
(

REAL-TIME SOFTWARE METRICS

Andreas Roesch

Computer Science Department

Oregon State University

Corvallis, Oregon 97331-3202

A project submitted to Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Completed May 10.1993

)

ACKNOWLEDGMENTS

A special note of thanks goes to Curt Cook, my advisor for the many hours of

discussions required to get me going in the right direction. All of his help was

invaluable.

I also owe very special thanks to my wife, Dagmar who put up with me while I went

through this whole process. I also like to mention my son, Alexander Justin who gave

me interesting new ideas while playing with the keyboard of my computer.

To these people and everyone else I forgot to mention, thanks.

TABLE OF CONTENTS

1. lntroduction ... 1

2. Real-Time Systems .. 4

2.1 Reactive Embedded Real-Time Systems ... 4

2.2 Development Overview .. 6

2.3 System Overview 7

2.4 The Structured Macro Assembly Language .. 8

3. Software Complexity Metrics .. 11

3.1 Size Metrics ... 11

3.2 Data Structure Metrics ... 13

3.3 Control Flow Metrics ... 13

3.4 Information Flow Metrics ... 13

4. Software Metrics Tool ... 15

4.1 Metrics Computed by the Analyzing Tool.. ... 15

4.2 How to Use the Analyzer Tool ... 17

4.3 Implementation Details ... 18

5. Program Evolution .. 20

5.1 Evolution of the Real-Time Software .. 20

5.2 Identifying Change Prone Modules ... 31

6. Software Metrics .. 33

6.1 Characteristics of Real Time Software .. 33

j

)
6.2 Analysis of Software Complexity Metrics ... 34

6.2.1 The Exploratory Factor Analysis Technique 37

6.2.2 Results of The Principal Component Factor Analysis 38 I
6.2.3 Relative Complexity Metrics .. 41

6.2.4 Metrics Reduction .. 46

6.3 Real-Time Software Complexity Metrics .. 47

7. Program Effort Analysis .. 49

8. Conclusions .. 53

9. References ... e••·· 55

Appendix A - Analyzer Sample Output .. 57

) Appendix B - Program Listing .. 59

J

)

j

ABSTRACT

This study describes the software metrics analysis of 10 releases of an embedded real­

time telephone switching system developed by a German telecommunications firm.

The micro-controlled application was written in a C-like macro assembly language.

We developed a metrics program that computes the standard complexity metrics plus a

number of information flow metrics.

The releases of the real-time software satisfies published laws of software evolution,

e.g. continuing change, increasing entropy, and total change is not uniform over the

changed modules. The data also supports Harrison and Cook's program maintenance

decision model [7]. We propose the change standard deviation as a threshold for their

model.

A multivariate analysis of the metrics computed with our metric analyzer program

identified four underlying complexity domains: size, information flow into functions,

information flow out of functions and control flow. We also found that the information

flow metrics characterize real-time complexity better than the standard software

complexity metrics, e.g. Halstead's Software Science, LOC, McCabe's Cyclomatic

Complexity. We also investigated the relations between programming hours for the

various releases and the program changes and changes in metric values.

)

1. INTRODUCTION

Real-time software is generally designed to control a process interactively, as the

process unfolds in time. Examples are control of airplanes (avionics), control of

transportation systems (e.g. BART), and control in automobiles and appliances. The

unique feature of real-time software is the time constraint - all subtasks must meet

individual timing requirements.

Real-time software is considered to be different from other software. The timing

constraint may mean a different design or testing methodology. In this paper we

investigate the evolution and complexity of real-time software. The basic questions

we address are:

1. Can we characterize the evolution of real-time programs?

2. What are the underlying complexity domains in real-time programs?

2. What types of software metrics identify the complex parts of real-time programs?

3. What is the relation between programming effort and program changes?

In an attempt to answer these questions we analyzed 10 releases of a real-time

telephone switching system program developed by a German telecommunications

finn. We developed a software metrics tool that computed a variety of measures.

From the measures we were able to study the changes between successive releases for

all 10 releases. We also investigated the relation between the programming hours for

the 10 versions and software metrics.

In chapter 2 we describe the real-time program and give an overview of the system

design and development process. We will show that the software can be characterized

as a reactive and embedded hard real-time system.

In Chapter 3 we give an introduction to software complexity and software complexity

metrics. We describe some of the most common metrics out of the four traditional

classes of software complexity metrics: size metrics, data structure metrics, control

flow metrics and information flow metrics.

I
I

)

)

Chapter 4 describes the metric analyzer program we developed and the metrics it

computes. Note that our tool computes the traditional software complexity metrics

plus a number of information flow metrics.

Chapter 5 investigates the evolution of the program. Characterizing the evolution of

the program both in terms of the number of functions changed and the amount they

are changed has important implications for both software maintenance and

development. For example, Harrison and Cook [7] proposed a maintenance change

model to determine whether a given software module can be effectively modified or

whether it should be completely redesigned and rewritten. Complete redesign and

rewrite is expensive, but it is even more expensive if the module structure has

seriously deteriorated with severe ripple effects. From software evolution data they

found that a few modules account for most of the total amount of maintenance

changes. Since a module's complexity increases and its structure deteriorates with

changes, it is important to detect modules that will undergo a large number of

changes. The early identification of a these change prone modules will allow a

complete redesign and rewrite of the module and thereby greatly reduce the cost of

later changes to the module. They suggested early identification of the change prone

modules through changes in software metrics across release cycles and proposed

setting a threshold. Once the total change to a module exceeds the threshold the

module is classified as change prone and is redesigned and rewritten the next time it

undergoes maintenance. Our results confirm this maintenance change model and

suggests using the standard deviation of the Halstead's Volume changes as a

threshold.

In chapter 6 we studied the internal structure of the set of metrics computed with the

analyzer tool. In order to understand the relation among metrics, we applied a

statistical technique known as factor analysis. Munson and Khoshgoftaar [16, 17, 18]

found that most metrics are measuring the same elements of a rather small set of

orthogonal complexity domains. There are relatively few distinct sources of variation

among metrics. Our results show that the 18 metrics map onto four underlying

complexity domains: size, information flow into functions, information flow out of

2

I

)

)

functions and control flow. We found that the infonnation flow metrics contribute

considerable variation to the factor model and characterize real-time complexity

better than the standard complexity metrics. The real-time functions have a much

higher average in and out flow of infonnation than non-real-time functions.

In the chapter 7 we relate programming hours for the various releases to program

changes and the software metrics. Our conclusions and future work are discussed in

chapter 8.

3

)

)

J

2. REAL-TIME SYSTEMS

In this chapter we will give an overview of the system design and the development

process of the software used in this study. We will show that the application can be

classified as a reactive and embedded hard real-time system.

2.1 REACTIVE EMBEDDED REAL-TIME SYSTEMS

A real-time system is a system whose correctness depends on timeliness as well as

logical correctness . Real-time systems must satisfy explicit bounded response time

constraints or it is assumed that it will fail. A failure is defined as the inability of the

system to perform according to system specification. In the case of the Space Shuttle

or a nuclear power plant it is painfully obvious when a failure has occurred. Failure to

respond quickly to a nuclear reactor over-temperature problem, could result in a melt­

down. For other systems, such as a telephone switching system, the notion of a failure

is less clear. A telephone switching system for example must be able to handle a peak

rate of incoming internal and external calls, when all subscribers try to make a call at

once.

Real-time systems are often reactive or embedded systems. Reactive systems are

those which have some ongoing interaction with their environment. One system

constantly reacts to buttons pressed asynchronously by an operator. Embedded

systems are those used to control specialized hardware and lack an operating system

and associated devices for general user interface. For example the software used to

control the Space Shuttle is reactive and highly embedded.

Further , literature distinguishes between soft and hard real-time systems [10]. Soft

real-time systems are systems where performance is degraded by failure to meet

response time constraints. For example an airline reservation system may degrade

under heavy load, but it will eventually process all passenger requests accurately.

Systems where failure to meet response time constraints leads to catastrophic results

4

)
are called hard real-time systems. The telephone switching system described in this

section is a reactive embedded hard real-time system.

5

)

)

2.2 DEVELOPMENT OVERVIEW

In this study we analyzed ten versions of an embedded micro-controlled telephone

switching system program developed by a German telecommunications firm over a

period of two years. The programming team consisted of 3 experienced programmers.

The detailed hardware design was completed before software development started.

Thus, the software design was constrained by the given hardware resources.

A fully functional a-version of the size 10,577 lines of code and 223 functions in 13

modules was released in December 1990. Up to this date 1,771 programming hours

were spent on system design, coding, testing and system integration. Most of the

change activity for the 9 later versions can be characterized as perfective maintenance.

The last version which consists of 13,621 line of code and 359 functions was released

in June 1992. Over the nine releases 1,456 hours were spent on maintenance. Figure

2.1 shows the release dates and cumulative hours for each release starting with the

first release.

3500

3000

2500

t! 2000
::,
0
:c 1500

1000

500

0

2- 13-
Dec- Feb-

90 91

Cummulatlve Programmlmg Hours

27- 11- 23- 8- 28- 17- 6- 2-
Feb- Mar- Apr- May- Jun- Feb- Mar- Jun-
91 91 91 91 91 92 92 92

Version

Figure 2.1. Development Schedule

6

)

J

2.3 SYSTEM OVERVIEW

The telephone switching system supports up to four telephone sets. Each telephone

set may be used independently of the other sets. A subscriber can either communicate

with one of the other telephone units or connect to an external dial-up network.

The software controls about 50 input and output lines connected to a single-chip

micro controller. Some of the it;lputs are checked frequently and deadlines to evaluate

incoming events must be met within milliseconds. For example the frequency of

incoming calls has to lie in a well defined range of frequencies in order to be identified

as a call. Further the call must have a specific signal pattern to be valid. This is

necessary to distinguish between valid calls and noise on telephone lines.

Similar time constraints are defined for all external in- and outgoing signals to ensure

fail safe operation of the system. Every telephone switching system has to pass a fmal

admission test, similar to the FCC regulations, where all time requirements are

checked carefully. If response time constraints are not met within the specified range

the system will fail. Accordingly the application can be classified as a hard real-time

system. Since the micro controller lacks an operating system as well as system

software for interface handling the software is highly embedded. Further, several

hardware resources are mutually exclusive and non-preemptive. For instance the

single tone dial unit is shared between the four telephone units. Hence concurrency

control has to be provided among processes.

The underlying software implementation is based on finite automata with a total of 39

finite automata and 8 interrupt-handler. The main application program for all four

telephone sets checks the current state of execution for each process (telephone unit)

every ten milliseconds. Each process has its own set of global variables to store state,

incoming external events, and additional information about the process. The real-time

control part checks incoming and outgoing external signals every millisecond. All

input and output drivers of the micro controlled hardware were completed prior to

the first release in December 1990. Few changes to the interface modules were made

during program maintenance.

7

)

)

.J

Events to and from the real-time control to the main application are also passed via

global memory. Because of limited storage space (typically less than 512 bytes of

RAM in today's single-chip micro controller chips) parameters are not passed using

the processor's stack, but instead information is exchanged through global memory or

processor registers. This is one reason why information flow and information flow

density turn out to be important complexity metrics for this real-time system.

2.4 THE STRUCTURED MACRO ASSEMBLY LANGUAGE

The software was written in a structured relocatable macro assembly language. The

basic instruction set of the assembler language contains the following C-like control

structures: ASSIGNMENT, IF-THEN-ELSE, FOR-NEXT, DO-WHILE , SWITCH­

CASE, BREAK and CONTINUE statements:

ASSIGNMENT Statement:

C = 0
BIT_A5 = 0
[WORK] = 10
[WORKl] = [WORK2]

IF - ELSE - ENDIF Statement:

IF [FLAG]
[WORK] = 1

ELSE
[WORK] = 2

ENDIF

FOR - NEXT Statement:

FOR [FLAG]
JSR OUTPUT

NEXT

DO - WHILE Statement:

DO
JSR OUTPUT

WHILE [FLAG]

8

)

)

_)

SWITCH - CASE - ENDS Statement:

SWITCH [WORK]
CASE 1

JSR OUTPUTl
BREAK

CASE 2
JSR OUTPUT2
BREAK

CASE 3
JSR OUTPUT3
BREAK

DEFAULT
JSR OUTPUT4

ENDS

With these structured commands it is possible to program without using GOTO

statements such as BRANCH and JUMP statements of the assembler language. For

example the use of an IF-THEN-ELSE statement eliminates the need to create labels.

This greatly simplifies programming and leads to easy to read Single-Entry-Single­

Exit structured programs. GOTO statements were almost entirely avoided in this

project. Most of the code is written using only the structured macro language. Only

when necessary were assembly language statements used.

9

)

.J

A code sample is given below:

.FUNC CLRKPT
·** I

CLRKPT
PARAMETER
GLOBAL
RETURN

CLEAR KPT
VOID
VOID
VOID

· ** I

CLRKPT
X = 0
y = 0

DO
DO

A= y
[PORT2] =AI [KPTKTZ,X]
IF [PORT2] == $20

[STROBE] = 1
ELSE

[STROBE] = 0
ENDIF

WHILEY< 16
y = 0

X = ++X
WHILE X < 8
[OUTBLl] = 0
[OUTBL2] = 0
[PROMFF] = [PROMFF] & $F0
RTS

.ENDFUNC CLRKPT

10

)

3. SOFTWARE COMPLEXITY METRICS

Software complexity metrics are objective measures of how complex source code is
and how difficult it may be for a programmer to test, maintain, or understand

programming source code [4]. Software complexity metrics do not measure the

complexity itself, but instead measure the degree to which those characteristics

thought to contribute to complexity exist within the source code [19]. Many different

complexity metrics have been proposed and there is no agreement as to which

program characteristics contribute most to the complexity of a program . However,

there are four traditional classes of software complexity metrics that characterize

different aspects of program complexity: size metrics, data structure metrics, control

flow metrics and information flow metrics . In the following sections of this chapter

we describe some of the most common metrics out of each group.

3.1 SIZE METRICS

Almost everyone agrees that the amount of effort necessary to construct a program

depends upon the number of lines that are written. Thus the line of code measure is
probably the most widely used metric in software complexity analysis. It is an

important factor in many models of software development and easy to compute after

the program is completed. Although lines of code seem to be a simple measure, there

is no general agreement about what constitutes a line of code. But most researchers

agree on the following two definitions:

1. LOC (lines of code) is any line of program text that is delivered to the customer

and includes comment and blank lines. Sometimes also referred to as DSL

(deliverable source lines).

2. NCSL (non commentary source lines) is any line of a program that is not

exclusively a comment or a blank line.

Size measure of larger and smaller granularity have been proposed . For example, in a

large program, the number of functions is commonly used. At the other extreme , the

11

)

)

_)

number of tokens is a size measure that accounts for differences in the number of

components in a line of code. The token count is like a weighted line count.

Halstead [6] proposed a large family of size metrics called Software Science based on

token counts. His theory of Software Science [6] is probably the best known and

most thoroughly studied composite measures of software complexity. Software

Science measures are based on four counts of primitive tokens in the program:

nl = the number of unique operators that appear in a program

n2 = the number of unique operands that appear in a program

Nl = the total number of operator occurrences

N2 = the total number of operand occurrences

One composite measure of size, called length, is the total number of tokens, which is

the sum of the total operator and operand count: N = Nl + N2. Halstead also defines

the term vocabulary, the sum of unique operators and operands: n = nl + n2. Further

he hypothesized that the length of a well-structured program, Nhat, is a function of

the number of unique operator and operand: Nhat = nl log2 nl + n2 log2 n2.

Halstead suggested another commonly used measure for the size of a program, called

Volume: V = N log2 n. Volume may also be interpreted as the number of mental

comparisons needed to write a program of length N. Another metric from this family

is Effort, which is based on the program Volume and the program Level, where Level

is a measure of abstraction in a particular implementation of an algorithm. Effort is

defined as: E = V / L = (nl N2 N log2n) / (2 n2).

12

l

)

J

3.2 DATA STRUCTURE METRICS

Data structure metrics capture the amount of data, the usage of data in a module, and

the degree to which data is shared among modules. Like to size metrics there are

various methods to measure data structure in a program. One simple way for

determining the amount of data is to count the number of entries in the cross­

reference list generated by compilers and assemblers. Such a count of variables is

referred to as VARS. Other popular data structure measures are Halstead's n2 and

N2.

3.3 CONTROL FLOW METRICS

Control metrics measure the complexity of the logic structure of the program. By far

the most popular control flow metric is the Cyclomatic Complexity V(G) proposed by

McCabe [12]. V(G) is a count of the number of linearly independent paths through a

program and is a measure of the programs control flow. It is calculated from the

formula: V(G) = e - n + 2, where e is the number of edges and n is the number of

· nodes in the flow graph. It turns out that McCabe's Cyclomatic Complexity can be

easily computed by simply adding one to the total count of decisions in a program.

Other control metrics are nesting depth and number of distinct paths in a program.

3.4 INFORMATION FLOW METRICS

Information flow metrics measure directly the system connectivity by observing the

flow of information or control among system components. They focus on the

interface between the major levels in a hierarchically structured program. By

observing communications among the system components measurements for

complexity, module coupling and module interaction can be defined. Henry and

Kafura [8] proposed an information flow metric based on module length, fan-in and

fan-out. They defined the fan-in of a module as the number of modules that pass data

directly or indirectly to the module. Similarly the fan-out of a module is the number of

modules to which data is passed either directly or indirectly. They have shown that

13

)

J

information flow of system interconnectivity gives reasonable results in measuring

changes to large-scale systems.

A major drawback of Henry and Kafura's information flow metric is that it is not

easily computed.·A more readily available measure of interconnectivity is given by the

function call chart, which reflects the hierarchical structure of modules within a

program.

14

r

)

4. SOFTWARE METRICS TOOL

We wrote a software metrics analyzer program that computed a variety of standard

software complexity metrics [3] (Lines of Code (LOC), Noncommentary Source

Lines (NCSL), Halstead's Software Science measures (V,E), and McCabe's V(G)).

These were straightforward to compute since much of the program was written using

the C-like control structures. Since communication among system components is an

important aspect in real-time systems we also included a set of information flow

metrics. In the following sections we will define the metrics calculated by our analyzer

tool. We will explain how the tool can be used and provide an overview of its

software design.

4.1 METRICS COMPUTED BY THE ANALYZING TOOL

The software metrics analyzer program computes a number of traditional software

complexity metrics. The abbreviations for the complexity metrics used in our study

are given below:

nl =

n2=

Nl=

N2=

Nhat=

V=

E=

V(G) =
LOC=

NCSL=

Number of unique operators

Number of unique operands

Total number of operator occurrences

Total number of operand occurrences

Halstead's Length

Halstead's Volume

Halstead's Effort

McCabe's Cyclomatic Complexity

Line of Code

Noncommentary source lines

15

)

We included two metrics that measure interconnectivity among modules within a

program:

FIN=

FOUT=

Number of times a function is called by another function

Number of times a function calls another function

Because of indirect calls, FIN and FOUT counts are only approximations to the actual

number of calls.

Since this was a real-time application in which considerable information is passed via

global data, we counted the number of global and resource variables referenced

and/or changed. Notice that we differentiate between resource and global variables.

The resource variables refer to the variable identifiers through which the programmer

accesses timers, I/O ports, serial interfaces, interrupt inputs, and special registers.

These are assigned by the system. Global variables are programmer defined variables.

The following information flow metrics are computed:

VOUT = Number of times global variables are changed

VIN= Number of times a global variables are referenced

UV OUT = Number of unique global variables changed

UVIN = Number of unique global variables referenced

VROUT = Number of times global and resource variables are changed

VRIN = Number of times global and resource variables are referenced

UVROUT = Number of unique global and resource variables changed

UVRIN= Number of unique global and resource variables referenced

16

J

4.2 How TO USE THE ANALYZER TOOL

The metric analyzer program metric.exe is written for IBM-PC and compatible

systems. It analyses structured relocatible assembly language code of Mitsubishi's

micro-controller series MELPS 740 [13, 14]. The metric tool requires the file op.txt

where the operators of the assembly language are specified. All other tokens are

considered as operands.

The program can analyze a single input file as well as an entire project. The output file

in form of a table has one output-line for each function. The first output-line is a

column header, the second is a summary for the complete module (input file) followed

by the metric counts for individual functions. The printout of the detailed metric count

for each function can be suppressed by specifying a command line parameter. A

function is identified by the pseudo-command .FUNC function-name (see also

example in chapter 4 and Mitsubishi's User's Manual [13]).

The metric analyzer allows the use of the following command line parameters:

metric [[@]filename] [-mh]

Where filename is a single input file, @filename is a project file that contains one or

more input files. If there is no input file specified the analyzer reads from standard

input. Parameter -m suppresses the output of the metrics for individual functions and

reports modules only. Parameter -h prints out a help screen. The report is printed to

standard output and can be easily redirected into a file. Since all table entries are

separated by tabulators the report file can be read into standard spreadsheet

applications.

It is important to know that the metrics reported in the summary for an entire module

are not always the simple sum of the metrics for individual functions. In particular

Halstead's nl, n2 and the unique information flow metrics for the module summary

are based on the entire input file for the module summary. Hence, Halstead's Length

Nhat, Volume V and Effort E are also different for the module summary output.

17

)

)

It should also be noted that the computation of the function call hierarchy (metrics

FIN and FOUT) is for an entire project. Otherwise function calls to and from a single

input file from other project files can not be considered.

4.3 IMPLEMENTATION DETAILS

The metric analyzer is written in C and runs under DOS and IBM-PC compatible

systems. The tool contains 3 source files with 1.SK deliverable source lines. It is

written and compiled with Borland C++ 3.1.

The lexical analysis of the input files is performed with a tool called FLEX. FLEX is

an lexical analyzer similar to the UNIX tool lex and was developed by the University

of California, Berkeley. The FLEX tool is portable to various platforms like UNIX ,

DOS, MACINTOSH etc. The analyzer processes each input file twice. This is

necessary to calculate the function call hierarchy across multiple input-files. Since the

semantics of assembly language is not complex, the entire language structure is

recognized by using state variables.

The major data structure in the analyzer tool is a symbol table that holds all

recognized tokens of the assembly as well as the C-like macro language. For fast

access an open addressing hashing scheme is used. A double hashing algorithm is used

to avoid clustering in the hash table . Once the symbol table is complete most metrics

are computed by scanning through the symbol table.

The entire project consists of the following source files (a complete printout is given

in Appendix A): Metric.c and metric.h contain the main program, functions to process

input files, functions to output the metric counts and the data structures to count the

metrics. Metric.[holds the lexical definitions for the analyzer tool and serves as an

input to FLEX. The output file produced with the FLEX compiler is named lexyy. c.

Hash.c and hash.h implement functions to build and manipulate the symbol table. The

project build file includes the files metric.c, hash.c and lexyy.c. The huge memory

model should be used to recompile the software.

18

I

)

)

It is interesting to note that we discovered inconsistencies in programming style in a

variety of functions during development of the metric analyzer tool. When verifying

the functionality of the analyzer tool we were sometimes puzzled that very different

programming techniques were used. For example, within an indexed addressing

scheme programmers used the index register as the base address and manipulated the

base address for index calculations. The inconsistencies appear in some but not all

functions and are probably due to a lack of coding standards. It is very likely that

missing coding standards lead to code that is difficult to comprehend and therefore

hard to maintain. Unfortunately it is very difficult to recognize these inconsistencies

with a metric analyzer tool.

19

)

)

5. PROGRAM EVOLUTION

In this section we look at the evolution of the program. The first question we

addressed was to characterize the evolution of the program. In particular we were

interested in the distribution of changes that were made during program maintenance.

Did the changes coincide with what other software maintenance studies have found?

Or were they different because the program was a real-time application? In the last

part of this section we show that our data supports the maintenance change model

proposed by Harrison and Cook and suggests using the standard deviation of the

changes in volume as a threshold.

5.1 EVOLUTION OF THE REAL-TIME SOFTWARE

There were ten versions of the program. The first version of the program was

released in December 1990 and the tenth in June 1992. The time between versions

ranged from twelve days to several months. The final version of the program is made

up of thirteen modules each of which consists of one or more functions. For each

version, Table 5.1 gives the release date, and number of functions in each module.

Lehman [11] and Belady and Lehman [l] studied the program maintenance changes in

a variety of software systems over a period of years. Since software does not wear

out or break, they felt that the term "software evolution" more accurately described

the pattern of changes to the programs. From their observation they formulated Laws

of Program Evolution. The two most important and universally accepted of these

laws are:

1. All useful programs undergo continuing change. Useful programs are

continually improved through the addition of new features as evidenced by the

number of commercial products (MS DOS, Lotus 1-2-3, UNIX, etc.) that have

evolved through a number of major release cycles.

2. Over time, programs exhibit increasing entropy. As changes are made to a

program, its structure degrades and its size increases, resulting in increased

20

)

_)

complexity. Lehman and Belady [l] cite an IBM operating system that increased from

3,682 modules to 4,800 modules over four major release cycles. Increasing entropy

makes program maintenance increasingly more difficult. Ultimately, the program will

need to undergo a major and expensive overhaul or will be replaced by another

program. One sign of entropy is an increasing ripple effect as a change to one part of

the software affects a higher percentage of the other parts of the software

In a study of a successive versions of a real-time embedded software system, Harrison

and Cook [7] noticed that most of the total change was concentrated in a few

modules. This led them to propose another law of software evolution.

3. Total program change is not uniform over the changed modules. Most studies

of software evolution look at the number of modules changed in successive versions.

These studies have found that less than half of the modules are changed. Harrison and

Cook looked more closely at the amount of changes in successive versions. They

found that changes to 10% of the modules accounted for 60% of the total change.

Our data for the 10 versions supports all of these laws. Table 5.1 gives an overview of

all metrics computed with our metric tool for the ten versions. The following Figures

5.1 to 5.6 show the evolution of various metrics normalized by the metric values of

the last version for successive releases. The data in Table 5.1 and Figure 5.1 clearly

confirms the first two laws of program evolution. The program experienced continual

change and increasing entropy (complexity and size) between successive versions.

The number of functions increased from 223 in version 1 to 359 in version 10; the

lines of code (LOC) continually increased (Figure 5.3). With few exceptions, the

Halstead measures (V, E) and McCabe's Cyclomatic complexity V(G) increased as

well (Figure 5.4). However, note the unusually large increase in FIN, FOUT, and in

the number of functions, between versions 4 and 5 (Figure 5.2). This occurred

because by version 4 the available 16K of memory was nearly exhausted so that in

version 5 macro calls were changed to function calls to recover memory. Each change

from a macro call to a function call saved two bytes. Also note the drop in V(G)

between versions 4 and 5 and the considerable fluctuation in E (Figure 5.4).

21

)

j

In figure 5.5 we can identify an evolution trend similar to the traditional metrics for

information flow out of functions (VOUT, UVOUT, VROUT and UVROUT).

Interestingly the evolution of metrics that measure inflowing information into

functions is very different (VIN, UVIN, VRIN and UVRIN) from the metrics that

measure information flow out of functions. They do not increase steadily throughout

development and two metrics (VRIN, UVIN) reach their maximum value already in

the second version. It suggests that information flow into and out of functions are not

measuring the same attributes in program evolution and thus should be treated as two

different metrics.

22

VERSION DATE FUNC nl Nl n2 N2 Nhat

l 2-Dec-90 223 301 11468 2118 10812 18199
2 13-Feb-91 226 297 11664 2193 11024 18899
3 27-Feb-91 226 295 11683 2191 11029 18872
4 ll-Mar-91 246 294 12004 2229 11090 19234
5 23-Apr-91 300 298 12861 2340 11025 20366
6 8-May-91 310 297 13176 2387 11320 20831
7 28-Jun-91 333 289 13656 2433 11725 21247
8 17-Feb-92 353 289 13586 2492 11634 21875
9 6-Mar-92 355 286 13650 2502 11667 21965
10 2-Jun-92 359 292 13840 2507 11784 22074

VERSION DATE V E VG LOC NCSL FIN FOUT

l 2-Dec-90 183928 33364792 1070 10577 7451 372 377
2 13-Feb-91 188386 34370032 1135 10755 7425 403 400
3 27-Feb-91 188609 34501848 1134 10791 7420 397 394
4 l l-Mar-91 192627 34499792 1144 11458 7613 525 524
5 23-Apr-91 201589 33159330 1092 11978 7605 791 812
6 8-May-91 208130 34760768 1147 12106 7827 813 787
7 28-Jun-91 217276 36516008 1197 12807 8132 871 819

) 8 17-Feb-92 217460 35628968 1244 13309 8224 926 863
9 6-Mar-92 218388 34464764 1246 13398 8240 933 865
10 2-Jun-92 221555 36357788 1280 13621 8365 953 871

VE=RSION DATE VOUT VIN UVOUT UVIN VROUT VRIN UVROUT UVRIN

l 2-Dec-90 362 992 134 226 740 1570 276 404
2 13-Feb-91 354 1042 127 238 771 1661 286 436
3 27-Feb-91 354 1056 126 239 768 1670 283 436
4 l l-Mar-91 393 1078 137 224 763 1513 289 413
5 23-Apr-91 403 1075 144 232 799 1474 305 427
6 8-May-91 407 1088 148 233 816 1513 310 436
7 28-Jun-91 432 1151 149 234 860 1577 328 445
8 17-Feb-92 439 1073 153 235 847 1515 330 457
9 6-Mar-92 449 1077 158 236 867 1526 339 463
10 2-Jun-92 453 1098 158 242 864 1564 327 467

Table 5.1. Project Overview

)

23

Figure 5 .1. Evolution O . verv1ew

)

F igure 5 .2. Evoluti on of the Metri csFUNC FIN ' ,FOUT

24

100

75

8 9 10

Venlon

Figure 5.3. Evolution of the Size Metrics V, LOC, NCSL

)
110

105 § G

roo /"~ >
11
.!l .._

~./· ,! 95

/ ~

I
.. 90

85

ea
10

Venlon

Figure 5 .4. Evolution of the Metrics E and V (G)

)

25

105

100

I
95

~ .._
90

I -•- vo UT
,I!

I 85
~ lNOUT

-•- VROUT

- WROUT

75 -l-----+---+-----+------11-----+-----+---+----+-------l
9 10

Figure 5.5. Evolution oflnformation Flow Metrics VOUT, UVOUT, VROUT and UVROUT

110

-•- VlN -- --0- LMN

- •- v~N
105

--o-- WRIN

~ ---·
90

85 -t----+---+-----+------11-----+-----+---+----+-------l

10

Figure 5.6. Evolution oflnformation Flow Metrics VIN, UVIN, VRIN and UVRIN

26

)

Harrison and Cook [7] based their law on data from only two successive versions.

Our data shows that their law holds for 10 successive versions. The number of

functions, number of functions changed, new functions added, deleted functions, and

number of functions with major change for each version is given in Table 5.2. We

define a major change to a function as an increase or decrease in Halstead's V of at

least 218, the standard deviation for the volume changes. We selected V because

Harrison and Cook used V in their paper although LOC and Halstead's E give the

same results. The percentages in the"% MAJOR CHANGES" column are the percent

of changes that were major changes. We see that between successive versions, with

one exception far less than half of the functions were changed and that between 7%

and 22% of the changed functions experienced major change.

VERSION FUNC CHANGES % CHANGES NEW DELETED MAJOR % MAJOR HOURS

CHANGES CHANGES

l 223 - - 223 - - - 1771
2 226 123 54.4 12 9 12 9.8 339
3 226 14 6.2 0 0 l 7.1 77
4 246 79 32. l 23 3 17 21.5 145
5 300 101 33.7 54 0 16 15.8 190
6 310 25 8.1 12 2 3 12.0 135
7 333 101 30.3 26 3 16 15.8 382
8 353 81 22.9 23 3 7 8.6 92
9 355 24 6.8 2 0 2 8.3 42
10 359 28 7.8 4 0 4 14.3 54

TOTAL 2931 576 19.7 379 20 78 13.5 3227

Table 5.2. Changes Between Successive Versions

27

)

)

Table 5.3 gives the change frequency and major change frequency over the 10

versions. Nearly 60% of the functions were changed at most once. Two functions

were changed in all 9 new releases . Over the 10 versions more than 86% of the

functions did not undergo a major change . 50 functions accounted for the 78 major

changes . Only one function experienced four major changes and 22 functions

experienced two or more major changes. Notice that the 379 totals for columns two

and four include the 20 deleted functions.

FREQUENCY CHANGES %CHANGES MAJOR % MAJOR

CHANGES CHANGES

0 145 38.3 329 86.8
1 88 23.2 28 7.4
2 61 16.1 17 4.5
3 30 7.9 4 1.1
4 25 6.6 1 0.3
5 13 3.4 0 0.0
6 13 3.4 0 0.0
7 1 0.3 0 0.0
8 1 0.3 0 0.0
9 2 0.5 0 0.0

TOTAL 379 100 379 100

Table 5.3. Frequency of Changes

28

)

)

J

Table 5.4 gives the total change in V, major change in V, and percentage of the total

change in V that was major change between successive versions.

Vl:RS!ON VOLUME CHANGE VOLUME CHANGE % VOLUME CHANGE

MAJOR CHANGES MAJOR CHANGES

l - - -
2 11243 5549 49.4
3 1108 312 28.2
4 8957 5893 65.8
5 15895 13303 83.7
6 2803 2093 74.7
7 11009 8089 73.5
8 7279 2189 30. l
9 1679 333 19.8
10 2829 2012 71. l

TOTAL 62802 39773 63.3

Table 5.4. Changes in Volume Between Successive Versions

Tables 5.2 and 5.4 show that even though only 13.5% of the changes were major

changes, the major changes account in average for over 63% of the total change in V

over the 10 versions.

We also found the change concentrated in few of the 13 modules in the system. The

largest module, TLNUPS, accounted for the bulk of the change. The total number of

functions increased by 136 from version 1 to version 10. TLNUPS increased from 91

to 219 functions, an increase of 128. The total system increase in LOC and V between

version 1 and 10 is 3,044 and 37,627 respectively; the increase in LOC and V for

TLNUPS was 2,966 and 36,498 respectively. There was very little change in the eight

smallest modules as the number of functions in versions 1 and 10 are identical and the

LOC and V for these functions changed very little.

We also investigated the size characteristics of the changed functions. For each

version we evenly divided the functions into four classes on the basis of Halstead's

Volume. Class I contained the one-fourth of the functions with the largest V, Class II

the one-fourth with the next largest V, and so forth. See Figure 5.7. The functions in

29

I

)

J

Class I accounted for over 60% of the total change in V for each version. Class II

functions accounted for 25% or less. Hence most of the change occurs in the large

functions.

I ~ CLASS I ----0-- Cl.ASS I - · - CLASS II -0- CLASS"' I
90

00

70

60

30

Venlon

Figure 5.7. Characteristics of Changed Functions

Thus the data does support the findings of Harrison and Cook that the change is not

uniform and that most of the total change is concentrated in a small number of

functions and modules.

30

)

)

)

5.2 IDENTIFYING CHANGE PRONE MODULES

When making a change to a program module during program maintenance, a

programmer frequently must decide whether to make an isolated change to the

module or to completely redesign and rewrite the module. Complete redesign and

rewrite is expensive, but it is even more expensive if entropy has taken its toll, e.g. the

module structure has seriously deteriorated with severe ripple effects. This is not a

simple decision and the wrong choice may have expensive consequences . Completely

overhauling a module that will not be modified again may mean delaying or not

servicing other maintenance requests. On the other hand, performing a series of

isolated changes is wasting resources and just postponing the major overhaul.

Harrison and Cook [7] proposed a maintenance change model to determine whether a

given software module can be effectively modified or whether it should be completely

redesigned and rewritten. They called a module that is likely to experience significant

maintenance changes change-prone. The change-prone classification identifies

modules that will undergo significant maintenance activity over the release cycle.

Maintenance should be performed differently on change-prone modules than on non­

change-prone modules. Namely, change-prone modules should receive an early major

overhaul so that the future changes to these modules will be relatively inexpensive.

Unfortunately which modules will become change-prone cannot be predicted.

However, the third law of program evolution indicated that changes to a small

number of modules accounted for most of the total change. Hence these modules are

likely candidates for change prone modules. They measured the cumulative change to

a module during program evolution. The decision rule proposed by Harrison and

Cook was to establish a change threshold. Once the total change to a module exceeds

this threshold it was classified as change-prone and hence should receive a major

overhaul. They used Halstead's Volume (V) as the change measure and suggested the

threshold value be adjusted to the "risk taking behavior of the manager".

We used V and found that using the volume change standard deviation as a threshold

worked well in identifying the few functions that experienced major changes. The 78

31

)

)

)

function changes it identified as major accounted for 63.3% of the total change in V.

We found that 22 of functions were involved in multiple major changes.

Thus we recommend the Halstead volume change standard deviation as a threshold

for identifying change prone functions since it evolves with the program changes, is

not subject to large fluctuation , and is a relative rather than absolute measure. One

should have in mind that if the threshold is chosen to high we may delay recognizing

the change prone modules and if it is chosen to low we may classify to many function

as change prone. Therefore we were interested in identifying a safe range for the

threshold value. It turned out that this value can be easily calculated by considering

the volume change of previous versions. Since we used changes of all previous

versions the threshold stabilizes when we move on from one to the next release (Table

5.5) . Note the big jump between version 4 and 5 due to large volume changes. We

also found that the LOC and Halstead's E measures with the change standard

deviation as the threshold worked nearly as well as V.

VERSION STANDARD

DEVIATION

2 146
2 142
3 150
4 242
5 243
6 241
7 241
8 220
9 218

Table 5.5. Evolution of the Volume Threshold

32

I

)

J

6. SOFTWARE METRICS

In this chapter we study the internal structure of the set of metrics computed with the

analyzer tool. In order to understand the relation among metrics, we applied a

statistical technique known as factor analysis. Our results show that the 18 metrics

map onto four underlying complexity domains: size, information flow into functions,

information flow out of functions and control flow. We found that the information

flow metrics contribute considerable variation to the factor model. We will show that

information flow metrics characterize real-time complexity better than the standard

complexity metrics. We also propose new real-time complexity metrics.

6.1 CHARACTERISTICS OF REAL TIME SOFTWARE

In a typical real-time application the program continually monitors sensors and upon

receiving an input must complete the appropriate processing within a certain fixed

time period. This time constraint is the unique feature of real-time software. All of the

subtasks that are part of the processing must be scheduled to meet individual timing

requirements. Hence real-time programs are characterized by a large amount of

monitoring and communication.

Our real-time telephone switching application epitomizes these characteristics. The

main application program for all four telephone sets is controlled by one automaton

with a total of 51 different states (located in module TLNST) which checks the

current state of execution for each process (telephone unit) every 10 ms and takes an

action depending on the current state of the process. This action is a call to one or

more of the 219 functions in module TLNUPS.

The real-time control part is in modules TLNATM and TLNINT. Incoming and

outgoing external signals are controlled by 38 small but complex finite automata

located in module TLNATM. Each automaton is served every 1 ms by its scheduler.

Events to and from these automata to the main application are also passed via global

memory and resource variables. In addition there are 8 interrupt controlled

33

)

)

subroutines located in module TLNINT. Their functionality is similar to the automata

in module TLNATM.

Thus global and resource variables play a key communication and monitoring role in

this application. Each telephone unit has its own global variables. Functions share

global data and parameters are passed between functions via global variables and

processor registers. The program accesses timers, I/O ports, serial interfaces,

interrupt inputs, and special registers through resource variables. This is the reason

we developed information flow metrics that counted functions calls and global and

resource variables referenced and/or changed.

6.2 ANALYSIS OF SOFTWARE COMPLEXITY METRICS

As mentioned in Chapter 4 we computed a variety of standard software complexity

metrics: Halstead's Software Science (nl, n2, Nl, N2, Nhat, V, E), McCabe's V(G),

LOC, and NCSL, and information flow metrics (Unique and total number of global

and resource variables changed and/or referenced). Because of the problem with

accurately computing indirect references, we omitted the FIN and FOUT metrics

from our analysis.

Some of the metrics listed above are primitive and cannot be decomposed further into

other metrics. The unique operator count nl, is an example of a primitive metric.

Other metrics are non-primitive metrics and composites of other primitive metrics.

For instance, the program length N is computed out of the primitive metrics by the

sum N = Nl + N2. From a statistical perspective it is questionable whether the linear

combination of two primitive metrics contribute any new variability in the

measurement of program attributes.

Munson and Khoshgoftaar [16, 17, 18] found that in practice most metrics are

measuring the same elements of a rather small set of orthogonal complexity domains.

They noticed that there are relatively few distinct sources of variation among metrics

and that the functional aspects of a large set of metrics can be reproduced by a small

set of primitive metrics. They have shown that some metrics do not contribute

34

)

)

)

anything new to the understanding of the differences among programs. Further,

adding metrics that are already represented by other metrics is likely to introduce a

noise component to the underlying model. In order to examine the basic sources of

variation in a set of metrics Munson and Khoshgoftaar applied factor analysis. They

have shown that many sets of software complexity metrics map onto less than six

underlying complexity domains. All of the existing metrics appear to be representable

as linear combinations of these few factor domains.

Since we introduced two new sets of information flow metrics (global and resource

variables referenced and changed), we were interested in whether these metrics are

measuring something not measured by the traditional metrics. In addition, we

investigated how many different complexity domains are present in our data.

We computed the correlations of all of the metrics for all functions for the latest

version of the program. A grouping of metrics by highest correlation partitioned the

metrics into three groups: traditional metrics (Table 6.1), global and resource

variables changed (Table 6.2), and global and resource variables referenced (Table

6.3). Metrics in each group are highly correlated with each other and have smaller

correlation with metrics in the other groups. Note that nl, V(G) and E in Table 6.1

have noticably smaller correlation with the other metrics. They are placed in Table 6.1

because they have a higher correlation with the metrics in Table 6.1 than with the

information flow metrics in Table 6.2 and Table 6.3. In order to understand the basic

sources of variation in our set of metrics, a statistical technique known as factor

analysis is used.

35

)

nl 1.00
Nl 0.47 1.00
n2 0.26 0.78 1.00
N2 0.36 0.93 0.94 1.00
Nhat 0.28 0.76 0.99 0.94 1.00
V 0.33 0.93 0.93 0.99 0.94 1.00
E 0.50 0.86 0.54 0.76 0.54 0.76 1.00
VG 0.63 0.53 0.25 0.38 0.23 0.37 0.63 1.00
LOC 0.39 0.83 0.92 0.93 0.90 0.91 0.70 0.47 1.00
NCSL 0.52 0.90 0.85 0.92 0.83 0.90 0.81 0.64 0.95 1.00

Table 6.1. Correlations Traditional Metrics

METRIC VOUT UVOUT VROUT UVROUT

VOUT 1.00
UVOUT 0.88 1.00
VROUT 0.76 0.78 1.00
UVROUT 0.55 0.69 0.90 1.00

) Table 6.2. Corellations Outflowing Information

METRIC VIN UVIN VRIN UVRIN

VIN 1.00
UVIN 0.84 1.00
VRIN 0.92 0.76 1.00
UVRIN 0.75 0.85 0.86 1.00

Table 6.3. Correlations Inflowing Information

36

)

)

)

6.2.1 THE EXPLORATORY FACTOR ANALYSIS TECHNIQUE

Of various approaches for studying the internal structure of a set of indicators factor

analysis is probably most powerful [20]. Factor analysis refers to a family of analytic

techniques designed to identify factors, or dimensions, that underlie the relations

among a set of observed variables. The observed variables are the indicators

presumed to reflect the construct, i.e. factors. Factor analysis is usually applied to the

correlations among indicators. An estimate of the relation between each indicator and

a factor - referred to as a factor loading - is obtained. A factor loading is the weight of

an indicator on the factor. Generally speaking, the higher the factor loading, the more

meaningful it is, or the greater is the impact of the factor on the indicator. A factor

loading may vary from zero (no relation between the indicator and the factor) to plus

or minus one (perfect relation between the indicator and the factor). The square of

such a factor loading indicates the proportion of variance of a given indicator

accounted for by the factor. For example, a loading of .4 means that .16 (.42) , or

16% of the variance of the indicator is accounted for by the factor. Complexity

metrics with similar aspects of variability will tend to have high factor loadings on a

single factor and are thus associated with the underlying complexity domain

represented by the factor [20].

In the following data analysis an exploratory factor analysis is used. Exploratory

factor analysis is concerned with the question of how many factors are necessary to

explain relations among a set of indicators and with the estimation of the factor

loadings. The essential purpose of this technique is to describe the covariance

relationship among variables in terms of a few underlying, but understandable,

random quantities.

Factor analysis can be considered as an extension of principal component analysis

[20]. Both can be viewed as attempts to approximate the covariance matrix, l'r.

However, the approximation based on the factor analysis model is more elaborate.

The primary question in factor analysis is whether the data is consistent with a

prescribed structure. In the case of complexity metrics, this structure represents

37

orthogonal complexity domains. That is, many existing complexity metrics map onto a

reduced set of orthogonal complexity measures.

To simplify interpretation of the extracted factor loadings new common factors can be

found through orthogonal rotation of the factor structure. The process of orthogonal

factor rotation produces a set of new factors that also satisfy the factor model. Many

different techniques are used for these orthogonal rotations. To rotate factors

orthogonally, means to rotate them so that they remain at right angles to each other

and that variables or vectors that are orthogonal are not correlated. By far the most

widely used orthogonal rotation is the varimax rotation. Varimax is aimed at

maximizing variances of the factors . Only a subset of factors from the original pattern

is chosen for rotation. The selection of factors for varimax rotation is generally based

on the factor's eigenvalue [20].

6.2.2 RESULTS OF THE PRINCIPAL COMPONENT FACTOR ANALYSIS

Figure 6.1 is a plot of the eigenvalues A in descending order of magnitude - referred

to as a scree plot [2, 20]. The scree plot is an aid to determine the number of factors

to be retained. Cattell [2] suggested that the plot of the A's be examined to identify a

clear break between large A's and small ones. Considering factors with small A's as

trivial, Cattell labeled this criterion for the number of factors to be retained as a scree

test. Others suggest using the criterion of eigenvalues A larger than one.

38

)

)

)

C/1
Cl)
::,
0
>
C:
Cl)
C)
iii

10.00 ■
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00

l

Factor Scree Plot

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Factor

Figure 6.1. Factor Scree Plot

Table 6.4 shows the results of the principal component factor analysis. We used a

varimax rotation on the original factor structure and selected four factors for rotation.

In the scree plot we can identify a break, akin to an elbow, between the fourth and the

fifth eigenvalue. The latter, trivial eigenvalues appear to lie on a horizontal line and

are not considered. The last two rows in Table 6.4 contain the eigenvalues and the

amount of variance explained by each factor in the rotated factor domain,

respectively. The four factors of Table 6.4 account for 88.8% of the total amount of

variance explained by the original set of metrics.

39

J

METRIC FACTOR l FACTOR 2 FACTOR 3 FACTOR4

n2 0.973 0.142 0.068 -0.054
NHAT 0.970 0.111 0.055 -0.046
V 0.962 0.107 0.077 0.184
N2 0.959 0.140 0.099 0.186
LOC 0.913 0.157 0.146 0.202
NCSL 0.841 0.262 0.155 0.401
Nl 0.822 0.171 0.158 0.414
UVIN 0.163 0.924 0.179 0.065
UVRIN 0.224 0.863 0.201 0.177
VIN 0.166 0.794 0.357 0.330
VRIN 0.204 0.765 0.338 0.414
UVROUT 0.130 0.101 0.913 -0.022
VROUT 0.142 0.189 0.906 0.229
UVOUT 0.081 0.437 0.799 0.173
VOUT 0.084 0.363 0.725 0.330
VG 0.201 0.354 0.182 0.792
E 0.608 0.131 0.157 0.662
nl 0.183 0.364 0.338 0.587
EIGENVALUES 9.852 3.744 1.433 0.963
%VARIANCE 54.7 20.8 8.0 5.4

Table 6.4. Varimax Factor Analysis

It is interesting that most of the traditional metrics (n2, Nhat, V, N2, LOC, NCSL,

Nl) are associated with the first factor. In particular all size metrics are grouped into

factor one. Hence, factor one represents the size complexity domain. Many of the

traditional complexity metrics are members of this factor. This suggests for prediction

purposes that combinations of members of the size domain would be just as good as

simple size measures such as lines of code.

The second factor contains all metrics where global and resource variables are

referenced (UVIN, UVRIN, VIN, VRIN). This factor measures the inflowing

information into program modules.

The third factor consists solely of metrics that change global and resource variables

(VROUT, UVROUT, UVOUT, VOUT). Similar to the previous factor the third

factor measures the outflowing information.

40

)

Finally the fourth factor contains McCabe's V(G), Halstead's E and nl. The factor

loading is highest for McCabe's V(G). It is conceivable that this factor represents

control flow of the program.

We should mention that our results differ from those reported by Munson and

Khoshgoftaar [16, 17, 18]. From their factor analysis of several metric data sets they

found McCabe's V(G), and Halstead's E were placed together into the size factor.

Analysis of our data separated McCabe's V(G), Halstead's E and nl into a factor

domain distinct from the size factor. However, some of this difference may be

explained by there was only one information flow metric in two of their data sets and

we considered six information flow metrics.

The factor analysis revealed that the traditional software metrics contribute about one

half of the total variance in the set of metrics we applied to our data. Both sets of

information flow metrics are associated with their own complexity domain and

account for almost 29% of the total variance. The observations indicate that

information flow into and out of functions is an important aspect in real-time software

systems. Further, information flow into and out of functions are radically different.

The results suggest to treat them separately and not combining information flow into

one compound metric.

6.2.3 RELATIVE COMPLEXITY METRICS

The initial objective of the factor analysis was to achieve a reduction in dimensionality

of the problem. In addition, Munson and Khoshgoftaar [16] defined a relative

complexity metric, that can be computed out of the factor score coefficient matrix

given by the factor analysis. The factor score coefficient matrix F is constructed to

send an associated matrix of standardized complexity metrics, z, onto the underlying

orthogonal factor dimensions. The factor score coefficient matrix for mapping the

original 18 metrics onto four orthogonal factor domains is shown in Table 6.5.

41

)

METRIC FACTOR l FACTOR 2 FACTOR 3 FACTOR4

n2 0.208 0.047 0.012 -0.248
NHAT 0.207 0.031 0.010 -0.230
V 0.170 -0.038 -0.012 -0.032
N2 0.168 -0.025 -0.009 -0.042
LOC 0.155 -0.028 0.008 -0.032
NCSL 0.105 -0.024 -0.038 0.121
Nl 0.102 -0.077 -0.020 0.159
UVIN -0.006 0.445 -0.111 -0.245
UVRIN -0.008 0.375 -0.104 -0.145
VIN -0.043 0.266 -0.037 -0.008
VRIN -0.047 0.230 -0.053 0.069
UVROUT 0.027 -0.129 0.426 -0.202
VROUT -0.013 -0.147 0.367 -0.010
UVOUT -0.025 0.027 0.273 -0.100
VOUT -0.046 -0.041 0.229 0.067
VG -0.093 -0.064 -0.101 0.530
E 0.020 -0.158 -0.049 0.418
nl -0.066 -0.035 0.003 0.331

Table 6.5. Factor Score Coefficient Matrix

From these new orthogonal measures of program complexity Munson and

Khoshgoftaar [16] derived a relative complexity metric Cr. For each function the raw

data vector is converted to a new standard score vector z as follows:

metric value-µ
zscore = ----­

a

Table 6.6 shows the mean and standard deviation for the original set of metrics

respectively.

42

)

)

METRIC AVERAGE STDEV

nl 10.40 5.74
Nl 38.55 67.09
n2 32.59 28.87
N2 32.59 65.71
Nhat 106.32 247.74
V 391.31 989.94
E 8719.89 25028.25
VG 3.57 4.93
LOC 37.25 51.17
NCSL 23.28 32.20
VOUT 1.26 2.65
VIN 3.06 5.72
UVOUT 0.79 1.35
UVIN 1.55 2.70
VROUT 2.41 4.70
VRIN 4.36 7.61
UVROUT 1.58 3.25
UVRIN 2.42 3.75

Table 6.6. Metric Means and Standard Deviations

Then, for each data vector a new vector of factor scores, f, is calculated:

J=zF

The relative complexity, Cr, of the factored program modules is represented as

follows:

where A is a vector of eigenvalues associated with the specific factor dimensions.

From the vector Cr of relative complexity metrics, the ith entry Cr, represents the

relative complexity of the ith program module.

43

)

_)

The relative complexity metric Cr is normally distributed with a mean of zero and a

variance of:

j 2
V(Cr) = LA;

i=l

where j represents the number of factors in the rotated factor pattern, and Ai is the

eigenvalue associated with the ith factor. The relative complexity metric represents

each raw complexity metric in proportion to the amount of unique variation

contributed by that complexity metric.

Munson and Khoshgoftaar [16] suggested a scaled version of the relative complexity

metric and defined it as follows:

C = lOCr; + 50
T ,JV(C,)

The scaled metric has a mean of 50 and a standard deviation of 10.

We computed factor scores and the relative complexity values for all 359 function of

the last version of the program. Each relative complexity value is a unitary measure of

program complexity. Table 6.7 shows some sample relative complexity values for the

least, average and most complex modules. Figure 6.2 shows the distribution of

relative complexity for all 359 modules sorted by size. It is interesting to note that

there are some functions with very high relative complexity value. It suggests that

these modules are extreme outliers and hence should be watched carefully in the

development process. There are no outliers with exceptionally low complexity value.

44

)

)

FUNCTION Cr' CLOW) FUNCTION Cr' (AVERAGE) FUNCTION Cr' (HIGH)

275 44.06 59 49,88 272 69.47
279 44.06 27 49.89 251 70.46
280 44.06 139 49.89 262 74.72
281 44.06 10 49.90 235 80.42
336 44.16 142 49.91 236 84.57
282 44.22 291 50.05 257 85.37
284 44.22 226 50.15 126 89.43
286 44.22 19 50.15 317 90.78
96 44.23 135 50.15 353 99.71
130 44.23 263 50.55 321 174.66

Table 6.7. Sample Relative Complexity V aloes

Four out of the ten functions with highest relative complexity value are real-time

functions . Two functions (321, 353) contain data tables , are large in size and

reference many gloabl variables. The reset function is also one of the functions with

high relative complexity. The remaining three functions are fairly complex states of

the overall control automata.

200

160

160

140

~ 120
'5
> 100

i .,. 60

60

Relative Complexity Metric Cr (all Metrics)

40 IJllll!l .. attm lHUIHHNIIIIINMIIIHlflllllll!lallltflllllllllllllllllwiiliiijjd
~IIIIIIIINIIII'"~

MldH-111111 111111111111 IIIINIIIIIII

~ .. •
/

20

0-+----+------f--------4-----+-----+------t

0 60 120 160

Module#

240 300

Figure 6.2. Distribution of Relative Complexity Metrics

45

360

)

J

6.2.4 METRICS REDUCTION

As mentioned earlier additional metrics appear to be contributing nothing new in the

understanding of the differences among programs. It is likely that a subset of all

metrics is sufficient to capture the same attributes of the program that are described

by the original set of metrics.

For each complexity domain the metric with the highest strength of association was

selected for a second factor analysis. Table 6.4 shows that Halstead's n2, unique

variables referenced UVIN, unique global variables and resources changed UVROUT

and McCabe's V(G) have the highest factor loading in its domain, respectively. Again

the factor analysis was performed and the four factors n2, UVIN, UVROUT and

V(G) were extracted out of the entire data set. Table 6.8 shows the matrix of the

rotated factor loadings for the subset of four metrics.

METRIC FACTOR l FACTOR 2 FACTOR3 FACTOR4

n2 0.983 0.087 0.105 0.127
UVROUT 0.087 0.981 0.116 0.129
VG 0.110 0.121 0.965 0.205
UVIN 0.135 0.137 0.209 0.959
EIGENVALUES 1.873 0.803 0.758 0.566
%VARIANCE 46.8 20. l 18.9 14. l

Table 6.8. Varimax Factor Analysis for 4 Factors

Using the factor score coefficient matrix the new relative complexity values, C'r(new),

for the reduced set of metrics was computed. The new relative complexity values

were then pairwise compared with the set previously obtained. The Spearman's

correlation coefficient for ranked data rs= .95 shows that the two sets of complexity

metrics are highly correlated .

It can be concluded that a reduced set of only four metrics, one for each factor, is

measuring everything that is given by the entire set of metrics. It indicates that the

functional aspect of a large set of metrics can be reproduced entirely by a smaller set

of metrics. If a metric is used in a multivariate model and its variance is already

46

)

)

)

represented by other metrics, there is no need to assess additional metrics out of the

same complexity domain.

6.3 REAL-TIME SOFTWARE COMPLEXITY METRICS

One basic question we addressed is whether the software metrics for the real-time

modules are different from the non-real-time modules. The factor analysis in the

previous section suggested that there may be a difference.

The program was designed so that two modules (TLNST, TLNUPS) of the thirteen

modules contain most of the program functionality and two modules (TLNINT,

TLNATM) are responsible for most of the real-time control. These four modules

include 88% (316 of 359) of the program functions and 82% of the non-comment

source lines (NCSL).

Hence for our comparison of real-time and non-real-time modules we selected these

four modules. The metric values for these four modules and the metric values

normalized by the number of functions are given in Tables 6.9 and 6.10. Notice that

each of the information flow metrics (VOUT, VIN, UVOUT, UVIN, VROUT,

VRIN, UVROUT, UVRIN) in Table 6.10 are substantially higher for the two real­

time modules than the non-real-time modules. For the other metrics (Halstead's

Software Science, V(G), LOC, NCSL) TLNATM is highest in all instances and the

results are mixed for the other three modules.

47

)

)

)

NON-REALTIME MODULES

TLNUPS 0.3 24 2.3 20 22 402 117570 2.4 27 15
TLNST 0.7 39 5.5 32 49 591 63186 5.5 40 28
REALTIME MODULES

TLNATM 1.1 88 10.4 64 96 1331 165941 10.2 64 50
TLNINT 2.5 32 12. l 32 91 440 11559 4.3 42 24

Table 6.9. Traditional Metrics Normalized by Number of Functions

MODULE VOUT VIN UVOUT UVIN VROUT VRIN UVROUT UVRIN

NON-REALTIME MODULES

TLNUPS 1.0 2.5 0.2 0.2 1.7 3.2 0.4 0.5
TLNST 0.8 2.7 0.2 0.4 1.8 3.7 0.6 0.9
REALTIME MODULES

TLNATM 4.0 7.9 1.8 2.3 8.1 13.2 3.3 4.3
TLNINT 2.3 5.8 1.6 4.4 3.9 7.9 2.9 6.1

Table 6.10. Information Flow Metrics Normalized by Number of Functions

These results suggest that the major difference between real-time and non-real-time

functions is the real-time functions have a higher average information flow. We feel

that the average in and out information flow is a good measure of real-time

complexity. For example the sum of UV OUT + UVIN for each function in a module

divided by the number of functions in the module. We realize that this is a preliminary

result, but it does agree with our intuition that real-time modules have a the heavy

information flow into and out of functions.

48

)

)

7. PROGRAM EFFORT ANALYSIS

A final goal of our research is to relate programmer effort to program changes. For

this part of our study we obtained the number of programmer hours per day for

programmers who worked on the program. The last column in Table 5.2 gives the

hours worked between successive versions. Table 7 .1 shows the correlations between

hours worked and the number of changes, number of major changes, the total change

in V, and the major change in V for successive versions. Hours worked has the

highest correlation with the number of changes.

CORRELATION CHANGES MAJOR VOLUME VOLUME CHANGE OF HOURS

CHANGES CHAI\JGE MAJOR CHANGES

CHANGES 1.00
MAJOR CHANGES 0.86 1.00
VOLUME CHANGE 0.92 0.91 1.00
VOLUME CH. MAJOR CHANGES 0.75 0.87 0.94 1.00
HOURS 0.80 0.70 0.70 0.61 1.00

Table 7.1. Correlation Between Changes and Programming Hours

49

We also compared hours worked between successive versions and changes in each of

the metrics for successive versions. Table 7.2 shows that highest correlations were for

VROUT (.80), N2 (.73), and V (.69).

METRIC CORR.

FUNC 0.27
nl 0.54
Nl 0.45
n2 0.53
N2 0.73
Nhat 0.47
V 0.69
E 0.22
VG 0.63
LOC 0.45
NCSL 0.38
FIN 0.19
FOUT 0.13
VOUT 0.36
VIN 0.48
UVOUT 0.12
UVIN 0.26
VROUT 0.80
VRIN 0.38
UVROUT 0.58
UVRIN 0.56
HOURS 1.00

Table 7.2. Correlation Between Hours Worked and Metric Changes

50

)

j

It should be noted that although the hours worked includes time spent on both

existing and new functions, the change data is only for changes to existing functions.

We attempted to seperate the effort spent on new functions. We used V of the first

version divided by the number of hours as the productivity rate for new functions. To

compute the hours for new functions for each version we devided the total V for new

functions by the productivity rate. The corrected hours for each version is the total

hours minus the hours for new function. Figure 7 .1 shows programming hours and

corrected programming hours for all versions.

00) I -•-T OTAL HOURS --0-- CORRECTED HOURS I
400

400

350

300

i 250

200

150

100

50

9

Vonlon

Figure 7.1. Programming Hours and Corrected Programming Hours

51

)

)

However, when we used the corrected hours between successive versions, we

obtained lower correlations with the change data (see table 7.3).

CORRELATION CHANGES MAJOR VOLUME VOLUME CHANGE OF HOURS

CHANGES CHANGE MAJOR CHANGES

CHANGES 1.00
MAJOR CHANGES 0.86 1.00
VOLUME CHANGE 0.92 0.91 1.00
VOLUME MAJOR CHANGE 0.75 0.87 0.94 1.00
CORRECTED HOURS 0.73 0.49 0.51 0.35 1.00

Table 7.3. Correlation Between Changes and Corrected Programming Hours

It should be pointed out that the effort analysis is based on only 10 versions.

Moreover , maintenance includes a variety of different change activities like correcting

errors, adding functionality and adapting to a changed environment. Depending on the

maintenance task, some modifications can be done quickly but cause substantial

change in metric counts. Other tasks need more time and do not affect software

metrics as much. For example finding an error can take a long time but fixing it may

affect only one line of code and some metrics will not change at all. On the other hand

a change of the program structure usually causes large changes in metric counts but it

may not take as much effort. Hence, effort analysis is sensitive to the type change

made between successive versions in program maintenance.

52

)

)

8. CONCLUSIONS

Our analysis of the ten versions of the embedded real-time software show that they

obey the laws of software evolution and agree with our intuition that the information

flow metrics seem to measure software complexity. We found that the data also

supports Harrison and Cook's [7] program maintenance decision model and proposed

the change standard deviation in Halstead's V as a threshold for their model. It is also

interesting that LOC and Halstead's E measures with the change standard deviation as

a threshold worked nearly as well as Halstead's V. However more studies must be

performed before reliable decision rules for threshold values can be established.

We have found relatively few distinct sources of variation among the set of metrics

when applied to the actual software system. The entire set of 18 metrics map onto

only four underlying complexity domains: size, information flow into functions,

information flow out of functions and control flow. While there are now hundreds of

metrics available to measure all sorts of program attributes, we would expect that

factor analysis would map these hundreds of metrics onto a small number of

complexity domains, probably not more than 10. Other metrics will probably map into

one of the four factors we found in our data and will not constitute a new complexity

domain.

We were surprised that the factor analysis lumped most of the traditional metrics into

two factors because other factor analysis studies of metrics have partitioned the

traditional metrics into three or more factors. We were also mildly surprised that the

global and resource variables referenced were grouped into a second factor and the

global and resource variables changed into a third factor. Other factor analysis studies

have grouped the information flow metrics with other traditional metrics in one

factor. We found that the information flow metrics account for almost 29% of the

variance and hence are an important complexity class that has to be considered in

real-time systems. In view of our findings it is surprising that few information flow

metrics were computed in the other studies.

53

)

)

We think that the relative complexity metric, Cr' , is a reasonable measure to identify

very complex parts of a program. However we feel that some information is lost when

calculating a composite metric out of primitive metrics. We believe that further

insights into why some functions are more complex than others can be obtained when

considering the metric values of each domain separately. For instance, it is

conceivable that a function with extreme high information flow is ranked average in

complexity by the relative complexity metric Cr' because it has relative few lines of

code. In this case the composite metric hides valuable information about the function.

We would recommend using outliers in each domain as a method in identifying

complex functions.

We were disappointed that we did not find a strong relation between the hours

worked and changes, amount of change, and our metrics. We had hoped to discover a

formula that would predict the hours worked based on the total change and new

functions added. However, we based our effort analysis on only 10 versions and

detailed information on software maintenance was not available.

We would have liked to investigate the relation between error data and metric counts.

However the telecommunication firm has just begun to collect error data. In particular

we expect a high error rate in complex parts of the program which would have great

implications on testing and software maintenance.

Our future intention is to assist in the establishment of a metric program in the

company where the software was developed and maintained. We like to encourage to

use our metric tool to collect and analyze data. Correlation of the metrics and error

data will help them to identify error-prone modules and in allocating testing

resources. We are certain that the use of software metrics benefits the development of

high quality software and are necessary to be successful in the future in a highly

competitive market.

54

)

j

9. REFERENCES

[1] Belady, L. A. and M. M. Lehman, "A Model of Large Program Development",

IBM Systems Journal, 15, 3 (1976), pp, 225-252.

[2] R. B. Cattell, The Scree Test for the Number of Factors. Sociological Methods &

Research, 1 (1966), pp. 245-276.

[3] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics and

Models. Benjamin/Cummings, Menlo Park, California, 1986.

[4] C. R. Cook, "Software Complexity Measure", Proc . 1984 Pacific Northwest

Software Quality Conference, Portland, Oregon, 1984, pp. 343-363

[5] C. R. Cook, A. Roesch, "Real-Time Software Metrics", Annual Oregon

Workshop on Software Metrics, Silver Falls, Oregon, 1993.

[6] M.H. Halstead , "Elements of Software Science", Elsevier, 1977

[7] W. Harrison and C. Cook, "Insights on Improving the Maintenance Process

Through Software Measurement", Proceeding Conference on Software Maintenance,

San Diego, 1990, pp. 37-45.

[8] S. Henry and D. Kafura, "Software Structure Metrics Based on Information

Flow", IEEE Transactions on Software Engineering, Vol. SE-7, No. 5, September

1981, pp. 510-518 .

[9] D. C. Howell, Statistical Methods for Psychology, Boston, Massachusetts, 1982.

[10] P. A. Laplante, "Design Issues in Real-Time", IEEE Potentials, Feb. 1993, pp.

24-26 .

[11] M. M. Lehman, "Programs, Life Cycles, and Laws of Software Evolution",

Proceedings of the IEEE, 68:9 (September 1980), pp. 1060-1076.

55

)

_)

[12] T. McCabe, "A Complexity Measure", IEEE Transaction on Software

Engineering, Vol. SE-2, No. 4, December 1976, pp. 308-320.

[13] Mitsubishi, "MELPS 740 Series Structered Relocatable Macro Assembler",

User's Manual, MITSUBISHI ELECTRIC Semiconductor Software Corporation ,

1989.

[14] Mitsubishi, "M37450M2-XXXSP/FP User's Manual", MITSUBISHI

ELECTRIC Semiconductor Software Corporation, 1989.

[16] J. C. Munson and T. M. Khoshgoftaar, "Applications of a Relative Complexity

Metric for Software Project Management", Journal Systems and Software, New

York, 1990, pp . 283-291.

[17] J. C. Munson and T. M. Khoshgoftaar , "Some Primitive Control Flow Metrics",

Proceedings Third Annual Oregon Workshop on Software Metrics , Portland, Oregon,

1991.

[18] J. C. Munson and T. M. Khoshgoftaar, "The Dimensionality of Program

Complexity", Proceedings 11th International Conference on Software Engineering,

Pittsburgh, 1989, pp. 245-253.

[19] P. Oman and C. Cook, "Design and Code Traceability", The Journal of Systems

and Software", Vol 12 (3), July 1990.

[20] E. J. Pedhazur and L. Pedhazur Schmelkin, Measurement, Design and Analysis:

An integrated Approach. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1991.

56

)

)

)

APPENDIX A - ANALYZER SAMPLE OUTPUT

In this section the output of the metric analyzer on the sample input file test.txt (provided

on disk) is given.

A printout of the sample input file test. txt follows:

;***
GLOBAL DEFS

;***

VARl

VAR2

INTl

INT2

.blkb 1

.blkb 1

0, IRQl

0, IRQ2

some byte variables

some resource bit flags

; ***

FUNCTION TESTl

;***

.FUNC TESTl

TESTl IF [INT2] -- 1

JSR TEST2

ENDIF

A 0

y 0

JSR TEST2

IF [INTl] -- 0

[VARl] = 0

ENDIF

.ENDFUNC TESTl

;***

FUNCTION TEST2

;***

TEST2

.FUNC TEST2

IF [INTl] == 1

[VARl] = $FF

ENDIF

IF [INT2] == 0

[VAR2] = [VARl)

ENDIF

.ENDFUNC TEST2

57

To run the analyzer on the input file test.txt type the following:

metric test.txt > testout

To suppress the report of individual functions use the -m option (see also chapter 4). The

output of the metric analyzer is redirected into the file testout. This file can be easily read

into a standard spreadsheet application. A formatted output is given below:

NAlvlE nl Nl n2 N2 Nhat V E VG LOC NCSL FIN FOUT VOUT VIN UVOUT UVIN VROUT VRIN UVROUT UVRIN

TEST.TXT

TESTl
TEST2

11 38 13 36 86 339 5168 6 40 23 2 2 3 2

10 22 12 25 76 210 2183 3 18 l l O 2 l O l
8 16 8 l l 48 108 594 3 9 8 2 0 2 l 2

Figure Al. Sample Output

58

0
l

3

l
2

5

2
3

2

l
2

3

2
3

J

)

)

)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

APPENDIX B - PROGRAM LISTING

FILE METRIC.L:

I*-

* Copyright (c) 1990 The Regents of the University of California.

* All rights reserved.

*
* This code is derived from software contributed to Berkeley by

* Vern Paxson.

*

* The United States Government has rights in this work pursuant

* to contract no. DE-AC03-76SF00098 between the United States

* Department of Energy and the University of California.

*

* Redistribution and use in source and binary forms are permitted provided

* that : (1) source distributions retain this entire copyright notice and

* comment, and (2) distributions including binaries display the following

* acknowledgement: ''This product includes software developed by the

* University of California, Berkeley and its contributors '' in the

* documentation or other materials provided with the distribution and in

* all advertising materials mentioning features or use of this software.

* Neither the name of the University nor the names of its contributors may

* be used to endorse or promote products derived from this software without

* specific prior written permission.

* THIS SOFTWARE IS PROVIDED ''AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF

24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

25 *I
26

27 #include <string.h >

28 #include <stdio.h>

29

30 #include "metric.h"

31 #include 'hash.h"

32

33 I I external variables

34 extern struct hash_slot far *hash_table;

35 extern struct metric_struct metric;

36 extern int passtwo;

37 extern int error;
38

39

40

41

42

43

44

45

46

47

48

49

II initalizations

int first_func = TRUE;

int lookup_func_name = FALSE;

int lookup_compound_statement = FALSE;

int lookup_bytevar = FALSE;

int lookup_bitvar FALSE;

int lookup_equate FALSE;
int lookup_mod_var = FALSE;

int lookup_quote = FALSE;

int inhibit_lookup_var = FALSE;

59

)

50 int slot;

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

noteol

ws

identifier

comment

bit

constant

%s

(A\Il]

[\t]

[0-9A-Za-z_.?]+

;{noteol}*

[01234567]

[%@$0]?[0-9A-F]+[BOQH]?

PASSTWO

II introduce pass two

if (passtwo)

BEGIN (PASSTWO) ;

66 <INITIAL > {comment} { I * eat up comments *I }

67

68 <INITIAL > (JSRIJMPIBBCIBBSIBCCIBCSIBEQIBMIIBNEIBPLIBVCIBVS)

69 lookup_func_name = TRUE;

70

71

72 <INITIAL > { identifier} {ws} * ('=' I '. EQU') {ws} * {bit} (', ')

73 lookup_bitvar = TRUE;

74

75

76

77

REJECT;

78 <INITIAL>{identifier}{ws}*('.blkb')

79 lookup_bytevar = TRUE;

80

81 REJECT;

82

83

84 <INITIAL>A{identifier}{ws}*('=') {ws}*{constant}

85 lookup_equate = TRUE;

86

87

88

89

REJECT;

90 <INITIAL>{identifier}

91 if (lookup_func_name)

92

93 hash_insert_token(hash_table, strupr(yytext), FUNCTION);

94 lookup_func_name = FALSE;

95

96

97

98

99

100

101

if (lookup_bytevar)

hash_insert_token(hash_table, strupr(yytext), BYTEVAR);

lookup_bytevar = FALSE;

) 102

103 if (lookup_bitvar)

60

)

)

)

104

105

106

107

108

109

110

111

112

113

114

115

116 <INITIAL>\n

117

118 <INITIAL>.

119

12 0

121

122

123

124

125

126

127

128

<INITIAL><<EOF>>

hash_insert_token(hash_table , strupr(yytext), BITVAR);

lookup_bit var = FALSE;

if (lookup_equate)

hash_insert_token(hash_table, strupr(yytext), EQUATE);

lookup_equate = FALSE;

// printf('\n\n");

yyterminate();

129 <PASSTWO>A{ws}*{comment} {

130

131

132

133

134 <PASSTWO>A{ws}*\n

metric.ncsl--;

metric.mod_ncsl--;

135 inhibit_lo okup_var = FALSE;

136

137

138

139

140

141

142

143

lookup_compound_statement

metric.lac++;

metric.mod_loc++;

<PASSTWO>{comment} /* eat up comments*/ }

FALSE;

144

145

<PASSTWO>{ws}* { /* eat up white space*/

146 <PASSTWO>A{ws}* (• [•){identifier} ('] ') {ws}* ("=')

147 lookup_mod_var = TRUE;

148

149

150

151

REJECT;

152 <PASSTWO>A{ws}*('[') {identifier} (',X]'I ',Y]') {ws}*('=')

153 if (!strcmp(metric.func_name,'CHECKD0'))

154 lookup_mod_var = TRUE;

155

156 lookup_mod_var = TRUE;

157

61

158 REJECT;

) 159

)

J

160
161 <PASSTWO>A{ws}*('[(') {identifier}(',X)]') {ws}*(' = ')

162 lookup_mod_var = TRUE;

163

164

165

166

REJECT;

167 <PASSTWO>A{ws}*(' [(') {identifier}(') ,Y]') {ws}*('=')

168 lookup_mod_var = TRUE;

169

170 REJECT;

171

172

173 <PASSTWO>A{ws} * {identifier} {ws} * (•='I •. EQU') {ws} * {bit} (', •)

174 inhibit_lookup_var = TRUE;

175

176

177

178

REJECT;

179 <PASSTWO>A(ws}*{identifier}{ws}*(' .blkb')

180 inhibit_lookup_var = TRUE;

181

182

183

184

REJECT;

185

186

187

<PASSTWO>A{identi fier}{ws}*(' =') {ws}*{constant}

188

189

190

inhibit_lookup_var = TRUE;

REJECT;

191

192

<PASSTWO> ('] ' I ') ' I '} ') /* eat up right paranthesis */}

193 <PASSTWO>('\'') { /* eat up right qotes */

194 if (lookup_quote)

195 lookup_quote = FALSE;

196 else

197 REJECT;

198

199

200 <PASSTWO>" .FUNC'

201 metric.mod_func_count++;

metric.mod_vg++;

lookup_func_name

if (! first_func)

TRUE;

202

203

204

205

206

207

208

209

210

211

halstead_function(hash_table);

report_function();

hash_clear_func_count(hash_table);

first_func = FALSE;

62

212

213

214

2Vi

216

217

218

219

220

221

222

223

224

225

226

227

228

else

first_func = FALSE;

metric. l oc = O;
metric.ncsl = 0;

metric.vg = 1;

metric.func_call = 0;

metric.func_var_changed = 0;

metric.func_unique_var_changed

metric.func_var_read = 0 ;

metric.func_unique_var_read = 0;

metric.func_var_changed_pr = 0;

metric.func_unique_var_changed_pr

metric . func_var_read_pr = 0;

O;

metric.func_unique_var_read_pr = 0;

O;

229

230

hash _in sert _t oken(hash _ table, strupr(yytext), OPERATOR);

)

231

232 <PASSTWO>JSR

233 metric.func_call++;

234 metric.mod_func_call++;

235

236 REJECT;

237

238

239

240

241

242

243

244

245

246

<PASSTWO>(IFILIFIFOR ILF ORIWHILE)

l ookup_compound _s tatement

metric.vg++;

metric.mod_vg++;

REJECT;

247 <PASSTWO>CASEIDEFAULT

248 metric . vg++;

249 metric.mod_vg++;

250

251

252

253

254

255

256

257

<PASSTWO>ENDS

REJECT;

metric.vg--;

metric.mod_vg--;

258 REJECT;

259

260

261 <PASS TWO> ('.REPEAT"I '.REPEATC'I '.REPEAT I ')

262 metric.vg++;

263 metric.mod_vg++;

j 264

265 REJECT;

TRUE;

63

)

)

266

267

268

269

270

271

272

273

274

<PASSTWO>'. IF"

metric.vg++;

metric.mod_vg++;

REJECT;

275 <PASSTWO> (BBCIBBSIBCCIBCSIBEQIBMIIBNEIBPLIBVCIBVS)

276 metric.vg++;

277 metric.mod_vg++;

278

279

280

281

REJECT;

282 <PASSTWO>{identifier}

283 if (lookup_func_name)

284

285 strcpy(metric.func_name , strupr(yytext));

286 lookup_func_name = FALSE;

287

288 hash_insert_token(hash_table, strupr(yytext), OPERAND);

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

if (!inhibit_lookup_var)

if (lookup_mod_var)

if ((slot= hash _ search(hash_table, strupr(yytext))) >= 0)

if ((hash_table[slot].type & (BYTEVAR I BITVAR I EQUATE)) != 0)

if ((hash_table[slot].type & EQUATE) -- 0)

{

metric.func_var_changed++;

metric . mod_var_changed++;

metric.func_var_changed_pr++;

metric.mod_var_changed_pr++;

if ((hash_table[slot).reference & FUNCCHANGED) != FUNCCHANGED)

0) if ((hash_table[slot].type & EQUATE)

metric.func_unique_var_changed++;

metric.func_unique_var_changed_pr++;

hash_table[slot].reference I= FUNCCHANGED;

if ((hash_table[slot].reference & MODCHANGED) != MODCHANGED)

0) if ((hash_table[slot].type & EQUATE)

metric.mod_unique_var_changed++;

metric.mod_unique_var_changed_pr++;

hash_table[slot).reference I = MODCHANGED;

64

I

320

321

322

323

324

32 5

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

) 346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

lookup_mod_var FALSE;

else

if ((slot= hash_search(hash_table, strupr(yytext))) >= 0)

if ((hash_table[slot].type & (BYTEVAR I BITVAR I EQUATE)) != 0)
{

if ((hash_table[slot].type & EQUATE) 0)

metric.func_var_read++;

metric.mod_var_read++;

metric . func_var_read_pr++;

metric.mod_var_read_pr++;

if ((hash_table[slot].reference & FUNCREAD) != FUNCREAD)

if ((hash_table[sl ot] .type & EQUATE) == 0)

metric.func _unique_var_read++;

metric.func_unique_var_read_pr++;

hash_table[slot].reference I= FUNCREAD;

if ((hash_table[slot].reference & MODREAD) != MODREAD)

if ((hash_table[slot].type & EQUATE) 0)

metric.mod_unique_var_read++;

metric.mod_unique_var_read_pr++;

hash_table[slot].reference I= MODREAD;

<PASSTWO>("==" I'!=' I' >' I' <' I '>=' I' <=' I' I I' I' &&' I'++' I'--')
if (lookup_compound_statement)

if (!strcmp(yytext, '&&'))

metric.vg++;

metric.mod_vg++;

lookup_compound_statement

if (! strcmp (yytext, • I I •))

metric.vg++;

metric.mod_vg++;

lookup_compound_statement

65

FALSE;

FALSE;

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

) 400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

_)

hash_insert_token(hash_table, strupr(yytext), OPERATOR);

<PASSTWO> (• /. I • \ •• I • [• I • =. I • +. I • $. I • & • I • ' • I • - • I • - • I • I • I • ' • I • *. I • % • I • #. I • (• I • : •)

hash_insert_token(hash_table, strupr(yytext), OPERATOR);

<PASSTWO><<EOF>>

<PASSTWO>\n

<PASSTWO>.

yytext);

%%

if (!strcmp(yytext, '\''))

lookup_quote = TRUE;

halstead_function(hash_table);

report_function();

halstead_module(hash_table);

report_module() ;

hash_clear_func_count(hash_table);

hash_clear_mod_count(hash_table);

first_func = TRUE;

yyterminate();

inhibit_lookup_var = FALSE;

lookup_compound_statement

metric.lac++;

metric.ncsl++;

metric.mod_loc++;

metric.mod_ncsl++;

error= TRUE;

FALSE;

fprintf (stderr, "undefined token in module %s: %s\n', metric.mod_name,

66

)

_)

FILE METRIC.H:

1 // define some useful constants

2 #define TRUE 1

3 #define FALSE 0

4

5 // define bit constants for different types of tokens

6 #define OPERATOR 1

7

8

9

10

11

12

13

14

15

16

17

18

lldefine

lldefine

lldefine

#define

#define

#define

#define

#define

#define

#define

OPERAND 2

FUNCTION 4

BYTEVAR 8

BITVAR 16

EQUATE 32

PVAR 64

FUNCCHANGED

FUNCREAD 2

MO DC HANGED

MODREAD 8

1

4

19 // extension of the report output file

20 #define REPORT_EXTENSION ' .REP'

21

22

23

24

25

26

// data structure used to keep track of metric counts

struct metric_struct {

char mod_name[80];

char func_name[80];

27 int mod_func_count;

28 int sum_mod_func_count;

29 int mod_jsr_count;

30 int sum_mod_jsr_count;

31

32 int loc;

33 int mod_loc;

34 int sum_mod_loc;

35

36 int ncsl;

37 int mod_ncsl;

38 int sum_mod_ncsl;

39

40 int vg;

41 int mod_vg;

42 int sum_mod_vg;

43

44 int func_call;

45 int mod_func_call;

46 int sum_mod_func_call ;

47

48 int func_var_changed;

49

so
51

int func_unique_var_changed;

int mod_var_changed;

int mod_unique_var_changed;

67

)

52 int sum_mod_var_changed;

53 int sum_mod_unique_var_changed;

54
55 int func_ var_changed_pr;

56 int func_unique_var_changed_pr;

57 int mod_var_changed_pr;

58 int mod_unique_var_changed_pr ;

59 int sum_mod_var _changed_pr;

60 int sum_mod_unique_var_changed_pr;

61
62 int func_var_read;

63 int func_unique_var_read;

64 int mod_var_read;

65 int mod_unique_var_read;

66 int sum_mod_var_read ;

67 int sum_mod_unique_var_read ;

68
69 int func_var_read_pr;

70 int func_unique_var_read_pr;

71 int mod_var_read_pr;

72 int mod_unique_var_read_pr;

73 int sum_mod_v ar _re ad_pr;
74 int sum_mod_unique_var_read_pr;

75

76

77

78

79

80

81

int nl, n2;

int Nl, N2;

float Nhat;

float V;

float E;

82 int sum_nl, sum_n 2;

83 int sum_Nl, sum_N2;

84 float sum_Nhat;

85 float sum_V;

86 float sum_E;

87 };

68

1

2

3

4

5

6

FILE METRIC.C:

#include <conio.h>

#inc l ude <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <a ll oc . h>

7 #include 'metric.h'

8 #include "hash.h'

9

10 II flex inputlouput files

11 extern FILE *yyin , *yyout;

12
13 II metric struct keeps all metric counts

14 struct metric _ struct metric;

15

16 II pointer to hash table

17 struct hash _ slot far *hash_table;

18

19 II error flag

20 int error FALSE;

21

22 II do pass one first

23 int passtwo = FALSE;

24

25 II temporary file

26 FI LE *fp t mp;

27

28 I I flags

29 int repor t_ module _ only = FALSE ;

30

31 II report metric counts of function into temporary file

32 void report_function(void)

33

34 int slot;

35

36 II calculate jsr_count

37 slot= hash_search(hash_table, metric.func_name);

38 metric. mod_jsr_count += hash_table[s l ot] . jsr_count;

39

40 if (report_module _ only)

41 return;

42

43 II if temporary file doesn "t exists create it

44 if (!fptmp)

45
46 if ((fptmp = fopen('TMP', 'w+')) == NULL)

47 {

48 perror('Error on creating te mporary file");

49 exit (1);

so
51

69

l

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102
103

) 104

105

fprintf(fptmp, '%s\t',metric.func_name);

fprintf(fptmp, • %5d\t',metric.nl);

fprintf(fptmp, • %5d\t',metric.Nl);

fprintf(fptmp,• %5d\t',metric.n2);

fprintf(fptmp, • %5d\t",metric.N2);

fprintf(fptmp, • %9.0f\t',metric.Nhat);

fprintf(fptmp, • %9.0f\t",metric.V);

fprintf(fptmp, • %9.0f\t•,metric.E);

fprintf(fptmp, • %5d\t',metric.vg);

fprintf(fptmp,• %5d\t' , metric.loc);

fprintf(fptmp, • %5d\t',metric.ncsl);

fprintf(fptmp,• %5d\t',hash_table[slot].jsr_count) ;

fprintf(fptmp, • %5d\t',metric.func_call);

fprintf(fptmp, • %5d\t' , metric.func_var_changed);

fprintf(fptmp ,• %5d\ t ', metric.func_var_read) ;

fprintf(fptmp , • %5d\ t',metric.func_unique_var_changed);

fprintf(fptmp, • %5d\t',metric.func_unique_var_read);

fprintf(fptmp,• %5d\t",metric.func_var_changed__pr);

fprintf(fptmp, • %5d\t ' ,metric.func_var_read__pr);

fprintf(fptmp,• %6d\ t',metric.func_unique_var_changed__pr);

fprintf(fptmp, • %5d',metric.func_unique_var_read__pr);

fprintf(fptmp,'\n");

// report all metric counts

void report_module(void)

static int first

char c;

TRUE;

metric.sum_mod_func_count += metric.mod_func_count;

metric.sum_mod_jsr_count += metric.mod_jsr_count;

metric.sum_mod_loc += metric.mod_loc;

metric.sum_mod_ncsl += metric.mod_ncsl;

metric.sum_mod_vg += metric.mod_vg;

metric.sum_mod_func_call += metric.mod_func_call;

metric.sum_mod_var_changed += metric.mod_var_changed;

metric.sum_mod_unique_var_changed += metric.mod_unique_var_changed;

metric.sum_mod_var_read += metric . mod_var_read;

metric.sum_mod_unique_var_read += metric.mod_unique_var_read;

metric.sum_mod_var_changed__pr += metric.mod_var_changed__pr;

metric.sum_mod_unique_var_changed__pr += metric.mod_unique_var_changed__pr;

metric.sum_mod_var_read__pr += metric.mod_var_read__pr;

metric.sum_mod_unique_var_read__pr += metric.mod_unique_var_read__pr;

metric.sum_ nl += metric.nl;
metric.sum_n2 += metric.n2;
metric.sum_Nl += metric.Nl;
metric.sum_N2 += metric.N2;

metric.sum_Nhat += metric.Nhat;

metric.sum_V += metric.V;

metric.sum_E += metric.E;

if (report_module_only)

70

)

)

)

106

107

108

109

if (first)

110 fprintf(yyout,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t %s\t%s \ t%s\t %s\t%s\

111 t%s\t%s\t%s\n","NAME', "FUNC', "nl', 'Nl', "n2','N2","Nhat', 'V', 'E', 'VG', 'LOC', "NCSL', 'FIN" , 'F

112 OUT' , 'VOUT' , 'VIN","UVOUT', 'UVIN", 'VROUT','VRIN" , 'UVROUT', "UVRIN');

113 first= FALSE;

114

115

116 else

117

118 fprintf(yyout,' %s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\

119 t%s\t%s\n", 'NAME', 'nl', 'Nl',"n2", 'N2', 'Nhat•, 'V", 'E',"VG', 'LOC', 'NCSL','FIN', 'FOUT', 'VOUT'

120 , 'VIN', 'UVOUT', 'UVIN', 'VROUT', 'VRIN', 'UVROUT','UVRIN');

121

122 fprintf(yyout, '%s\t',metric.mod_name);

123 if (report_module_only)

124 fprintf(yyout,• %5d\t',metr ic.mod_func_c ount);

125 fprintf(yyout, • %5d\t' ,metric.nl) ;

126 fprintf(yyout, • %5d\t',metric.Nl);

127 fprintf(yyout , ' %5d\t' ,metric.n2);

128 fprintf(yyout , • %5d\t',metric.N2);

129 fprintf(yyout, • %9.0f\t',metric.Nhat);

130 fprintf(yyout, • %9.0f \t' ,metric.V);

131

13 2

133

fprintf(yyout,• %9.0 f \t" ,metric.E);

fprintf(yyout,• %5d\t',metric.mod_vg);

fprintf(yyout,' %5d\t" ,metric .mod_ loc);

134 fprintf(yyout,• %5d\t',metric.mod_ncsl);

135 fprintf(yyout, • %5d\t',metric.mod_jsr_count);

136 fprintf(yyout, • %5d\t" ,metric.m od _func_call);

137 fprintf(yyout,' %5d\t',metric.mod_var_changed);

138 fprintf(yyout, • %5d\t',metric.mod_var_read);

139 fprintf(yyout,• %5d\t',metric .mod_unique_var_changed);

140 fprintf(yyout,' %5d\t ",metric.m od _unique_var_read);

141 fprintf(yyout,' %5d\t',metr ic.m od _var_changed_pr);

142 fprintf(yyout, • %5d\t',metric.mod_var_read_pr);

143 fprintf(yyout,• %6d\t',metric.mod_unique_var_changed_pr);

144 fprintf(yyout,' %5d' ,metr ic.mod_unique_var_read_pr);

145 fprintf(yyout, '\n');

146

147 if (report_module_only)

148 return;

149

150 fprintf(yyout, "\n");

151

152 // get all stuff out of temporary file

153 fseek(fptmp, 0L, 0);

154 while (!feof(fptmp))

155

156

157

158

159

c = fgetc(fptmp);

if (c != EOF)

fprintf(yyout, '%c", c);

71

160

) 161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

) 212

213

fclose(fptmp);

remove('TMP');

fptmp = NULL;

fprintf(yyout, '\n\n");

II report all sums of metric counts

void report_sum_module(void)

char directory[80];

inti;

getcurdir(0, directory);

for (i=strlen(directory); i != 0; --i)

if (directory[i] == '\\')

break;

fprintf(yyout, '\n%s\t',&directory[i+l]);

fprintf(yyout, • %5d\t',metric.sum_mod_func_count);

fprintf(yyout,• %5d\t",metric.sum_nl);

fprintf(yyout, • %5d\t',metric.sum_Nl);

fprintf(yyout, • %5d\t' ,metric.sum_n2);

fprintf(yyout, • %5d\t' ,metric.sum_N 2);

fprintf(yyout, • %9.0f \ t ',metric.sum_Nhat);

fprintf(yyout, • %9.0f \t',metric.su m_V);

fprintf(yyout, • %9.0f \t',metric.sum _E);

fprintf(yyout, • %5d\t',metric.sum_mod _vg) ;

fprintf(yyout,• %5d\t' ,metric .sum_mod_loc);

fprintf(yyout,• %5d\t',metric.sum _mod_ncsl) ;

fprintf(yyout,• %5d\t',metric.sum_mod _jsr_ count);

fprintf(yyout,• %5d\t',metric.sum_mod_func_call);

fprintf(yyout,• %5d\t' ,metric.sum_m od_var_chang ed) ;

fprintf(yyout,• %5d\t',metric.sum_mod_var_read);

fprintf(yyout,' %5d\t' ,metric.sum_mod_unique _var_ changed);

fprintf(yyout, • %5d\t',metric.sum_mod _uniqu e_var_read);

fprintf(yyout,• %5d\t' ,metric .sum_mod_var_changed__pr);

fprintf(yyout, • %5d\t',metric .sum_mod_var_read__pr);

fprintf(yyout,• %6d\t' ,metric.sum_mod _uniqu e_var_changed__pr);

fprintf(yyout,• %5d' ,metric.sum_mod_unique_var _r ead__pr);

fprintf(yyout, '\n');

II initialize metric struct

void init_metric(void)

metric.mod_func_count = 0;

metric.mod_jsr_count = 0;

metric.mod_loc = 0;

metric.mod_ncsl = 0;

metric . mod_vg = 0;

metric.mod_func_call = 0;

metric.mod_var_changed = 0;

metric.mod_unique_var_changed 0;

72

)

214 metric.mod_var_read = 0;

215 metric.mod_unique_var_read = 0;

216 metric.mod_var_changed_pr = 0;

217 metric.mod_unique_var_changed_pr

218 metric.mod_var_read_pr = 0;

219

220

metric.mod_unique_var_read_pr 0· '

221

222 // initialize metric struct

223 void init_sum_metric(void)

224

225 metric.sum_mod_func_count = 0;

226 metric.sum_mod_jsr_count = 0 ;

227 metric.sum_mod_loc = 0;

228 metric . sum_mod_ncsl = 0;

229 metric.sum_mod_vg = 0;

230 metric.sum_mod_func_call = 0;

231

232

metric.sum_mod_var_changed = 0;

metric.sum_mod_unique_var_changed

233 metric.sum_mod_var_read = 0;

234 metric.sum_mod_unique_var_read = 0;

235 metric.sum_mod_var_changed_pr = 0;

0;

0;

236 metric.sum_mod_unique_var_changed_pr

237 metric.sum_mod_var_read_pr = 0;

238

239

240

241

242

243

244

245

246

247

metric.sum_mod_unique_var_read_pr

metric.sum_nl 0;

metric.sum_n2 0;

metric.sum_Nl 0;
metr ic.sum_N 2 0;

metric.sum_Nhat 0 · '
metric.sum_V 0;

metric.sum_ E 0;

248 void help ()

249

O;

0;

250 printf(•metric [[@]filename] [-mh] \n\n");

251 printf(•-m output modules only\n');

252 printf("-h help screen\n\n");

253 printf('filename is an input file.\n");

254 printf("@filename is a file that contains multiple input files of a project.\n');

255

256

257 int main(int argc, char** argv)

258

259 FILE *project_file = NULL;

260 char fname[80];

261 int first_file = TRUE;

262 char directory[80];

263 inti;

264

265 // get arguments

266 ++argv; --argc;

267 if (argc > 0)

73

)

)

268

269

270

271

272

273

274

if (strstr(argv[O], '-h'))

{

help();

exit(l);

275 II is it a project file?

276 if (argv[O][O] == '@')

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

if ((project_file = fopen(&argv[O] [1], 'r'))

perror('Error on reading project file");

exit(l);

II otherwise it's a single file

else

yyin = fopen(argv[O], 'r");

strcpy(metric.mod_name , strupr(argv[O)));

292 II or worse, it"s from stdinput

293 else

294

295

296

297

298

yyin = stdin;

strcpy(metric.mod_name, 'STDIN');

299 II anything else

300 if (argc > 1)

301 if (argv[l) [OJ == ' - ')
302 {

303

304

305

306

if (strstr(argv[l), 'm"))

report_module_only = TRUE;

307 yyout = stdout;

308

309 II initialize metric struct

310 init_metric();

311 init_sum_metric();

312

II allocate memory for hash table

NULL)

313

314

315

316

hash_table (struct hash_slot* far) farmalloc(HASH_TABLE_SIZE

hash_slot));

if (hash_table NULL)

317

318 perror('Error on creating hash table');

319 exit(l);

) 320

321

74

* sizeof(struct

I

)

)

322

323

324

II initialize hash table

hash_init(hash_table);

325 II put in all operators

326 hash_init_operators(hash_table);

327

328 II put in all processor registers and predefined resources

329 II hash_init_registers_resources(hash_table);

330

331 II if it is a single file

332 if (!project_file)

333

334 yylex();

335 fseek(yyin, 0L, 0);

336 passtwo = TRUE;

337 yyrestart(yyin);

338 yylex();

339

340

341

342

343

344

345

if (error)

fprintf(stderr, •error occurred.\n");

return(0);

346 II otherwise proceed project file

347 for (i=0; i<2; i++)

348

349

350

while (fgets(fname, sizeof(fname), project_file) != NULL)

fname[strlen(fname)-1) = '\0'; 351

352

353

354

yyin = fopen(fname, "r");

strcpy(metric.mod_name, strupr(fname));

355

356

357

358

359

360

361

362

363

364

365

366

367

if (yyin)

{

}

if (! first_file)

yyrestart (yyin);

init _metric();

yylex();

fclose (yyin) ;

first file= FALSE;

368 II set pass two and do it again

369 fseek(project_file, 0L, 0);

370 passtwo = TRUE;

371

372

373 fclose(project_file);

374

375 if (report _module_only)

75

376 report_sum_module();

) 377

378 if (error)

379 fprintf(stderr, •error(s) occurred . \n •) ;

380

381 return O;

382

)

76

FILE HASH.ff:

1 II define hash table size

2 #define HASH_TABLE_SIZE 1999

3

4 II define identifier length

5 #define ID_LENGTH 10

6

7 II data structure that is stored in the hash table

8 struct hash_slot {

9 int key;

10 char identifier[ID_LENGTH];

11 int mod_count;

12 int func_count;

13 int jsr_count;

14 int type;

15 int reference;

16 } ;

)

)

77

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

)
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

FILE HASH.C:

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <values.h>

#include •metric.h'

#include 'hash.h'

// needs access to metric struct

extern struct metric_struct metric;

// #define DEBUG

// double hashing function

int hash(int k, inti)

long hash_value;

hash_value = k % 1999;

if(i!=0)

hash_value += i * (long) (1 + (k % 1997));

hash_value %= 1999;

if (hash_value<0)

perror('Error on hash');

exit (1);

return (hash_value);

// insert some string into hash table

int hash_insert(struct hash_slot* table, char* id)

int i = 0;

int j;

int key;

key str2key(id);

do {

j = hash(key,i);

if (table[j].key == -1)

{

table[j].key = key;

strcpy(table[j] .identifier, id);

return(j);

else

i++;

78

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

) 78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

} while (i<HASH_TABLE_SIZE);

perror('Error on hash_insert");

exit (1);

// lookup some string in hash table

int hash_search(struct hash_slot* table, char* id)

inti= 0;

int j;

int key;

key str2key(id) ;

do {

j = hash(key,i);

if ((table[j].key

return j;

key) && (!strcmp(table[j] .identifier, id)))

i++;

while ((table[j].key >= 0) && (i<HASH_TABLE_SIZE));

return(-!);

// build hash key

int str2key(char* s)

inti, key;

key = 0;

for (i=0; i<strlen(s); i++)

key"= s[i];

return key;

// insert a token with a given type into hash table

int hash_insert_token(struct hash_slot *table, char *s, int type)

int slot;

if ((slot= hash_search(table, s)) < 0)

slot= hash_insert(table, s);

if (! ((table[slot].type == OPERATOR) && (type

table[slot].type I= type;

if ((type== OPERATOR) I I (type

{

table[slot].mod_count++;

table[slot].func_count++;

if (type== FUNCTION)

table[slot].jsr_count++;

OPERAND))

79

OPERAND)))

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

) 132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

return slot;

// initialize hash table

void hash_init(struct hash_slot* table)

inti;

for(i=0; i <HASH_TABLE_SIZE; i++)

table[i].key = -1;

strcpy(table[i].identifier,'');

table[i].mod_count = 0;

table[i] .func_count = 0;

table[i].jsr_count 0;

table[i].type = 0;

table[i].reference 0;

// clear function counts of hash table

void hash_clear_func_count(struct hash_slot* table)

inti;

for(i=0; i <HASH_TABLE_SIZE; i++)

table[i].func_count = 0;

table[i].reference &= (~FUNCCHANGED);

table[i].reference &= (~FUNCREAD);

// clear module counts of hash table

void hash_clear_mod_count(struct hash_slot *table)

inti;

for(i=0; i <HASH_TABLE_SIZE; i++)

table[i].mod_count = 0;

table[i].reference 0;

// insert operators into hash table

void hash_init_operators(struct hash_slot *table)

FILE *operators;

int slot;

char s[ID_LENGTH];

if ((operators= fopen('OP.TXT", 'r")) NULL)

80

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

) 186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

) 212

213

perror("Error on reading operator file') ;

exit (1);

while (!feof(operators))

fgets(strupr(s),ID_LENGTH,operators);

s[strlen(s)-1] = '\0';

slot= hash_insert(table, s);

table[slot].type = OPERATOR;

fclose(operators);

// calculate halstaeds counts for functions

void halstead_function(struct hash_slot *table)

inti;

metric.nl = metric.n2 = metric.Nl

for(i=0; i<HASH_TABLE_SIZE; i++)

if (table[i] .func_count != 0)

if ((table[i].type & OPERATOR)

{

metric.nl++;

metric.N2

OPERATOR)

metric.Nl += table[i].func_count;

if ((table[i].type & OPERAND) OPERAND)

metric.n2++;

metric.N2 += table[i].func_count;

if (metric.n2 == 0)

O;

perror('halstaed's n2 is 0, division by zero");

exit(l);

metric.Nhat = metric.nl * log(metric . nl)/log(2) + metric.n2 * log(metric.n2)/log(2);

metric.V (metric.Nl + metric.N2) * log(metric.nl + metric.n2)/log(2);

metric.E ((metric.Nl + metric.N2) * log(metric.nl + metric.n2) /log(2) * metric.nl *

metric.N2) / (2 * metric.n2);

/ / calculate halstaeds counts for module

void halstead_module(struct hash_slot *table)

inti;

81

)

)

214

215

216

metric.nl = metric.n2 = metric.Nl metric.N2

217 for(i=0; i<HASH_TABLE_SIZE; i++)

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

if (table[i].mod_count != 0)

if ((table[i].type & OPERATOR)

{

metric.nl++;

metric.Nl += table[i].mod_count;

OPERATOR)

if ((table[i].type & OPERAND) OPERAND)

metric.n2++;

metric.N2 += table[i].mod _ count;

235 if (metric.n2 == 0)

236

O;

237 perror('halstaed's n2 is 0, division by zero');

2 3 8 exit (1) ;

239

240

241

242

243

metric.Nhat = metric.nl * log(metric.n1)/log(2) + metric.n2 * log(metric.n2)/log(2);

metric.v

metric.E

(metric.Ni+ metric.N2) * log(metric.nl + metric.n2)/log(2);

((metric.Nl + metric.N2) * log(metric.nl + metric.n2) /log(2) * metric.nl *

244 metric.N2) / (2 * metric.n2);

82

