset of four metrics. 

METRIC FACTOR l FACTOR 2 FACTOR3 FACTOR4 

n2 0.983 0.087 0.105 0.127 
UVROUT 0.087 0.981 0.116 0.129 
VG 0.110 0.121 0.965 0.205 
UVIN 0.135 0.137 0.209 0.959 
EIGENVALUES 1.873 0.803 0.758 0.566 
%VARIANCE 46.8 20. l 18.9 14. l 

Table 6.8. Varimax Factor Analysis for 4 Factors 

Using the factor score coefficient matrix the new relative complexity values, C'r(new), 

for the reduced set of metrics was computed. The new relative complexity values 

were then pairwise compared with the set previously obtained. The Spearman's 

correlation coefficient for ranked data rs= .95 shows that the two sets of complexity 

metrics are highly correlated . 

It can be concluded that a reduced set of only four metrics, one for each factor, is 

measuring everything that is given by the entire set of metrics. It indicates that the 

functional aspect of a large set of metrics can be reproduced entirely by a smaller set 

of metrics. If a metric is used in a multivariate model and its variance is already 
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represented by other metrics, there is no need to assess additional metrics out of the 

same complexity domain. 

6.3 REAL-TIME SOFTWARE COMPLEXITY METRICS 

One basic question we addressed is whether the software metrics for the real-time 

modules are different from the non-real-time modules. The factor analysis in the 

previous section suggested that there may be a difference. 

The program was designed so that two modules (TLNST, TLNUPS) of the thirteen 

modules contain most of the program functionality and two modules (TLNINT, 

TLNATM) are responsible for most of the real-time control. These four modules 

include 88% (316 of 359) of the program functions and 82% of the non-comment 

source lines (NCSL). 

Hence for our comparison of real-time and non-real-time modules we selected these 

four modules. The metric values for these four modules and the metric values 

normalized by the number of functions are given in Tables 6.9 and 6.10. Notice that 

each of the information flow metrics (VOUT, VIN, UVOUT, UVIN, VROUT, 

VRIN, UVROUT, UVRIN) in Table 6.10 are substantially higher for the two real­

time modules than the non-real-time modules. For the other metrics (Halstead's 

Software Science, V(G), LOC, NCSL) TLNATM is highest in all instances and the 

results are mixed for the other three modules. 
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NON-REALTIME MODULES 

TLNUPS 0.3 24 2.3 20 22 402 117570 2.4 27 15 
TLNST 0.7 39 5.5 32 49 591 63186 5.5 40 28 
REALTIME MODULES 

TLNATM 1.1 88 10.4 64 96 1331 165941 10.2 64 50 
TLNINT 2.5 32 12. l 32 91 440 11559 4.3 42 24 

Table 6.9. Traditional Metrics Normalized by Number of Functions 

MODULE VOUT VIN UVOUT UVIN VROUT VRIN UVROUT UVRIN 

NON-REALTIME MODULES 

TLNUPS 1.0 2.5 0.2 0.2 1.7 3.2 0.4 0.5 
TLNST 0.8 2.7 0.2 0.4 1.8 3.7 0.6 0.9 
REALTIME MODULES 

TLNATM 4.0 7.9 1.8 2.3 8.1 13.2 3.3 4.3 
TLNINT 2.3 5.8 1.6 4.4 3.9 7.9 2.9 6.1 

Table 6.10. Information Flow Metrics Normalized by Number of Functions 

These results suggest that the major difference between real-time and non-real-time 

functions is the real-time functions have a higher average information flow. We feel 

that the average in and out information flow is a good measure of real-time 

complexity. For example the sum of UV OUT + UVIN for each function in a module 

divided by the number of functions in the module. We realize that this is a preliminary 

result, but it does agree with our intuition that real-time modules have a the heavy 

information flow into and out of functions. 
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7. PROGRAM EFFORT ANALYSIS 

A final goal of our research is to relate programmer effort to program changes. For 

this part of our study we obtained the number of programmer hours per day for 

programmers who worked on the program. The last column in Table 5.2 gives the 

hours worked between successive versions. Table 7 .1 shows the correlations between 

hours worked and the number of changes, number of major changes, the total change 

in V, and the major change in V for successive versions. Hours worked has the 

highest correlation with the number of changes. 

CORRELATION CHANGES MAJOR VOLUME VOLUME CHANGE OF HOURS 

CHANGES CHAI\JGE MAJOR CHANGES 

CHANGES 1.00 
MAJOR CHANGES 0.86 1.00 
VOLUME CHANGE 0.92 0.91 1.00 
VOLUME CH. MAJOR CHANGES 0.75 0.87 0.94 1.00 
HOURS 0.80 0.70 0.70 0.61 1.00 

Table 7.1. Correlation Between Changes and Programming Hours 
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We also compared hours worked between successive versions and changes in each of 

the metrics for successive versions. Table 7.2 shows that highest correlations were for 

VROUT (.80), N2 (.73), and V (.69). 

METRIC CORR. 

FUNC 0.27 
nl 0.54 
Nl 0.45 
n2 0.53 
N2 0.73 
Nhat 0.47 
V 0.69 
E 0.22 
VG 0.63 
LOC 0.45 
NCSL 0.38 
FIN 0.19 
FOUT 0.13 
VOUT 0.36 
VIN 0.48 
UVOUT 0.12 
UVIN 0.26 
VROUT 0.80 
VRIN 0.38 
UVROUT 0.58 
UVRIN 0.56 
HOURS 1.00 

Table 7.2. Correlation Between Hours Worked and Metric Changes 
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It should be noted that although the hours worked includes time spent on both 

existing and new functions, the change data is only for changes to existing functions. 

We attempted to seperate the effort spent on new functions. We used V of the first 

version divided by the number of hours as the productivity rate for new functions. To 

compute the hours for new functions for each version we devided the total V for new 

functions by the productivity rate. The corrected hours for each version is the total 

hours minus the hours for new function. Figure 7 .1 shows programming hours and 

corrected programming hours for all versions. 

00) I -•-T OTAL HOURS --0-- CORRECTED HOURS I 
400 
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Figure 7.1. Programming Hours and Corrected Programming Hours 
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However, when we used the corrected hours between successive versions, we 

obtained lower correlations with the change data (see table 7.3). 

CORRELATION CHANGES MAJOR VOLUME VOLUME CHANGE OF HOURS 

CHANGES CHANGE MAJOR CHANGES 

CHANGES 1.00 
MAJOR CHANGES 0.86 1.00 
VOLUME CHANGE 0.92 0.91 1.00 
VOLUME MAJOR CHANGE 0.75 0.87 0.94 1.00 
CORRECTED HOURS 0.73 0.49 0.51 0.35 1.00 

Table 7.3. Correlation Between Changes and Corrected Programming Hours 

It should be pointed out that the effort analysis is based on only 10 versions. 

Moreover , maintenance includes a variety of different change activities like correcting 

errors, adding functionality and adapting to a changed environment. Depending on the 

maintenance task, some modifications can be done quickly but cause substantial 

change in metric counts. Other tasks need more time and do not affect software 

metrics as much. For example finding an error can take a long time but fixing it may 

affect only one line of code and some metrics will not change at all. On the other hand 

a change of the program structure usually causes large changes in metric counts but it 

may not take as much effort. Hence, effort analysis is sensitive to the type change 

made between successive versions in program maintenance. 
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8. CONCLUSIONS 

Our analysis of the ten versions of the embedded real-time software show that they 

obey the laws of software evolution and agree with our intuition that the information 

flow metrics seem to measure software complexity. We found that the data also 

supports Harrison and Cook's [7] program maintenance decision model and proposed 

the change standard deviation in Halstead's V as a threshold for their model. It is also 

interesting that LOC and Halstead's E measures with the change standard deviation as 

a threshold worked nearly as well as Halstead's V. However more studies must be 

performed before reliable decision rules for threshold values can be established. 

We have found relatively few distinct sources of variation among the set of metrics 

when applied to the actual software system. The entire set of 18 metrics map onto 

only four underlying complexity domains: size, information flow into functions, 

information flow out of functions and control flow. While there are now hundreds of 

metrics available to measure all sorts of program attributes, we would expect that 

factor analysis would map these hundreds of metrics onto a small number of 

complexity domains, probably not more than 10. Other metrics will probably map into 

one of the four factors we found in our data and will not constitute a new complexity 

domain. 

We were surprised that the factor analysis lumped most of the traditional metrics into 

two factors because other factor analysis studies of metrics have partitioned the 

traditional metrics into three or more factors. We were also mildly surprised that the 

global and resource variables referenced were grouped into a second factor and the 

global and resource variables changed into a third factor. Other factor analysis studies 

have grouped the information flow metrics with other traditional metrics in one 

factor. We found that the information flow metrics account for almost 29% of the 

variance and hence are an important complexity class that has to be considered in 

real-time systems. In view of our findings it is surprising that few information flow 

metrics were computed in the other studies. 
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We think that the relative complexity metric, Cr' , is a reasonable measure to identify 

very complex parts of a program. However we feel that some information is lost when 

calculating a composite metric out of primitive metrics. We believe that further 

insights into why some functions are more complex than others can be obtained when 

considering the metric values of each domain separately. For instance, it is 

conceivable that a function with extreme high information flow is ranked average in 

complexity by the relative complexity metric Cr' because it has relative few lines of 

code. In this case the composite metric hides valuable information about the function. 

We would recommend using outliers in each domain as a method in identifying 

complex functions. 

We were disappointed that we did not find a strong relation between the hours 

worked and changes, amount of change, and our metrics. We had hoped to discover a 

formula that would predict the hours worked based on the total change and new 

functions added. However, we based our effort analysis on only 10 versions and 

detailed information on software maintenance was not available. 

We would have liked to investigate the relation between error data and metric counts. 

However the telecommunication firm has just begun to collect error data. In particular 

we expect a high error rate in complex parts of the program which would have great 

implications on testing and software maintenance. 

Our future intention is to assist in the establishment of a metric program in the 

company where the software was developed and maintained. We like to encourage to 

use our metric tool to collect and analyze data. Correlation of the metrics and error 

data will help them to identify error-prone modules and in allocating testing 

resources. We are certain that the use of software metrics benefits the development of 

high quality software and are necessary to be successful in the future in a highly 

competitive market. 
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APPENDIX A - ANALYZER SAMPLE OUTPUT 

In this section the output of the metric analyzer on the sample input file test.txt (provided 

on disk) is given. 

A printout of the sample input file test. txt follows: 

;*********************************************************************** 
GLOBAL DEFS 

;*********************************************************************** 

VARl 

VAR2 

INTl 

INT2 

.blkb 1 

.blkb 1 

0, IRQl 

0, IRQ2 

some byte variables 

some resource bit flags 

; ************************************************************************* 

FUNCTION TESTl 

;*********************************************************************** 

.FUNC TESTl 

TESTl IF [INT2] -- 1 

JSR TEST2 

ENDIF 

A 0 

y 0 

JSR TEST2 

IF [INTl] -- 0 

[VARl] = 0 

ENDIF 

.ENDFUNC TESTl 

;*********************************************************************** 

FUNCTION TEST2 

;*********************************************************************** 

TEST2 

.FUNC TEST2 

IF [INTl] == 1 

[VARl] = $FF 

ENDIF 

IF [INT2] == 0 

[VAR2 ] = [VARl) 

ENDIF 

.ENDFUNC TEST2 

57 



To run the analyzer on the input file test.txt type the following: 

metric test.txt > testout 

To suppress the report of individual functions use the -m option (see also chapter 4). The 

output of the metric analyzer is redirected into the file testout. This file can be easily read 

into a standard spreadsheet application. A formatted output is given below: 

NAlvlE nl Nl n2 N2 Nhat V E VG LOC NCSL FIN FOUT VOUT VIN UVOUT UVIN VROUT VRIN UVROUT UVRIN 

TEST.TXT 

TESTl 
TEST2 

11 38 13 36 86 339 5168 6 40 23 2 2 3 2 

10 22 12 25 76 210 2183 3 18 l l O 2 l O l 
8 16 8 l l 48 108 594 3 9 8 2 0 2 l 2 

Figure Al. Sample Output 
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APPENDIX B - PROGRAM LISTING 

FILE METRIC.L: 

I*-

* Copyright (c) 1990 The Regents of the University of California. 

* All rights reserved. 

* 
* This code is derived from software contributed to Berkeley by 

* Vern Paxson. 

* 

* The United States Government has rights in this work pursuant 

* to contract no. DE-AC03-76SF00098 between the United States 

* Department of Energy and the University of California. 

* 

* Redistribution and use in source and binary forms are permitted provided 

* that : (1) source distributions retain this entire copyright notice and 

* comment, and (2) distributions including binaries display the following 

* acknowledgement: ''This product includes software developed by the 

* University of California, Berkeley and its contributors '' in the 

* documentation or other materials provided with the distribution and in 

* all advertising materials mentioning features or use of this software. 

* Neither the name of the University nor the names of its contributors may 

* be used to endorse or promote products derived from this software without 

* specific prior written permission. 

* THIS SOFTWARE IS PROVIDED ''AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 

* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 

24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 

25 *I 
26 

27 #include <string.h > 

28 #include <stdio.h> 

29 

30 #include "metric.h" 

31 #include 'hash.h" 

32 

33 I I external variables 

34 extern struct hash_slot far *hash_table; 

35 extern struct metric_struct metric; 

36 extern int passtwo; 

37 extern int error; 
38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

II initalizations 

int first_func = TRUE; 

int lookup_func_name = FALSE; 

int lookup_compound_statement = FALSE; 

int lookup_bytevar = FALSE; 

int lookup_bitvar FALSE; 

int lookup_equate FALSE; 
int lookup_mod_var = FALSE; 

int lookup_quote = FALSE; 

int inhibit_lookup_var = FALSE; 
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50 int slot; 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

noteol 

ws 

identifier 

comment 

bit 

constant 

%s 

( A\Il] 

[ \t] 

[0-9A-Za-z_.?]+ 

;{noteol}* 

[01234567] 

[%@$0]?[0-9A-F]+[BOQH]? 

PASSTWO 

II introduce pass two 

if (passtwo) 

BEGIN ( PASSTWO) ; 

66 <INITIAL > {comment} { I * eat up comments *I } 

67 

68 <INITIAL > (JSRIJMPIBBCIBBSIBCCIBCSIBEQIBMIIBNEIBPLIBVCIBVS) 

69 lookup_func_name = TRUE; 

70 

71 

72 <INITIAL > { identifier} {ws} * ( '=' I '. EQU') {ws} * {bit} ( ', ') 

73 lookup_bitvar = TRUE; 

74 

75 

76 

77 

REJECT; 

78 <INITIAL>{identifier}{ws}*('.blkb') 

79 lookup_bytevar = TRUE; 

80 

81 REJECT; 

82 

83 

84 <INITIAL>A{identifier}{ws}*('=') {ws}*{constant} 

85 lookup_equate = TRUE; 

86 

87 

88 

89 

REJECT; 

90 <INITIAL>{identifier} 

91 if (lookup_func_name) 

92 

93 hash_insert_token(hash_table, strupr(yytext), FUNCTION); 

94 lookup_func_name = FALSE; 

95 

96 

97 

98 

99 

100 

101 

if (lookup_bytevar) 

hash_insert_token(hash_table, strupr(yytext), BYTEVAR); 

lookup_bytevar = FALSE; 

) 102 

103 if (lookup_bitvar) 
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104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 <INITIAL>\n 

117 

118 <INITIAL>. 

119 

12 0 

121 

122 

123 

124 

125 

126 

127 

128 

<INITIAL><<EOF>> 

hash_insert_token(hash_table , strupr(yytext), BITVAR); 

lookup_bit var = FALSE; 

if (lookup_equate) 

hash_insert_token(hash_table, strupr(yytext), EQUATE); 

lookup_equate = FALSE; 

// printf('\n\n"); 

yyterminate(); 

129 <PASSTWO>A{ws}*{comment} { 

130 

131 

132 

133 

134 <PASSTWO>A{ws}*\n 

metric.ncsl--; 

metric.mod_ncsl--; 

135 inhibit_lo okup_var = FALSE; 

136 

137 

138 

139 

140 

141 

142 

143 

lookup_compound_statement 

metric.lac++; 

metric.mod_loc++; 

<PASSTWO>{comment} /* eat up comments*/ } 

FALSE; 

144 

145 

<PASSTWO>{ws}* { /* eat up white space*/ 

146 <PASSTWO>A{ws}* ( • [•){identifier} ( '] ') {ws}* ( "=') 

147 lookup_mod_var = TRUE; 

148 

149 

150 

151 

REJECT; 

152 <PASSTWO>A{ws}*('[') {identifier} (',X]'I ',Y]') {ws}*('=') 

153 if (!strcmp(metric.func_name,'CHECKD0')) 

154 lookup_mod_var = TRUE; 

155 

156 lookup_mod_var = TRUE; 

157 
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158 REJECT; 

) 159 

) 

J 

160 
161 <PASSTWO>A{ws}*('[(') {identifier}(',X)]') {ws}*( ' = ' ) 

162 lookup_mod_var = TRUE; 

163 

164 

165 

166 

REJECT; 

167 <PASSTWO>A{ws}*(' [(') {identifier}(') ,Y]') {ws}*('=') 

168 lookup_mod_var = TRUE; 

169 

170 REJECT; 

171 

172 

173 <PASSTWO>A{ws} * {identifier} {ws} * (•='I •. EQU') {ws} * {bit} (', •) 

174 inhibit_lookup_var = TRUE; 

175 

176 

177 

178 

REJECT; 

179 <PASSTWO>A(ws}*{identifier}{ws}*(' .blkb') 

180 inhibit_lookup_var = TRUE; 

181 

182 

183 

184 

REJECT; 

185 

186 

187 

<PASSTWO>A{identi fier}{ws}*( ' =') {ws}*{constant} 

188 

189 

190 

inhibit_lookup_var = TRUE; 

REJECT; 

191 

192 

<PASSTWO> ( ' ] ' I ') ' I '} ') /* eat up right paranthesis */} 

193 <PASSTWO>('\'') { /* eat up right qotes */ 

194 if (lookup_quote) 

195 lookup_quote = FALSE; 

196 else 

197 REJECT; 

198 

199 

200 <PASSTWO>" .FUNC' 

201 metric.mod_func_count++; 

metric.mod_vg++; 

lookup_func_name 

if ( ! first_func) 

TRUE; 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

halstead_function(hash_table); 

report_function(); 

hash_clear_func_count(hash_table); 

first_func = FALSE; 

62 



212 

213 

214 

2Vi 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

else 

first_func = FALSE; 

metric. l oc = O; 
metric.ncsl = 0; 

metric.vg = 1; 

metric.func_call = 0; 

metric.func_var_changed = 0; 

metric.func_unique_var_changed 

metric.func_var_read = 0 ; 

metric.func_unique_var_read = 0; 

metric.func_var_changed_pr = 0; 

metric.func_unique_var_changed_pr 

metric . func_var_read_pr = 0; 

O; 

metric.func_unique_var_read_pr = 0; 

O; 

229 

230 

hash _in sert _t oken(hash _ table, strupr(yytext), OPERATOR); 

) 

231 

232 <PASSTWO>JSR 

233 metric.func_call++; 

234 metric.mod_func_call++; 

235 

236 REJECT; 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

<PASSTWO>(IFILIFIFOR ILF ORIWHILE) 

l ookup_compound _s tatement 

metric.vg++; 

metric.mod_vg++; 

REJECT; 

247 <PASSTWO>CASEIDEFAULT 

248 metric . vg++; 

249 metric.mod_vg++; 

250 

251 

252 

253 

254 

255 

256 

257 

<PASSTWO>ENDS 

REJECT; 

metric.vg--; 

metric.mod_vg--; 

258 REJECT; 

259 

260 

261 <PASS TWO> ('.REPEAT"I '.REPEATC'I '.REPEAT I ') 

262 metric.vg++; 

263 metric.mod_vg++; 

j 264 

265 REJECT; 

TRUE; 
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) 

) 

266 

267 

268 

269 

270 

271 

272 

273 

274 

<PASSTWO>'. IF" 

metric.vg++; 

metric.mod_vg++; 

REJECT; 

275 <PASSTWO> (BBCIBBSIBCCIBCSIBEQIBMIIBNEIBPLIBVCIBVS) 

276 metric.vg++; 

277 metric.mod_vg++; 

278 

279 

280 

281 

REJECT; 

282 <PASSTWO>{identifier} 

283 if (lookup_func_name) 

284 

285 strcpy(metric.func_name , strupr(yytext)); 

286 lookup_func_name = FALSE; 

287 

288 hash_insert_token(hash_table, strupr(yytext), OPERAND); 

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

if (!inhibit_lookup_var) 

if (lookup_mod_var) 

if ((slot= hash _ search(hash_table, strupr(yytext))) >= 0) 

if ((hash_table[slot].type & (BYTEVAR I BITVAR I EQUATE)) != 0) 

if ((hash_table[slot].type & EQUATE) -- 0) 

{ 

metric.func_var_changed++; 

metric . mod_var_changed++; 

metric.func_var_changed_pr++; 

metric.mod_var_changed_pr++; 

if ((hash_table[slot).reference & FUNCCHANGED) != FUNCCHANGED) 

0) if ((hash_table[slot].type & EQUATE) 

metric.func_unique_var_changed++; 

metric.func_unique_var_changed_pr++; 

hash_table[slot].reference I= FUNCCHANGED; 

if ((hash_table[slot].reference & MODCHANGED) != MODCHANGED) 

0) if ((hash_table[slot].type & EQUATE) 

metric.mod_unique_var_changed++; 

metric.mod_unique_var_changed_pr++; 

hash_table[slot).reference I = MODCHANGED; 
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320 

321 

322 

323 

324 

32 5 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

344 

345 

) 346 

347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 

367 

368 

369 

370 

371 

372 

373 

lookup_mod_var FALSE; 

else 

if ((slot= hash_search(hash_table, strupr(yytext))) >= 0) 

if ((hash_table[slot].type & (BYTEVAR I BITVAR I EQUATE)) != 0) 
{ 

if ((hash_table[slot].type & EQUATE) 0) 

metric.func_var_read++; 

metric.mod_var_read++; 

metric . func_var_read_pr++; 

metric.mod_var_read_pr++; 

if ((hash_table[slot].reference & FUNCREAD) != FUNCREAD) 

if ((hash_table[sl ot] .type & EQUATE) == 0) 

metric.func _unique_var_read++; 

metric.func_unique_var_read_pr++; 

hash_table[slot].reference I= FUNCREAD; 

if ((hash_table[slot].reference & MODREAD) != MODREAD) 

if ((hash_table[slot].type & EQUATE) 0) 

metric.mod_unique_var_read++; 

metric.mod_unique_var_read_pr++; 

hash_table[slot].reference I= MODREAD; 

<PASSTWO>("==" I'!=' I' >' I' <' I '>=' I' <=' I' I I' I' &&' I'++' I'--') 
if (lookup_compound_statement) 

if (!strcmp(yytext, '&&')) 

metric.vg++; 

metric.mod_vg++; 

lookup_compound_statement 

if ( ! strcmp (yytext, • I I •) ) 

metric.vg++; 

metric.mod_vg++; 

lookup_compound_statement 
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374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

) 400 

401 

402 

403 

404 

405 

406 

407 

408 

409 

410 

411 

412 

413 

414 

_) 

hash_insert_token(hash_table, strupr(yytext), OPERATOR); 

<PASSTWO> ( • /. I • \ •• I • [ • I • =. I • +. I • $. I • & • I • ' • I • - • I • - • I • I • I • ' • I • *. I • % • I • #. I • ( • I • : • ) 

hash_insert_token(hash_table, strupr(yytext), OPERATOR); 

<PASSTWO><<EOF>> 

<PASSTWO>\n 

<PASSTWO>. 

yytext); 

%% 

if (!strcmp(yytext, '\'')) 

lookup_quote = TRUE; 

halstead_function(hash_table); 

report_function(); 

halstead_module(hash_table); 

report_module() ; 

hash_clear_func_count(hash_table); 

hash_clear_mod_count(hash_table); 

first_func = TRUE; 

yyterminate(); 

inhibit_lookup_var = FALSE; 

lookup_compound_statement 

metric.lac++; 

metric.ncsl++; 

metric.mod_loc++; 

metric.mod_ncsl++; 

error= TRUE; 

FALSE; 

fprintf (stderr, "undefined token in module %s: %s\n', metric.mod_name, 
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) 

_) 

FILE METRIC.H: 

1 // define some useful constants 

2 #define TRUE 1 

3 #define FALSE 0 

4 

5 // define bit constants for different types of tokens 

6 #define OPERATOR 1 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

lldefine 

lldefine 

lldefine 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

OPERAND 2 

FUNCTION 4 

BYTEVAR 8 

BITVAR 16 

EQUATE 32 

PVAR 64 

FUNCCHANGED 

FUNCREAD 2 

MO DC HANGED 

MODREAD 8 

1 

4 

19 // extension of the report output file 

20 #define REPORT_EXTENSION ' .REP' 

21 

22 

23 

24 

25 

26 

// data structure used to keep track of metric counts 

struct metric_struct { 

char mod_name[80]; 

char func_name[80]; 

27 int mod_func_count; 

28 int sum_mod_func_count; 

29 int mod_jsr_count; 

30 int sum_mod_jsr_count; 

31 

32 int loc; 

33 int mod_loc; 

34 int sum_mod_loc; 

35 

36 int ncsl; 

37 int mod_ncsl; 

38 int sum_mod_ncsl; 

39 

40 int vg; 

41 int mod_vg; 

42 int sum_mod_vg; 

43 

44 int func_call; 

45 int mod_func_call; 

46 int sum_mod_func_call ; 

47 

48 int func_var_changed; 

49 

so 
51 

int func_unique_var_changed; 

int mod_var_changed; 

int mod_unique_var_changed; 
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) 

52 int sum_mod_var_changed; 

53 int sum_mod_unique_var_changed; 

54 
55 int func_ var_changed_pr; 

56 int func_unique_var_changed_pr; 

57 int mod_var_changed_pr; 

58 int mod_unique_var_changed_pr ; 

59 int sum_mod_var _changed_pr; 

60 int sum_mod_unique_var_changed_pr; 

61 
62 int func_var_read; 

63 int func_unique_var_read; 

64 int mod_var_read; 

65 int mod_unique_var_read; 

66 int sum_mod_var_read ; 

67 int sum_mod_unique_var_read ; 

68 
69 int func_var_read_pr; 

70 int func_unique_var_read_pr; 

71 int mod_var_read_pr; 

72 int mod_unique_var_read_pr; 

73 int sum_mod_v ar _re ad_pr; 
74 int sum_mod_unique_var_read_pr; 

75 

76 

77 

78 

79 

80 

81 

int nl, n2; 

int Nl, N2; 

float Nhat; 

float V; 

float E; 

82 int sum_nl, sum_n 2; 

83 int sum_Nl, sum_N2; 

84 float sum_Nhat; 

85 float sum_V; 

86 float sum_E; 

87 }; 
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1 

2 

3 

4 

5 

6 

FILE METRIC.C: 

#include <conio.h> 

#inc l ude <string.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <a ll oc . h> 

7 #include 'metric.h' 

8 #include "hash.h' 

9 

10 II flex inputlouput files 

11 extern FILE *yyin , *yyout; 

12 
13 II metric struct keeps all metric counts 

14 struct metric _ struct metric; 

15 

16 II pointer to hash table 

17 struct hash _ slot far *hash_table; 

18 

19 II error flag 

20 int error FALSE; 

21 

22 II do pass one first 

23 int passtwo = FALSE; 

24 

25 II temporary file 

26 FI LE *fp t mp; 

27 

28 I I flags 

29 int repor t_ module _ only = FALSE ; 

30 

31 II report metric counts of function into temporary file 

32 void report_function(void ) 

33 

34 int slot; 

35 

36 II calculate jsr_count 

37 slot= hash_search(hash_table, metric.func_name); 

38 metric. mod_jsr_count += hash_table[s l ot] . jsr_count; 

39 

40 if (report_module _ only) 

41 return; 

42 

43 II if temporary file doesn "t exists create it 

44 if (!fptmp) 

45 
46 if ((fptmp = fopen('TMP', 'w+')) == NULL) 

47 { 

48 perror('Error on creating te mporary file"); 

49 exit (1); 

so 
51 
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52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 
103 

) 104 

105 

fprintf(fptmp, '%s\t',metric.func_name); 

fprintf(fptmp, • %5d\t',metric.nl); 

fprintf(fptmp, • %5d\t',metric.Nl); 

fprintf(fptmp,• %5d\t',metric.n2); 

fprintf(fptmp, • %5d\t",metric.N2); 

fprintf(fptmp, • %9.0f\t',metric.Nhat); 

fprintf(fptmp, • %9.0f\t",metric.V); 

fprintf(fptmp, • %9.0f\t•,metric.E); 

fprintf(fptmp, • %5d\t',metric.vg); 

fprintf(fptmp,• %5d\t' , metric.loc); 

fprintf(fptmp, • %5d\t',metric.ncsl); 

fprintf(fptmp,• %5d\t',hash_table[slot].jsr_count) ; 

fprintf(fptmp, • %5d\t',metric.func_call); 

fprintf(fptmp, • %5d\t' , metric.func_var_changed); 

fprintf(fptmp ,• %5d\ t ', metric.func_var_read) ; 

fprintf(fptmp , • %5d\ t',metric.func_unique_var_changed); 

fprintf(fptmp, • %5d\t',metric.func_unique_var_read); 

fprintf(fptmp,• %5d\t",metric.func_var_changed__pr); 

fprintf(fptmp, • %5d\t ' ,metric.func_var_read__pr); 

fprintf(fptmp,• %6d\ t',metric.func_unique_var_changed__pr); 

fprintf(fptmp, • %5d',metric.func_unique_var_read__pr); 

fprintf(fptmp,'\n"); 

// report all metric counts 

void report_module(void) 

static int first 

char c; 

TRUE; 

metric.sum_mod_func_count += metric.mod_func_count; 

metric.sum_mod_jsr_count += metric.mod_jsr_count; 

metric.sum_mod_loc += metric.mod_loc; 

metric.sum_mod_ncsl += metric.mod_ncsl; 

metric.sum_mod_vg += metric.mod_vg; 

metric.sum_mod_func_call += metric.mod_func_call; 

metric.sum_mod_var_changed += metric.mod_var_changed; 

metric.sum_mod_unique_var_changed += metric.mod_unique_var_changed; 

metric.sum_mod_var_read += metric . mod_var_read; 

metric.sum_mod_unique_var_read += metric.mod_unique_var_read; 

metric.sum_mod_var_changed__pr += metric.mod_var_changed__pr; 

metric.sum_mod_unique_var_changed__pr += metric.mod_unique_var_changed__pr; 

metric.sum_mod_var_read__pr += metric.mod_var_read__pr; 

metric.sum_mod_unique_var_read__pr += metric.mod_unique_var_read__pr; 

metric.sum_ nl += metric.nl; 
metric.sum_n2 += metric.n2; 
metric.sum_Nl += metric.Nl; 
metric.sum_N2 += metric.N2; 

metric.sum_Nhat += metric.Nhat; 

metric.sum_V += metric.V; 

metric.sum_E += metric.E; 

if (report_module_only) 
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) 

) 

) 

106 

107 

108 

109 

if (first) 

110 fprintf(yyout,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t %s\t%s \ t%s\t %s\t%s\ 

111 t%s\t%s\t%s\n","NAME', "FUNC', "nl', 'Nl', "n2','N2","Nhat', 'V', 'E', 'VG', 'LOC', "NCSL', 'FIN" , 'F 

112 OUT' , 'VOUT' , 'VIN","UVOUT', 'UVIN", 'VROUT','VRIN" , 'UVROUT', "UVRIN'); 

113 first= FALSE; 

114 

115 

116 else 

117 

118 fprintf(yyout,' %s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\ 

119 t%s\t%s\n", 'NAME', 'nl', 'Nl',"n2", 'N2', 'Nhat•, 'V", 'E',"VG', 'LOC', 'NCSL','FIN', 'FOUT', 'VOUT' 

120 , 'VIN', 'UVOUT', 'UVIN', 'VROUT', 'VRIN', 'UVROUT','UVRIN'); 

121 

122 fprintf(yyout, '%s\t',metric.mod_name); 

123 if (report_module_only) 

124 fprintf(yyout,• %5d\t',metr ic.mod_func_c ount); 

125 fprintf(yyout, • %5d\t' ,metric.nl) ; 

126 fprintf(yyout, • %5d\t',metric.Nl); 

127 fprintf(yyout , ' %5d\t' ,metric.n2); 

128 fprintf(yyout , • %5d\t',metric.N2); 

129 fprintf(yyout, • %9.0f\t',metric.Nhat); 

130 fprintf(yyout, • %9.0f \t' ,metric.V); 

131 

13 2 

133 

fprintf(yyout,• %9.0 f \t" ,metric.E); 

fprintf(yyout,• %5d\t',metric.mod_vg); 

fprintf(yyout,' %5d\t" ,metric .mod_ loc); 

134 fprintf(yyout,• %5d\t',metric.mod_ncsl); 

135 fprintf(yyout, • %5d\t',metric.mod_jsr_count); 

136 fprintf(yyout, • %5d\t" ,metric.m od _func_call); 

137 fprintf(yyout,' %5d\t',metric.mod_var_changed); 

138 fprintf(yyout, • %5d\t',metric.mod_var_read); 

139 fprintf(yyout,• %5d\t',metric .mod_unique_var_changed); 

140 fprintf(yyout,' %5d\t ",metric.m od _unique_var_read); 

141 fprintf(yyout,' %5d\t',metr ic.m od _var_changed_pr); 

142 fprintf(yyout, • %5d\t',metric.mod_var_read_pr); 

143 fprintf(yyout,• %6d\t',metric.mod_unique_var_changed_pr); 

144 fprintf(yyout,' %5d' ,metr ic.mod_unique_var_read_pr); 

145 fprintf(yyout, '\n'); 

146 

147 if (report_module_only) 

148 return; 

149 

150 fprintf(yyout, "\n"); 

151 

152 // get all stuff out of temporary file 

153 fseek(fptmp, 0L, 0); 

154 while (!feof(fptmp)) 

155 

156 

157 

158 

159 

c = fgetc(fptmp); 

if (c != EOF) 

fprintf(yyout, '%c", c); 
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160 

) 161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

) 212 

213 

fclose(fptmp); 

remove('TMP'); 

fptmp = NULL; 

fprintf(yyout, '\n\n"); 

II report all sums of metric counts 

void report_sum_module(void) 

char directory[80]; 

inti; 

getcurdir(0, directory); 

for (i=strlen(directory); i != 0; --i) 

if (directory[i] == '\\') 

break; 

fprintf(yyout, '\n%s\t',&directory[i+l]); 

fprintf(yyout, • %5d\t',metric.sum_mod_func_count); 

fprintf(yyout,• %5d\t",metric.sum_nl); 

fprintf(yyout, • %5d\t',metric.sum_Nl); 

fprintf(yyout, • %5d\t' ,metric.sum_n2); 

fprintf(yyout, • %5d\t' ,metric.sum_N 2); 

fprintf(yyout, • %9.0f \ t ',metric.sum_Nhat); 

fprintf(yyout, • %9.0f \t',metric.su m_V); 

fprintf(yyout, • %9.0f \t',metric.sum _E); 

fprintf(yyout, • %5d\t',metric.sum_mod _vg) ; 

fprintf(yyout,• %5d\t' ,metric .sum_mod_loc); 

fprintf(yyout,• %5d\t',metric.sum _mod_ncsl) ; 

fprintf(yyout,• %5d\t',metric.sum_mod _jsr_ count); 

fprintf(yyout,• %5d\t',metric.sum_mod_func_call); 

fprintf(yyout,• %5d\t' ,metric.sum_m od_var_chang ed) ; 

fprintf(yyout,• %5d\t',metric.sum_mod_var_read); 

fprintf(yyout,' %5d\t' ,metric.sum_mod_unique _var_ changed); 

fprintf(yyout, • %5d\t',metric.sum_mod _uniqu e_var_read); 

fprintf(yyout,• %5d\t' ,metric .sum_mod_var_changed__pr); 

fprintf(yyout, • %5d\t',metric .sum_mod_var_read__pr); 

fprintf(yyout,• %6d\t' ,metric.sum_mod _uniqu e_var_changed__pr); 

fprintf(yyout,• %5d' ,metric.sum_mod_unique_var _r ead__pr); 

fprintf(yyout, '\n'); 

II initialize metric struct 

void init_metric(void) 

metric.mod_func_count = 0; 

metric.mod_jsr_count = 0; 

metric.mod_loc = 0; 

metric.mod_ncsl = 0; 

metric . mod_vg = 0; 

metric.mod_func_call = 0; 

metric.mod_var_changed = 0; 

metric.mod_unique_var_changed 0; 
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214 metric.mod_var_read = 0; 

215 metric.mod_unique_var_read = 0; 

216 metric.mod_var_changed_pr = 0; 

217 metric.mod_unique_var_changed_pr 

218 metric.mod_var_read_pr = 0; 

219 

220 

metric.mod_unique_var_read_pr 0· ' 

221 

222 // initialize metric struct 

223 void init_sum_metric(void) 

224 

225 metric.sum_mod_func_count = 0; 

226 metric.sum_mod_jsr_count = 0 ; 

227 metric.sum_mod_loc = 0; 

228 metric . sum_mod_ncsl = 0; 

229 metric.sum_mod_vg = 0; 

230 metric.sum_mod_func_call = 0; 

231 

232 

metric.sum_mod_var_changed = 0; 

metric.sum_mod_unique_var_changed 

233 metric.sum_mod_var_read = 0; 

234 metric.sum_mod_unique_var_read = 0; 

235 metric.sum_mod_var_changed_pr = 0; 

0; 

0; 

236 metric.sum_mod_unique_var_changed_pr 

237 metric.sum_mod_var_read_pr = 0; 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

metric.sum_mod_unique_var_read_pr 

metric.sum_nl 0; 

metric.sum_n2 0; 

metric.sum_Nl 0; 
metr ic.sum_N 2 0; 

metric.sum_Nhat 0 · ' 
metric.sum_V 0; 

metric.sum_ E 0; 

248 void help () 

249 

O; 

0; 

250 printf(•metric [[ @]filename] [-mh] \n\n"); 

251 printf(•-m output modules only\n'); 

252 printf("-h help screen\n\n"); 

253 printf('filename is an input file.\n"); 

254 printf("@filename is a file that contains multiple input files of a project.\n'); 

255 

256 

257 int main(int argc, char** argv) 

258 

259 FILE *project_file = NULL; 

260 char fname[80]; 

261 int first_file = TRUE; 

262 char directory[80]; 

263 inti; 

264 

265 // get arguments 

266 ++argv; --argc; 

267 if (argc > 0) 
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) 

) 

268 

269 

270 

271 

272 

273 

274 

if (strstr(argv[O], '-h')) 

{ 

help(); 

exit(l); 

275 II is it a project file? 

276 if (argv[O][O] == '@') 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

if ( (project_file = fopen(&argv[O] [1], 'r')) 

perror('Error on reading project file"); 

exit(l); 

II otherwise it's a single file 

else 

yyin = fopen(argv[O], 'r"); 

strcpy(metric.mod_name , strupr(argv[O))); 

292 II or worse, it"s from stdinput 

293 else 

294 

295 

296 

297 

298 

yyin = stdin; 

strcpy(metric.mod_name, 'STDIN'); 

299 II anything else 

300 if (argc > 1) 

301 if (argv[l) [OJ == ' - ') 
302 { 

303 

304 

305 

306 

if (strstr(argv[l), 'm")) 

report_module_only = TRUE; 

307 yyout = stdout; 

308 

309 II initialize metric struct 

310 init_metric(); 

311 init_sum_metric(); 

312 

II allocate memory for hash table 

NULL) 

313 

314 

315 

316 

hash_table (struct hash_slot* far) farmalloc(HASH_TABLE_SIZE 

hash_slot)); 

if (hash_table NULL) 

317 

318 perror('Error on creating hash table'); 

319 exit(l); 

) 320 

321 
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* sizeof(struct 
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) 

) 

322 

323 

324 

II initialize hash table 

hash_init(hash_table); 

325 II put in all operators 

326 hash_init_operators(hash_table); 

327 

328 II put in all processor registers and predefined resources 

329 II hash_init_registers_resources(hash_table); 

330 

331 II if it is a single file 

332 if (!project_file) 

333 

334 yylex(); 

335 fseek(yyin, 0L, 0); 

336 passtwo = TRUE; 

337 yyrestart(yyin); 

338 yylex(); 

339 

340 

341 

342 

343 

344 

345 

if (error) 

fprintf(stderr, •error occurred.\n"); 

return(0); 

346 II otherwise proceed project file 

347 for (i=0; i<2; i++) 

348 

349 

350 

while (fgets(fname, sizeof(fname), project_file) != NULL) 

fname[strlen(fname)-1) = '\0'; 351 

352 

353 

354 

yyin = fopen(fname, "r"); 

strcpy(metric.mod_name, strupr(fname)); 

355 

356 

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 

367 

if (yyin) 

{ 

} 

if ( ! first_file) 

yyrestart (yyin); 

init _metric(); 

yylex(); 

fclose (yyin) ; 

first file= FALSE; 

368 II set pass two and do it again 

369 fseek(project_file, 0L, 0); 

370 passtwo = TRUE; 

371 

372 

373 fclose(project_file); 

374 

375 if (report _module_only) 

75 



376 report_sum_module(); 

) 377 

378 if (error) 

379 fprintf(stderr, •error(s) occurred . \n • ) ; 

380 

381 return O; 

382 

) 
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FILE HASH.ff: 

1 II define hash table size 

2 #define HASH_TABLE_SIZE 1999 

3 

4 II define identifier length 

5 #define ID_LENGTH 10 

6 

7 II data structure that is stored in the hash table 

8 struct hash_slot { 

9 int key; 

10 char identifier[ID_LENGTH]; 

11 int mod_count; 

12 int func_count; 

13 int jsr_count; 

14 int type; 

15 int reference; 

16 } ; 

) 

) 
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5 

6 

7 

8 
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10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
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23 

) 
24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

FILE HASH.C: 

#include <stdio.h> 

#include <string.h> 

#include <math.h> 

#include <values.h> 

#include •metric.h' 

#include 'hash.h' 

// needs access to metric struct 

extern struct metric_struct metric; 

// #define DEBUG 

// double hashing function 

int hash(int k, inti) 

long hash_value; 

hash_value = k % 1999; 

if(i!=0) 

hash_value += i * (long) (1 + (k % 1997)); 

hash_value %= 1999; 

if (hash_value<0) 

perror('Error on hash'); 

exit (1); 

return (hash_value); 

// insert some string into hash table 

int hash_insert(struct hash_slot* table, char* id) 

int i = 0; 

int j; 

int key; 

key str2key(id); 

do { 

j = hash(key,i); 

if (table[j].key == -1) 

{ 

table[j].key = key; 

strcpy(table[j] .identifier, id); 

return(j); 

else 

i++; 
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53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

) 78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

} while (i<HASH_TABLE_SIZE); 

perror('Error on hash_insert"); 

exit (1); 

// lookup some string in hash table 

int hash_search(struct hash_slot* table, char* id) 

inti= 0; 

int j; 

int key; 

key str2key(id) ; 

do { 

j = hash(key,i); 

if ((table[j].key 

return j; 

key) && (!strcmp(table[j] .identifier, id))) 

i++; 

while ((table[j].key >= 0) && (i<HASH_TABLE_SIZE)); 

return(-!); 

// build hash key 

int str2key(char* s) 

inti, key; 

key = 0; 

for (i=0; i<strlen(s); i++) 

key"= s[i]; 

return key; 

// insert a token with a given type into hash table 

int hash_insert_token(struct hash_slot *table, char *s, int type) 

int slot; 

if ((slot= hash_search(table, s)) < 0) 

slot= hash_insert(table, s); 

if (! ((table[slot].type == OPERATOR) && (type 

table[slot].type I= type; 

if ((type== OPERATOR) I I (type 

{ 

table[slot].mod_count++; 

table[slot].func_count++; 

if (type== FUNCTION) 

table[slot].jsr_count++; 

OPERAND)) 
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111 
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133 

134 
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136 

137 

138 

139 

140 
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142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

return slot; 

// initialize hash table 

void hash_init(struct hash_slot* table) 

inti; 

for(i=0; i <HASH_TABLE_SIZE; i++) 

table[i].key = -1; 

strcpy(table[i].identifier,''); 

table[i].mod_count = 0; 

table[i] .func_count = 0; 

table[i].jsr_count 0; 

table[i].type = 0; 

table[i].reference 0; 

// clear function counts of hash table 

void hash_clear_func_count(struct hash_slot* table) 

inti; 

for(i=0; i <HASH_TABLE_SIZE; i++) 

table[i].func_count = 0; 

table[i].reference &= (~FUNCCHANGED); 

table[i].reference &= (~FUNCREAD); 

// clear module counts of hash table 

void hash_clear_mod_count(struct hash_slot *table) 

inti; 

for(i=0; i <HASH_TABLE_SIZE; i++) 

table[i].mod_count = 0; 

table[i].reference 0; 

// insert operators into hash table 

void hash_init_operators(struct hash_slot *table) 

FILE *operators; 

int slot; 

char s[ID_LENGTH]; 

if ((operators= fopen('OP.TXT", 'r")) NULL) 
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187 
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189 

190 

191 

192 

193 
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209 

210 

211 

) 212 

213 

perror("Error on reading operator file') ; 

exit (1); 

while (!feof(operators)) 

fgets(strupr(s),ID_LENGTH,operators); 

s[strlen(s)-1] = '\0'; 

slot= hash_insert(table, s); 

table[slot].type = OPERATOR; 

fclose(operators); 

// calculate halstaeds counts for functions 

void halstead_function(struct hash_slot *table) 

inti; 

metric.nl = metric.n2 = metric.Nl 

for(i=0; i<HASH_TABLE_SIZE; i++) 

if (table[i] .func_count != 0) 

if ((table[i].type & OPERATOR) 

{ 

metric.nl++; 

metric.N2 

OPERATOR) 

metric.Nl += table[i].func_count; 

if ((table[i].type & OPERAND) OPERAND) 

metric.n2++; 

metric.N2 += table[i].func_count; 

if (metric.n2 == 0) 

O; 

perror('halstaed's n2 is 0, division by zero"); 

exit(l); 

metric.Nhat = metric.nl * log(metric . nl)/log(2) + metric.n2 * log(metric.n2)/log(2); 

metric.V (metric.Nl + metric.N2) * log(metric.nl + metric.n2)/log(2); 

metric.E ( (metric.Nl + metric.N2) * log(metric.nl + metric.n2) /log(2) * metric.nl * 

metric.N2) / (2 * metric.n2); 

/ / calculate halstaeds counts for module 

void halstead_module(struct hash_slot *table) 

inti; 
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) 

) 

214 

215 

216 

metric.nl = metric.n2 = metric.Nl metric.N2 

217 for(i=0; i<HASH_TABLE_SIZE; i++) 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

if (table[i].mod_count != 0) 

if ((table[i].type & OPERATOR) 

{ 

metric.nl++; 

metric.Nl += table[i].mod_count; 

OPERATOR) 

if ((table[i].type & OPERAND) OPERAND) 

metric.n2++; 

metric.N2 += table[i].mod _ count; 

235 if (metric.n2 == 0) 

236 

O; 

237 perror('halstaed's n2 is 0, division by zero'); 

2 3 8 exit ( 1) ; 

239 

240 

241 

242 

243 

metric.Nhat = metric.nl * log(metric.n1)/log(2) + metric.n2 * log(metric.n2)/log(2); 

metric.v 

metric.E 

(metric.Ni+ metric.N2) * log(metric.nl + metric.n2)/log(2); 

( (metric.Nl + metric.N2) * log(metric.nl + metric.n2) /log(2) * metric.nl * 

244 metric.N2) / (2 * metric.n2); 
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