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Abstract 

We describe a set of data flow techniques and code transformations that translate a single 

instruction stream, multiple data stream (SIMD) Dataparallel C program into a semantically 

equivalent single program, multiple data stream (SPMD) C program suitable for execution on 

shared memory multiprocessor computers, such as the Sequent Balance and Sequent Symmetry . 

The technique consists of identifying those areas in the original synchronous SIMD program 

where barrier synchronizations must be enforced to preserve the semantics, and then rewriting 

the. program as a loosely synchronous SPMD C program that includes calls to barrier 

synchronization library routines. The run-time model used by the translated program is also 

presented. We discuss a Dataparallel C compiler we have implemented using our proposed 

methodology. Finally, we _present some performance results for our compiler, and we discuss 

techniques to improve these results. 

1 Introduction 

We are convinced that much of the difficulty in programming parallel computers is a direct result 

of the paradigms being used. We now describe a paradigm that we feel solves many of the 

problems of parallel programming. With the development of massively parallel SIMD machines, 

such as the Connection Machine, a new style of parallel programming has emerged: data
parallel programming. We characterize data-parallel programming as having the following 

features: 

Explicitly Parallel Data. The programmer declares parallel data that is to be distributed 

among the processors . The programmer may also specify how the data is to be 

distributed . 

Explicitly Parallel Code. The programmer explicitly writes parallel and sequential code. 

Parallel code can be any general code, and is not limited to expressions. The 

compiler performs no automatic parallelization of the source code. 

Virtual Processors. Associated with each parallel data item is a virtual processor . Virtual 

processors are necessary, because the number of parallel data items may exceed 

the number of physical processors. There is no limit to the number of virtual 

processors available. If there are more virtual processors than physical 

processors , they will be emulated by the translated program and not the operating 

system. 

SIMD Semantics. Parallelism is achieved by virtual processors applying identical 

operations to their associated data items in parallel. Programs execute as if there 

is a single instruction counter for all virtual processors. Semantically, all virtual 
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processors work lock step. In this way operations can be applied across 

collections of data in parallel. 

Shared Memory Model with Global Name Space. No explicit communications are 

necessary in a data-parallel program. Instead, virtual processors communicate 

through general pointer or array references. In parallel code it is possible to 

access or assign sequential data items declared in outer scopes, just as in 

sequential programs. In sequential code it is possible to access or assign the 

values of parallel data items. Virtual processors can also access and assign each 

other's parallel data. 

Virtual Processor-Oriented Code. Code is written at the virtual processor level, as if the 

programmer were writing the code for a single virtual processor. The code is then 

executed by all virtual processors in parallel. 

Deterministic Execution. This is a consequence of the SIMD semantics and greatly 

reduces programming errors and simplifies the debugging process. 

We feel that the data-parallel style of programming solves many of the problems of the 

other paradigms. The shared memory model removes the potential for communication bugs. 

SIMD semantics removes race conditions and guarantees determinism. The amount of data 

parallelism scales with the problem size, making it easy to utilize large numbers of processors. 

Programming from the local view, we believe, is easier for the programmer than programming in 

the global view, which is the paradigm for parallel array based languages, such as Vector C [15], 

Parallel Pascal [26], and parallel implementations of APL [2], because the programmer has more 

direct control. Also, we feel that the features of data parallel programming languages make the 

programs easier to debug and maintain. In a study conducted by Fox [6], he found as many as 

83% of existing scientific applications are amenable to a data-parallel solution. It seems that a 

data-parallel solution to a data-parallel problem is a natural solution. We are not presenting data

parallel languages as the only solution to parallel programming; rather, our claim is that in many 

cases data-parallel programming provides the programmer with a manageable solution. For more 

information on data-parallel programming and data-parallel algorithms see [12, 13, 21]. 

Our research has focused on the compilation of data-parallel languages for efficient 

execution on multiple instruction stream, multiple data stream (MIMD) architectures. More 

specifically, we have developed a Dataparallel C compiler for the tightly coupled Sequent 

Symmetry and Balance multiprocessors. Our compiler uses data flow techniques to build use

def, def-use, and def-def dependency chains for all expressions in parallel code. These data 

dependency chains are then used to locate all places in the original code where barrier 

synchronizations need to be enforced to preserve the semantics of the original Dataparallel C 

program. Once these synchronization points are known, our compiler uses a sequence of code 

transformations to rewrite the original Dataparallel C code as a semantically equivalent, loosely 

synchronous SPMD C program that includes calls to the Sequent parallel programming library 
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for parallel data and process management. Additionally , the compiler must translate all 

Dataparallel C programming constructs not found in C into semantically equivalent C code. 

At first thought, the idea of compiling a SIMD language for a MIMD machine may seem 

odd , but we believe that for many applications SIMD languages on MIMD machines have 

advantages over SIMD languages on SIMD machines and MIMD languages on MIMD 

machines. These advantages are: 

SIMD languages have many desirable characteristics not found in other parallel 

programming paradigms, as discussed earlier. 

They provide a convenient means for writing data-parallel programs for MIMD 

machines, which traditionally have had only low-level support for parallel programming. 

Communications and competing memory references may be spread out temporally on a 

MIMD machine due to their asynchronous behavior, thus reducing contention for 

resources and improving efficiency 

It is often possible to more effectively utilize the CPUs of a MIMD machine in 

conditional code than those of a SIMD machine by relaxing the SIMD constraints, if the 

semantics can be preserved. 

This project is not the first attempt at compiling SIMD languages for MIMD 

architectures. Quinn and Hatcher describe a C* compiler for the nCUBE muilticomputer in [7, 

20, 21, 22, 23]. In [8, 10, 11, 9, 21] Quinn and Hatcher present performance figures for a 

Dataparallel C compiler on the nCUBE and Intel iPSC/2 multicomputers. Similar work is also 

being done at NASA ICASE on the data-parallel language Kali, targeted for multiprocessors 

[14]. 

We use a variant of the SelectSyncs algorithm developed by Quinn and Hatcher [24] to 

determine a minimal set of barrier synchronizations necessary in the translated Dataparallel C 

program. We have modified the algorithm to allow synchronization points to be chosen more 

optimally. 

Array processing languages, such as Vector C, Parallel Pascal, and APL have been 

developed and parallelized. While these languages do share many similar concepts with 

Dataparallel C, such as explicit parallelism and virtual processors, we feel these languages are 

not true data-parallel languages, because solutions must be coded with the global view, and not 

the local view. 

Several true data-parallel programming languages have been developed for SIMD 

machines, such as *Lisp [29] and C* [27], both by Thinking Machines Corp . The development 

of C* was significant, because it was an upwardly compatible data-parallel extension to the 

highly popular and efficient programming language C. C* extends C in relatively few ways. It 

provides mechanisms to declare both parallel and scalar data items, and to write both parallel and 

scalar code. Scalar code behaves exactly as standard C code, and parallel code behaves in a 
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natural data-parallel extension to the scalar model. It provides the programer a virtual machine 

model with a scalar front-end, where sequential code and data reside, and a back-end array 
processor, where parallel code and data reside. The back-end array processor always has the 
required number of virtual processing elements. Dataparallel C is a variant of C*. For a more 
complete description of the C* programming language see [27]. 

The remainder of this paper is organized as follows. In section 2 we provide a brief 
introduction to Dataparallel C. Section 3 gives a conceptual overview of the compilation 
process. Here we describe the run-time model, and give a brief description of how the compiler 
translates Dataparallel C to C. In section 4 we discuss the actions of our compiler during the scan 

and parse phase. Section 5 describes the data flow process and gives some examples of the data 
dependencies that must be preserved. Section 6 shows how the data flow information is used to 
select a minimal set of synchronization points needed to preserve the SIMD semantics of the 
Dataparallel C program. In section 7 we present the code transformations and several important 
optimizations implemented by our compiler. Section 8 describes how peephole optimization 
cleans up the code generated by the code transformations. Section 9 describes the unparse phase, 
where many of the constructs unique to Dataparallel C are translated into C. In section 10 we 
evaluate the performance of our compiler, both in the code it generates, and the time it requires 
to compile Dataparallel C codes. Section 11 outlines future work that could be done on both the 
language Dataparallel C and our compiler. Some of the shortcomings of Dataparallel C and 
optimizations that could improve the performance of the translated programs are discussed. We 
end in section 12 with a summary of our work, and draw some conclusions from our results. 

2 The Dataparallel C Programming Language 

Since Thinking Machines first introduced the C* language, they have developed the C* 
version 6.0 language [28], which differs substantially from the original. We have made several 
small changes to the original C* language, and renamed it Dataparallel C to avoid confusion with 

the new C* language. We now provide a brief language description for Dataparallel C. For an in 
depth description see [21]. 

Dataparallel C is an extension of ANSI C. Any ANSI C program should compile and 

behave as expected. To add parallelism, Dataparallel C provides three areas of extension to 
ANSIC. 

1. Programmers can declare parallel data types and instances of these parallel data types 
(parallel data). The programmer can also specify how this data is to be distributed. 

2. Programmers can write parallel code and parallel functions. 

3. Several new expression operators have been added to the language. 
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Parallel data items can be declared in two ways. The first is with the domain declaration. 
A domain declaration is similar to a structure declaration, and can be used to declare both 
instances of parallel data and parallel data types. Each instance of a parallel data type is 
associated with a virtual processor. For example, the code below declares a domain type foo 
and 10000 instances of this type in the array poly _data. Each data instance has an associated 
virtual processor, an integer named bar, and an array of 20 floats named baz. 

domain foo { 
int bar; 
float baz[20]; 

} poly_data[l00] [100]; 

The second mechanism by which parallel data can be declared is by declaring data items 
locally inside parallel code, in the normal C blocked scoping fashion. Variables declared in this 
way are created with one instance for each virtual processor (each virtual processor has its own 
variable). 

Virtual processors are distributed over the physical processors using one of seven 
mappings ; contiguous, contiguous_row, contiguous_col, interleaved, 
interleaved_row, interleaved_col, and blocked. The programmer can optionally 
specify a domain distribution when the domain type is declared, as in: 

domain contiguous foo { 
int bar; 
float baz[20]; 

} poly_data[l00] [100]; 

If no distribution is specified, our compiler defaults to interleaved, causing each physical 
processor to emulate the n'th virtual processor, where n is the number of physical processors. 
Contiguous mappings cause the virtual processors for chunks of neighboring data items to be 
emulated on the same physical processor. Our compiler implements only two different 
distributions; the contiguous and blocked mappings are grouped together, and the interleaved 
mappings are grouped together. This is because of how we actually emulate virtual processors, 
which is discussed later. At compile time it is possible to change the default mapping from 
interleaved to contiguous, using a command line switch. 

There are also two methods of specifying parallel code. The first is the domain select 

statement. The syntax of the domain select is 

[domain domainnarne] .statement 

where statement can be (and usually is) a compound statement that contains the code to be 
executed in parallel. The reference to dornainnarne must be a pre-declared domain type tag 
name, and not an instance name. Code outside a domain select behaves as normal sequential 
code, but when execution enters a domain select, all the virtual processors of type domainname 

become active and execute the domain select statements and expressions together in a SIMD 
fashion. All legal C statements and expressions are permitted in a domain select, except the 
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goto statement. In (20] Quinn and Hatcher describe why the goto cannot be implemented 

efficiently in SIMD languages compiled for MIMD architectures. For this reason, goto is not 

allowed in parallel code. Due to the infrequent use of goto, we hardly feel this is a serious 
restriction. 

Domain selects cannot be nested, either statically or dynamically through function calls. 

However, it is legal to invoke parallel functions, discussed next, of the same domain type from 
inside parallel code. 

The second method of declaring parallel code is through parallel, or member function 
declarations. A member function declaration is similar to its C++ counterpart. A function 

prototype for all member functions must appear in the domain declaration. When the actual 

function is declared, its name must be prefixed with the domain type, such as 

domain foo { 
inti; 
float bar[20]; 
int member_func(); 

} baz [ 10 0] [ 10 0] ; 

int foo::member_func() 
{ 

} 

Again, all legal C statements and expressions are allow ed in member functions except 

goto. Additionally, member functions may be invoked from either sequential or parallel code. 

Domain selects are not permitted in member functions, as this would nest parallelism. 

When a control structure , such as an if or whi 1 e statement, is executed in parallel code, 

only those virtual processors for which the condition is true execute the body of the structure, 

while the others "tum off' and wait for the active virtual processors to finish. In the case of an 

if with an else clause, the virtual processors for which the condition was false wait at the 

else clause until all those virtual processors for which the test was true have finished the then 

portion. Those that were active now become inactive and wait at the bottom of the else portion, 

while those that were inactive now become active and execute the else. 

To invoke member functions from parallel code, either the form 

domain_type_tag::member_func_name(args) 

or 

member_func_name(args) 

can be used. Since parallelism cannot be nested , domain_type_tag must be the same as the 

current domain select, and hence, it need not be specified. When calling a member function from 

sequential code, the 

domain_type_tag::member_func_name(args) 
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form must be used. If a member function is called from parallel code , only those virtual 
processors that are currently active execute the function. If a member function is called from 
sequential code, all virtual processors will become active. The return value of the lowest 
numbered virtual processor (the one for the first instance of the domain) will be used as the 
sequential value of the member function. 

Dataparallel C introduces some new expression types and operators to the C language. 
The first of these is the keyword this . Similar to C++, this is defined to be a pointer to each 
virtual processor's local data. For example, in parallel code 

this->bar[2]++; 

would cause every virtual processor to increment the value of the third element in its own bar 
array. Virtual processors can access data values of other virtual processors through pointer 
arithmetic on this. The expression 

this->i = (this+l)- >i; 

would cause all virtual processors to read their right-hand neighbors value of i, and then assign 
it to their value of i. The SIMD semantics of the language guarantee that all virtual processors 
will have read their neighbor's value of i before any assign the value to their local copy of i. 

The keyword this is only allowed in parallel code. 

Often, this can be omitted. The name resolution rules in parallel code specify that 
member names of the active domain type are searched first, and then names of outwardly scoped 
variables are searched. The above example could have been written as 

i = (this+l)- > i; 

again, similar to C++. Dataparallel C provides no mechanism to access outwardly scoped 
variables in the case of name aliasing. 

To further aid the programmer in accessing values of neighboring virtual processors, the 
language provides some pre-defined communication macros. These are successor () , 
predecessor(), north(), south(), west(), east(), northwest(), 

northeast () , southwest (), southeast (), up (), and down () . All 
communication macros are only valid if they make sense for the shape of the domain. For 
single-dimensional arrays , only successor () and predecessor () are valid. For two
dimensional arrays, they all are valid up through southeast (). For three-dimensional arrays 
and higher, they are all valid. These macros take no arguments, and evaluate to a pointer to the 
desired virtual processors data items of the same type as the current domain select These 
macros also provide toroidal wraparound for boundary virtual processors. Communication 
macros are only valid in parallel code. 

We often refer to parallel variables as poly variables and sequential variables as mono 
variables. Two corresponding type qualifiers have been added to the language, poly and mono. 
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It is possible to use the mono type qualifier to declare mono data in parallel code, which has the 

same effect as declaring the variable in sequential code. It is also possible to use mono and 

poly to cast the type of an expression to either mono or poly. The mono and poly qualifiers 

are only legal in parallel code. 

For convenience, Dataparallel C adds two new operators to C, min and max. They both 

have a binary and an assignment form. Min is <? or <? =, ~d max is >? or >? =. These are 

similar to the common min and max macros, with the exception that they only evaluate their 

arguments once. The min and max operators are allowed in either sequential or parallel code. 

It is often useful in parallel code to be able to perform some kind of a reduction operation 

across parallel data, such as finding the sum, or max of a domain member. To provide this 

functionality, Dataparallel C has overloaded most of the assignment operators. The reduction 

operators are: 

+= Sum reduction 

- Negative of the sum reduction 

*- Product reduction 

I= Reciprocal of the Product reduction 

I= Bitwise OR reduction 

&= Bitwise AND reduction 
A = Bitwise XOR reduction 

<?= Min reduction 

>?= Max reduction 

Each reduction operator has both a unary and an assignment form. The expression 

i = <?= b[O]; 

contains a unary min reduction. In evaluating the unary min operator, all currently active virtual 

processors participate in finding the minimum of the b [ 0] values, they then assign this value to 

their own i. 

The rules for the assignment reduction operators are not so simple. For example 

i <?= b[O]; 

is not a reduction at all, but instead a minimum assignment. The reason for this is that i is a poly 

variable, so each virtual processors would simple take the min of its i and b [ 0 ] values, and 

assign the result to its local i. However, if i had been a mono variable, a reduction would have 

been performed. 

To better understand when an assignment is a reduction, we introduce the "as if serial" 

rule. This rule specifies the semantics of assignment in parallel code are as if the virtual 

processors executed it in some serial order, with no two executing at the same time. The 

arguments to the assignment operator are still evaluated with SIMD semantics. This may· seem 
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to break from the SIMD semantics of Dataparallel C, but it is necessary to fully understand what 
function any particular assignment expression performs. Assignment operators only perform 
reductions if two or more virtual processors assign to the same lval. When the number of lvals is 
exactly one, a reduction is performed. If the number of lvals is equal to the number of active 
virtual processors, a regular assignment type operation is performed. It is possible for the 
number of lvals to be less than the number of active virtual processors, but greater than_one. We 
call this a multi-reduce, because the are multiple sub-reductions taking place. The assignment 
reduction form also differs from the unary form in that the rval of the left argument also 

participates in the reduction. In actuality, we can implement most assignment operators in 
parallel if at compiler time we can determine the uniqueness of the lval being assigned, despite 
the as if serial rule. Reduction operators are only allowed in parallel code. Reduction 
assignments are not truly deterministic, because the ordering of the as if serial rule is not 
specified. Potentially different round off and overflow errors could result from floating point 
reductions performed in different orders. 

Constant reductions may also be performed, and may be useful for such things as 
determining the number of active virtual processors, as in 

num_active = += 1; 

Normally constants are mono expressions, but in the presence of a unary reduction operator they 
are automatically coerced to a poly. 

We have added array assignment to Dataparallel C. If the left hand side of an assignment 

operator evaluates to an array of known dimensions, and the right hand side evaluates to an array 
or pointer, the entire left hand side is assigned from values pointed to by the right hand side. 
Array assignments are permitted in parallel or sequential code. The reason for adding array 
assignment to the language was to maintain compatibility with a Dataparallel C compiler being 
developed at the University of New Hampshire, and is mostly a convenience. 

Below we present a complete example of a Dataparallel C program to compute an 
estimation of 7t using the rectangular rule to integrate 4/(1 +x2) between O and 1. 

#define INTERVALS 400000 

domain span { double x; } chunk[INTERVALS]; 

main () 
{ 

double sum; /* Sum of areas 

[ domain span] . { 

*/ 

double width= 1.0/INTERVALS; /* Width of interval*/ 

x = (this - &chunk[0] + 0.S)*width; 
sum=+= (4.0/(1.0 + x*x)); 

sum*= 1.0/INTERVALS; 
printf ("Estimation of pi is %2.12f\n", sum); 

9 



This program declares a domain of type span with one member x of type doub 1 e. It 

then declares a one dimensional array with 400000 elements named chunk of type span. This 

establishes 400000 virtual processors organized as a ring, each with a double precision floating 
point variable named x. These x's are poly data, but chunk is a mono variable (there is only 
one instance of chunk). 

In the function main, sum is a normal C mono variable (only a single instance). The 
domain select [ domain span] causes all 400000 virtual processors to start executing 
synchronously. The declaration 

double width= 1.0/INTERVALS; 

declares a local double precision poly variable (every virtual processor has its own variable), and 

initializes it to 1 . 0 / 4 0 0 0 0 0 0. In the next statement 

this - &chunk[O] 

evaluates to a unique integer for each virtual processors that corresponds to its position in the 

chunk array. Each virtual processor uses this value to compute its x position in the integral, and 

assigns the result to its x member variable. In the next line, a sum reduction is performed to add 

up the areas for each virtual processors rectangle. The value is then assigned to sum, and the 

domain select is exited, returning to sequential code. The remainder of the program is standard 

C. 

Note the single locus of control, much like a sequential language. We feel this makes 

programs easier to write, debug, and understand. 

3 Conceptual Overview of the Compilation Process 

Given the problem of executing a SIMD program on a MIMD machine, there are several 

possible solutions. One would be to translate the parallel sections of code into an intermediate 
form which is then interpreted by a SIMD emulator running on the target machine. The problem 

with this approach is that interpreting the intermediate code would be much too slow, negating 

the performance gain of parallelism. 

Another similar approach would be to translate the data-parallel code into a series of calls 

to SIMD type library support routines. While this would undoubtedly be faster than the first 

approach by reducing the run-time overhead of interpreting the intermediate code, it would still 

have performance problems due to the high overhead of the number of calls required and the 

inability to optimize the called routines to the specific needs of the executing code. 

A third approach would be to translate the Dataparallel C program into another high level 
parallel programming language already running on the Sequent multiprocessors, such as C 
Linda. The master, or front-end process, could eval off a stream of work to be done by the 
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subtasks in parallel. Again, the problem would be perlormance. While portability would be 

high, the overhead of this execution model would probably outweigh its benefits. 

The approach we have taken is to translate the SIMD Dataparallel C code into a 

semantically equivalent SPMD C program containing calls to the Sequent parallel programming 

library for parallel process and data management. We feel this overcomes the previous problems 

by allowing extremely lightweight virtual processor emulation (a simple for loop), the.resulting 

code is a direct mapping of the original Dataparallel C code, and it allows a high degree of 

optimization. We do as much as possible at compile time to reduce the amount of work done at 

run-time. The translated code is closer to the actual underlying architecture than the other 

methods, resulting in higher perlormance. 

The Sequent C compiler and parallel programming library provides some low level 

· mechanisms for parallel process and data management. The C compiler has been extended to 

allow the declaration of global shared memory variables. Such variables will be readable and 

writable by all parallel processes. To declare a shared variable, the type storage class specifier 

shared must be used, such as in 

shared inti, j, k; 

The shared storage class specifier is only allowed for global variables. 

The library routines provide mechanisms for controlling access to shared variables, 

creating and killing parallel processes, enforcing barrier synchronizations, and other 

miscellaneous tasks. The routines we use are explained below: 

m_set_procs(nprocs) 

m_fork ( func [, arg, ... ] ) 

m_kill_procs () 
m_single () 

m_multi () 
m_sync () 

m_lock () 

m_unlock () 
m_get_myid ( ) 

Sets the number of child processes 

Execute subprocess in parallel 

Kill all child processes 

Suspend child processes 

Resume child processes 

Perlorm a barrier synchronization 

Locks the bus 

Unlocks the bus 

Returns a unique id for each physical processor in 

the range O - nprocs-1 

For more information on the Sequent parallel programming model, see [18]. 

3.1 The Compiler's Strategy 

Enforcing strict SIMD semantics on a shared memory multiprocessor MIMD machine is 

expensive. The program must use barrier synchronizations to guarantee all of the asynchronous 

physical processors execute synchronously. Since data-parallel languages are not only SIMD on 

11 



the statement level, but also the expression and subexpression level, enforcing this level of 

synchronous execution would require a significant number of barrier synchronizations, nullifying 

any potential speedup that could be gained by parallel execution. 

The goal of our compiler is to relax the SIMD execution of the translated program while 

preserving the SIMD semantics of the original Dataparallel C program. This can be done 

because barrier synchronizations only need to be enforced when there are interactions between 

virtual processors. Virtual processors interact through expressions, so -virtual processors interact 

through modifying and reading common data items, both local and global. Where there are no 

interactions, no barrier synchronizations are necessary and processors can execute at full speed. 

To detect these potential interactions, the compiler performs extensive data flow analysis. The 

following example shows a simple example of how the SIMD model of execution can be relaxed 

for a significant .performance gain, while preserving the semantics of the original Dataparallel C 

statement. 

Let us examine the case where the domain is a two dimensional grid with toroidal 

wrap around. If every cell was to set its value to the average of its four neighbor values, 

we could use the following assignment: 

i = (north()->i + south()->i + east()->i + west()->i)/4; 

Semantically, these steps are taken to evaluate the statement: 

1. All virtual processors evaluate north (), yielding a unique value for each. 

barrier synchronization 

2. All virtual processors evaluate north () ->i as an lval (to get the address of 

north ( ) ->i) , again getting a unique value. 

barrier synchronization 

3. All virtual processors read north () ->i, using the address obtained in 2. 

barrier synchronization 

4. All virtual processors repeat steps 1 through 3 for south. 

5. All virtual processors add the values of north () ->i and s outh () ->i. 

barrier synchronization 

6. This is repeated for east and west 

7. All virtual processors divide this sum by 4. 

barrier synchronization 

8. All virtual processors evaluate i as an lval. 

barrier synchronization 

9. All virtual processors store the average of their neighbors values in their i value . 
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This yields the correct results, because all virtual processors execute in a SIMD 

fashion. They have all read their neighbors values of i before any values of i are 
modified. However, it is easy to see that the following evaluation scheme will yield the 
same correct results: 

1. poly_trnp = (north()->i + south()->i + east()->i + west()->i)/4; 

barrier synchronization 

2. i = poly_tmp; 

This works, because all virtual processors have again read their neighbors values 
of i before any values of i are modified. We have maintained the SIMD semantics while 
reducing the number of barrier synchronizations from 17 to one. This is a substantial 
savings, even in this single small code example. 

Once all the dependencies for a program are known, it is possible to divide the domain 
selects up into multiple domain selects, such that all data dependencies span at least one domain 
select exit and entry. If this is done, all data dependencies are inter-domain dependencies, and 
there are no intra-domain dependencies, so barrier synchronizations only need to be enforced 
between domain selects, requiring only the physical processors to synchronize and not the virtual 
processors. This fits the physical machine model more closely, allows the virtual processors to 
be more easily emulated, and is in fact the approach we have taken. Dividing the domain selects 
is not always a trivial task, because it may involve splitting control structures and expressions, 
since a data dependency may be wholly contained in a single expression, if statement, loop 
structure, or switch statement. The methods used to divide domain selects are described later 
in section 7. 

After performing the necessary domain subdivisions, since there are no intra-virtual 

processor intra-domain data dependencies, no barrier synchronizations need to be enforced in the 
domain selects, and the domain selects can be emulated with simple for loops. Since there are 
no dependencies between virtual processors in any domain select, virtual processors can be 
emulated in any order. Using a for loop instead of actual processes provides an extremely light 
weight virtual processor context switch. 

The expression types unique to Dataparallel C (array assignment, reductions, min, and 

max) must also be translated into either regular C code or function calls. This is explained in 
more detail in section 9. 

Since Dataparallel C has a global name space, it is also necessary to place all variables 
accessed in parallel code into shared memory, so that all physical processors will have access to 
the same data. Data flow is used to determine which variables other than domain instances must 
be placed in shared memory. The domain type declaration is translated into a structure 
declaration, and instances of this type are automatically placed in shared memory by the 
compiler. 
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3.2 The Run-time Model 

The run-time model we have chosen is that of a single processor that executes the front

end code, and a group of processors that together with the front-end processor execute the back

end parallel code. When a Dataparallel C program begins execution, the front-end processor 

fires up some user specified number of processors (these are processors, and not proce_sses), but 

they immediately put themselves to sleep. In this way they are ready, waiting for execution to 

enter parallel code. When it does, the front-end processor wakes them up, and all processors, 

including the front-end processor, emulate their share of the virtual processors in parallel. Since 

the domain selects have been divided such that there are no dependencies in any single domain 

select, the processors can emulate virtual processors at full speed. There are several possibilities 

when execution exits a domain select. If it is the end of the original domain select, all processors 

except the front-end processor go back to sleep (this also performs a barrier synchronization) . If 

execution is between two split domain selects, then all processors participate in a barrier 

synchronization , remain active, and then enter the next domain select. The process repeats 

throughout the execution of the Dataparallel C program. In this way virtual processors are 

emulated in parallel, and the semantics of the original program are preserved . 

3.3 The Structure of the Compiler 

Our Dataparallel C compiler breaks the process of translating a Dataparallel C program 

into a SPMD C program into 9 major phases: 

1. Scan and parse phase . 

2. Data flow phase . 

3. Find a minimal set of barrier synchronizations necessary to preserve the semantics of the 

original program - an optimization. 

4. Scalarization - an optimization . Renaming and moving variables. 

5. Domain invariant code motion - an optimization . 

6. Fix up break/continue/return in parallel code - a code transformation. 

7. Insert barrier synchronizations and perform code transformations. 

8. Peephole optimizations. 

9. Emit C code. 

4 Scan and Parse Phase 

The first phase of our compiler performs scanning and parsing to build a conventional 

abstract syntax tree. Also performed in this phase are complete type checking , constant folding, 
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and expanding the communication macros. During type checking, the types of all expression 
nodes are computed and cached in fields of their respective expression nodes for later use. For 
example, if a is of type int, given the expression tree for a + 3 . 2 the expression node for a 
would have type int, the node for 3. 2 type double, and the + node would also have type 
double. If any type or expression errors are detected during this phase they are reported. Also 
cached in each identifier reference node is its symbol table information. The purpose of caching 
these attributes is to speed up later phases that need to be able to determine the types of 
expression nodes, and get at the symbol table entries for all identifier references. Caching 
eliminates the need to recompute this information, saving time. Additionally, all identifier 
references that are really member references are rewritten as member references. For example, if 
i is a domain member, the expression i = exp would be rewritten as this->i = exp. If i 
was instead declared locally inside a domain select or member function, it would not be 
rewritten, in fact thi s->i would be an illegal reference, because i is not a member! 

For each type of communication macro used (i.e. north (), south (), etc.), a special 
member is added to the current domain type. The type of these special members is defined to be a 
pointer to an instance of the domain type. The communication macros are expanded into pointer 
references using these special pointer members. The compiler keeps track of which 
communication macros were used for each domain type, and code will be emitted during the 
unparse phase to initialize them. This scheme requires that the addresses only need to be 
computed once, and gives a very quick mechanism for each virtual processor to access its 
neighbors. To illustrate, the macro reference north () ->i expands into something like 
this->_north->i which is much more efficient than expanding it into an expression that 
recomputes what the address of the north neighbor would be each time it is used. Computing 
addresses of neighbors is expensive, because the toroidal boarder connections must be supported. 

When the parse tree for a member function is built, we make several important changes to 
the member function. The body of the member function is wrapped in a domain select, 
providing virtual processor emulation in the member function itself, and not where it is invoked 
from. If the member function is invoked from parallel code, not all the virtual processors may be 
active. To account for this, we wrap the body of the domain select with a if statement that uses 
a new poly temporary variable we add to the domain declaration, as its test condition. The poly 
test variable will be initialized prior to each invocation of the member function. As an example, 
consider: 

Dataparallel C Source: 

foo: :bar() 
( 

statement_block; 
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Becomes: 

foo: :bar () 
( 

[domain foo] .( 
if (poly_tmp_active) 

statement_block; 



The reasons for modifying member functions in this way is to provide a common form 

for parallel code; it will always be in a domain select. This allows barrier synchronizations to be 

enforced in the member functions much more easily, and the same transformations can be used 

for both member functions and domain selects. How member functions are invoked is discussed 

in section 7. 

5 Data Flow Phase 

To preserve the semantics of the translated code, all data dependencies between different 

virtual processors must be preserved, because we must guarantee that all virtual processors have 

finished using a data item before any modify it, and also that a variable is through being modified 

before any virtual processors use it. This is accomplished by first locating all inter-virtual 

processor data dependencies, then enforcing a barrier synchronization anywhere between the 

endpoints for each of the dependencies to ensure the execution order of the dependency 

endpoints. We are only interested in data dependencies between different virtual processors, 

because data dependencies for the same virtual processor are guaranteed to be executed in the 

proper order, but since different virtual processors may be emulated on different physical 

processors, there is no guarantee without barrier synchronizations for inter-virtual processor data 

dependencies. The data dependencies that must be preserved are def-use, use-def, and def-def 

We now define these dependencies. 

DEF-USE: If the lval of variable a is required by virtual processor i at expression x, and 

the rval of variable a is required by virtual processor j, i I= j, at expression y, and the 

definition of a at statement xis in the set of reachable definitions at statement y, this is a 

def-use dependency for variable a. This implies there must be a possible execution path 

from expression x to y that does not assign to a. 

Def-use dependencies are important, because if a variable (either global or local) is 

modified by a virtual processor and later used by a different virtual processor, we must ensure 

that the variable is through being modified before it is used. By inserting a barrier 

synchronization between when it is defined and used, we guarantee that all virtual processors are 

through modifying it before any use its value. 

Example of Def-Use Dependencies: 

if ( exp 1 ) 

north()->poly = exp 2 ; 

mono = exp 3 ; 

var 1 = poly; 
var 2 = mono; 

Def of poly 
Def of mono 

Use of poly 
Use of mono 
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In this example there are two def-use dependencies, one between the poly variable in the 

expression north () ->poly = exp 1 and the expression var 1 = poly and another 

between the mono variables in the expression mono = exp 2 and expression var 2 = mono. 
The if statement has no effect on the def-use dependencies, other than it creates multiple 
possible execution paths. 

USE-DEF: If the rval of variable a is required by virtual processor i at expressfon x, and 

the lval of variable a is required at expression y by virtual processor j, i :/:. j, such that the 

set of reaching definitions at y is a super set of the reaching definitions at x, this is a use

def depe11dency for variable a. This definition implies there must be an execution path 

from expression x to expression y that does not assign to a. 

Use-def dependencies are important for a similar reason that def-use dependencies are 

important Because of its similarity, we only give a simple example of a use-def dependency. 

Example of Use-Def Dependency: 

poly= east()->poly; 

In this example, all values of poly are read by their west neighbors, and then all values of 

poly are assigned their neighbors value. 

DEF-DEF: If the lval of variable a is required by virtual processor i in basic block x and 

also required by virtual processor j, i -I= j, in basic blocky, x:/:.y, and the definition of a in 

basic block xis in the set of reachable definitions for a in basic blocky, this is a def-def 

dependency for variable a. This implies there exists an execution path from block x to j 
that does not assign to a. 

We are concerned only with def-def dependencies between basic blocks, because for a 

def-def dependency within a single basic block, the first def would be a dead assignment unless 

there is a subsequent use before the second def, in which case there would be a def-use 

dependency that would ensure correctness. This is not true between basic blocks. We present an 

example to demonstrate why def-def dependencies are important 

Example of Def-Def Dependencies: 

if (poly_exp 1) { 
mono = exp2; 
poly = exp 3 ; 

else { 
mono = exp 4 ; 

east()->poly = exp 5 ; 

This examples shows how def-def dependencies can be created for both mono and poly 

data types. If there is not a barrier synchronization enforced between the mono = exp 2 and 
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the mono = exp 4 statement, it would be possible for all mono = exp 4 statements to be 

completed before the last mono = exp 2 statement. The SIMD semantics of the language 

specify that all mono = exp 2 statements must be completed before any of the mono = exp 4 

statements. To guarantee correctness, a barrier synchronization can be inserted anywhere 
between these two statements. Similarly, there is a def-def dependency between the 
poly = exp 3 and east () ->poly = exp 5 statements, because the same data can be 

referenced by different virtual processors. Again, a barrier synchronization must be inserted 
between these two statements. 

It should be pointed out that in the case of overlapping dependencies, a single barrier 

synchronization placed at any point in the intersection of the dependency chains is sufficient to 

preserve the semantics of all dependencies. From this we see that each of the previous examples 

only needed a single barrier synchronization. 

These have all been very simple data dependencies. It is possible to make these 

dependencies arbitrarily complex through pointer arithmetic, array subscripting expressions, 

assignments, and control structures. It is easy for a programmer to make errors when faced with 

a few simple data dependencies; as they become increasingly complex and the program size 

grows, the importance of having the compiler perform this function becomes invaluable. 

To correctly compile Dataparallel C we must compute use-def, def-use, and def-def 

dependencies for all parallel code. These dependencies must be correctly preserved in the 
translated program. Data flow information for the entire program is gathered immediately after 

the abstract syntax tree is built for the entire Dataparallel C source code. 

Use-def, def-use, and def-def dependency chains are constructed from the parse tree 

during data flow using a syntax-directed solution to data flow, similar to that described [l]. This 

information is then stored in the parse tree. The syntax-directed data flow method can be used 

because Dataparallel C flow graphs are guaranteed to be reducible due to prohibiting the use of 

the goto statement in parallel code. Data flow information is only gathered for expressions in 

parallel code. It would be possible to perform inter-procedural data flow for functions invoked 

from within parallel code, but this has not been implemented. The data flow routines analyze all 

expression tree nodes to determine if a node is a use, a def, or neither, of any data item. Any 

expression that is an rval is a use, and any expression that is an lval is considered a def. Some 

expressions are considered both a use and a def, such as i in the expressions i + +, i + = 2, and 

func ( &i). We consider the last example both a use and a def of i, because without doing 

intra-procedural data flow analysis we have no means of determining the correct use of i. In the 

case of array and structure/union/domain member references, these are considered uses or defs of 
the base object, and not the specific member or instance. For example, we consider foo->bar 
to be a reference to f oo, and not to bar. This level of resolution is handled later. 

Four distinct types of data flow chains are built. Use-def and def-use chains are built 

where the same data item may be accessed by different virtual processors at different times. 
Def-def chains are built for data references to the same data item by different virtual processors 
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in different basic blocks. The reasons for these data flow chains has been previously discussed . 

We build a fourth type which is def-use chains where the same data is accessed by the same 

virtual processor . The reason for collecting this information will be discussed under the 
scalarization optimization in section 7 .1, and is not essential for the correct compilation of 
Dataparallel C. 

When building the chains, we need to be able to determine if any two expression nodes 
are referencing the same data, and if so if the references are by the same virtual processor, or 

different virtual processors. Two · oracle routines have this responsibility; is_same_data and 
is_same_vps. 

The function is_same_data takes two pointers into the parse tree and attempts to 

determine if they are referencing the same instance of a data item. This is not always an easy 
task. In the case that is_same_data is unable to determine the exact data items being referenced 

(references through pointers for example), it always assumes they are the same, which guarantees 

the semantics will be preserved, but may not be optimal. It is the responsibility of is_same_data 
for determining if two array references are the same, and if member references are referencing 

the same member. Given the domain declaration 

domain foo ( 
domain foo *ptr; 
int i, j [ 2 0] ; 

) bar[lOO], *baz; 

The following are examples of the same data references: 

References to i: 

i 
this- > i 

ptr- > i 

base [ exp] . i 

(this+exp) ->i 

this- >ptr[exp] .i 

baz->i 

References to j : References to i and j : 

j 

this->j[2] 

ptr- >j[2] 

base[exp] . j[2] 

(this+exp) ->j 

this- >ptr[exp] .j[2] 

*baz- > j 

*this 

*ptr 

*baz 

base[exp] 

Function is_same_data tries to determine if the bases of the two expressions are the same, 

and if they are, do they reference the same member items. The routine is_same data must not 

only try to determine if parallel data references are the same, but also mono variable references. 

The oracle is_same_ vps is a similar routine, taking two pointers into the parse tree and 
attempting to determine if they are expressions that can be ·referenced by different virtual 

processors, such as this->i and (this+l) ->i, or the same virtual processor. Again, this 
can be very difficult, and in the case that is_same_ vps is unable to conclude if the virtual 

processors are the same for the two expressions, it always assumes they are not and returns false. 

19 



The key to is_same_ vps is another routine, is_refable_by _this. The helper function 

is_refable_by _this takes a pointer to an expression in the parse tree and tries to determine if the 

expression is referencing something that could be referenced off of this. It returns either false, 

or true and whether or not it is a constant offset from this. If it is a constant offset from this 
it also returns that offset. This information is used by is_same_ vps to determine if two 

expressions are being referenced by the same virtual processor. If two expres~ions are 

referencable by this, and they have identical offsets, then is_same_vps returns true. Otherwise 

is_same_ vps returns false. Some examples of identical virtual processor references are: 

The Reference: 

this->i 

(this+2)->i 

base[this-&base+3] .i 

i 
j [ 4] 

successor()->i 

ptr->ptr->ptr->i 

Is the same virtual processor as: 

i 

(this+2)->j 

*(this+3) 

j 

*ptr 

(this+l)->i 

i 

Aside from building the data flow chains previously described, data flow performs 

several additional functions. The locations of all break, continue, and return statements 

in parallel code are collected, because they may need additionally attention when we perform 

transformations on the parse tree, but we cannot tell at this point. Data flow collects the locations 

of all member functions called from parallel code. Data flow for assignment operators also merits 

special discussion. 

Assignment operators in Dataparallel C are heavily overloaded. Data flow attempts to 

determine at compile time the correct meaning of assignment operators in parallel code. First it 

checks the shape of tbe left hand expression of the assignment operator. If the shape is an array 

and not a single item, then the right hand side must also be an array or pointer. This being true, 

the assignment node is marked as an array assignment which will be unparsed differently when 

the final C code is emitted. Next, the mono/polyness of the assignment operands are determined 

where the possible types are: 

Strictly Mono - the expression references a single instance of a variable, and the 

determination of which variable does not require being evaluated in parallel code. 

Loosely Mono - the expression references a single instance of a variable, and the 

particular instance does require being evaluated in parallel code, such as 

mono [ += 1] since it will evaluate to the same instance of data for all virtual 

processors, but requires evaluation in parallel code for the + = reduction operator. 

Strictly Poly - the expression references a different instance of data for all virtual 

processors. Also, the base object is a poly data item or a this pointer. 
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Loosely Poly - the expression references a potentially different instance of a data item, 

but the base object is of type mono. This is the case where the instances may all 
be unique or they may not, such as mono [poly]. 

After typing the operands to the assignment operator, actions are taken depending on the 
types of both operands. 

Mono = Mono, Regular Assignment 

If both operands specify a mono expression, either strict or loose, the assignment 

needs no special action. It is marked as a normal mono = mono assignment and 
data flow continues. 

Mono = Poly, Selection Assignment 

This is a selection assignment where only one poly value will end up being 

assigned into mono. This may require special attention. The compiler can 
generate code to perform this assignment deterministically or 

nondeterministically, as specified at compile time. The node is marked as a 

selection assignment and added to a list so that it can be handled during the code 

transformation phase. 

Poly = Mono, Broadcast Assignment 

Since the right hand side evaluates to a single value, no special action is needed. 
The same value will be assigned into all the pollies, either strict or loose. If the 
left hand side is loosely poly, and two or more virtual processors reference the 

same instance, they will simply assign the same value to that instance. 

Strictly Poly= Poly, Broadcast or Regular Assignment 

No special action is needed, because the left hand side will evaluate to a different 

instance for every virtual processor, even though the right hand side may not. 

Loosely Poly = Poly, Multi-Selection Assignment 

The assignment will require special attention, because more than one virtual 

processor may be assigning different data into the same data instance, but we 

cannot tell at compile time. The node is marked as a multi-selection assignment, 
and added to a list so it will be correctly transformed during the code 
transformation phase. 

For the following assignment operators, op= means any of the shorthand assignment operators, 

such as+=. 
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Mono op= Mono, Synchronized Assignment 

In the case of an op= assignment operator, special attention will be required, 

because all virtual processors must evaluate the left hand side as a rval before any 

evaluate it as a lval. The node is marked as a synchronized assignment node and 

added to a list to be handled during the code transformation phase. 

Mono op= Poly, Binary Reduction 

This is a reduction assignment operator. The right hand side will first be reduced 

and then combined with the mono data. This will require the appropriate code 

transformations. The node is marked as a binary reduction node, and added to a 

list to be handled later. The mono operand can be either strict or loose. 

Strictly Poly op= Mono, Broadcast Assignment 

This assignment is not a problem since the left hand side will evaluate to a 

different data instance for all virtual processors. 

Loosely Poly op= Mono, Multi-Reduce 

This is a multi-reduce assignment operator, and will require special attention, 

because the op= operator must be executed sequentially to prevent information 

from being lost due to overlapped reads and writes of the left hand expression. It 
is marked as a multi-reduce to be handled during code transformations. 

Strictly Poly op= Poly, Broadcast Assignment 

Broadcast assignment is not a problem, because the left hand side will evaluate to 

a unique data instance for all virtual processors. 

Loosely Poly op= Poly, Multi-Reduce 

This assignment is similar to the loosely poly op= mono, and is also a multi

reduce. It is handled in the same way. 

In addition to determining the above information and taking the appropriate action, 

regular use-def, def-use, and def-def data flow must be computed for both operands to the 

assignment operator. 

Sometimes the compiler is unable to determine if an expression is strictly or loosely poly. 

In these cases, it must assume loosely poly, but from examining the description of assignment 

operator data flow above and the code transformations in section 7.4, we see that better code can 

be generated when it is known at compile time we are working with strictly poly expressions . 
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This is an important reason for using communication macros wherever possible, since the LJ 
compiler can easily determine that all communication macro references are strictly poly, and 

generate the more efficient code than if the programmer had written his own communication 

macros using either pointers or perhaps the ? : operator and pointer arithmetic on this. 
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6 Constructing The Minimal Sync Set 

After performing data flow analysis we know all the data dependencies that must be 
preserved with barrier synchronizations. Previously we stated that barrier synchronizations were 
an expensive operation on a MIMD machine. There are several reasons they are expensive and 
should be minimized. The first is because all physical processors must participate, and on the 
Sequent Balance and Symmetry computers they introduce a sequential component into the 

program every place they are used, that scales linearly with the number of physical processors 
being used (this is an artifact of using the system barrier synchronization routines, but since the 
Sequent machines have relatively few processors the difference between using the current 
method and a tree type method would at best be minimal, and perhaps e~en worse). The reason 
all physical processors must participate is because in most cases we cannot determine at compile 
time which virtual processor will be active at the point of the dependency, and therefore we 
cannot tell what physical processors must be synchronized. This is actually not a serious 
problem, because usually the dependencies involve enough of the virtual processors that all the 
physical processors are involved anyway. The benefits from having only partial participation in 
barrier synchronizations would be minimal at best, because we do no dynamic load balancing 
(reasons for this are explained when we discuss how domain selects are emulated in the unparse 
section), and if physical processors were allowed to proceed past others they would most likely 
run into other barriers that involved the processors that were hanging back. Other reasons we 
wish to avoid barrier synchronizations is that they reduce the grain size of the parallel code and 
increase the relative cost of virtual processor emulation, and by doing so limit the speedups we 
can expect. 

Earlier we discussed how multiple overlapping data dependencies could be preserved 
with a single barrier synchronization placed at any point in the intersection of the nodes they 
span. If it were not for loops, determining the minimum set of barrier synchronizations for a 
program would be almost trivial, but loops can cause dependencies to loop back and be more 
difficult to extract a minimal set from. Quinn et al. in [24] describe an algorithm called 
SelectSyncs that given a set of forward and backward dependencies, will find the minimal set of 
barrier synchronization points that will preserve all data dependencies. While the SelectSyncs 

algorithm does compute a minimal set of necessary barrier synchronizations, it does not 

necessary insert these synchronizations at optimal places in the code, such as between statements 
instead in inside expressions. 

We have modified SelectSyncs to work with dependency spans. Where the original 
SelectSyncs algorithm returned a set of sync points corresponding to the nodes in the parse tree to 
synchronize at, our algorithm maintains spans corresponding to the intersections of the original 
data dependency chains. A span includes all nodes that are executed between and including the 
endpoints. We linearize the parse tree to provide an explicit ordering to all the nodes in the tree. 
Our linearization represents only one of possibly many orderings, since most expression 
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operators in C do not specify an evaluation order for their arguments. A barrier synchronization 

at any point in each resulting span is sufficient to preserve the dependency. After we compute 
the minimal set of spans required, we can then determine the best place in each span to insert the 
synchronizations. Selecting the sync point in a span is accomplished by traversing through each 
span, and evaluating the relative cost of adding a barrier synchronization at each node. The node 
with the lowest cost is then chosen. These costs have been assigned by carefully evalu~ting what 
happens to the resulting code when barrier synchronizations are inserted after different node 
types. It is important to realize, we have chosen these costs ourselves statically, and incorporated 
them into the compiler. For example, the cost of synchronizing after a '+' node is much higher 
than a ';' node. Also, the cost of synchronizing between the array and [exp] nodes of 
array [exp] is higher than synchronizing after the entire array reference. 

Determining the set of minimal synchronization spans and selecting optimal points in 
these spans can be viewed as an optimization, since its only function is to improve performance. 
After data flow we could blindly insert barrier synchronizations at any point in each of the 
dependency spans and the program would be correct, however since one of our primary goals is 
the efficient translation of Dataparallel C, we consider this a necessary step in the translation 
process. 

After computing the minimal sync set the compiler has all the information it needs to 
translate the Dataparallel C program into a C program with calls to parallel memory and process 
management library routines. 

7 Code Transformations 

The first transformation applied to the Dataparallel C parse tree is moving all variables 
accessed in parallel code into shared memory. Moving these variables is necessary, because 
variables accessed inside domain selects will need to be accessible by multiple physical 
processors. We can easily determine if a variable needs to be placed in shared memory from the 
data flow information collected. All local and global variables used or defined in parallel code 

must reside in shared memory. The Sequent systems only support shared global variables. 
When a variable is moved to shared memory, we rename it in its declaration and all uses to 
prevent naming conflicts. If the variable was a local variable, it is now a global variable. 
Normally this is not a problem, but could cause problems with recursion unless the programmer 
is very careful. Function arguments referenced in parallel code are another problem, because they 
too must be in shared memory. Our solution has been to declare global shared variables of the 
same type, and insert code into the beginning of the function that copies all arguments referenced 
in parallel code -into their shared memory counterparts. All uses of these argument variables are 
then changed into uses of the new shared variables. A problem with this approach is that if the 
arguments were pointers, the data they point at may or may not reside in shared memory. 
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Poly variables declared locally in parallel code are handled differently. Each virtual 
processor must have its own instance. Our solution has been to rename these variables and their 
uses to avoid naming conflicts, and move the declarations into the domain declaration, making 
them member variables. This gives every virtual processor its own copy, but also requires 
potentially large amounts of shared memory. 

7.1 Scalatization 

In certain cases we are able to apply an important optimization to the movement of local 
poly variables. If the locally declared poly variable is not live across any barrier 
synchronization, then it does not need to be moved into shared memory, and can remain a locally 
declared variable. This is because each virtual processor will be through with it before the 
physical processor emulates the next virtual processor (since we are using a for loop to emulate 
virtual processors). The def-use data flow information collected, where the same virtual 
processor both defines and uses a variable, is used to determine if a local poly variable can be 
scalarized. Scalarization is an important optimization for two reasons. First, it helps to conserve 
shared memory, since it allocates only a single variable on each physical processor, instead of 
one for each virtual processor, and the variable will be allocated on the stack instead of shared 
memory. Secondly, and perhaps more important, a good optimizing compiler will often allocate 
these local poly variables in registers which can have a dramatic effect on improving 
performance. In practice, this may be the most important performance-improving optimization 
implemented by our compiler. 

We call this optimization scalarization, because it is a mechanism by which a poly 
variable is actually implemented as a single variable. Note that this is not the same 
transformation as scalar expansion or loop scalarization, performed by some vectorizing 
compilers as outlined in [19] and [30]. 

7 .2 Domain Invariant Code Motion 

A statement is considered domain invariant if all contained expressions are strictly mono, 
and it is either at the top level inside a domain select (not nested in any control structures), or it is 
only nested in domain invariant control structures. There is no reason a domain invariant 
statement needs to remain in parallel code. In fact, there are good reasons why they often should 
not. It is usually cheaper to execute the statement only once instead of once for each virtual 
processor. Also, moving domain invariant code out of parallel code can reduce the number of 
barrier synchronizations, divided domain selects, and temporary variables. As an example of 
why this is true, consider the code: 
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int mono; 

[domain foo] .{ 
mono++; 
statement_block; 

Without domain invariant code motion, this code would be translated as: 

int mono; 

[domain foo] .{ 
tmp = mono+l; 

barrier _synchronization 

[ domain foo] . { 
mono= tmp; 
statement_block; 

With domain invariant code motion, the original code becomes: · 

int mono; 

mono++; 

[domain foo] .{ 
statement_block; 

The compiler performs domain invariant code motion by traversing through the parse tree 

looking for statements that meet these criteria. When it locates a domain invariant statement, it 

divides the domain select immediately before the statement, and then moves the statement in 

between the two subdivided domain selects. 

This optimization is particularly useful for improving code when domain invariant for 

loops have been placed inside parallel code, due to the costly method in which they would be 

handled otherwise (an example of which is given later, in section 7.4). 

Sometimes this optimization does not improve code, but actually worsens it. Consider 

the code: 

[domain foo] .{ 
statement_block 1 ; 

mono 2 = mono 1 ; 

statement_block 2 ; 

Lets assume there are no dependencies between stat emen t_bl ock 1 and 

statement_block 2• If we apply domain invariant code motion to this code we would have: 
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[ domain fo ol . { 
statement_block 1 ; 

mono 2 = mono 1 ; 

[d omain fool. { 
statement_block 2 ; 

If domain invariant code motion had not been applied, we would still have: 

[domain fool. { 
statement_block 1 ; 

mono 2 = mono 1 ; 

statement_block 2 ; 

which is often better code, because there is one fewer domain select and the cost of each virtu~l 
processor executing mono 2 = mono 1 is lower than the overhead of the extra domain select. If 

the domain invariant code had been more expensive, this optimization would have actually been 
an improvement, and it usually is. If the domain invariant statement is either the first or last 
statement in a domain select, it always improves code, because it introduces no extra domain 
selects. 

Domain invariant code motion is an optimization that can always be performed at the 
source level by the person coding the program. We expect that experienced Dataparallel C 
programers would rarely place domain invariant code in a domain select, but would perform the 
optimization themselves as the code was written. 

7.3 Fix up return/continue/break Statements 

Any loop in parallel code that contains a continue or break and also requires a barrier 
synchronization in its body will require special transformations. These transformations will be 
discussed, as well as why they are necessary when we explain loop synchronization 
transformations. Parallel returns are only allowed in member functions, and they too require 
special attention. We present the details for how parallel returns are handled in the code 
transformation and unparse sections. 

7 .4 Division of Domain Selects 

Since Dataparallel C is a SIMD language, code in a domain select will be executed 
synchronously from top to bottom for all virtual processors. Therefore, dividing a domain select 
into multiple domain selects does not change the semantics of the original program. (This may 
not be true in the presence of variables declared locally to the domain select, but can be made 
true if these local variables are moved into the domain declaration as a domain member, and 
possibly renamed in their declaration and all uses to avoid naming conflicts.) For example, the 
following two code fragments are equivalent. 
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[domain foo] .{ 
statement_block 1 ; 

statement_block 2 ; 

and 

[ domain foo] . { 
statement_block 1 ; 

) 
[domain foo] .{ 

statement_block 2 ; 

There is no requirement that the subdivisions must be between two statements, and in fact 

they can be almost anywhere as long as the order of execution is preserved. Splitting a single 

statement or expression is not enough to divide the domain select. The process must be 

continued up through the parse tree until the domain select is finally divided. fur example, if an 

expression is split, then the statement containing it must be split. Next, any statements 

containing that statement must be split. This continues until the domain select itself is split. 

When a statement or expression is split, there are two resulting code segments, a before 

synchronization segment and an after synchronization segment. The after synchronization 

segment is constructed in the existing parse tree, while the before synchronization segment is 

maintained in a separate new parse tree. As splitting progresses up the parse tree toward the 

surrounding domain select, the before segment is passed up the tree as well. At each step, the 

split operation is performed on the surrounding statement or expression, possibly modifying the 

after code in place and adding to the before parse tree. The action taken depends on three 

factors. The first is the kind of node we are splitting (if statement, expression statement, binary 

operator, etc.). The second is the state of the before tree being passed up the tree; if it is empty 

we are just initiating a split, otherwise we are in the process of splitting up the tree towards the 

current domain select. If we are in the process of splitting up the tree and the current node has 

multiple children, the last determining factor is which child node did we traverse up from (this 

can be very important in determining what should go in the before tree and what goes in the after 

tree). When the domain select is finally reached, the before parse tree will contain all the code 

that must be executed before the barrier synchronization, and only the code to be executed after 

the synchronization will remain in the existing domain select. The before parse tree is then 

wrapped in a new domain select, and this new domain select is inserted immediately before the 

existing domain select. A simple example of the splitting is shown below. In the following 

examples [sync] represents where the barrier synchronization needs to be placed. 
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Initial code: 

Before: NULL 

After splitting one node: 

Before: statement 2 ; 

After splitting two nodes: 

Before: statement 1 ; 
statement 2 ; 

After splitting three nodes: 

Before: { 

} 

statement 1 ; 

statement 2 ; 

Finally, after splitting the domain select: 

Before: 

After: 

[ domain foo] . { 
statement 1 ; 

statement 2 ; 

} 
[sync] 
[ domain foo] . { 

statement 3 ; 

After: 

After: 

After: 

After: 

[domain fool.{ 
statement 1 ; 

statement 2 ; 

[sync] 
statement 3 ; 

} 

[domain foo] .{ 
statement 1 ; 

[sync] 
statement 3 ; 

} 

[domain foo]. { 
[sync] 
statement 3 ; 

} 

[domain foo]. 
[sync] 
{ 

statement 3 ; 

We have developed a set of transformations to split all expression and statement types. 
How these are implemented by our compiler is too complex to explain fully here, but they can be 
viewed as a series of parse tree rewriting rules, and we will present them as such. We now 
describe these transformations. 

7.4.1 Expression Transformations 

If the barrier synchronization must be placed inside an expression, then we rewrite the 
expression as two separate expressions (a before and after expression). This requires creating a 
temporary poly variable to hold the result of the before part of the expression, to use while 
evaluating the after part of the expression. Since the value of the before expression could be 
different for every virtual processor, all virtual processors will need their own temporary, placed 
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in the domain declaration so that it will remain live across the barrier synchronization (in the 
case where the before expression evaluates to a mono value, a single shared global variable could 
be used, but we have not implemented this optimization). It is possibly that more than one 
expression transformation will need to be applied to successfully split the expression. After 
completely splitting the expression into two statements, statement transformations will need to be 
applied until the domain is completely split. 

General Expression Transformation 

If an expression split is just starting ( this can be determined if before is null), the entire 
subtree rooted at the current node must be evaluated before the rest of the expression tree the 
subtree is embedded in, and a barrier synchronization enforced between them. We create a new 
temporary as a member in the current domain type and replace the subtree with a reference to 
this temporary. The type of the temporary is determined from the type of the subtree being 
replaced. Type information has been cached in the parse tree during the parse phase. An 
assignment operator is then created, assigning into the new temporary the subtree that was 
unhooked. The new expression tree is then bound to before. Before is passed up the tree, and 

splitting continues until the domain select is split. 

If the expression split is in progress (before is not null), and the current node is an 
expression node, then the usual action is to pass before on up the parse tree. The exceptions to 
this are those operators that specify the order of evaluation for their operands; the &&, I I, ? : , 

and comma operators. These are examined in detail later. 

As an example of the expression splitting process, consider the expression 

Which has as a parse tree 

= 
I \ 

var 1 + 
I \ 

+ exp 5 
I \ 

expl * (S) 
I \ 

* exp4 
I \ 

exp 2 exp 3 

Initially before is null. A barrier synchronization is required after evaluating the node marked 
with an (S). After the initial transformation we have 

Before: = After: = 
I \ I \ 

tmp 1 * var 1 + 
I \ I \ 

* exp4 + exp 5 
I \ I \ 

exp 2 exp 3 expl tmp 1 
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Now splitting continues up the parse tree, which merely passes the before subtree up, giving 

Before: this->tmp 1 = exp 2 * exp 3 * exp 4 
[sync] 

After: var 1 = exp 1 + this->tmp 1 + exp 5 

In the example, each of the exp nodes could be a complex subtree or as simple as an id or literal 
reference. After the expression tree is completely split, statement splitting will be required to 
split the domain select. 

The general expression transformation may seem to be incorrect for certain possible 
unary expression splits, such as splitting &base between the reference to base and the address of 
·operator, or splitting ++var between the ++ operator and the var reference, and indeed they 
are. Our transformations would yield 

tmp = base, [sync] &tmp 

for & [sync] base, and 

tmp = var, [sync] ++tmp 

for++ [sync] var, both of which are errors. What makes these transformations work is that the 
compiler would never try to synchronize immediately before the unary op, because the 
synchronization could always be moved up higher in the parse tree for a less costly 
synchronization (after the address of operator or ++ operator had been evaluated) without 
effecting the data dependency. If node splitting ever traverses up to a unary operator, it will 
always have traversed up from a subexpression of the argument to the unary op, such as the array 

subscript expression in &array [ exp] . 

Unary ops are split as described above except when using a post or pre increment or 
decrement operator on a mono variable in parallel code. A barrier synchronization will be forced 
at the increment or decrement node. Before will be null, the unary node type will be either a 
pre/post increment or decrement operator, and the argument to the operator a mono variable 
reference. Special action must be taken, because all virtual processors must evaluate the 

argument first as an rval, synchronize, and then evaluate it as an !val; because the value of the 
argument is only adjusted once, and not once for every virtual processor. This is a 
transformation that yields expensive code, and gives good reason why for loops with mono 
iterators should be avoided in parallel code wherever possible. 

The examples below shows how pre and post increment and decrement operators are 
transformed when their argument is a mono variable reference: 

++mono mono--

The parse trees are initially 
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++ (S) 
I 

mono 

-- (S) 
I 

mono 

and before is null. We create a poly temporary in the current domain type, of the same type as 

the mono expression. We then replace the subtree including the ++/- operators with a 

assignment of the temporary plus or mini~ one into the mono variable. A new tree th~t assigns 
the value of mono to temp is created and bound to before, resulting in 

Before: = After: = Before: = After: 
I \ I \ I \ I \ 

tmp mono mono + tmp mono = tmp 
I \ I \ 

tmp 1 mono 
I \ 

tmp 1 

or 

Before: tmp = mono tmp = mono 
[sync] [sync] 

After: mono= tmp + 1 mono= tmp - 1, tmp 

Splitting then proceeds up the parse tree. 

The primary difference between how the pre and post operators are transformed is the 

post operators use the comma operator in the after expression as a mechanism to return the value 

of the original mono variable before it is modified (the value of trnp). 

Special Expression Node Types 

The &&, I I, ? : , and comma operators must be handled specially, because they all 

enforce a strict order of evaluation on their operands (left to right). Also && and I I do not 

always evaluate both of their operands in the case of a short circuit. The ? : operator always 

evaluates only two of its three operands. While it may seem reasonable to rewrite the && , I I , 
and ? : operators in terms of an if statement, the transformations always rewrite each one in 

terms of themselves. 

If an initial split must be performed on one of these operators, the general expression 

transformation may be used. If the initial split occurred somewhere in the leftmost operand 

subtree, we can just pass before up the parse tree, because each of these node types always 
evaluates its first expression, and always evaluates it first 

When splitting a comma operator, and splitting has propagated up from the rightmost 

operand, the transformation must ensure that the left operand is evaluated before anything in the 

before tree. The transformation used is to replace the comma operator subtree with its right 

operand subtree, and to replace the right operand of the comma operator with the before subtree, 

and then bind this new comma operator to before. As an example consider the expression where 

splitting is already in progress, and exp 2 has just been split creating exp 4: 
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Before: exp 4 After: exp 1, exp 2 , exp 3 

The expression exp 4 would assign into a temporary that was later used in exp 2 • The parse trees -
for the before and after expressions are: 

· Before: exp 4 After: 
I 

I \ 

When splitting propagates up to the first comma op, from the right operand, the transformation 

yields: 

Before: After: 

This will ensure that the order of evaluation for exp 1 and exp 2 remain correct. Splitting then 
propagates up to the last comma op, but from the left operand. The order of evaluation is already 
correct with no additional transformations, so splitting will just propagate up to the next level. 

The results would be: 

Before: exp 1, exp 4 After: 

When splitting propagates up to a I I or && operator from the right subtree, a similar 
transformation must be applied that will cause before only to be evaluated if the value of the left 
operand requires it. This can be accomplished as shown in the example: 

Before: exp 3 After: exp1 I I exp2 

Now, exp 3 would assign into a temporary that was later used in exp 2 • The parse trees for the 

before and after expressions are 

Before: exp 3 After: I I 
I \ 

expl exp2 

When splitting propagates up to the I I op from the right operand, the transformation yields: 

Before: I I 
I \ 

() exp3 
I 
= 

I \ 

After: I I 
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The final result is 

Before: ( trnp 2 = exp 1 ) I I exp 3 
[.sync] 

After: trnp 2 I I exp 2 

This preserves both the order of evaluation and the optional argument evaluation properties of 

the I I operator. The && operator is treated identically but using && in place of I I. -A similar 
transformation exists for the ? : operator. 

Reductions (both unary and binary), selection assignment, and multi-reduce assignment 
operators pose a special problem. The transformations we have chosen for performing 
reductions are to have each physical processor first perform a local reduction for all the currently 
active virtual processors it is emulating. When each physical processor finishes its local 
reduction, it drops out of the virtual processor emulation loop, locks the bus, reduces into the 
global variable, unlocks the bus, and proceeds. Locking the bus is done to ensure mutual 
exclusion. For unary reductions, the global variable is a temporary that is created, and pre

initialized. For binary reductions, it is the left-hand argument being reduced into, which will be a 
mono variable. Local reductions are performed first, because only order #PEs locks will be 
required, instead of order #VPs locks. (Locks create a sequential component, and therefore 
should be avoided where possible.) Examples of the code generated by reductions is given in the 

code generation section. 

A selection assignment can have only one winner. The language specification leaves 
open the issue of which virtual processor will win, in the case of multiple virtual processors 
attempting to perform the assignment We have implemented two models, selectable at compile 
time. The first is a nondeterministic model in which it is arbitrary which virtual processor will 
make the last assignment, which will be the winning assignment. We implement this by having 

each virtual processor make the assignment from parallel code into the mono variable. If the 
variable is larger than an atomic bus transfer (32 bits for the Sequent's), such as a double, struct, 
or array, we must lock the bus before each assignment, and unlock it after. This creates a 
sequential component in the program of order #VPs. 

The other model we have implemented is a deterministic model. Here, the virtual 
processor that successfully makes the assignment will be the lowest numbered active virtual 
processor, where lowest numbered means the active virtual processor with the lowest value for 

this. The transformation for a deterministic selection assignment creates a mono variable that 

is initialized to infinity before the current block of parallel code is entered. Each active virtual 
processor first checks to see if its value for this is smaller than the global mono variable. If it is, 

it locks the bus, and rechecks to see if its value of this is still lower than the current global this 
value, and if so it assigns its value of this to the global minimum this variable and performs 

the selection assignment. The bus is then unlocked. Since each physical processor emulates its 
share of virtual processors in order of increasing this, they will never perform more than one 
lock, and maybe none. The sequential component for the deterministic selection assignment is of 
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order #PEs, and measurement has shown that the deterministic selection assignment usually 
outperforms the nondeterministic selection assignment. A complete example of the code 
generated for selection assignments is given in the code generation section. 

The transformation for multi-reduce is identical to the nondeterministic selection 
assignment. This means we have no deterministic multi-reduce when the reduction operator is a 
simple assignment, such as mono [poly] = poly. 

Member Function Invocations 

As mentioned in the parse and scan section, member functions provide their own virtual 
processor emulation. However, they still expect to be called with all physical processors active 
(multi mode). Since they provide their own virtual processor emulation, they cannot be invoked 
from within virtual processor emulation. What is required is to split the domain select, and to 
place the function call between the domain selects. There are two problems caused by this 
scheme, how to handle arguments for the member function, and how to handle the return value. 

We have handled both these problems by adding member variables to the domain type. 
All the member function arguments are moved into the domain as members . A new member of 
the return type for the member function is created in the domain to return the function value 
through. (These member variables are only created once, during the scan and parse phase. It is 
mentioned here, because it is easier to understand than if it was presented earlier.) Before the 
member function is called, assignment statements are inserted into the domain select that 
initialize the argument member variables to the values being passed to the member function. In 
the split domain select after the call to the member function, the return member variable is used 
for the return value of the member function. An example will help clarify the procedure. 

Untransformed Code: Transformed Code: 

domain foo. { 
inti, j; 
float baz(int a, int b); 

[domain foo] . { 
statement_block 1 ; 

i = baz(i, 3)/j; 
statement_block 2 ; 
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domain foe. { 
inti, j; 
float baz(); 
int baz arg a, baz arg b; 
float baz return; 
int baz_active; 

[domain foe] . { 
statement_block 1 ; 

baz arg a= i; 
baz-arg-b = 3; 
baz=actTve = l; 

} 

/* stay in multi mode here! */ 
baz (); 
[domain foo] . { 

i = baz return/j; 
statement_block 2 ; 



In the example above, baz_acti ve is the virtual processor active variable that was 

discussed in the scan and parse phase. It must be initialized to true for all virtual processors 
calling the member function, and false for all those not. 

7.4.2 Statement Transformations 

Both inter-statement and intra-statement barrier synchronizations will be required during 

the transformation process. An initial synchronization transformation could be between two 

statements, or the splitting process could propagate a synchronization up to a statement from 
some point internal to the statement. 

Most examples for statement transformations will be presented as source to source 

transformations, instead of parse tree transformations, because this makes them easier to 

understand, and the extra insight provided by the parse trees is not necessary. In the examples, 

before in the untransformed code corresponds to the before parse tree at the start of performing 

this transformation (what was passed up from below). In some instances before will be an 

expression, and in others a statement. This should be clear from the context of its use in each 

example. In the transformed code, everything before [sync] corresponds to before after 

performing the transformation, and will be passed up the parse tree. Everything after [sync] is 

left in the existing parse tree in place of what was in the untransformed parse tree. We now 

discuss these statement transformations as implemented by the compiler. 

General Statement Transformation 

The general statement transformation is very similar to the general expression 

transformation. The major difference is no temporaries need to be created, or assignment 

expressions created. What is done it to unhook the subtree rooted at the current node, and 

replace it with an empty expression statement node. Before is bound to the subtree that was 

unhooked, and passed up the parse tree to continue the splitting process. 

As a simple example consider 

statement 1 ; 

statement 2 ; 

[sync] 
statement 3 ; 

Which has as a parse tree 

sl 
I \ 

st 1 ; sl 
I \ 

(S)st 2 ; st 3 ; 

The node labeling s 1 stands for statement list. Initially before is null. A barrier synchronization 

is required after evaluating the node marked with an ( S) • The initial transformations gives 
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Before: statement 2 ; After: sl 
I \ 

st 1 ; sl 
I \ 

Now splitting continues up the parse tree, and additional transformations will be applied. 

Return and Expression Statements 

If splitting traverses up to an expression or return statement from an expression split, all 

that must be done is to tum before from an expression into an expression statement, and the 

splitting process can continue to traverse up the parse tree. This effectively transforms the 

original statement and expression into two equivalent statements that will have a barrier 
synchronization between them. 

We show examples of splitting both return and expression statements, where the original 
expression has already been split into before and after expressions: 

Untransformed Code: Transformed Code : 

before_exp [sync] after_exp; 

return before_exp [sync] after_exp; 

Statement List 

before_exp; 
[sync] 
after_exp; 

before_exp; 
[sync] 
return after_exp; 

A statement list is a group of statements in the body of a compound statement. The 

transformation is very similar to that of the comma operator. For an initial split, the general 
statement transformation is used. If it is not an initial statement split, we have traversed up from 

either the left or right subtrees. The statement list specifies an order of evaluation which must be 

preserved; the left subtree must be evaluated before the right. If we traverse up from the left 

subtree, the order is still intact, and we can continue the upward traversal. If we traverse up from 

the right subtree, we must ensure that everything in the left subtree is evaluated before anything 

bound to before. We create a new statement list with the left subtree of the current node as the 
left subtree of the new statement list, and before as its right subtree. The new statement list is 

then bound to before. The current node is then replaced with its right subtree. 

Continuing the example for the general statement transformation, we would traverse up to 

the lower statement list node from the left subtree, so no transformation would be performed, and 

we could continue to traverse up the parse tree. The next traversal would again take us to a 
statement list, but this time from the right subtree . After applying the necessary transformation 
we would have: 

Before: After: 
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These parse trees correspond to 

Before: state.ment 1 ; 

state.ment 2 ; 

[sync] 
After: state.ment 3 ; 

From this point, splitting continues up the tree. 

Compound Statement 

If during the splitting process we traverse up into a compound statement, the before tree 
is wrapped in a compound statement. We know that no local variables will be alive across the 
barrier synchronization, because they would have been moved to the domain declaration during -
the variable movement transformation. However, they may be needed in both the before and 
after code segments, so any declarations in the preexisting compound statement are duplicated in 
the new compound statement Splitting then traverses on up the parse tree. 

Untransformed 'compound Statement: 

} 

ff Statement 

type var 1 , var 2 ; 
before_state.ment 1 ; 

[sync] 
state.ment 2 ; 

Transformed Compound Statement: 

type var 1 , var 2 ; 

before_state.ment 1 ; 

} 
[sync] 
( 

type var 1 , var 2 ; 
state.ment 2 ; 

Splitting can traverse up into an if statement from three possible subtrees, the test 
condition, the true code block, and the false code block. These three cases must be handled 
separately. 

Case 1 - If splitting has traversed up from the test condition, the before expression must be 
converted into an expression statement. Before can then be passed on up the parse tree 
and splitting continued. The has the effect shown below: 

Untransformed if Statement: 

if (before_exp [sync] exp) ( 
state.ment_block; 

Transformed if Statement: 

before_exp; 
[sync] 
if ( exp) ( 

statement_block; 

Case 2 - If the if statement was traversed into from the true code body, then the if statement 
will be split into two if statements with a barrier synchronization between them. To do 
this, the compiler generates a poly temporary, assigns it the value of the test condition, 
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and inserts this assignment statement in the parse tree immediately before the if 

statement. The if statement test condition is then replaced with a reference to the poly 
temporary. When the if statement is split into two if statements, they will both have a 
reference to this temporary as their test condition, and the original test condition will only 
be evaluated once. This prevents the possibility of side effects involving the test 
condition between the before and after i f statements. We create a before if .statement 
with what was bound to before at the start of the if statement split as its true code body. 
Its false code body will be null. 

Untransformed if Statement: 

if ( exp) { 
before_statement_block; 
[sync] 
statement_block 2 ; 

} else { 
.statement_block 3 ; 

Transformed if Statement: 

tmp = exp; 
if (tmp) { 

before_statement_block; 
} 
[sync] 
if (tmp) { 

statement_block 2 ; 

} else { 
stat emen t_bl ock 3 ; 

} 

Case 3 - When an if statement is traversed into from the false code body, the transformation is 

identical to case 2, except that the new before if statement will have the original if 
statement's true code body for its true code body, and what was originally bound to 
before for its false code body. The after if statement will have a null true code body. 
This transformation preserves the order of execution for the true and false code bodies of 
the if statement. 

Untransformed if: 

if ( exp) { 
statement_block 1 ; 

} else { 
before_statement_block; 
[sync] 
stat emen t_bl ock 3 ; 

Switch and Label Statements 

Transformed if: 

tmp = exp; 
if (tmp) { 

stat emen t_bl ock 1 ; 

} else { 
before_statement_block; 

} 
[sync] 
if (tmp) { 
/* Null Compound Statement*/ 
} else { 

statement_block 3 ; 

The synchronization transformations for a switch statement are identical to an if 

statement with no else clause . However, if the body of a switch requires a barrier 
synchronization, the body will undergo some unique transformations, because of the case and 
default statements that may require splitting. 
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Both case and default are label statements, and are handled identically. When the 
body of a switch statement is split, the order of the code bodies for the label statements must _ 
be preserved. When splitting traverses up to a label statement, or starts at a label statement, the 
label statement is moved up to the top of before, and a new label statement with an identical 
expression is left in its place. If the code in the case or default contained a break statement, a 
break statement is added as the code body for the new label statement, otherwise it has a null 
code body. The example below helps to darify how the transformation-is accomplished. 

Untransformed switch Statement: 

switch ( exp 1 ) 

{ 
case 1: statement_block 1 ; 

break; 
case 2: statement_block 2 ; 

case 3: statement_block 3 ; 

[sync] 
statement_block 4 ; 

case 4: statement_block 5 ; 
default: statement_block 6 ; 

Transformed switch Statement: 

tmp = exp 1 ; 

switch (tmp) 
{ 

case 1: statement_block 1 ; 

break; 
case 2: statement_block 2 ; 

case 3: statement_block 3 ; 

} 
[sync] 
switch ( tmp) 
{ 

case 1: break; 
case 2: 
case 3 : stat emen t_bl ock 4 ; 

case 4: statement_block 5 ; 
default: statement_block 6 ; 

This example shows two reasons why identical label statements must be duplicated in the 
after code. First, to prevent virtual processors for which tmp is either one or two from executing 
the default code in the switch statement after the barrier synchronization. Secondly, virtual 
processors with tmp equal to two should fall through into statement_block 4 • Our 
transformation scheme achieves both these criteria. 

The Efficient Translation of Synchronized Loops 

Because of the large amount of time that tends to be spent in program loops, efficient 
loop transformations are important 

When a looping c_onstruct requires a barrier synchronization either in its body or a 
controlling expression, the loop must be rewritten to bring the barrier synchronization out of the 
virtual processor emulation loop. This is necessary so that all virtual processors will have 
executed the code prior to the barrier synchronization before any execute the code after the 
barrier synchronization (remember, SIMD semantics here!). 

The objectives of the loop transformations are to first, provide a correct translation that 
will behave with the desired semantics, and secondly to translate the loop in such a way as to 
incur as little additional overhead as possible. These goals are achieved by using a translation 
scheme that ( 1) places as few barrier synchronizations as possible in the body of a loop, 
especially innermost nested loops, even at the expense of placing extra syncs outside the loop or 
in outwardly nested loops; (2) avoids a global reduction each time through the loop to determine 
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if any virtual processors are still executing the loop (remember, all physical processors must 
participate in every barrier synchronization, so all processors must continue performing barrier 
synchronizations as long as any processor has virtual processors that are still looping); (3) 
avoiding switching from multi mode to single mode and back to multi mode in the loop body; 
and (4), reducing contention for locked variables which are necessary for determining when all 
processors are done with a loop. 

If a loop needs no barrier synchronizations in its body or test expression, it undergoes no 
transformations, and is emitted identically to how it was written. 

For a for, while, or do-while loop requiring a barrier synchronization in its body, 
test expression, or increment expression, the following methods are used. 

If the loop is a for loop, it is first transformed into a while loop by moving the 
initialization expression immediately before the loop, and the increment expression is moved to 
the last statement in the body of the loop. (To be more precise, a new compound statement is 
created with the original for loop body as the first part, the increment expression as the last part. 
In this way aliasing of any local variables declared in the loop body and any variables used in the 
increment expression, is not a problem .) By moving these expressions the loop can be switched 

from a for to a while loop. The while loop transformations can then be applied. 

Let us examine the case of a simple whi 1 e loop with a single barrier synchronization required 

in its body, such as 

[domain fool.{ 
stat emen t_bl ock 1 ; 

while ( test_exp) 
{ 

statement_block 2 ; 

[sync] 
statement_block 3 ; 

stat emen t_bl ock 4 ; 

We can transform the loop as shown: 

VP_EMULATION_LOOP { 
stateinent_block 1 ; 

poly_is_vp_active = 1; 

/* no barrier synchronization needed here! Can stay in multi mode! */ 

The code above executes statement_block 1 normally, and then each virtual 

processor initializes its value of poly _is_ vp_a ct i ve to 1. The variable 
poly_is_vp_active is used in the transformed loop by each virtual processor to determine 

if it is still executing the loop. 

int local_mono_is_PE_active; 

global_mono_nurnprocs_looping = nurnprocs; 
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Every physical processor declares its own local variable 

local_mono_is_PE_acti ve that is used to determine if any of the virtual processors being 
emulated by a physical processor are still active. The variable 

global_rnono_numprocs_looping is a single shared global variable that is initialized to 

the number of physical processors that still have active virtual processors executing the loop. 
When it goes to zero and becomes false, the loop is finished. The use of these variabJes helps 
avoid a global reduction each time through the loop to determine if any virtual processor is still 
executing the loop. 

do 
{ 

local_mono_is_PE_active = O; 

We now are in the transformed loop. Note that we are not emulating virtual processors at 
this point, but all physical processors are active . Every processors sets its 

local_rnono_acti ve variable to zero each time a loop iteration is begun . It is only set back 

to 1, below, if a processor determines it still has active virtual processors . 

VP_EMULATION_LOOP { 
if . (poly_is_vp_active) { 

poly_is_vp_active = test_exp; 
if (poly_is_vp_active) { 

local_mono_is_PE_active = 1; 
stat emen t_bl ock 2 ; 

} 
} 

The virtual processor emulation loop first tests poly_is_vp_active for each virtual 
processor, and if it is one (meaning active the last time through the translated loop, or if this is 

the first time through the loop), it re-evaluates the test expression and assigns the new value to 
poly_is_vp_active. If poly_is_vp_active was 1, and is still 1 after evaluating the 

test expression, the virtual processor sets local_mono_is_PE_acti ve to 1, signaling that 
the physical processor still has active virtual processors (this is a local reduction instead of a 

global reduction, so it avoids any critical sections), and then executes statement_block 2 • 

This is repeated for all active virtual processors. 

m_sync(); 

At this point we reach the barrier synchronization, and all physical processors wait until they are 

synchronized. All virtual processors will be done with statement_block 2 before we 

proceed. 

VP_EMULATION_LOOP { 

} 

if (poly_is_vp_active) { 
statement_block 3 ; 

} 

/* no barrier synchronization, stay in multi mode*/ 
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We now enter a virtual processor emulation loop for statement_block 3 • Any virtual 
processors that were active above will execute statement_block 3 • There is no need to 
synchronize after this virtual processor emulation loop. 

) while (local_mono_is_PE_active) 

Each physical processor tests its own local copy of local_mono_is_PE_acti ve to 

determine if any of its virtual processors need to continue looping. Only physical processors that 
still have active virtual processors will continue to execute the loop; however, all physical 
processors will continue to participate in the barrier synchronizations through the mechanism 

described below. 

if (nurn_syncs & 1) m_sync(); 

Since the number of barrier synchronizations in the above loop was odd, physical 
processors could drop out of the loop after executing either an even or an odd number of barrier 
synchronizations, depending on the number of trips made through the loop. For the code below, 
it is important that all physical processors have executed either an even or an odd number of 
barrier synchronizations, but not both. Here we have arbitrarily chosen even. The if statement 
above tests the number of barrier synchronizations, and if it is odd, adds an extra barrier 
synchronization so it will be even. It is important to realize here, that numsyncs is the number 
of barrier synchronizations executed in the program so far, and not just in the loop. This becomes 

important when transforming nested loops. 

lock(); 
global_mono_numprocs_looping--; 
unlock (); 

When each physical processor finishes the loop, the 

global_mono_numprocs_looping variable must be decremented (the count of the 
number of physical processors still executing the loop). It is a global shared variable, so this is a 
critical section and the bus must be locked, since multiple processors could be executing this 
code simultaneously. 

for (; ; ) { 
m_sync(); 
if (!global_mono_numprocs_looping) break; 
m_sync(); 

) 

In the final for loop above, all physical processors are executing exactly out of sync 
with the decrement operation above. This is guaranteed by the if, because the decrement is 
only executed when the number of barrier synchronizations is even, and there are two barrier 
synchronizations, one for even syncs and one for odd. In this way all the physical processors test 
the global_mono_numprocs_looping variable in the if statement only after an odd 
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number of barrier synchronizations, which guarantees that it will not be adjusted by a processor 
above until after another barrier synchronization, in which case no processors will be testing it. 
When global_mono_numprocs_looping goes· to zero, all physical processors have 
finished the transformed while loop and they exit the for loop, thus ending the original 
transformed whi 1 e loop. 

There are other simpler translation schemes, but they have the disadvantages of _requiring 
a global reduction in the main loop, a two-sync minimum in the main loop, switching from multi 
to single and back again, or all three. The scheme presented avoids all of these, but does require 
potentially two extra barrier synchronizations at the end of the loop. In most circumstances this 
will be much faster than having an extra barrier synchronization executed every time through the 
loop. 

As long · as the number of barrier synchronizations in the loop is odd, the above 
translation can be used. ff it is even, a small optimization can be made. Since it will be known 
upon exiting the do-while that there have been an even number of barrier synchronizations, 
the 

if (num_syncs & 1) rn_sync(); 

statement can be completely eliminated. This reduces the number of extra barrier 
synchronizations from two to one. There may be other cases where at compile time it is not 
possible to determine whether the number of barrier synchronizations in the loop body is odd or 
even, such as when a member function is called. In these cases the odd sync test cannot be 
eliminated. 

In the case of nested loops, the translation scheme is slightly more complex. Each nested 
loop needs its own global shared variable for the number of active physical processors which 
must be initialized to the surrounding loops shared number of active processors variable each 
time before entering the inner loop. This initialization creates another problem. If a physical 
processor has just dropped out of the outer loop, and another has looped back around and is 
about to start the inner loop, we must guarantee that the processor that dropped out of the outer 
loop has finished updating the active physical processor count before we use it to initialize the 
physical processor count for the inner loop . It may take either one or two syncs when a 
processor drops out of the outer loop before the variable has been updated, depending on if the 
synchronization if is required for the outer loop. If there are at least two barrier 
synchronizations between the beginning of the outer loop and the beginning of the inner loop, 
then there is no problem and the outer loop active processor variable may be safely read. If there 
are not enough barrier synchronizations, then one or two extra barrier synchronizations will need 
to be added before reading the outer loops active processors count. This is only a potential 
problem for the first nested loop in the example below, because there will always be enough 
barrier synchronizations for the second (a loop will always execute a minimum of two barrier 
synchronizations). 
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while (i) ( 
while (j) ( 

while (k) ( 

} 

In translating an outer loop and nested loops with barrier synchronizations, it is no longer 

necessary to know if there are an even or odd number of barrier synchronizations in the body of 

the outer loop or loops, since the last innermost nested loop will only exit on an odd number of 

syncs, all outer loops will be synchronized by this and will never need the i f test. (For any 

given loop, physical processors can exit either on an odd sync count or an even sync count, but 

never both.) 

The process for translating do-while loops is very similar, but slightly less complex 

due to the loop body always being executed at least once. 

Break and Continue Fix ups 

It can be seen from the above loop transformations that after transforming the loops, any 

break or continue statements embedded in the original loop would no longer behave 

correctly, because the virtual processor emulation loop and the transformed loop have effectively 

been interchanged. This would cause break and continue statements to refer to the virtual 

processor emulation loop, and not the loop they were originally embedded in. 

To maintain the original semantics of the Dataparallel C program, we must fix up break 

and continue statements in loops that require barrier synchronizations, before the loop is 

transformed. During the data flow phase of the compiler, the locations of all break and 

continue statements are recorded. After the minimal sync set has been computed and before 

any code transformations are applied, we check each recorded break and continue to see if 

it is in a loop that requires a barrier synchronization. If not, the break or continue is left 

intact. If it is, the break or continue must be rewritten in a form that does not use break or 

continue, so that it will have the correct semantics after the loop has been transformed. 

Continue 

A continue statement in a loop in parallel code causes all virtual processors that 

execute a continue to immediately proceed to the bottom of the loop. Those virtual 

processors that do not execute a continue statement execute the rest of the loop normally. 

If no barrier synchronizations are needed between the continue statement and the end 

of the loop, the continue can be replaced with a goto statement that jumps to the end of the 

loop. However, if a barrier synchronization is required between the continue statement and 

the end of a loop, the goto cannot be used, because our transformations do not correctly handle 

goto's spanning barriers. (They do not need to, because to the language restriction prohibiting 

the use of goto in parallel code.) Instead we enclose the remainder of the loop body in an if 
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statement, whose condition is a poly temporary we create that reflects whether or not the 

continue was taken. Adding the necessary if statement may require additional transformations, 
because the continue could be nested in conditional code. The if type fix up can always be 

used, but we use the goto type fix up whenever possible, because it results in more efficient 

code. Examples of both types of continue fix ups are shown below: 

Break 

Before continue Fix up: 

while ( exp 1 ) ( 

statement_block 1 ; 

[sync] 
statement_block 2 ; 
if (exp 2 ) ( 

continue; 

statement_block 3 ; 

Before continue Fix up: 

while ( exp 1 ) ( 

statement_block 1 ; 
if (exp 2 ) ( 

continue; 
} 
statement_block 2 ; 

[sync] 
statement_block 3 ; 

After goto Fix up: 

while ( exp 1 ) ( 

statement_block 1 ; 

[sync] 
statement_block 2 ; 

if (exp 2 ) ( 

goto label; 
} 
statement_block 3 ; 

label; 
} 

After if Fix up: 

while ( exp 1 ) ( 

} 

trnp = l; 
statement_block 1 ; 

if (exp 2 ) trnp = O; 
if (trnp) ( 

statement_block 2 ; 

[sync] 
statement_block 3 ; 

A break statement in a loop in parallel code will cause those virtual processors that 

execute it to immediately exit the loop. The virtual processors that do not execute the break 
statement will continue to loop until they either execute a break statement, or the loop test 

becomes false. 

The break fix up is similar to the continue fix up. First we create a poly temporary 

variable that reflects the break state, and an initialization statement that sets its value to one 

(meaning no break yet). The initialization statement is inserted immediately before the loop. 

The loop condition expression is modified to test the state of the break state variable before it 

tests the original loop condition, using the && operator so that if the break state variable goes to 

zero, the loop condition will not be evaluated an extra time, which could give incorrect results if 

evaluating the original condition involves side effects. If no barrier synchronizations are needed 

between the break statement and the end of the loop, the break can be replaced with a 

compound statement that sets the break state variable to zero, and a goto statement that jumps 

to the end of the loop. However, if a barrier synchronization is required between the break 
statement and the end of a loop, the goto type fix up cannot be used (see continue for 
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reasons why). Instead we enclose the remainder of the code in the loop in an if statement, 
whose condition is the break state variable. The break is replaced with an assignment 
statement that sets the break state variable to zero (false). Similar to the continue fix up, the 
if fix up can always be used, but we use the goto fix up whenever possible, because it results 
in more efficient code. Examples of both types of break fix ups are shown below: 

Before break Fix up: 

while ( exp 1 ) ( 

statement_block 1 ; 

[sync] 
statement_block 2 ; 

if ( exp 2 ) ( 
break; 

} 
stat'ement_block 3 ; 

Before break Fix up: 

while (exp 1 ) ( 
statement_block 1 ; 
if (exp 2 ) ( 

break; 
} 
statement_block 2 ; 

[sync] 
statement_block 3 ; 

After goto Fix up: 

break_var = 1; 
while (break_var && exp 1 ) ( 

statement_block 1 ; 

[sync] 
statement_block 2 ; 

if (exp 2 ) ( 

( 
break_var = O; 
goto label; 

} 
statement_block 3 ; 

label; 
} 

After if Fix up: 

break_var = 1; 
while (break_var && exp 1 ) ( 

stat emen t_bl ock 1 ; 
if (exp 2 ) break_var = O; 
if (break_var) ( 

statement_block 2 ; 

[sync] 
statement_block 3 ; 

After all break and continue statements have been fixed up, the normal barrier 
synchronization transformations will result in correct code. 

Return in Member Functions 
We must transform return statements in member functions into equivalent code that 

does not use a return statement. If a return was left intact in a member function, when a 
virtual processor executed the return, it would cause the physical processor emulating it to 
return to the calling code. This would prevent that physical processor from emulating the rest of 
its virtual processors, or participating in any barrier synchronizations in the member function. 

In the expression transformation discussion we explained the return member variable 
that we add to the domain type. The return variable is used to return the value of the member 
function. The return statements are replaced with an assignment to the return variable, if they 
are returning a value, and code to set their active variable to false. Remember, member function 
parse trees are built with a domain select with a if statement for the body with a poly active 
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variable for the test. The surrounding active if statement is split so that the state of the active 
variable can be tested. We provide an example to help clarify the procedure. 

Untransformed Code: Transformed Code: 

float foo_baz () 
( 

[ domain foo] . ( 
if (baz_active) ( 

statement_block 1 ; 

if (e.xp 1) return e.xp2 ; 
statement_block 2 ; 

return e.xp 3 ; 

float foo_baz () 
( 

[domain foo] .{ 
if (baz_active) { -

statement_block 1 ; 
if ( e.xp1 ) ( 

baz_return = e.xp2 ; 

baz_active = O; 
} 

} 
if (baz_active) { 

statement_block 2 ; 

baz_return = e.xp 3 ; 

baz_active = O; 

The untransformed code shows how the member function was built during the scan and 
parse phase. Its body has been wrapped in a domain select and an if statement. 

Domain Select Statement 

Eventually all code splitting transformations will propagate up to the point where a 
domain select statement is reached. All that is required is to wrap the before parse tree with a 
domain select statement of an identical type, and insert it in the parse tree before the current 
domain select node. When they are unparsed, a barrier synchronization will be inserted between 
them. 

Many of the statement and expression code transformations try to use existing 
temporaries. For example, if a transformed loop contains several break statements, only one 
break control variable will be created, and not one for every break. The same is true for 
continue. Splitting control structures and expressions do not create a new temporary if one is 
already in place, perhaps from a previous split. There are many places were we can perform this 
type of temporary reducing optimization. 

8 Peephole Optimizer 

When all the transformations required to split the domain selects and add barrier 
synchronization points have been completed, the compiler then performs a peephole optimization 
phase. The purpose of the peephole optimizations are primarily to clean up unnecessary code 
that was created either by the programmer, or more likely, by the code transformations to add 
barrier synchronizations. The optimizations performed are now outlined. 
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8.1 Expressions 

Expressions whose values are not used and can be determined to contain no side effects, 
are removed. This can occur in the following instances: 

1. If the left hand operand for a comma operator has no side effects, the comma 
operator can be replaced with the right hand operand. 

2. Multiply nested parenthesis can be replaced with single set of parenthesis. 

3. An expression in an expression statement with no side effects can be removed, 
leaving an empty expression statement. 

4. Pre or post initializes in a for statement with no side effects can be removed. 

8.2 Statements 

Statements provide many potential opportunities for improvement The transformations 
tend to generate messy code that is relatively easy for the compiler to clean up. The statement 
peephole optimizations performed are: 

1. Empty expression statements are removed (expression peephole optimizations 
can produce these). 

2. Multiply nested compound statements with no declaratioris can be reduced to a 
single compound statements. Barrier synchronization transformations produce 
this type of .code. 

3. Empty compound statements are removed. 

4. Control structures with constant conditions can often be reduced. 

5. Empty domain selects are removed. 

6. If or switch statements with empty code bodies can be eliminated if the test 
expression has no side effects. If the test condition has side effects, the if or 
switch statement is replaced with an expression statement containing the test . 
condition. 

7. Nested if's with identical test conditions can be merged if it can be determined 
that no side effects could alter the test condition. 

The peephole optimizations work together to clean up the code. Many of these 
optimizations do not necessarily make for more efficient code, but the resulting code is easier for 
the programmer to read. 
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9 Unparse Phase 

The last phase of the compiler is the actual code generation phase. The unparse phase 

traverses the entire parse tree emitting C code. Most of the parse tree will be standard C, and can 

be emitted "as is". There may be several types of nodes in the parse tree that will require special 

attention to unparse. These nodes are the function declaration for main and all references to it, 

member functions declarations and invocations, communication macro initializations, domain 

declarations, min/max operators, reductions, domain selects, and array assignment. 

9.1 Main 

When unparsing main, we rename its declaration and all references as _main. This is 

.b~cause our start_"'.'up code that is linked in provides a main that allocates the desired number of 

processors for use in emulating the domain selects. The start-up main then calls _main. We 

chose this approach instead of writing our own crt0.o start-up code, because it was easier to 

develop and made porting simpler. 

9.2 Member Functions 

Previously we have explained how member functions are called from parallel code. The 

method we outlined will not work when invoking a member function from sequential code for 

two reasons. Member functions provide their own virtual processor emulation, but they expect 

to be called in multi mode. Our run-time model keeps the system in single mode in sequential 

code. The other problem is all the active variables must be initialized to true, and the arguments 

initialized. The return value from the member function must also be correctly handled. 

Our solution to these problems has been to provide a helper function for each member 

function. All calls to member functions from sequential code are unparsed _ to instead call the 

helper function. The helper function performs that tasks of initializing the active variables and 

all argument variables. It then invokes the real member function from multi mode and correctly 

returns the correct return value. As a short example consider: 
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Untransformed Sequential Code: 

x = foo::baz(j, 3)/k; 

9.3 Domain Declarations 

Transformed Code and Helper Function: 

float sequential_foo_baz(i,j) 
int i, j; 
{ 

[domain foo]. { 
baz_arg_i = i; 
baz_arg_j = j; 
baz_active = 1; 

} 
/* still in multi mode*/ 
foo_baz(); 
m_single(); 
return bar[O] .baz_return; 

x = sequential_foo_baz(j, 3)/k; 

Domain declarations are unparsed as structures. The member function prototypes are 

removed for this purpose, since structure declarations cannot have member function references . 

The domain declaration 

domain foo { 
inti, j, k; 
float x[20]; 
float baz () ; 

} bar [ 2 0 0 ] [ 2 0 0 ] ; 

Is unparsed as 

struct foo { 
inti, j, k; 
float x[20]; 

} ; 
float foo_baz(); 
struct foo bar[200] [200]; 

9.4 MIN/MAX Operators 

Since Chas no built-in min and max operators, we unparse the min and max operators as 

calls to special min and max functions we provide. Functions are used instead of macros, 

because Dataparallel C specifies that the arguments to min and max will be evaluated only once. 

Min and max functions must be provided for types double, signed integer, and unsigned integer. 

The expression 

X = y <? z; 

is expanded into 
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x = _double_rnin(y, Z)i 

Many modern C compilers, such as GNU C and the Sequent C compilers, could expand 
these functions in-line, giving the same performance as macros. 

Dataparallel C also includes the assignment forms of min and max. Functions are 
provided for these operators. The expression 

would be expanded into 

_binary_double_rnin(&x, y)i 

Here the address of x is passed as an argument, because x may need to be modified by 
_binary _double_min. The function returns the value of the minimum value, incase this 
value is subsequently used, as in 

z = X <?= Yi 

9.5 Array Assignment 

Since arrays and sub-arrays (in the case of a partial array assignment) are laid out in 
contiguous memory, we can replace array assignments with calls to the C bcopy library function. 
During data flow array assignment nodes are marked with the number of elements being 
assigned. This information, along the address of the arrays being assigned, is used as arguments 
to the bcopy routine. For example, given the array declarations 

float x[l00] (10], y[l00] (10] i 

the code 

X = Yi 

will be unparsed as 

(bcopy(y, x, 1000 * sizeof(float)), X)i 

The comma operator is used so the expression will evaluate to a pointer to array x, incase this 
value is used (perhaps in another array assignment, as in z = x = y). 

9.6 Domain Selects 

Domain select nodes contain information specifying the domain type, the number of 
virtual processors, the parallel/sequential mode the domain select is entering and exiting in, and 
if any special entry or exit code must be generated for a reduction or deterministic selection 
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assignment operator. This information is collected during the parse and the code transformation 
phases. 

Entry Modes 

There are several possible entry modes for a domain select. Initially the domain select 
will be entered in single mode; only one processor will be active, and all the others must be 
activated before emulating the virtual processors. The Sequent parallel programming library 
provides the m_mul ti function to perform just that purpose. All physical processors that were 
previously allocated with the m_fork function call will become active on a call to m_multi . 
Unfortunately m_multi has a serious flaw; after executing a rn_multi, the registers for the 
slave processors will not match the registers for the master processors (processor zero). Also, C 
compilers allocate local storage on the stack for all block scoped variables declared in a 
procedure at the entry point for the procedure, regardless of where the block scoped variables are 
actually declared in that procedure. This can cause a problem with our run-time model, because 
the C compiler being used to compile our translated program has no knowledge that it is 
compiling a parallel program , and may make incorrect assumptions about the contents of 
registers before and after invoking m_rnul ti. We emit code that guarantees the states of all 
slave processors will match the master processor. To accomplish this we have two assembly 
language macros that are expanded in-line in the C code. The first is _WRITEREGS (). This 
macro is emitted immediately before the call to rn_rnul ti, so it will only be executed by the 
master processor. It saves the contents of all its registers in a set of shared variables. The second 
assembly language macro is _READREGS (). We emit a reference to this macro immediately 
after the m_mul ti function call, which will be parallel code. Each physical processor can use 
the values of the saved stack pointer and frame pointer to compute how large a local stack it will 
need. Once the stacks have been setup, they load their general purpose registers with the saved 
values. (Setting up the stacks does not copy the values from the front-end stack to the slave 
processor stacks. This is because all mono variables referenced in parallel code will have 
already been moved to global shared memory. We just need to make sure there is storage for any 
locals used in the parallel code.) 

If the domain select is being entered already in multi mode, the registers and stack will 
already be correct. This occurs after a barrier synchronization split in a domain select. 

Exit Modes 

There are three possible exit modes from a domain select. If the domain is exiting to 
perform a barrier synchronization, and it will immediately be entering another domain select, 
then all that is emitted is a call to m_sync , which will perform a barrier synchronization but 
leave all processors in multi mode. 

If the domain select is exiting, and it is immediately followed by sequential code, then it 
must emit code to shut down the slave processors. This occurs when the domain just exited was 
the tail of an original domain select in the Dataparallel C source code, and for some reduction 
operators. The code emitted is a call to the rn_s ing 1 e function. 
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The while loop transformation described earlier also required the ability to exit a domain 
select, stay in multi mode, but perform no barrier synchronization. This requires that no extra 
code be emitted. 

9.7 Virtual Processor Emulation 

The virtual processors themselves are emulated with a for loop, where each-physical 
processor iterates over its share of virtual processors using the variable _this as an iterator. 
Variable _this is declared to be a local pointer to the current domain type in a locally scoped 
block. There are two different types of virtual processor emulation loops we can emit. One 
provides contiguous virtual processor emulation, and the other provides interleaved virtual 
processor emulation. In contiguous virtual processor emulation, each physical processor 
emulates a group of virtual processors representing a contiguous block of the active domain 
instances. In interleaved virtual processor emulation, a physical processor starts with the n'th 
virtual processor and emulates the k'th virtual processor, where n is the unique id of the physical 
processor (from Oto numprocs-1), and k is the number of physical processors emulating virtual 
processors. For well balanced applications contiguous tends to give slightly better results, 
because of a better cache hit rate. For poorly balanced applications interleaved gives better 
results, because it does a better job of load balancing. We provide examples of both interleaved 
and contiguous virtual processor emulation. 

For the domain declaration 

domain foo.{ 
int i, j; 

} bar [ 1 0 ] [ 2 0 ] ; 

and the domain select 

[domain foo] .( 
statement_body; 

The interleaved emulation would be 

_WRITEREGS(); 
m_multi () ; 
_READREGS(); 
( 

struct foo *_this, *_thisend; 

_this= &bar[0] [_myid]; 
_thisend = &bar[0] [200]; 

for (;_this< _thisend; _this+= _nurnprocs) ( 
statement_body; 

} 
m_single(); 
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and the contiguous emulation would be 

_WRITEREGS(); 
rn_rnulti(); 
_READREGS(); 
{ 

struct foo *_this, *_ -thisend; 
int _size; 

-
_size= (((_size= 200 / _nurnprocs) * _nurnprocs -- 200) ? 

_size : 
_size+l; 

this= &bar[0] [_size*_rnyid]; 1 

_thisend = ((_this+ _size> &bar[0] [200]) ? 
&bar [ 0 l [ 2 0 0 l : 
_this+ _size); 

for (;_this< _thisend; _this++) { • 
statement_body; 

} 
rn_single(); 

Note that although the domain is a 10 by 20 two dimensional array, virtual processors are 
only emulated by a single loop. We take advantage of C laying the array out in contiguous 
memory and treat it as a single dimensional array with 200 elements. This saves the overhead of 
nesting loops to perform virtual processor emulation. 

For both the interleaved and contiguous methods of virtual processor emulation, each 
physical processor uses its physical id to compute where to start, and the number of physical 
processor active to compute what virtual processors to emulate. 

9.8 Communication Macro Initializations 

Because communication macros are expanded into special member pointer references, 
these pointers must be initialized before they can be used. When main is unparsed, each domain 
type is checked to see which, if any, communication macros were used for that domain type. 
Code is then emitted to initialize the member pointers for the used macros. The macros are 
initialized in parallel, with each processor initializing its share of the virtual processors, much as 
if it were being done in a domain select. As an example of initializing north () and west () 
for a 5 by 10 domain, consider 
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int _main() 
{ 

if (!_communication_macros_inited) { 
_communication_macros_inited = l; 

_WRITEREGS(); 
m_multi (); 
_READREGS(); 
{ 

} 

struct foo *_this, *_thisend; 

_this= &bar[0] [_myid]; 
_thisend = &bar[0] [20000]; 

for (;_this< _thisend; _this+= _numprocs) { 
_ this-> _ north = (( _ this> &bar[0] [199]) ? 

_this - 200 : 
_this+ 19800); 

_this->_west = (((_this - &bar[0] [0]) % 200) ? 
_this - 1 : 
_this+ 199); 

m_single(); 

The complexity of these expressions is necessary to correctly handle the toroidal wrap for the 

boarders . 

Notice that the initialization of the pointers is executed conditionally. This is to prevent 
the initialization from being done repeatedly if main is called recursively. 

9.9 Reductions and Deterministic Selective Assignments 

Reductions require some extra code to be emitted outside the domain select. For 
example, to perform a min reduction , a local and global minimum variable must first be 

initialized to a maximum value. Each physical processor computes the local reduction of all the 

virtual processors it is emulating in the domain select code. After exiting the domain select , code 

must be emitted so each physical processor uses the local reduction it has performed to compute 
the global reduction. To perform a deterministic selective assignment, the variable that contains 

the value of the _this pointer that performed the current assignment must be initialized to a 
maximum value . What follows is an example of both a min reduction and a selection 
assignment . 
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Untransformed Code: Unparsed Transformed Code: 

[domain foo] . { 

} 

poly_i = <?= poly_j; 
rnono_k = poly_l; 

trnp1 = _MAXSIGNEDINT_; 
{ 

} 

int trnp 2 = _MAXSIGNEDINT_; 
int trnp 3 ; 

VP_EMULATION_LOOP { 
if (poly_j < trnp 2 ) trnp 2 = poly_j; 

} 
if ( trnp 2 < trnp 1) { 

rn_lock () ; 
if ( trnp 2 < trnp 1) { 

trnp 1 = trnp 2 ; 

} 
rn_unlock(); 

trnp 4 = _MAXPTR_; 
{ 

VP_EMULATION_LOOP { 
if (this< trnp 4 ) { 

rn_lock () ; 

} 

if (this< trnp 4 ) { 

trnp 4 = this ; 
rnono_k = poly_l; 
} 
rn_unlock(); 

The above code shows how the local reduction is performed first for the min reduction . 
Nesting the if statements, and only locking the inner if is used to reduce the number of locks 
performed. 

10 Compiler Performance 

In [8, 11, 21, 25] the performance of our compiler is discussed for a number of benchmark 
programs. We encourage interested readers to investigate these references further. We 
emphasize that not all the benchmarks are from the "standard set" of toy problems , but we 
include some applications from other disciplines, as well as an exhaustive search problem. The 

applications benchmarked are: 

Matrix Multiplication - Classical 8(n 3) algorithm for matrix multiplication . 

Gaussian Elimination - Gaussian Elimination with partial pivoting and back 
substitution. 

Gauss Jordan - Solving system of linear equations using the Gauss Jordan method . 
Also performs partial pivoting. 
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Numerical Integration - Calculating the value of 1t by integrating 4/(1 +x2) between 0 
and 1. 

Transitive Closure - Uses Warshall's transitive closure algorithm to find the transitive 
closure of an· adjacency matrix. 

Computation of Prime Numbers - Uses the Sieve of Eratosthenes to find prime 
numbers. 

Computation of Relative Prime Numbers - Uses Euclid's gcd algorithm to compute 
relatively prime numbers. 

The Triangle Puzzle-A search problem suggested by Foster and Taylor [5]. 

Sharks World - An ICASE watery world simulation with fish and sharks. See [17] for 
more information. 

Wa-Tor - Another watery world fish and shark simulation. The simulation was first 
described in [4]. 

Shallow - An atmosphere model developed at the National Center for Atmospheric 
Research in Boulder Colorado. 

Ocean -A layered ocean circulation simulation based on the model in [3]. 

Two tables showing the execution times and absolute speedups for the Sequent 
Symmetry, based on the best sequential programs we were able to develop, are shown below. 
The speedups for the Sequent Balance are similar. We are enthusiastic about the speedups these 
applications have been able to achieve, and believe this gives strong credibility to our research. 
We feel we have been able to successfully meet our goals of translating a SIMD Dataparallel C 
program into an efficient SPMD C program. 
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Program 

ni 
ni 
Di 

relnrime 
relvrime 
relvrime 
matrix 
matrix 
matrix 

wnr,-,hnll 

warshall 
warshall 

f!QUSS 

f!QUSS 

f!QUSS 

v-iordan 
2-iordan 
v-iordan 

sieve 
sieve 
sieve 

trianvle 
shallow 
ocean 
sharks 
sharks 
sharks 
sharks 

Sequential 
Size Execution 

<sec) 
100000 3.20 
200.000 6.42 
400.000 12.80 

128 0.27 
256 1.36 
512 6.66 
64 3.35 
128 33.70 
256 259 
ful. OQO 

128 7.58 
256 48.30 
64 1.t.R 
128 12.80 
256 103 
64 -
128 -
256 -

1200.000 4.30 
2 400.000 8.84 
4,800,000 18.10 
all solos 73.30 
64x64 2681 
640 2708 

2048/2000 448 
4096/2.000 1793 

2048/100.000 1309 
4096/100.000 5841 

Execution Time ofDat:marallel C Proirrams <sec) 
Numher of Prorf"_c:sors 

1 4 8 12 16 20 24 
3.78 0.95 0.48 0.32 0.24 0.19 0.16 
7.58 1.89 0.95 0.64 0.47 0.39 0.32 
15.20 3.79 1.89 1.27 0.95 0.76 0.63 
0.30 0.08 0.04 0.03 0.02 0.01 0.02 
1.47 0.39 0.19 0.13 0.10 0.08 0.07 
6.98 1.84 0.94 0.64 0.48 0.38 0.33 
4.06 1.02 0.51 0.38 0.26 0.26 0.19 
33.10 8.30 4.15 2.86 2.09 1.83 1.57 
269 66.70 33.50 26.10 16.80 13.70 11.60 
121 0~1 016 0_12 OOQ OOR 0.07 
9.27 2.35 1.19 0.82 0.61 0.54 0.47 
78.50 18.60 9.31 6.30 4.64 3.78 3.22 
1.67 0.53 0.33 0.30 0.28 0.22 0.35 
12.20 3.34 1.84 1.48 1.23 1.23 1.23 
93.20 24.80 13.30 9.94 7.50 6.48 6.16 
2.23 0.60 0.33 0.27 0.23 0.25 0.24 
17.10 4.23 2.21 1.58 1.22 1.12 1.05 
135 33.70 17.00 11.70 8.68 7.30 6.40 
8.86 2.18 1.07 0.77 0.65 0.56 0.42 
17.50 4.38 2.22 1.57 1.27 1.07 0.84 
34.90 8.76 4.47 3.25 2.70 2.35 1.69 
73.30 19.90 12.10 8.22 7.19 5.76 4.98 
2082 509 255 172 127 102 85.8 
2724 626 308 212 163 139 128 
417 108 55.5 37.2 28.5 22.9 19.1 
1650 442 233 163 114 90.5 84.4 
1584 402 202 138 105 84.1 70.2 
5736 1602 810 552 416 343 284 
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Absolute Sneedun of Datanarallel C Prolmlills 
Program Size Numher of Proc ~-<:son: 

1 4 8 12 16 20 24 
ni 100000 0.85 3.37 6.67 10.00 13.33 16.84 20.00 
vi 200000 0.85 3.40 6.76 10.03 13.66 16.46 20.06 
Di 400000 0.84 3.38 6.77 10.08 13.47 16.84 20.32 

relmime 128 0.90 3.38 6.75 9.00 13.50 27.00 13.50 
relvrime 256 0.93 3.49 7.16 10.46 13.60 17.00 19.43 
relvrime 512 0.95 3.62 7.09 10.41 13.88 17.53 20.18 
mo.trix 64 0.83 3.28 6.57 8.82 12.88 · 12.88 17.63 
matrix 128 1.02 4.06 8.12 11.78 16.12 18.42 21.46 
matrix 256 0.96 3.88 7.73 9.92 15.42 18.91 22.33 

wnr,<:hnll n4 0.74 290 <; t,'.! 7 <;O 1000 1125 12 ~"' 
warshall 128 0.82 3.23 6.37 9.24 12.43 14.04 16.13 
warshall 256 0.62 2.60 5.19 7.67 10.41 12.78 15.00 

f!QUSS 64 1.01 3.17 5.09 5.60 6.00 7.64 4.80 
uauss 128 1.05 3.83 6.96 8.65 10.41 10.41 10.41 
f!QUSS 256 1.11 4.15 7.74 10.36 13.73 15.90 16.72 

f!-iordan 64 0.75 2.80 5.09 6.22 7.30 6.72 7.00 
fl-iordan 128 0.75 3.03 5.79 8.10 10.49 11.43 12.19 
fl-iordan 256 0.76 3.06 6.06 8.80 11.87 14.11 16.09 

sieve 1200.000 0.49 1.97 4.02 5.58 6.62 7.68 10.24 
sieve 2 400.000 0.51 2.02 3.98 5.63 6.96 8.26 10.52 
sieve 4.800.000 0.52 2.07 4.05 5.57 6.70 7.70 10.71 

trianflle all solos 1.00 3.68 6.06 8.92 10.19 12.73 14.72 
shallow 64x64 1.29 5.27 10.51 15.59 21.11 26.28 31.25 
ocean 640 0.99 4.33 8.79 12.77 16.61 19.48 21.16 
sharks 2048/2.000 1.07 4.15 8.07 12.04 15.72 19.56 23.46 
sharks 4096/2000 1.09 4.06 7.70 11.00 15.73 19.81 21.24 
sharks 2048/100.000 0.83 3.26 6.48 9.49 12.47 15.56 18.65 
sharks 4096/100.000 1.02 3.65 7.21 10.58 14.04 17.03 20.57 

11 Future Work 

There are a number of ways in which Dataparallel C and our compiler might be improved. 
These possible improvements fall into two categories, language improvements and compiler 
improvements. 

11.1 Language Improvements 

As the language currently stands, there are issues that it addresses poorly or not at all. 
Some of these issues are: 

Multiple SIMD modules - An application may consist of different SIMD type modules 
that could be executed either in a MIMD or pipelined fashion. Currently there is 
no mechanism to overlap execution of SIMD modules. 

Dynamic Parallelism - The language allows no dynamic creation or destruction of 
domain instances. This would be a convenient addition to the language, and 
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would benefit applications where the size of the problem is not known at compile 
time. 

Nested Parallelism - The language only supports flat parallelism. It may be useful in 
some instances to allow domain selects inside parallel code. 

Generic Parallel Library Routines - Code reusability is an important issue in software 
development. The ability·to write generic parallel functions that could be invoked 
from any parallel code would allow programers to reuse routines and develop 
libraries of parallel routines. 

Better Communication Scheme - The current communication scheme for the language 
relies heavily on the use of communication macros for efficient execution, 
because the language does not provide a good mechanism for specifying general 
communications (we do not feel that using pointer arithmetic and this provide a 
good communication scheme). 

11.2 Compiler Improvements 

It should be understood that the compiler we have developed is not a toy. We have 
written a robust compiler that implements the full Dataparallel C language in an efficient way. 
However, there are still ways the compiler could be improved. Most, but not all the 
improvements deal with optimizations. 

11.2.1 Data flow Limitations 

The primary purpose of data flow is to determine where barrier synchronizations must be 
enforced. When data flow cannot determine if there is a dependency, it assumes there is one, 

possible introducing unneeded barrier synchronizations into the program. 

Our data flow analysis is not perfect, and could be improved upon in several ways . 
Currently, data flow for pointers is only computed for pointers to domain types. This can lead to 
potentially incorrect code generation for pointers that point to members of domains, because in 
these instances we do not err on the conservative side. Also, functions invoked from inside 
parallel code should be considered uses and defs of all global data items, since we do not 
perform intra-procedural data flow. This is not a problem for member functions, because we 

automatically insert a barrier synchronization before and after the function call, but this is not the 
case for sequential functions called from within parallel code. Also, such techniques as 

maintaining possible values for variables such as pointers and variables used as array subscripts, 
could help reduce the number of unnecessary barrier synchronizations . Our experience has led 
us to believe these are not serious limitations as long as the programmer is aware of them. 

Data flow is also a rather expensive computation, and can require significant quantities of 
time and memory. Improvements could be made the reduce these requirements, such as those 
outlined in [l]. The data flow routines were implemented with the objective of making the 
implementation task as easy as possible for the implementor, often with little concern for the 
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computational complexity. As a result the compiler can be slow, especially when the program 
contains nested loops. 

The graph below contains compile times for four different programs to demonstrate the 
time costs of performing data flow on nested loops. Two of the programs contained nested 
loops, while the other two contained non-nested loops. The number of loops was varied from 
zero to six. Each program also contained a single expression statement, 

poly= this - &bar[O]; 

for half of the programs, and 

for the other half. All programs were under 20 lines long. 
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The data above was collected for very simple programs. It shows that the computational 
complexity not only increases exponentially with the number of nested loops, but increases also 
with the number of variable uses and defs in the code, as well as the complexity of the 
expressions they are used in. It is quite possible to have relatively snort Dataparallel C programs 
(a few hundred lines) that require half an hour to an hour to compile on the Sequent Symmetry. 
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This should not be considered a fault of Dataparallel C, but of our implementation of data flow. 
In practice, most programs seem to compile in several minutes. 

11.2.2 Temporary Variable Reuse 

Whenever the compiler needs a temporary variable, a new variable is introduced into the 
current domain type. This can cause a large number of temporaries to be introduced over the 
compilation of an entire program . Often, when a temp is needed, an unused temporary will 
already be available in the domain. Reusing variables could significantly reduce the memory 
requirements of the program . This would require maintaining live/dead information for the 
temporaries, but we do not feel this would be difficult to implement. 

Another possible solution would be to not add temporaries to the domain type, but instead 
declare local arrays of temporaries . They would then be allocated on the stacks of the physical 
processors. The difficulty in this approach is that the current virtual processor emulation scheme 
iterates using this, which is also used to access data items. Since this is a pointer, pointing 
to the domain instance array, it could not be directly used to access these temporaries , and a more 
costly mechanism for accessing them would be needed. 

11.2.3 Intra-procedural Data Flow and In-line Expansion of Member Functions 

The compiler only performs inter-procedural data fl.ow analysis. As a consequence of 
this, when generating code for a member function invocation from inside parallel code, the 
compiler does not know if there are any dependencies that must be preserved. The only safe 
course of action is to execute a barrier synchronization immediately before and after the member 
function call, as well as any barrier synchronizations needed in the body of the member function. 

As an example, a member function invocation currently generates the following code: 

[domain foo] .{ 

foo: : bar (); 

becomes : 

[ domain foo] . { 

} 
m_sync(); 
foo : :bar(); 
m_sync(); 
[domain fool . { 

If intra-procedural data fl.ow analysis was performed, better code could be generated in 
several cases . The first case is if there are no dependencies in the parallel code before the 
function call and the member function, or no dependencies between the member function and the 
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code following the call. If this is the case, one or both of the barrier synchronizations may be 

omitted. This would give the code: 

[ domain foo] . ( 

) 
f oo : : bar ( ) ; 
[domain foo] . { 

Note that the function call still must be brought out of the domain select into serial code, 
because there may still be barrier synchronizations inside the member function. However, if 

there are not, and we would know this from the intra-procedural data flow analysis, then we 
could produce the original code: 

[domain foo] . { 

foo::bar(); 

This could be a huge savings in several ways. First, if the function is being invoked 
conditionally, virtual processors who do not need to invoke it will not, thus saving time. 

Secondly, arguments could be passed to the member function in a regular manner, and no special 
mechanism for accessing the return value would be needed. This would save both time and 
memory space, because there would be no need to created entries for the arguments in the 
domain declarations as well as no need for the active vector currently needed inside the member 
functions. 

In-line expansion of member functions could also improve code by eliminating the call 
overhead, possibly increasing grain size, reducing the number of barrier synchronizations, and 

allowing a higher degree of optimization by the C compiler used to compile the resulting C 
program. In the presence of in-line expansion of member functions, many of the benefits of 

intra-procedural data flow could be realized without intra-procedural data flow. 

11.2.4 Reduce the Number of Barriers by Moving Uses Up and Defs Down 

If uses of variables were moved up, and defs of variables moved down, the number of 
barrier synchronizations could be reduced in some instances. For example, given the code 
fragment: 

i = exp 1 ; 

j = exp 2 ; 
k = exp 3 ; 

west()->i = i; 
west()->j = j; 
west()->k = k; 

This will currently generate the following code with 3 syncs: 
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i = exp1; 
j = exp2; 
k = exp3; 

tmpi = i; 
[sync] 

west()->i = tmpi; 

tmpj = j; 
[sync] 

west () ->j = tmpj; 

tmpk = k; 
[sync] 

west () ->k = tmpk; 

This code is poor not only because of the relatively high number of barriers, but also 
because of ·the small grain size of the resulting virtual processor emulation loops. 

If instead, we moved the uses of i, j, and k up as far as we could, the following code 
could be generated: 

i = tmpi = expl; 
j = tmpj = exp2; 
k = tmpk = exp3; 

[sync] 

west()->i = tmpi; 
west()->j = tmpj; 
west()->k = tmpk; 

The number of barrier synchronizations has now been reduced to one, and the virtual processor 

emulation grain size has been improved. 

This is an optimization that the programer could do at the source level, but it is probably 
better done by the compiler (make the programmer's job simpler, and less error prone. Also 
ensure that we catch all cases). To move the uses up, the compiler needs to know for every use 

of a variable, where all the previous live defs of that variable are. There may be more than one 
in the case of conditional assignments. A use may not be moved before any of its defs. 

Similar savings could be made by moving defs down as far as possible. To do this the 
compiler would need to know for each def, where the next uses of that variable are so that it 
could be moved just previous to them. 

Currently the compiler performs all the data flow necessary for these tasks, so we would 
not think that these optimizations would be too difficult to implement. 

11.2.5 Unroll virtual processor emulation loops with small code bodies 

Sometimes after adding all the necessary barrier synchronizations, the resulting bodies of 

the domain selects are quite small, possible a single expression. When this is the case, the 
overhead for emulating the domain select may be higher than the work being done by the domain 
select. For example, consider the domain select 
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[domain foo] .{ 
i = 2; 

} 

Every virtual processor must perform a single simple assignmerit. The work to emulate each 
virtual processor is an addition, a compare, and jump, which is more expensive than the 
assignment. 

The loop could be unrolled to make the loop overhead virtually as low as we would like. 
However, we would not want to unroll a loop so far that it would no longer fit in the system's 
instruction cache. 

11.2.6 Allow multiple reduce type ops at the end of selects 

Every reduction or deterministic selection assignment currently generates a barrier 
synchronization. This is so the code can be generated outside the virtual processor emulation 
loop to initialize certain variables before the emulation loop or to perform the final global 
reduction at the end of the loop. It would be possible to allow multiple reduction initializations 
or global reductions to be performed for the same virtual processor emulation loop. This could 
reduce the number of barrier synchronizations and increase the grain size of the parallel code. 

12 Summary and Conclusions 

There are a number of areas in which our research makes an original contribution. In creating 
Dataparallel C, we modified 'the semantics of C* slightly to "make more sense". Our compiler 
targets code to tightly coupled multiprocessors instead of SIMD architectures or distributed 
memory multicomputers as in [20, 22, 23]. We use data flow techniques to perform 
optimizations and generate efficient code in the translation of SIMD programs to SPMD 
programs with identical semantics. We modified the SelectSyncs algorithm to use data 
dependency spans in selecting barrier synchronization points. The code transformations used in 
this translation process needed to be developed. A suitable and efficient run-time model was 
developed to support the translation scheme. We developed and implemented several 
optimizations to improved performance of the translated codes. And finally, we implemented a 
number of algorithms in Dataparallel C and evaluated our approach on both the Sequent 
Symmetry S81 and the Sequent Balance 21000. 

After using our Dataparallel C compiler for some time now, we are encouraged by the 
results of our research. Writing parallel programs for the Sequent computers using the tools 
provided by Sequent is an arduous task for all but very simple applications. We feel using our 
Dataparallel C compiler makes parallel programming as easy as sequential programming, once 
the parallel algorithm for the problem is understood. Data-parallel programming feels to us 
much like programming in a regular sequential language due to the single locus of control, and 
we have found the code-debug cycle is much the same. 
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Not only do we feel Dataparallel C is much easier to write many parallel programs in 
than other conventional methods for programming MIMD machines, we have shown it is 
possible to efficiently compile data-parallel languages for MIMD computers, yielding programs 
whose execution times are very competitive to the best hand coded programs. 

We believe now more than ever that data-parallel programming on MIMD machines 
gives the programmer the best of both worlds, ease of programming and the ability to code 
efficient programs. There are some types of programming that we feel are more easily 
performed using Dataparallel C than conventional sequential C, such as the implementation of 
cellular automata. 

We hope that this research will help convince others that the data-parallel programming 
paradigm on MIMD architectures is a very attractive option for many applications, and may in 
many cases may be the best option currently available. 

Our Dataparallel C compiler consists of about 35,000 lines of _C code. It is a full 
implementation of the Dataparallel C language. The compiler has already been used for several 
parallel programming courses at Oregon State University, as well as other programming projects, 
and seems to be fairly robust . Versions are available for both the Sequent Symmetry and 
Balance multicomputers as well as a single processor UNIX workstation version. We are making 
the compiler sources available to all interest parties. 
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