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Boreal and temperate biomes host nearly half of the earth’s forested ecosystems. The 

temperate rainforests of the Pacific coast of North America constitute nearly half of all temperate 

rainforests on earth. Along the northern extent of this region, the perhumid and sub-polar rainforests of 

southeast and southcentral Alaska are among the largest intact tracts of temperate rainforest in 

existence. These forests are globally significant for their role in storing and cycling carbon and are 

regionally and locally valued for their cultural significance, their provision of ecosystem services, and 

their economic importance. The cumulative impacts of historic management and uncertainties regarding 

future conditions under a changing climate have largely gone understudied in this important ecosystem. 

A relative dearth of spatially comprehensive information exists to describe detailed forest attributes at a 

resolution relevant for both informing management decisions and at an extent necessary to meet 

regional and national monitoring objectives.  

This study demonstrates one approach to providing wall-to-wall forest attribute data across the 

forested areas of coastal southeast and southcentral Alaska using the Gradient Nearest Neighbor (GNN) 

method. I leverage field surveys from the USDA Forest Service Forest Inventory and Analysis (FIA) 

program collected across a 26-year timespan (1995-2020) with a set of spatially continuous 

environmental predictors and annual Landsat Timeseries (LTS) to produce spatially explicit 30-m 

predictions of forest structure and composition across the region. Spectral harmonization across 

sensors, a multi-step cloud masking procedure, and the spectral segmentation algorithm, LandTrendr, 

were implemented in Google Earth Engine (LT-GEE), to produce spatially complete annual imagery for 

model development. Model predictions were generally more precise and less biased in the boreal forest 



 

 

biome of the western Kenai Peninsula, lending support for further exploration of the LandTrendr-GNN 

approach to broader monitoring efforts across Interior Alaska. In the coastal temperate rainforest 

ecoprovince, models tended to truncate distributions and overpredict some observation estimates, but 

overall agreement revealed relatively strong alignment with design-based estimates in this 

heterogeneous region. 
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Introduction 

 Spatially comprehensive data describing structural and compositional characteristics of forests 

are useful for a variety of management and monitoring objectives. Regional vegetation maps are used to 

assess changes in land use and land cover (e.g. Moisen et al. 2020), predict fire behavior (e.g. Pierce et 

al. 2009), estimate timber volume (e.g. Lister et al. 2005), predict suitable wildlife habitat (e.g. Lorenz et 

al. 2021), and estimate total and net carbon or biomass storage (e.g. Wilson et al. 2013, Kennedy et al. 

2018a, Bell et al. In Press). Monitoring change over time can enable assessment of the impacts of or 

resilience to changes in climate (e.g. Schleeweis et al. 2020), assessment of impacts from specific land 

management policies or legislation (e.g. Davis et al. 2015), or assessment of trends in natural 

disturbances (e.g. Zhao et al. 2018, Cohen et al. 2018).  

Boreal and temperate forests represent substantial components (30.6%, and 17.1%, 

respectively) of Earth’s forests (Keenan et al. 2015) and comprise some of the largest tracts of intact 

forest land remaining (Wells et al. 2020, Dellasala et al. 2011). Alaska’s 52.2 mil ha of forests comprise 

an estimated 17% of total US forestland (Andersen 2019), with over 6.1 mil ha of forest in the southeast 

and southcentral region of the state (Cahoon et al. 2020). Much of this region is strongly influenced by a 

maritime climate and includes the perhumid and subpolar temperate rainforests of Alaska (~4.5 mil ha) 

as well as a portion of the boreal forest biome (~1.6 mil ha) in the transition zone of the western Kenai 

Peninsula along Cook Inlet (Cahoon et al. 2020). The forests of southcentral and southeast Alaska are 

subject to a complex administrative framework and host a more intensive history of management than 

much of the northern boreal forests in the state (Alaska Forest Association 2021, Marcille et al. 2021). 

The coastal temperate rainforests contribute substantially to the regional economy (e.g. Johnson et al. 

2019), are regionally and locally valued for their cultural significance (e.g. Johnson et al. 2021) and may 

represent an important contribution to global carbon cycling (e.g. Buma and Barret 2015, McGuire et al. 
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20178, Genet et al 2017). They are described as being among the most intact tracts of coastal temperate 

rainforests in the world (Alaback 1991, Dellasala et al. 2011); yet despite their global and regional 

significance, a relative lack of consistent spatial data exists to help inform management decisions 

affecting forests across the region. 

In southeast and southcentral Alaska, a variety of techniques have been employed in attempts 

to create spatially complete maps of vegetation attributes. However, mapping efforts in the region face 

several challenges. The vast size and remote nature of the region contributes to the risk, difficulty, and 

expense of collecting field observations, resulting in relatively few observational forest structure and 

composition datasets that represent the range and distribution of vegetative conditions. The USDA 

Forest Service Forest Inventory and Analysis (FIA) program provides the most comprehensive 

observational dataset across the region, yet even this regional forest survey is restricted to lands outside 

USFS Wilderness and Glacier Bay National Park. Forest inventory across the remote boreal regions of 

Interior Alaska face similar challenges (e.g. Barrett and Gray 2011) and a systematic statewide forest 

inventory was not initiated until 2014 (USDA 2014). 

Remote sensing instruments also face challenges imposed by Alaska’s high latitudes, steep and 

complex topography, and unfavorable weather patterns. Persistent cloud cover, atmospheric mist, and 

cloud shadows can lead to missing and inaccurate spectral values in remote sensing scenes (e.g. Braaten 

et al. 2015, Zhu and Woodcock 2011, Zhu and Woodcock 2014). Steep topographic relief, particularly on 

northern aspects in northern latitudes, can contribute substantially to terrain shadowing due in part to 

low sun angle (e.g. Stow et al. 2004, Beamish et al. 2020) and can impact reflectance values, 

misrepresenting surface conditions (e.g. Giles 2001, Gu and Gillespie 1998, Hantson and Chuvieco 2011). 

Finally, structurally complex forests with multilayer canopies cast shadows which can be useful to 

defining such forest characteristics (e.g. Cohen and Spies 1992), but also complicates the interpretation 
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of topographic shading (e.g. Kane et al. 2008) and can lead to pixel saturation and difficulty 

distinguishing characteristics between pixels (e.g. Lu et al. 2016). Heterogeneity within and between 

stands can also present a challenge when sensor pixel size is greater than the typical forest patch size 

(e.g. Ohmann et al. 2014). 

Despite the challenges, many broad vegetation mapping initiatives have been undertaken in 

Alaska. The first spatially comprehensive mapping initiative in southeast Alaska began in the 1970s, with 

delineation of stereo-pair aerial photography into relatively homogenous polygonal timber volume 

classes across USFS managed lands (USDA 2012); these timber volume maps served to inform 

management decisions on federal lands in the region for decades. In 1997, the Tongass National Forest 

Land Management Plan (USFS 1997) required updates on the timber resources across the National 

Forest, so digitized timber volume maps were improved by integrating ground survey data along with 

topographic information to collapse stand data into statistically significant distinct classes (Julin and 

Caouette 1997).  

Over the next decade, several other attempts to map forest and vegetation classes in the region 

were attempted. In 2004, Corne et al. used artificial neural networks to predict forest characteristics 

using a classification algorithm based on coarse digital elevation model (DEM) derivatives and the 

southeast Alaska FIA database. Caouette and DeGayner (2005) conducted multivariate analyses of forest 

volume class and ancillary datasets to refine earlier methods of classifying USFS managed forests in 

southeast Alaska using metrics of density (SDI) and size (QMD). Caouette and DeGayner in 2008 further 

refined their multivariate technique to improve classification accuracy and prediction of tree size and 

density but focused specifically on the productive old growth forests of southeast Alaska. Meanwhile, a 

consortium of US federal agencies collaborating to develop tools and techniques for classifying land 

cover, vegetation, and land use patterns (the Multi-Resource Land Characteristics, MRLC) employed 
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classification and regression tree algorithms to classify 30-m Landsat pixels and create National Land 

Cover Database (NLCD) and Landscape Fire and Resource Management Planning Tools (LANDFIRE) layers 

across Alaska representing model years of 2001, 2011, and most recently, 2016. These land cover maps 

rely on large databases of both field collected and remotely sensed training data from a variety of 

federal agencies to produce land cover and fuels characteristics maps for broad-scale planning 

applications (Jin et al. 2019). Given the potential importance of Alaskan forests in contributing to global 

carbon cycles, Blackard et al. (2008) used regression tree algorithms to predict aboveground live tree 

forest biomass at a nominal pixel size of 250-m across Alaska, based on composites from the Moderate 

Resolution Imaging Spectrometer (MODIS) along with several remotely sensed environmental datasets 

and classified vegetation datasets from NLCD. 

More recently, Buma and Thompson (2019) employed a machine-learning decision tree 

classifier, Random Forests (Breiman 2001), to map aboveground forest C in unmanaged forests across 

southeast Alaska, leveraging field data from the FIA program in the region with a remotely sensed DEM 

and tree cover data from a MODIS and Landsat model known as Vegetation Continuous Fields (VCF, 

Sexton et al. 2013). Wang et al. (2019) also employed Random Forests and machine learning, with 

clustering and interpretation of field photography, to classify annual vegetation cover between 1984 

and 2014 using 30-m Landsat pixels across Alaska and Canada as part of the Arctic Boreal Vulnerability 

Experiment (ABoVE). Landcover change assessment mapping work has also been undertaken in 

southeast and southcentral Alaska as part of the Landscape Change Monitoring System (Cohen et al. 

2018, Healey et al. 2018). In each case, efforts have either focused on predicting specific forest 

attributes across specific land ownership or administrative units, on areas representing specific 

management or disturbance histories, or on predicting general landcover or vegetation classifications. 
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Objective 

A gap in the existing body of work is a spatially continuous dataset representing the nature and 

arrangement of forest structural and compositional attributes available to inform land management and 

policy decisions in coastal southeast and southcentral Alaska. Furthermore, spatially complete models 

representing detailed forest attributes can contribute to regional efforts to research and monitor the 

status of land use and land cover change, and the effects of policy decisions, natural disturbances, and 

changes in climate on forests. This study aims to build upon previous mapping efforts in Alaska by 

addressing several of the challenges to effective forest modeling in the region: 1) leveraging a robust set 

of field observations from the USDA Forest Service Forest Inventory and Analysis (FIA) program in 

coastal Alaska collected across three decades, 2) applying a combination of cloud-filtering techniques to 

screen pixel values attributable to persistently unfavorable atmospheric conditions, and 3) incorporating 

26-years (1995-2020) of harmonized LTS imagery corresponding to field observation years, temporally 

smoothed using the LandTrendr algorithm scripted in Google Earth Engine (LT-GEE). I employ a nearest 

neighbor imputation technique to map a suite of forest structural and compositional attributes across a 

broad geographic area in southeast and southcentral Alaska. 

 The Gradient Nearest Neighbor (GNN) imputation technique (Ohmann and Gregory 2002) 

provides a framework for mapping a wide array of forest attributes across a landscape by modeling 

forest structure and composition using a direct gradient analysis, specifically Canonical Correspondence 

Analysis (CCA; ter Braak 1986). Models are constructed relating species-size forest characteristics based 

on discrete field measurements to spatially comprehensive environmental predictor covariates, and 

results are imputed across the landscape using nearest neighbor imputation based on weighted 

Euclidean distance from the gradient analysis (Bell et al. 2015a). Cloud-based automated Landsat time 

series image processing (Kennedy et al. 2018b) presents an opportunity to dramatically improve the 



   

 

6 

 

speed of standardizing and extracting spectral data used as predictors in model development. The 

advantage of nearest neighbor imputation is that any forest attribute which can be calculated from 

observations at discrete field locations used in model development can then be imputed to similar pixels 

across the landscape.  

In this study, I map a detailed set of structural and compositional attributes across all forested 

areas of southeast and southcentral Alaska, including the coastal temperate rainforest and the boreal 

transition area of the western Kenai Peninsula, inclusive of all management histories and across 

ownership and jurisdictional boundaries (Figure 1). I present model outputs at a pixel size of 30-m, in 

spatially consistent raster grids representing a modeling year of 2019, the most recent year in which 

spatially unbiased field survey data exist across the entire study area. In addition, I provide a detailed 

multi-scale accuracy assessment of maps within each modeling region to help potential users 

understand best practices for interpretation. I assess the location, magnitude, frequency, and type or 

nature of errors present in the modeled data and offer insights regarding opportunities for further 

research based on the strengths and limitations I observed with the GNN modeling approach as applied 

in the temperate and boreal regions of southeast and southcentral Alaska.  

 Specifically, my objectives for this study were two-fold: 

1) To implement the LandTrendr-GNN approach to modeling and mapping a detailed set of 

forest attributes in high-latitude forests and to evaluate the effectiveness and accuracy of 

this approach, and 

2) To illustrate one potential application of the mapping products in a management context, 

with an example in the perhumid temperate rainforests of the Tongass National Forest. 
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Land Acknowledgement 

The region of interest in this study encompasses lands traditionally inhabited by a broad and 

diverse group of Alaska Native cultures and communities. In the southeast, the area encompasses 

traditional lands of the Haida, Tlingit, and Tsimshian. Farther north, along the Gulf of Alaska Coast, 

traditional stewards of the land included the Eyak; in Prince William Sound, down the southern coast of 

the Kenai Peninsula and across Kodiak Island, the Chugach Alutiiq / Sugpiaq, and across the boreal 

region of the Kenai peninsula north beyond Anchorage and into the Matanuska Valley lie the traditional 

lands of the Dena’ina (Krauss et al. 2011). For thousands of years, these Alaska Native cultures have 

been the traditional stewards of these lands and have relied upon an abundant provision of natural 

resources to subsist and thrive. The Alaska Native people who inhabited these lands long before Russian 

or Euro-American occupation were forcibly assimilated to western cultures and economic systems 

through a variety of government sponsored programs and legislation, particularly during the 20th 

century (University of Alaska Fairbanks 2022). It is my hope that this research will provide useful 

information for Alaska Native Tribal governments, communities, and corporations to make informed 

decisions as they navigate land management challenges in the face of changing climatic, socio-

economic, and cultural conditions. 

 

Motivation: Socio-Economic Context and a Brief History 

Today, the forests of coastal southeast and southcentral Alaska are managed by a variety of 

federal, state, and local government agencies, Alaska Native Corporations, Tribal governments, and 

private individuals (Cahoon et al. 2020). The forests of this region and the communities who rely upon 

them have been subject to a variety of federal legislative actions over the past century which have 

contributed to dramatic swings in management approach, responsibility, and objectives. Understanding 
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the political, legislative, economic, and social history surrounding forest management in the region helps 

contextualize the motivation for undertaking this work. This study was motivated largely by a view that 

land management and policy decisions in general are better informed by more complete information 

regarding the resources they seek to govern.  

 The coastal temperate rainforests of Alaska have a relatively brief but expansive history of 

commercial forest management across jurisdictions (e.g. Brackley et al. 2009). Economic factors (e.g. 

Marcille et al. 2021), along with political influence (e.g. Dunleavy 2021) and a history of complex 

legislative actions transferring administrative jurisdiction and fiduciary responsibility among 

stakeholders have largely shaped management regimes across the region. Several legislative actions in 

the last half of the 20th century (i.e. the Alaska Statehood Act, the Alaska Native Claims Settlement Act 

[ANSCA] and the Alaska National Interest Lands Conservation Act [ANILCA]) transferred large tracts of 

high value timber from federal management to the state of Alaska and to Alaska Native Corporations in 

efforts to compensate Alaska Native populations for federal appropriation of their traditional 

homelands. Alaska Native communities were faced with complex decisions regarding their relationship 

to their lands and resources, the economic futures of their communities, and how they should be 

recognized by the federal government (Herz 2021). The organization of Alaska Native Corporations 

under ANSCA promoted the commercialization of Native lands to support economic development. 

To further encourage economic development in the region during the 20th century, the US 

federal government offered long-term timber contracts to private corporations on large swaths of 

federal land (Alaska Forest Association 2021). The government was motivated to provide economic 

stability to a nascent industry in the region in order to support economic and population growth of 

communities in the region. Commercial logging in southeast Alaska peaked in the 1970s when nearly 

500 million board feet (MMBF) of old growth timber were harvested per year, primarily from the most 
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densely populated stands of large trees (Fennel 2016). By the 1990s, the adoption of a multitude of 

regional and national land management policies drastically changed the industry in Alaska. Policies 

including the National Forest Management Act (NFMA, 1976), the National Environmental Protection 

Act (NEPA, 1970), and the Tongass Timber Reform Act (TTRA, 1990) were designed to balance the 

economic benefits of timber production more appropriately with the other social and ecological benefits 

that forests provide. Under the TTRA, the cancellation of long-term timber contracts in southeast Alaska 

ultimately shrunk annual timber harvest to less than 10% of their peak in the 1970’s (Alexander et al. 

2010), and commercial timber production now comprises less than 1% of the region’s economy 

(Southeast 2019). 

The development and subsequent shrinking of the timber economy in southeast Alaska, in 

combination with the creation of Alaska Native Corporations and the transfer of much productive forest 

land from federal to corporate management has contributed to a complex socio-economic landscape for 

forest management. Land transfers among USFS, the state of Alaska, Alaska Native Corporations, and 

private individuals continue under a number of federal legislative programs (e.g. ANSCA, ANILCA, ASA, 

MHTEA, Dunleavy 2022). These transfers contribute to the difficulty of projecting future forest 

conditions in the region and the complexity of understanding trends in regional forest conditions, as 

management objectives and management statutory requirements differ among landowners and land 

designations. 

The 2001 Roadless Area Conservation Rule restricted development and management on some 

3.7 mil ha (~55%) of the Tongass National Forest, designating these lands as Inventoried Roadless Areas. 

Several attempts have since been made to alter or reduce the restrictions imposed by this legislation 

(USDA 2021a). Most recently, the state of Alaska in 2018 petitioned USDA for a state-specific exemption 

to the 2001 Roadless Rule (Alaska Roadless Rulemaking 2020). In 2020, the exemption was granted in 
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full, following the exit of all six cooperating Alaska Native Tribal governments from the process (USDA 

2021a). In turn, nine southeast Alaska Tribal governments petitioned USDA to undertake a new effort to 

protect their traditional homelands, arguing that USDA had inappropriately disregarded cooperator and 

public input during the review process. On November 23, 2021, USDA filed a new proposed rule in the 

Federal Register, seeking to undo its 2020 exemption for the Tongass National Forest and to re-instate 

the 2001 Roadless Rule protections (USDA 2021a).  

Dramatic shifts in management objectives over large areas of federal land are not unusual in the 

US (e.g., Federal Register 2021), but they add to the uncertainty of future conditions on these 

landscapes and erode confidence in government commitments to protecting the heritage and cultural 

values of Native communities. Acknowledging the value of Alaska Native input in regional planning, 

recent research (e.g. Vynne et al. 2021) and some US government programs to promote economic and 

community vitality in southeast Alaska today explicitly call for the inclusion and involvement of Alaska 

Native communities (USDA 2021b). The Tongass National Forest comprises approximately 80% of the 

land area in the coastal temperate rainforest zone of southeast Alaska (Cahoon et al. 2020). While the 

Tongass has indicated since 2010 an intent to shift priorities from old-growth harvest towards young-

growth management (Pendleton et al. 2013) as an acknowledgement of the many values these forests 

provide, part of the difficulty in making the transition lies in an incomplete understanding of the 

quantity, quality, and location of young growth stands across the Forest (Fenster 2022). It is in the 

context of this complex history of management and policy that I am motivated to contribute to our 

understanding of the condition and arrangement of forests across southeast and southcentral Alaska. 
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Methods 

Study Area  

The study area for this project encompasses the regions of southeast and southcentral Alaska, 

spanning 7 degrees of latitude (54°N to 61°N) and 24 degrees of longitude (130°W to 154°W), from the 

Canadian border in the southeast to the Kodiak Archipelago in the southwest, including the Kenai 

Peninsula and the Anchorage Bowl (Figure 1). Though comprising just under 13% of the state of Alaska, 

the area is immense (22.0 mil ha), characterized by dramatic topographic and climatic gradients and 

encompassing a host of diverse ecosystems including more than 6.1 mil ha of forest (Cahoon et al. 

2020). Broadly, two ecological provinces are represented in the study area, with the Alaska Range 

Transition ecoprovince represented on the western Kenai Peninsula and north, but with most of the 

study area comprised by portions of the temperate Coastal Rainforest ecoprovince (Nowacki et al. 

2002). 

These two ecological provinces are further comprised of six ecosections, broad characterizations 

of geologic and ecological conditions, climate, and disturbance regimes across the landscapes of 

southeast and southcentral Alaska (Figure 1). The western Kenai Peninsula and the Anchorage Bowl 

comprise portions of the Cook Inlet Basin ecosection within the Alaska Range Transition Province and 

represent a transition to the boreal forest biome, characterized by cooler winters, warmer summers, 

and far less annual precipitation than the temperate maritime region (Nowacki et al. 2002). In contrast, 

ecosections within the Coastal Rainforest ecological province are characterized generally by warmer 

winters and cooler summers, with substantial annual precipitation (Figure 2).  

Ecosections in the Coastal Rainforest province encompass the perhumid and subpolar rainforest 

zones (Alaback 1996), the northernmost temperate rainforests in North America. In the southeast 

portion of this ecoprovince, the Alexander Archipelago is comprised of thousands of islands along the 
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Pacific coast. Unique island biogeography and climatic conditions moderated by the hyper-maritime 

environment contribute to the region’s mild temperatures (-3°C - 8°C annual average) and extreme 

precipitation (1212 -8604 mm annually; Daly et al. 2018). Just inland of the Alexander Archipelago along 

the Pacific Coast mountains in southeast Alaska, the Boundary Ranges ecosection comprises the zone 

between the hyper-maritime environment of the Archipelago and the continental climate influence of 

northern British Columbia and the Yukon Territory. 

North and west, the Gulf of Alaska Coast ecosection is comprised by a relatively narrow band of 

post-glacial ecosystems sandwiched between the Pacific Ocean and the Chugach and St Elias ranges, 

stretching from Icy Strait in the east to Kachemak Bay in the west and characterized by temperatures 

moderated by its proximity to the ocean and high precipitation. The Chugach-St Elias Mountains 

comprise a rugged and expansive ecosection just inland of the Gulf of Alaska Coast, with dramatic 

topographic relief contributing to the more extreme temperature and precipitation gradients. Finally, 

the Kodiak Archipelago at the western boundary of the study area is characterized by its own ecosection 

(Kodiak Island) where topographic gradients are less extreme, the maritime influence moderates 

temperatures, and precipitation declines dramatically from east to west. More dramatic topographic 

gradients across these broad regions accompany steeper temperature (-26°C - 7°C annual average) and 

precipitation (299 – 9897 mm annually) gradients as well (Daly et al. 2018). 

Broad forest community characteristics and associated disturbance regimes in the study area 

are largely driven by the climatic and environmental gradients. Across the temperate ecoprovince, co-

dominance by Picea sitchensis is ubiquitous, with primary associates including Tsuga heterophylla, Thuja 

plicata, and Callitropsis nootkatensis in the south, and with Pinus contorta present particularly near wet 

forest openings, and Tsuga mertensiana increasing in prevalence at higher elevations. To the north and 

west along the Gulf of Alaska Coast, through Prince William Sound and the eastern Kenai Peninsula, 

Tsuga mertensiana co-dominates the forests all the way to sea level, with Picea sitchensis dominating 
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the coniferous maritime forests exclusively in the Kodiak Archipelago. Hardwood associates are less 

common in the maritime ecoprovince, particularly in the Alexander Archipelago in the southeast, and 

include Alnus rubra and Populous balsamifera-trichocarpa primarily occupying disturbed areas and 

riparian corridors, respectively. Widespread natural fire is essentially absent from the landscape in the 

maritime ecoprovince, and natural disturbance regimes are characterized by frequent small scale wind 

events, as well as larger mass movement and wind events, particularly in landscape positions 

predisposed to exposure. Among the most widespread disturbances characterizing forests of the 

southern portion of this region today is Alaska yellow-cedar decline, a condition driven by decreases in 

consistent winter snowpack associated with climate change (Buma et al. 2017, Beier et al. 2008), though 

some effects of yellow-cedar decline on population dynamics of Callitropsis nootkatensis are debated 

(e.g. Bidlack et al. 2017). 

In contrast, forests of the western Kenai Peninsula in the Cook Inlet Basin are characterized by 

deciduous boreal tree species including assemblages of Betula neoalaskana, Populous tremuloides, and 

Populus balsamifera, and conifers including Picea mariana, and Picea glauca. This region is characterized 

as a transition zone to the Interior Alaska boreal forest biome, as permafrost is nearly absent and 

temperatures in the region are still somewhat moderated by the maritime influence of Cook Inlet. 

Community composition in this region is largely driven by complex interactions among edaphic factors 

(e.g. soil texture, drainage, temperature), microclimate, and disturbance history (ADFG 2022). Populus 

tremuloides and Picea glauca occur primarily on well drained sites, and Populus tremuloides tends to 

occupy warmer upland, south facing slopes, while Picea mariana tolerates poor drainage and lowland 

areas. Betula neoalaskana and Populus balsamifera can be found across a range of site conditions and 

tend to quickly colonize disturbed sites following stand replacing disturbance events. Disturbance 

regimes characterizing the forests of the western Kenai Peninsula are distinct from the temperate 

ecoprovince, shaped by widespread insect outbreaks and landscape-scale fires, often resulting in 
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widespread mortality and stand replacing events, more typical of boreal Interior Alaska forests (e.g. 

Baughman et al. 2020). 

 

Field Reference Data 

In this study, field survey records were used as training data for model development and to 

compute forest attributes for mapping. A robust sample of ground conditions representing the entire 

range and distribution of systems being modeled is necessary when vegetation models are constructed 

across broad geographic regions or covering diverse ecological conditions. The FIA dataset provides an 

unbiased sample of ground conditions with known measures of accuracy and precision accomplished 

using standardized quality assurance protocols (Bechtold and Patterson 2005). The landscape is sampled 

systematically, with the entire land base tessellated into equal area hexagons (2428 ha) each containing 

one randomly located sample plot. Plots are screened in the office utilizing aerial or satellite imagery for 

classification, and only plots classified as forest (>10% tree cover [1995-2003, 2014-2020] or >10% tree 

stocking [2004-2013]) or potential forested (not subject to a land use preventing tree establishment and 

growth and meeting a minimum area criteria) are measured on the ground (USDA 2021c). Each plot 

consists of a cluster of four 168.11 m2 subplots within which trees ≥12.7cm DBH are measured, and each 

subplot contains a nested microplot (13.496 m2) on which small trees (≥2.54cm, <12.7cm DBH) are 

measured. Subplots are spaced 36.576 m on center, over approximately a 0.64 ha area, and together 

comprise a ground sample of approximately 672.44 m2 (0.067 ha) including all four subplots.  

On each forested plot, and during non-forest surveys of vegetated USFS-managed lands in 

Alaska (2011-2020), field crews characterize general land conditions including evidence of present land 

use and past disturbance and collect a suite of basic mensuration attributes on qualified trees within 

each sampling unit. Trees are identified by species, their status is determined (live vs. dead), and 
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individual tree measurements include diameter at breast height (DBH), tree actual (unbroken) and total 

bole length (height measured along the stem), compacted crown proportion, crown class, and any 

qualifying evidence of damage is recorded. In addition, data were collected to characterize the 

understory vegetation, downed woody material, and the forest floor but were not used in this study. In 

Interior Alaska, additional FIA measurements include an expanded microplot to capture more small tree 

measurements, soils cores to characterize carbon and nutrient ratios, and a survey of the macrophytic 

lichen community comprising the forest floor. 

In southeast and southcentral coastal Alaska, widespread surveys targeting productive 

timberlands took place initially during the 1950s, with surveys across the rest of the state beginning in 

the early the 1960s (LaBau 2013). However, a systematic inventory of all forested lands in the region of 

southeast and southcentral Alaska, regardless of productivity or ownership, was not initiated until 1995. 

ln 2004, the survey converted to an annualized inventory in which a more spatially balanced portion of 

plots across the entire region was measured each year (Figure 3). In a nod to the logistic complexity of 

traveling throughout this remote region each year, the ‘panelization’ of plots scheduled for annual field 

measurement in the coastal Alaska FIA unit was produced randomly rather than systematically, to 

promote geographic clumping across the unit (A. Gray, personal communication, November 2021). 

Importantly, the survey excludes the land managed by Glacier Bay National Park (~1.3 mil ha), and only 

included USFS designated Wilderness areas on the Tongass National Forest and recommended 

Wilderness areas on the Chugach National Forest during a single survey year in 2005. Together, these 

lands excluded from the inventory account for some 25% of the study area (Cahoon et al. 2020).  
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Image Processing 

Landsat sensors (TM, ETM+, and OLI) provide a spatially complete and temporally continuous 

spectral dataset at a nominal 30-m pixel size which allows for landscape- to global-scale analyses of 

earth systems. With multiple operational sensors in orbit, Landsat provides approximately 8- to 9- day 

observation intervals across most of the archive (Young et al. 2017, Masek et al 2020). Given the broad 

extent (22.0 mil ha) and temporal span (1995-2020) of the study area and period, significant processing 

of the Landsat imagery was necessary to build effective annual composites prior to use. 

Image pre-processing steps included alignment and harmonization of the Landsat sensors across 

generations (Roy et al. 2016, Young et al. 2017), masking of snow, clouds, and shadow (Zhu and 

Woodcock 2011, Google 2022), combining the Landsat collections from different sensors, reducing each 

annual collection to a single day, and finally calculating an appropriate spectral index for use in the 

segmentation algorithm. A focal year of 2019 was selected in which to model forest attributes, as this 

was the most recent year with a “complete” spatially unbiased sample of FIA field data available at the 

time of initial model development. All pre-processing steps were completed using scripts in the LT-GEE 

guide (Kennedy et al. 2018b), parameterized to the study area and time horizon, and updated by M. 

Gregory for the inclusion of additional cloud masking (Appendix 1). 

Following sensor harmonization, initial assessments of imagery composites in the study area 

indicated that persistent cloud cover would still pose problems in some areas despite the masking 

algorithm (Figure 4), so I included an additional cloud masking step using Google’s Simple Cloud Score 

(threshold = 30, Google 2022). The Simple Cloud Score algorithm identifies top of atmosphere (TOA) 

reflectance values with a combination of relatively high brightness in the visible and infrared bands and 

relatively low temperature, but avoids confusion with snowy pixels by using the normalized difference 

snow index (NDSI) to assess the relative likelihood of cloud cover. I determined an appropriate threshold 
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for the Simple Cloud Score by comparing masked and unmasked imagery across the study area in 

locations known to harbor persistent cloud cover during the growing season. I balanced aggressive 

masking of cloudy pixels with a desire to achieve maximum spatial coverage of imagery over each year 

of field reference data and over the entire study area. The two-step cloud masking procedure struck the 

appropriate balance and appeared to be sufficient to continue with imagery composite development. 

After masking clouds, shadow, and persistent snow, I reduced each annual collection to a single 

image using a medoid function to identify a representative sample for each year. For each pixel in an 

annual collection, the medoid is identified by minimizing the sum of squared differences (SSD) between 

a multi-band pixel’s raw values and the median values for each band calculated for that pixel from the 

annual collection. The medoid preserves the relationships among bands in a multi-band pixel by 

selecting the image date in which the SSD is minimized across all bands (Flood 2013) . Finally, images 

across the annual collections were transformed for input to the segmentation and smoothing algorithm 

LandTrendr (Kennedy et al. 2010). 

 

LandTrendr 

LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery) provides an 

algorithm for automated image processing which builds a Landsat time series (LTS) for each pixel within 

a designated area of interest where each image in a stack represents a single year (Kennedy et al. 2010). 

Fitted image stacks are created with user-defined bands or spectral indices.  A model is constructed 

representing the spectral signature of each pixel, with each year representing a node. I used the 

Normalized Burn Ratio (NBR) for the segmentation algorithm to identify pixel trajectory, vertices, and 

outliers.  
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LandTrendr exploits the trajectory of the spectral signature through time, filtering statistical 

anomalies but flagging distinct and persistent changes in the trajectory of each pixel. Dramatic changes 

in the trajectory of image segments between years (disturbance) are represented by a vertex following 

which the pixel takes a new trajectory during subsequent years (Figure 5). In years where a suitable 

cloud-free pixel cannot be identified or where a spectral value is missing from the sensor, the 

constructed model fills the missing value based on ‘good’ data from surrounding years. Similarly, the 

model promotes smoothing by preventing identification of a vertex with subsequent recovery following 

just a single year (despiking), in order to limit the introduction of noise from anomalies misrepresenting 

the true spectral trajectory of the pixel. From fitted image stacks, annual composites can be mosaicked 

across the landscape to provide spatially and temporally complete LTS. 

The LandTrendr algorithm scripted in Google Earth Engine (LT-GEE, Kennedy et al. 2018b) 

provides a user interface to define model parameters (Table 1) and to facilitate access to the massive 

archives of publicly available imagery databases. I used GEE for image pre-processing and for running 

the LandTrendr algorithm to facilitate efficient processing of large geospatial datasets without straining 

local computing resources. LandTrendr in GEE was used to produce annual composites of georeferenced 

raster grids (GEOTIFFs) across the study area for each year between 1995-2020.  Characteristics of 

vegetation density and vigor across the study area were calculated from the annual Landsat composites 

using the Tasseled Cap indices. 

The Tasseled Cap (TC) transformations (Kauth and Thomas 1976, Crist and Cicone 1984) provide 

a set of spectral indices effective at capturing changes in the density and vigor of vegetative foliage 

(Tasseled Cap Greenness, TCG), surface reflectance from the particles which make up the bare earth 

(Tasseled Cap Brightness, TCB), and surface moisture (Tasseled Cap Wetness, TCW). Tasseled Cap 

Brightness is a weighted sum of the visible, near infrared, and shortwave infrared bands, such that areas 
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of the landscape which actually appear to be brighter in the visible spectrum, in fact are associated with 

higher TCB values. Tasseled Cap Greenness on the other hand is a weighted contrast between the visible 

and infrared bands, owing to high absorption in the visible spectrum but high reflection in the near 

infrared (NIR) by live foliage. Finally, TCW contrasts the sum of the visible and NIR bands with the sum of 

the shortwave infrared (SWIR) bands as soil and plant moisture are correlated with greater reflectance 

in the SWIR portion of the spectrum. Taken together, the TC indices provide an illustration of portions of 

the visible and infrared spectrums sensitive to changes in vegetation cover and vigor, helpful for 

reducing the broad array of Landsat spectral data to three key indices (Cohen and Goward 2004).  

 

Gradient Nearest Neighbor Model Development 

Canonical Correspondence Analysis (CCA) is a direct gradient analysis of constrained ordination 

and is the modeling framework underlying the nearest neighbor imputation technique known as 

Gradient Nearest Neighbor (GNN; Ohmann and Gregory 2002). This approach is robust to the nonlinear 

responses expected of vegetation communities to environmental gradients, and to response matrices 

containing many null values and without normal distributions as is common in plant community ecology 

(Palmer 1993). Further, environmental gradients are often correlated (e.g. elevation and temperature) 

and seldom meet the assumption of predictor independence required of techniques such as multiple 

linear regression. Canonical Correspondence Analysis was used to construct models of tree basal area by 

species and size class across multiple environmental gradients. In CCA, the ordering of community 

characteristics (plots) in model space reflects linear combinations of the environmental gradients 

measured, allowing predictions of community composition based on coefficients derived from a number 

of axes representing weighted combinations of environmental gradients. Once models are developed 

representing the complex relationships between environmental predictors and community 
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characteristics, community traits can be predicted (imputed) across the landscape wherever a complete 

set of environmental data are available. 

Forest attributes from the FIA plot measurements were used to compute both the modeling 

variables and the mapping variables in Python 3 (Van Rossum and Drake 2009). I constructed models 

using tree basal area (BA, m2 ha-1) by species in 25cm DBH size classes, computed at the plot level (sum 

of BA across all four subplots). Plots with no trees present were assigned a dummy species, NOTALLY, 

with a dummy BA computed from a single dummy tree record with DBH 2.5 cm. Summaries of plot 

species presence were reviewed to identify species with sparse support for inclusion in model 

development. The scarcity of data representing rare features across the landscape makes predicting 

their presence and abundance difficult (e.g. Engler et al. 2004). Previous evidence suggests that nearest 

neighbor imputation is relatively poor at predicting rare features, particularly where k>1 (sensu Ohmann 

et al. 2014). Thus, only species with presence on >5% of field plots within a modeling region were 

included in model development. 

 

Modeling Regions 

I stratified the study area into three modeling regions, roughly aligning with existing ecological 

sections, to help constrain the ordination so that only neighbors from roughly similar ecological 

conditions would be considered candidates (Figure 1, Nowacki et al. 2002). Modeling regions were 

broad enough to encompass sufficient field plot measurements (~>300) to inform model development 

(M. Gregory, personal communication, Table 2). In my study area, the Alexander Archipelago ecosection 

contains the greatest density of field plot measurements (2493) and represents modeling region 101 

(MR101). The western Kenai Peninsula and Anchorage Bowl within the Cook Inlet Basin comprise 

modeling region 105 (MR105) and contains a moderate density of field plot measurements (744). 
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Finally, the four ecosections comprising the relatively narrow band of mountainous terrain along the 

mainland and spanning from the farthest southeast extent of the study area north and west along the 

gulf coast, and including the Kodiak Archipelago, were combined to create modeling region 110 

(MR110). Although together the Boundary Ranges, Chugach-St Elias Mountains, Gulf of Alaska Coast, 

and Kodiak Island span the latitudinal and longitudinal extent of my study area, they each represent a 

relatively narrow band of forested area within the maritime ecoprovince and individually host relatively 

small populations of candidate field plots. The total number of field plots ultimately included in model 

development for MR110 was 1699 (Table 2). After delineation of each modeling region, a 10km buffer 

was applied to the region boundaries (Ohmann et al. 2012) so that any field plot measurements within 

the 10km buffer were included in model development to improve sampling near the edges of ecological 

and climatic gradients and to limit the introduction of artificial boundaries in my models. Seamless 

regional predictions were ultimately created by trimming the buffer and mosaicking modeling region 

raster grid predictions in ArcGIS. 

 

Environmental Covariates 

To represent environmental gradients that constrain forest composition and structure, I identified a 

series of spatially continuous environmental datasets for mapping forest attributes across landscapes. 

Spatially continuous environmental raster datasets (Table 3) were derived from publicly available 

sources but required several pre-processing steps to ensure consistency in projection, scale, and 

alignment for use in analysis. All environmental raster datasets were additionally converted to integers 

for space efficiency. 

I used NASA’s ASTER GDEM3 (NASA 2018), a 30-m Digital Elevation Model (DEM), to create 30-m 

raster grids representing topographic gradients including aspect, slope, topographic position index (TPI) 
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and heat load index. I transformed aspect measured in degrees to aspect in radians using a cosine 

transformation and rescaled these values by 100. I calculated percent slope from the DEM and rescaled 

values by 100 as well. I calculated TPI at three scales (300m, 450m, and 1000m) to represent landscape 

position in the context of nearby terrain features at multiple extents (Weiss 2001). Finally, I used 

McCune and Keon’s (2002) Heat Load Index (HLI) to estimate potential direct solar radiation. Heat Load 

Index computes potential surface heat loading using aspect, slope, and latitude, but without regard to 

atmospheric conditions, nearby terrain features or daily solar insolation models. Furthermore, HLI is 

recommended for use only south of 60°N latitude, so I included it as a predictor in model development 

with caution. 

Climate plays an important role in driving forest structure and composition, so several 

climatological datasets covering the region were explored (e.g. SNAP CRU (Leonawicz et al. 2015), USFS-

RMRS (Taylor et al. 2012, Abatzoglou and Brown 2012)) for use in model development. Oregon State 

University’s PRISM (Daly et al 2018) datasets for Alaska represent precipitation and temperature means 

between 1981-2010, coinciding best with the timeframe of field observations (1995-2020) and 

representing the most current climate data available for the region. From the PRISM climate data, I 

computed several specific metrics: minimum December temperature (DECMINT), maximum summer 

temperature (defined as the maximum temperature observed between June – August over the 30 year 

period, SUMMAXT), average annual temperature (ANNTMP), and average annual precipitation 

(ANNPRE; Table 3). Seasonal patterns of temperature and precipitation in particular may contribute to 

and constrain the capacity for species-specific tree growth and recruitment in the region (Alaback 1996, 

Dellasala et al. 2011), and were found to be significant predictors of community structure and 

composition in Pacific Northwest temperate rainforests (e.g. Ohmann and Gregory 2002). Together, I 
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expected these metrics to characterize important components of the aboveground abiotic environment 

which drive and constrain forest development. 

Soils hydrology and drainage characteristics are also thought to play an important role in driving 

forest structure and composition across the coastal Alaska region (e.g. Buma et al. 2016, Bisbing et al. 

2016). The National Resource Conservation Service (NRCS) provides spatially continuous soils hydrology, 

structure, and classification information across parts of Alaska at nominal resolutions of 10-m to 30-m 

(NRCS 2022). Three NRCS soils classifications layers from the Soil Survey Geographic Database (SSURGO) 

were explored as environmental covariates in the model to assess the role of hydric soils classes, 

drainage classes, and water availability classes on prediction of forest attributes. However, vector-based 

soils classification data in the region are based on sampling at various intensities, with lower resolution 

appearing particularly in Wilderness and other extremely remote areas (personal observation of 

SSURGO layers). Canonical Correspondence Analysis can be sensitive to binned data, sometimes leading 

to outsized influence on resulting imputation surfaces, predicting sharp contrasts in relatively uniform 

areas (D. Bell, personal communication). Soil characteristics were ultimately removed from model 

development upon close inspection of imputed map characteristics which revealed patterns of forest 

attribute predictions mirroring the soils layers even when forests appeared relatively uniform in high 

resolution imagery (Figure 6). 

 

Predictor Variable Extraction & Plot Footprint 

Spatially continuous environmental predictor datasets were re-projected to EPSG:3338 (NAD83 

Alaska Albers) and snapped to a common grid to ensure alignment across the study area. The 

climatological datasets were resampled (downscaled) from 771m to 30m using bilinear interpolation 

and all raster grids were clipped to the study area boundary. A nine-pixel (3 x 3) area (0.81ha) around 
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each field plot coordinate location was sampled and the mean pixel value extracted to represent the 

environmental conditions associated with the plot (Figure 7). For environmental predictor variables with 

a time component (annual LTS composites of TC indices), the nine-pixel mean value was extracted only 

from spectral index surfaces coinciding with the field plot measurement year (1995 - 2020). All other 

predictor variables were assumed to be constant (topographic) or were averages representing mean 

values occurring during a timeframe approximately overlapping the study period (climatic). In this way, 

each field plot measurement included in model development was associated with a suite of 

environmental predictor variables. 

 

Nearest Neighbor Imputation & Forest Attribute Mapping 

Nearest neighbor imputation allows any number of attributes measured at discrete locations 

(plots) to be mapped across the landscape based upon a set of spatially comprehensive predictor 

variables. In this study, I tested the application of GNN (Ohmann and Gregory 2002) for forest 

vegetation mapping in southeast and southcentral Alaska by modeling and assessing prediction accuracy 

for six structural attributes (Table 4) as well as tree species presence. For both CCA and nearest neighbor 

imputation, I utilized pynnmap (Gregory and Roberts 2020), a robust python library and application built 

for creating vegetation maps using nearest neighbor methods. Pynnmap facilitates the integration of 

CCA with nearest neighbor imputation based on a set of user-defined predictor and response datasets 

and options for model parameterization. Neighbors were identified in CCA gradient space by minimizing 

weighted Euclidean distance where axis scores are weighted by their eigenvalues. 

Forest structural attributes were imputed to 30-m pixels using a k=7 weighted imputation where 

the seven nearest neighbors (in gradient space) to each pixel contribute to the imputed value based on a 

weighted average. The selection of k=7 and neighbor weighting (Table 5) was based upon previous work 
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estimating model uncertainty from nonparametric bootstrap sampling (Bell et al. 2015a) and a desire to 

balance locally accurate (single pixel) model predictions with prediction accuracy over greater extents 

(e.g. Riemann et al. 2010) while creating a realistic map appearance (Eskelson et al. 2009, Ohmann et al. 

2014). By comparison, species attributes (BA by species) were imputed using only the single nearest 

neighbor (k=1) in order to constrain commission errors occurring due to the likelihood of species 

presence in at least one of the nearest seven neighbors (e.g. Ohmann et al. 2014, Henderson et al. 

2014).  

Following imputation, maps of individual attributes were clipped to the extent of each modeling 

region to remove the buffer, mosaicked, and then masked. I applied a mask to the imputed maps to 

limit inference to forested areas. I built a composite mask using USFS tree canopy cover data (Megown 

2016) to mask out all areas classified has having less than 10% tree canopy cover and a 2016 NLCD 

(Dewitz 2019) landcover layer to mask areas classified as anything other than naturally vegetated land. 

The tree canopy cover layer performed better at masking apparently non-forested areas near the 

treeline, but performed relatively poorly at masking developed areas (Figure 8). I found that only 

including lands classified as forest in the NLCD layer tended to exclude many recently disturbed but 

clearly forested areas (e.g. clearcuts). However, the NLCD landcover layer was more successful at 

masking developed land conditions. Ultimately, I found that combining the two criteria (NLCD 

classification of naturally vegetated and tree canopy cover ≥ 10%) resulted in the most reasonable mask 

which omitted most developed pixels and clearly non-forested natural areas (Figure 8).  

 

Plot Screening 

The FIA field observations comprising the reference dataset provide an unbiased representation 

of the range and distribution of forest land classes in the study area. Because the focus of this study was 
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to map forested lands, only plots comprised by at least 50% forest land (defined as >10% tree cover 

[1995-2003, 2014-2020] or 10% stocking [2004-2013], USDA 2021c) were included in modeling. Forest 

Inventory and Analysis plots may be sub-divided by field crews who classify forest and other lands based 

on condition classes. It would be possible to pre-screen plots more strictly based on field classification of 

conditions, but I balanced a desire to include heterogeneous plots to better represent mixed and 

fragmented areas (sensu Riemann et al. 2010) with a need to build models based upon plots 

representing relatively uniform conditions over the 3x3 pixel area representing the plot footprint (e.g. 

Ohmann et al. 2014). Thus, I began model development including all plots passing the coarse filter 

(>50% forest), and applied subsequent screens based on individual review of the LTS spectral indices, 

high resolution digital imagery, and individual plot location records created during field visits. Plot 

screening was an iterative process in order to refine models by retaining as much field reference data as 

possible while weeding out those plots which may confound the model. 

I used pynnmap to identify outliers by reviewing an intermediate imputation output which 

allows plots to identify as their own nearest neighbor. Specifically, I used three steps to review potential 

outliers. First, I identified all plots with a mismatch between the predicted and observed Vegetation 

Class (VEGCLASS) considered to be egregious (Table 6). Vegetation Class is a categorical variable 

representing 11 combinations of tree canopy cover, proportion of basal area occupied by hardwood tree 

species, and quadratic mean diameter (QMD). Independently, I used pynnmap to create an index to rank 

all neighbors for every plot in the model and noted the neighbor position at which a plot identified itself. 

Finally, plots which did not self-identify as one of their own 30 nearest neighbors or were identified as 

egregious mismatches between observed and predicted VEGCLASS values were reviewed individually by 

comparing high resolution satellite imagery and LTS TC indices, using several additional criteria to screen 

outliers (Table 7).  
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I selected a neighbor position index threshold of 30 based on time limitations restricting the 

ability to evaluate all plots. Based on ad hoc evaluation of high resolution versus LTS imagery, I also 

determined that far fewer plots self-imputing at positions below 30 tended to screen out based on the 

additional criteria. By far the most common criterion used to identify outliers at this stage was plots 

straddling a distinct boundary (e.g. mature forest adjacent to recent clear-cut or wet opening). Plots that 

straddled distinct boundaries and demonstrated strongly mixed values in the TC indices across the 3x3 

pixel area of the plot footprint were removed. Similarly, plots which experienced a major disturbance 

between the date of measurement and the date of imagery acquisition (rare due to the alignment 

between imagery and measurement years) would introduce a mismatch between the spectral values 

and the measured forest attributes (e.g. McRoberts et al. 2016) and were screened out. After each 

application of the screening criteria, the direct gradient analysis and neighbor selection steps were 

repeated. This screening process was repeated until all egregious VEGCLASS mismatches were either 

tossed or explained, and the only plots remaining in the model which self-imputed at positions beyond 

30 had been reviewed and did not appear to fail any of the additional screening criteria (Table 7). Few 

plots were ultimately screened out using the VEGCLASS metric for outlier identification due to 

apparently poor performance of regression equations at representing actual tree canopy cover, based 

on my evaluation of high-resolution satellite imagery and plot location records compared with canopy 

cover calculations at individual plots (see Discussion: FIA Field Observations). 

 

Accuracy Assessments 

 I evaluated the accuracy of imputed maps to determine how effective models were at 

estimating structural attributes and tree species distributions. For brevity and simplicity, I selected six 

structural attributes a priori (Table 4) on which to focus the accuracy assessment and subsequently to 
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illustrate a potential application of these data. Several assessments were conducted to evaluate the 

location, magnitude, frequency, and nature of errors present in model predictions. This evaluation does 

not include an estimation of the variance of imputed surfaces (e.g. McRoberts et al. 2007), but I discuss 

the value of understanding uncertainty of estimates generated using model predictions in order to 

facilitate appropriate use and interpretation of mapped attributes (e.g. Nelson et al. 2021). 

The use of FIA field observations for model evaluation presents both strengths and limitations. 

The strengths of the FIA dataset lie in its ability to provide unbiased area estimates of a wide range of 

forest attributes. The sampling intensity of the FIA grid, however, does not enable a focused assessment 

of fine spatial patterning (ca. 10 ha - 100 ha) observed in mapped predictions. Thus, a combination of 

approaches was employed to measure the accuracy of estimates and to evaluate the spatial 

arrangement of predicted forest attributes. 

Accuracy assessments were conducted by comparing model predictions to observations from 

field plots within each modeling region at a variety of aggregation areas (e.g. Riemann et al. 2010), and 

by comparing predictions with high-resolution satellite imagery to evaluate fine spatial patterning of 

predicted surfaces (e.g. Nelson et al. 2021). I conducted the assessments at multiple scales and across 

six structural forest attributes, reporting a number of statistics describing the range and distribution of 

estimates, as well as the relationship between predicted and observed datasets. I also compared 

predicted tree species distribution maps to their observed distribution on field plots to evaluate the 

effectiveness of model predictions of forest compositional attributes. 
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Local Accuracy 

In both local and multi-scale accuracy assessments, predictions are calculated as an unweighted 

average of the nine (3x3) pixel area coinciding with the plot footprint, using a modified leave-one-out 

cross validation (Ohmann and Gregory 2002) which prevents pixels from self-imputing (i.e. the 

observation at a given plot location is not used to create predictions for the same location). Predictions 

are compared with estimates computed from observations at the coincident plot location. I report a 

number of statistics for assessing the goodness of model fit to the observed data at the local (plot-pixel) 

level, at three intermediate extents, and at the extent of each modeling region as a whole. 

At the local level, the Pearson correlation coefficient (Pearson’s r) is used to evaluate the 

closeness of the two datasets to a linear relationship, and to describe the strength and direction 

(positive or negative) of the correlation. I also report a normalized root mean squared error (NRMSE), 

which provides another measure of the disagreement between observed and predicted values at the 

plot-pixel level, to enable comparison among attributes, where larger values indicate poorer prediction 

accuracy. Percent bias provides an indication about whether predictions tend to over- or under-estimate 

observations by normalizing the difference between predicted and observed values. Where a percent 

bias is positive, models are overestimating compared to observations; negative values indicate 

underestimation, and a value of 0.0 is optimal, indicating no consistent tendency for over- or under-

estimation of attribute predictions. Finally, I report a simple coefficient of determination (R2) as another 

mechanism for evaluating the amount of variation in observed values explained by the model. 

 

Multi-Scale Accuracy 

Area-based assessments at multiple scales facilitate an evaluation of the influence of spatial 

extent on prediction accuracy. Based on the procedures of Riemann et al. (2010), I tessellated the 
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landscape into hexagons of three sizes representing a range of areas potentially useful for reporting 

design-based FIA estimates (8,660 ha, 78,100 ha, and 216,500 ha). At each extent, I estimate structural 

attributes using two methods: a sample of model predictions based on the k=7 surfaces from the nine-

pixel area coinciding with actual plot locations, and a design-based estimate computed using field 

observations over the same extent. The predicted versus observed estimates over each extent were 

compared using a number of statistics to describe the relationships between the datasets. 

Because the FIA field data are used both as reference data for validation (observations) and in 

model development (predictions), a linear regression line can be developed between the two datasets 

using the symmetric geometric mean functional relationship (GMFR, Ricker 1984) to account for error in 

both the observed and predicted values. I compared the GMFR to the 1:1 line representing a perfect 

relationship between each dataset for each of six structural attributes. Differences between the 

datasets can be characterized by both systematic and unsystematic errors. The systematic agreement 

coefficient (ACsys) describes the slope of the GMFR line in relation to the 1:1 line, illustrating systematic 

biases in either dataset (e.g. an attribute that is routinely under- or over-predicted when compared with 

observations). The unsystematic agreement coefficient (ACuns) reflects the amount of scatter around the 

1:1 line or a lack of estimate precision. Together, the agreement coefficient (AC) describes the 

relationship between two datasets, accounting for both bias and precision, where a value of 1 indicates 

perfect agreement and values of ≤ 0 indicate no agreement. Finally, I reported the Kolmogorov-Smirnov 

(KS) statistic (Massey 1951) to describe differences between the distributions of predicted versus 

observed estimates. I reported the mean and maximum KS values, describing the distance between 

predicted and observed empirical cumulative distribution functions (ecdf), where KSmax values indicate 

the extent of the greatest divergence between the two dataset distributions, while larger KSmean values 

indicate greater overall divergence in distribution between the two datasets. I evaluated these metrics 
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for comparison of observed versus predicted datasets across a range of extents across the study area to 

assess trends in prediction accuracy with scale. 

 

Regional Accuracy 

To evaluate model prediction accuracy over the broader study area, I assessed structural 

attributes and species predictions at the extent of each modeling region and over the study area as a 

whole. For each of the six structural attributes, I compared the range and distribution of predicted 

versus observed estimates within each modeling region. Predicted total (or average [mean], as 

appropriate), of each of the six structural attributes were also compared with observed estimates 

(simple averages or expansions, not post-stratified), calculated by modeling region. For variables with 

published regional estimates available from other sources, I compared predicted model estimates with 

those published data covering the study area as well. 

 

Species Accuracy 

To identify the nature and frequency of species prediction errors within each modeling region, I 

constructed a matrix of species presence/absence at each field plot location for both predicted and 

observed values. For each species, I calculated the kappa coefficient (k, Cohen 1960) to describe the 

level of agreement between predictions and observations not attributable to random chance. I also 

assessed the proportion of correct predictions at each plot where an observation exists. Finally, I 

created maps of predicted versus observed species presence across the study area (Appendix 2) to 

evaluate and compare spatial patterns between the two datasets in relation to modeled environmental 

gradients. 
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Illustration of GNN 

 I used the Tongass National Forest (TNF) to illustrate a potential application of modeled forest 

attribute data in southeast Alaska. Based on the results of the multi-scale accuracy assessment, I 

summarized structural forest attributes by land category. Lands with surface ownership in the TNF were 

classified into three categories: congressionally designated Wilderness, inventoried roadless areas (IRA), 

and Other areas. Structural attributes were also binned to simplify comparisons for illustrative purposes. 

To assess the abundance of high biomass forested area, live aboveground tree biomass predictions were 

binned according to Krankina et al. (2014); Quadratic mean diameter (QMD) predictions were binned 

according to Caouette and DeGayner (2008), and stand height predictions were binned into equal 

interval 10m height classes (Table 8). Each metric was summarized by area across land categories on the 

TNF as a whole using Zonal Statistics and Tabulate Area tools in ArcGIS. 

Additionally, I selected six focal regions across the study area to illustrate successes and 

challenges encountered with the GNN mapping approach in the region. Although I have not calculated 

uncertainty statistics in the imputed vegetation maps (e.g. McRoberts et al. 2007, Olofsson et al. 2013), I 

review the efficacy of capturing fine spatial patterns with a series of examples that span the geographic 

range, climatic and topographic gradients, and include a variety of management histories across 

forested landscapes in the study area. Maps were compared with high-resolution satellite imagery in 

each focal area to assess predictions and the ‘look and feel’ of GNN maps in southeast and southcentral 

Alaska. 
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Results 

Accuracy Assessments 

Local Accuracy 

Models performed moderately well predicting structural attributes at the plot level across the 

study area. All live structural attributes were predicted moderately well in the maritime ecoprovince 

(MR101 and MR110), while metrics of volume and biomass, including snag biomass, were predicted 

more accurately in the boreal transition zone (MR105, Table 9). In the maritime ecoprovince, stand 

height predictions were particularly strong in MR101 (Pearson’s correlation = 0.71) followed by other 

live structural attributes. Normalized RMSE also indicated lower prediction error in measures of size and 

density attributes compared to live volume and biomass, ranging from 0.35 (stand height) to 0.85 (live 

tree volume) in MR101 and MR110. In general, prediction error characterized by NRMSE at the plot-

pixel level was slightly greater across attributes in the boreal transition zone as compared to the 

maritime ecoprovince (Table 9), but Pearson’s correlation between predicted and observed values 

indicated stronger agreement for both live and dead biomass estimates in the boreal transition zone. 

Snag biomass prediction NRMSE values were >1 across all modeling regions, but Pearson’s correlation 

indicated substantially better agreement between predictions and observations in the boreal transition 

zone than the maritime ecoprovince (Table 9). Similarly, with the exception of snag biomass (boreal R2 = 

0.35) and stand density (boreal R2 = 0.49), correlation between predictions and observations were 

somewhat stronger across the maritime ecoprovinces compared with those in the boreal transition 

zone. 

At the local (plot-pixel) level, models generally over-predicted structural attribute values when 

compared with observation estimates across the study area. The magnitude of bias was greater overall 

for structural attributes in the maritime ecoregion where predictions consistently overestimated 
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observed values (Table 9). In the boreal transition zone, prediction bias was mixed, with underestimates 

of QMD_DOM (-0.76%) and STNDHGT ( -0.37%), but prediction overestimates of SDI_REINEKE as well as 

live and dead biomass. Across the maritime ecoprovince, directional bias was entirely positive, with the 

greatest magnitude of prediction bias occurring in overestimates of live biomass and volume (Table 9). 

 

Multi-Scale Accuracy 

 In general, agreement between model predictions and estimates based upon FIA field 

observations improved with increasing extent, although the results were inconsistent among attributes 

and among modeling regions (Table 10). Agreement coefficients near and below zero (AC < 0.25) for all 

structural attributes indicated poor prediction accuracy at the smallest aggregation area (8,660 ha) 

across both ecoprovinces. However, prediction precision improved and bias decreased with increasing 

areas of aggregation. At the broadest area of aggregation (216,000ha), models of live structural 

attributes demonstrated relatively strong agreement with the observation datasets and little directional 

bias in all modeling regions (e.g. aboveground live tree biomass, Figure 9). Snag biomass showed poor 

agreement between predictions and observed estimates across all aggregation extents in the maritime 

ecoprovince (MR101 and MR110), but agreement improved with increasing area of aggregation in the 

boreal transition zone (MR105) and agreement was strong (AC = 0.96) at the largest area of aggregation 

in this region. 

Unsystematic agreement (ACuns) was greatest (closest to 1) at the largest area of aggregation 

(216,000 ha) across the study area, indicating improved precision of predictions across all structural 

attributes and modeling regions with increasing extent. Precision of predictions was highest in the 

boreal transition zone (0.75 < ACuns < 0.98) and among live structural attributes in the maritime 

ecoprovince. Systematic agreement (ACsys) was also greatest (nearest to 1) at the largest aggregation 
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area across modeling regions, indicating less directional bias in predictions with increasing sample size, 

though little difference was observed between the smaller two units of aggregation for most attributes 

(Table 10). Interestingly, aggregation at the intermediate 78,100 ha extent revealed a mixed response in 

ACsys across attributes, in many cases indicating no improvement in prediction bias except at the 

broadest area of aggregation. 

Some patterns of agreement between prediction and observation datasets also varied across 

structural attributes and modeling regions. In MR101, the agreement coefficient (AC) indicated no 

relationship (AC < 0) between predicted and observed estimates of volume or biomass at any except for 

the broadest (216,000 ha) extent. The size and density metrics (QMD_DOM and SDI_REINEKE) on the 

other hand improved dramatically with each increase in aggregation area. In the boreal transition zone 

(MR105), agreement of all attributes improved dramatically between the 8,660 ha and 78,100 ha 

extents, but only volume and live and snag biomass agreement continued to improve substantially 

between the 78,100 ha and 216,000 ha extents (Table 10). At the broadest extent, predictions of snag 

biomass in this region demonstrated little directional bias (ACsys = 0.98) or scatter (ACuns = 0.98). In 

contrast, snag biomass exhibited little agreement between predicted and observed estimates (AC < 

0.18) at any extent across the maritime ecoprovince. 

The distributions of structural attribute predictions were largely similar to those of observation 

datasets across the study area. In all modeling regions and across attributes, KS statistics remained 

nearly constant or increased slightly with increasing area of aggregation, indicating a consistent 

relationship between distribution patterns of predictions and observations across extents. This pattern 

may also be suggestive of heterogeneity in the observation dataset (wide distribution) which was 

curtailed in predictions at all extents of aggregation. Indeed, maximum differences between observed 

and predicted distributions across live attributes were somewhat large (0.11 < KSmax < 0.23) regardless of 
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aggregation extent. The mean difference, however, across the distributions of attributes and across 

extents, KSmean, was much smaller (0.02 < KSmean <0.10), indicative of the overall similarity of prediction 

to observation distributions, and the likelihood that high KSmax values are attributable to the truncated 

ranges near distribution tails in most predictions.  

Agreement between predicted and observed values was particularly strong in MR105, perhaps a 

reflection of the relatively dense sample size (84 plots) within each hexagon and the relatively small 

number of 216,000 ha hexagons present (9) within the modeling region (Table 10). By comparison, 

MR110 hosted a sparser sample of just 28 plots per hexagon across 57 hexagons at this extent, owing to 

its geographic expanse across broad non-forested areas. Sparse plot support in the regions of Glacier 

Bay National Park and USFS Wilderness contribute to the lack of estimates across these areas at the 

smallest aggregation extent (Figure 10). But viewed across the extent of the study area in its entirety, 

the aggregated estimates align with broad spatial patterns of biomass reported elsewhere (e.g. Blackard 

et al. 2008). 

 

Regional Accuracy 

 I used Zonal Statistics in ArcGIS to summarize structural attribute predictions at the regional 

level and to assess similarities between modeled and observed dataset ranges and distributions. In 

general, the distributions of predicted values were similar to observation data as suggested by the KSmean 

statistic, but ranges were somewhat truncated for most attributes where estimates approached lower 

and upper limits (Table 11), particularly in attributes with long distribution tails such as aboveground live 

biomass (Figure 11). 
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 Across the study area, size and density attribute predictions tended to resemble the distribution 

of observation estimates most closely, with mean and median values for predictions of QMD_DOM, 

SDI_REINEKE, and STNDHGT all within 20% of the observed averages, and most within 10% (Table 11). 

Predicted minima and maxima of biomass and volume estimates were curtailed more substantially than 

were the ranges of the size and density attributes in all modeling regions. In the boreal transition zone, 

mean prediction estimates for structural attributes were nearly identical to observation means overall. 

However, predictions of live volume and live and snag biomass demonstrated an overall more 

pronounced shift in distributions towards the distribution center, reflected in median values (Table 11). 

In MR101, predicted mean snag biomass (36.5 Mg ha-1) was very similar to the observed mean (34.3 Mg 

ha-1 ), but the truncated tails resulted in substantially higher median predictions (31.7 Mg ha-1 predicted, 

13.9 Mg ha-1 observed). 

  

Species Accuracy 

Models of species basal area by size class were created by constraining imputation to the k=1 

nearest neighbor. I mapped predicted species presence across the study area and compared predicted 

presence with the mapped locations of observations from the FIA dataset (Appendix 2). Qualitative 

assessments of the geographic distribution of predictions of individual species abundance indicate 

relatively good alignment with reported species distributions (Little 1971). Similarly, comparisons 

between predicted and observed species presence maps indicate general agreement between estimates 

over broad geographic areas (Appendix 2). The spatial distributions of species along environmental 

gradients also appeared to align with published descriptions (Hulten 1968, Viereck and Little 1986, 

Alaback 1991), particularly where environmental gradients are dramatic and species distributions are 

distinct as seen across the Kenai mountains from Cook Inlet to Prince William Sound (Figure 12).  
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Still, errors of commission (predicted present, observed absent) were far more common than 

errors of omission (Table 12) and thus I recommend map users exercise caution when interpreting maps 

of species presence (Appendix 2), particularly when making interpretations near the edges of a known 

range. Errors of commission occurred nearly an order of magnitude more often than errors of omission 

across nearly all species and all modeling regions, findings consistent with GNN species predictions maps 

in the Pacific Northwest (M. Gregory personal communication). This finding is particularly evident in the 

predicted distributions of Picea sitchensis and Tsuga mertensiana in the Kodiak Archipelago, well beyond 

their observed ranges (Appendix 2). Predictions of species presence on the landscape reflect locations 

with similar combinations of the environmental predictor attributes to those occurring at sites where a 

species was observed. However, models are incomplete representations of reality, and many potential 

factors that were not included in the CCA (e.g. dispersal distance and mechanism, soils characteristics, 

hydrology, microenvironmental factors, etc.) also limit species distributions. Additionally, species 

presence predictions might be improved by inclusion of latitude and longitude as predictor variables to 

help constrain the selection of geographically distant neighbors.  

In the maritime ecoprovince, comparisons of predicted versus observed presence at each FIA 

field plot location indicated the strongest prediction accuracy in MR101 of Pinus contorta (kappa = 0.41) 

and Thuja plicata (kappa = 0.40), whose ranges are fairly restricted in the region by topographic, 

competitive, edaphic factors, as well as latitude, respectively (e.g. Bisbing et al. 2016, Caouette et al. 

2015, Neiland 1971). Although Populus balamifera-trichocarpa was accurately predicted 99% of the 

time, this species was so infrequently observed on the landscape in MR101 (10 instances observed 

present), the low kappa coefficient (0.09) reflects the likelihood that high prediction accuracy was 

largely a reflection of its low prevalence in the dataset. Prediction accuracy in MR110 was substantially 

higher overall as indicated by the kappa coefficients for Picea glauca, Picea mariana, Tsuga heterophylla, 
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and Betula neoalaskana (Table 12). Each of these species tends to occur in distinctive climatic zones 

across this region which may contribute to the strength of their differentiation in predictions. In 

contrast, Picea sitchensis occurs across much broader geographic ranges and elevational gradients 

within the forested areas of MR110 yet was still predicted accurately 76% of the time (kappa = 0.40). 

 Species prediction accuracy in the boreal transition zone (MR105) was generally lower than in 

the maritime ecoprovince, with strongest prediction accuracy for Picea mariana (kappa = 0.40), followed 

by Tsuga mertensiana, Populus tremuloides, and Picea sitchensis (Table 12). Among the most common 

conifer species of this region, Picea glauca presence was predicted surprisingly poorly (kappa = 0.03). It 

is possible that prediction accuracy in this region could be improved with the inclusion of additional 

primary drivers of forest composition in the boreal transition zone such as aerial disturbance maps, soil 

hydrology, and drainage. 

 

Regional Estimates of Biomass 

 I estimated live tree and snag biomass across the study area extent to evaluate GNN model 

predictions against published datasets. Since several other studies have excluded USFS Wilderness and 

Glacier Bay National Park (GLBA) in their estimates, I report model results both including and excluding 

these areas to enable comparison (Table 13). Importantly, these protected areas comprise 

approximately 23% of total forestland in the study area and are present only in the maritime 

ecoprovince (MR101 and MR110).  

Total aboveground live tree biomass predictions were substantially greater across the study 

area when USFS Wilderness and GLBA were included (1,680 Tg) compared to regional predictions 

excluding these protected areas (1,225.4 Tg), with increases due to both greater forest area and to 
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greater mean aboveground live biomass in the protected areas of USFS Wilderness and GLBA (Table 13). 

Predictions of live tree volume, both on a per-hectare basis and total, were also greater when including 

USFS Wilderness and GLBA in regional estimates, but snag biomass on a per-area basis was very similar 

with and without inclusion of the protected areas (Table 13). 

Aboveground live and dead biomass predictions were both lower than design-based estimates 

reported by Cahoon et al. (2020) on a per-area basis over the same region (excluding USFS Wilderness 

and GLBA but covering the period 2004-2013, Table 13). Yatskov et al. (2019) also estimated higher 

aboveground live and dead biomass over a somewhat smaller but overlapping region, covering the 

period 1995-2003 (Table 13). However, predictions of total regional aboveground live biomass were 

within one standard error of design-based estimates reported by Cahoon et al. (2020) and were similar 

to the aboveground live biomass estimate reported by Yatskov et al. (2019) after adjusting for area 

(Table 13). The pattern was inconsistent in the boreal transition zone, where total live biomass was 

somewhat over-predicted compared to design-based estimates, but where the model under-predicted 

snag biomass by roughly half. This could be attributable to the prevalence of small diameter trees in the 

region and the difference in snag DBH threshold used in the GNN model of 25cm vs that used by Yatskov 

et al. (12.5cm, 2019). Overall, broad patterns of biomass and volume predictions in the maritime vs. 

boreal transition zones aligned with expectations from design-based estimates at regional scales, though 

some predictions differed from published estimates. 

 

Illustration of GNN on the Tongass National Forest 

The largest National Forest in the US, the Tongass (TNF) spans some 6.7 mil ha of the perhumid 

temperate rainforest zone in southeast Alaska and along the Gulf of Alaska Coast. It hosts 2.3 mil ha of 

congressionally designated Wilderness and is managed across 10 Ranger Districts. In addition to 
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Wilderness, some 3.7 mil ha of the TNF are protected from most development as Inventoried Roadless 

Area (IRA) under the 2001 Roadless Conservation Rule (USDA 2001). Though there are a variety of other 

land use designations, for simplicity, here I refer to the area of the TNF outside of Wilderness and IRA as 

Other. In general, the area outside of Wilderness and IRA designations is proportionally more heavily 

comprised of forested lands (91%) than those areas within the protected areas (64% and 63%, 

respectively). The total land base outside of these protected areas, however, is comparatively small 

(717,000 ha, 11%) and the TNF encompasses vast icefields, alpine tundra and nonforest openings over 

approximately 33% of its total area (Tables 13). This patchwork of land designations and ecological 

communities spread across hundreds of islands in the Alexander Archipelago provides an opportunity to 

illustrate some potential applications of GNN maps and summary data for the region. 

Based on results of the accuracy assessment, I selected three structural attributes to broadly 

summarize height, diameter, and live biomass characteristics on the TNF and to illustrate the 

distribution of these attributes across land designations (Figure 13). Modeled stand heights indicate a 

majority of the forested area (~2.3 mil ha, 51%) across the TNF is characterized by stands of short and 

moderate stature in height classes 1 and 2 (<20 m average height of dominant and codominant trees) 

while just 228,000 ha (5.0%) is comprised by forests >30m (height classes 4 and 5 combined, Figure 13). 

The distribution of modeled stand diameter classes across land designations followed similar patterns to 

that of stand height models, with the central diameter class comprising a majority of forest land across 

all designations (Figure 13). 

Aboveground live tree biomass on the TNF was classified into three bins according to a study by 

Krankina et al. (2014) characterizing the distribution of high-biomass forests of the Pacific Northwest 

(Table 8). Medium biomass forest classes (<200 Mg ha-1) comprise the greatest forested area across all 

land designations on the TNF, though the proportion of medium biomass forests is greatest in IRAs 
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(43%). The highest biomass forests (>400 Mg ha-1) comprise the smallest proportion of forested area 

across the TNF (Figure 13), yet the proportion of these very high biomass forests is greatest and nearly 

equal between Wilderness areas (12.3%) and areas outside the protected designations (12.1%). On an 

area basis, aboveground live biomass was predicted to be highest in Wilderness areas and lowest in the 

IRA (Figure 14). 

 

Discussion 

 Southeast and southcentral Alaska is described as hosting among the world’s largest tracts of 

intact temperate rainforest (Alaback 1991, Dellasala et al. 2011), yet relatively few spatially 

comprehensive datasets exist to describe the nature and arrangement of forest structure and 

composition across the region. The terrain and weather patterns typical of coastal temperate rainforests 

in Alaska represent challenges to obtaining traditional field inventory data as well as remotely sensed 

datasets. Yet regional forests provide tremendous value to local and regional communities (e.g. Johnson 

et al. 2021), play an important role in regional carbon and nutrient cycling (e.g. Bidlack et al. 2021), and 

may represent significant contributions to the global carbon balance (e.g. Zhu and McGuire 2016). In this 

study, I produced regional vegetation maps at a consistent resolution of 30-m covering all forested areas 

of southeast and southcentral Alaska using Gradient Nearest Neighbor methods (GNN, Ohmann and 

Gregory 2002) supported by LT-GEE (Kennedy et al. 2018b). Such geospatial data representing a range of 

vegetation characteristics have been used widely for monitoring the status and trends of forest 

conditions across broad regions (e.g. Davis et al. 2015, Davis et al. 2016, Lorenz et al. 2021). However, 

interpretation of spatially explicit modeled datasets necessarily requires an understanding of the 

accuracy and limitations for each intended use (e.g. Nelson et al. 2021). Careful evaluation of map 

accuracy, discussion of the sources and implications of prediction uncertainty, and the impacts of 
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reference datasets and decisions in model development on resulting imputation surfaces are critical to 

appropriate map interpretation and use. 

  

GNN Accuracy in SE & SC AK 

Gradient Nearest Neighbor predictions of structural forest attributes and tree species 

distributions in southeast and southcentral Alaska generally aligned well with expected patterns from 

published estimates (e.g. Blackard et al. 2008, Little 1971) at broad spatial extents in both the maritime 

and boreal transition ecoprovinces. Modeled regional predictions of aboveground live tree biomass 

aligned particularly well with design-based estimates (Cahoon et al. 2020) across the study area as a 

whole (Table 13). However, across the study area, modeled biomass predictions were generally lower 

than published estimates on a per-hectare basis. These discrepancies may have arisen in part from the 

temporal mismatch between observation dates in Cahoon et al.’s results (2004-2013) and those of my 

model predictions (2019). These results could be suggestive of losses due to disturbance (e.g. Alaska 

yellow cedar decline) and/or harvest which may have outpaced regional biomass accumulations from 

growth over the same period. However, direct comparison would be improved by producing model 

predictions for a focal year within the same timeframe as the design-based estimates. 

While general geographic patterns of biomass predictions across the study area (Figure 10) 

aligned with expected patterns (Blackard et al. 2008), mapped differences between model predictions 

and design-based estimates of aboveground live biomass (Figure 15) revealed spatial patterns of the 

location, magnitude, and direction of prediction bias observed in the accuracy assessment (Table 10). 

Prediction bias was mixed across the maritime ecoprovince; the rainshadow along Lynn Canal in 

southeast Alaska, for instance, tended to correlate with areas of underpredicted biomass. Conversely, 

the eastern Prince William Sound area consistently contributed among the greatest over-prediction 
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biases (Figure 15), possibly associated with abundant deeply dissected east-west ridgelines with steep 

elevational gradients (Figure 16) contributing to terrain shadowing and pixel saturation (e.g. Lu et al. 

2016, Zhao et al. 2016). The same assessments across the boreal transition zone reflected a far less 

structurally heterogeneous and topographically complex landscape and revealed reduced prediction 

bias and improved model accuracy for most attributes even when summarized over smaller areas (Table 

10, Figure 10, Figure 15). 

Single species distribution maps produced from GNN predictions indicated relatively strong 

prediction accuracy at broad geographic extents when compared with the distribution of observations at 

FIA field plots (Appendix 2). Although the kappa coefficient (Cohen 1960) of individual species prediction 

accuracy at observation locations ranged from poor to good (Table 12) across species and modeling 

regions, species range and distributions tended to agree with published accounts (e.g. Little 1971). I did 

not explore predictions of specific community assemblages or multi-species abundance in this report, 

but previous work in the Pacific Northwest suggests that nearest neighbor imputation may be effective 

for these uses (Henderson et al. 2014). Interpretations of stacked single species maps to predict 

community richness should be approached with caution since community assemblages inherently arise 

from inter and intra-species interactions (Henderson et al. 2014). 

Finally, methods for spatially explicit variance estimation (e.g. McRoberts et al. 2007) across 

predictions covering large areas would help users understand the potential uses and limitations of these 

datasets. My validation and assessment procedures relied upon a set of field reference data which are 

by nature sparsely distributed across the landscape. Cumulatively, the field reference data capture the 

range and distribution of forest attributes present on the landscape, but only offer spatially explicit 

opportunities for map validation at relatively few locations. Detailed sampling of certain forest 

characteristics using expert interpretation of high-resolution satellite imagery may provide an 
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opportunity for improved variance estimates and stronger support of map use at finer spatial scales (e.g. 

Lister et al. 2021). 

 

Sources of Uncertainty 
Atmospheric and Terrain Effects on Landsat Imagery 

Many challenges remain to predictive forest models in Alaska relying on optical-infrared remote 

sensing platforms. Topographic shading can lead to misrepresentation of surface reflectance (e.g. Gu 

and Gillespie 1998, Lu et al. 2016), particularly in steep, complex topography, accentuated in northern 

latitudes and on north-facing slopes (e.g. Giles 2001). In addition, multi-layered forest canopy shading 

can be indicative of complex forest structure (e.g. Sabol et al. 2002) but further contributes to early pixel 

saturation and can deteriorate the accuracy of spectral data to informing models of forest 

characteristics (Lu et al. 2016, Zhao et al. 2016). Particularly in the maritime climate zone of the study 

area, persistent cloud cover and atmospheric mist also contribute substantially to missing or invalid pixel 

values (Zu and Woodcock 2011, Braaten et al. 2015); and in Alaska, data downlink issues from Landsat 

sensors in the 1990s also led to missing and inconsistent data for some years (B. Roberts Pierel, personal 

communication). 

This study employed several methods for addressing the challenges to acquiring accurate 

surface reflectance values from Landsat scenes with particular attention to atmospheric noise and 

missing values. Because temporal alignment between field survey and spectral data acquisition plays an 

important role in prediction accuracy (e.g. McRoberts et al. 2016), CCA models relied upon annual 

imagery mosaics corresponding with field measurement years over the study period (1995-2020). A 

multi-pronged approach to cloud, snow, and shadow masking (Zu and Woodcock 2011, Google 2022) 

substantially improved coverage of Landsat pixel values across the landscape by identifying suspect 
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pixels and substituting values from nearby collection dates to fill gaps using the medoid (Flood 2013). 

Persistently cloudy pixels which were screened completely out of an annual mosaic were subsequently 

filled using the LandTrendr smoothing algorithm following segmentation. This combination of 

approaches appeared to substantially reduce missing pixels in the annual LTS mosaics (Figure 4) but did 

not explicitly address the impacts of terrain or complex canopy shading on surface reflectance. 

Topographic corrections for Landsat imagery have been widely proposed to reduce the impacts 

of terrain shadowing on pixel saturation (e.g. Hantson and Chuvieco 2011). In addition, active remote 

sensing techniques offer several promising opportunities for direct measurement of vertical elements of 

canopy structure to inform models where natural illumination and atmospheric interference pose 

problems. Light Detection and Ranging (LiDAR) is extremely effective at canopy height modeling (Kane et 

al. 2010) and has demonstrated great improvement to model predictions of forest attributes in other 

studies (e.g. Zald et al. 2014, Babcock et al. 2018). Vertical canopy structure data might also be derived 

from surface height and terrain models developed from Interferometric Synthetic Aperture Radar 

(InSAR) to inform models where optical-infrared sensor data is missing or suspect. Airborne platforms, 

however, are plagued by similar difficulties of other data collection efforts in the coastal temperate 

rainforests of Alaska: steep topographic relief, vast geographic extent, and poor weather lead to 

difficulty of accurate and consistent data acquisition (e.g. Gatziolis and Andersen 2008). Satellite-based 

sensors offer a solution to the challenges with aviation in coastal Alaska but are also subject to poor 

atmospheric conditions impacting measurement accuracy and offer limited spatial and temporal 

coverage (Dubayah et al. 2020) compared to the expansive Landsat library and global coverage (Masek 

et al. 2020).  
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FIA Field Observations 

The application of GNN in coastal Alaska offers an opportunity to improve assessments of forest 

conditions in areas with relatively sparse field observations. The GNN method relies upon an unbiased 

set of field data representing the range and distribution of vegetation types being modeled (Ohmann 

and Gregory 2002, Duane et al. 2010, Bell et al. 2015). As the national forest inventory in the USA, the 

FIA dataset is critical to providing a consistent sample of all forest conditions with known estimates of 

measurement error (Bechtold and Patterson 2005) and has been widely used to support remote sensing 

research (Lister et al. 2020). Yet substantial gaps in the dataset exist in Alaska owing to the difficulty of 

access (Barret and Gray 2011). Strategic sampling in Interior Alaska began in 2014 (USDA 2014) and only 

limited sampling of Wilderness has ever occurred in the coastal southeast and southcentral region of the 

state (Smith and Gray 2021). Indeed, one critique of evaluating regional trends in forest condition is the 

exclusion of Wilderness in most design-based estimates (e.g. Bidlack et al. 2017). GNN models in this 

study were informed by 26 years of forest inventory data across coastal Alaska (excluding Glacier Bay 

National Park), but sampling in USFS Wilderness in the region was limited to a single year in 2005, 

offering just a snapshot, but nonetheless providing an unbiased sample, of forest conditions in USFS 

Wilderness areas of the region. Not surprisingly, neighbor distance appeared to be greatest in areas with 

sparse plot support (Figure 17), contributing to prediction uncertainty in these areas. Still, GNN maps 

provides an opportunity to enhance forest monitoring across all lands in the region. 

 In an effort to better inform models of forest attributes where the FIA data are sparse or in 

areas where neighbor distance is large (Figure 17), one avenue for future work focuses on gathering and 

harmonizing forest data from adjacent inventories. This would both facilitate model improvement over 

sparsely sampled areas within the existing modeling regions in the current study area (e.g. USFS 

Wilderness and GLBA) and would facilitate development and harmonization of forest modeling to 
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encompass the entire North American coastal temperate rainforest biome beyond national jurisdictional 

boundaries (e.g. McNicol et al. 2019, Bidlack et al. 2021). 

Notably, I did not include modeled estimates of canopy cover or canopy cover derivatives (e.g. 

Vegetation Class) in attribute maps due to irregularities I observed in tree-level and plot-level canopy 

cover calculations from the FIA data. Canopy cover was calculated for individual trees based upon 

measures of tree diameter, height, and crown length as described in the FIA to FVS guide (Keyser 2008). 

Individual tree canopy widths were first computed using species specific regression equations as 

described, and plot-based percent cover estimates accounting for overlapping crowns were 

subsequently computed. However, inspection of individual tree canopy cover calculations revealed 

overt overestimates, particularly for very small trees, and apparent underestimates for some very large 

trees, which cumulatively led to suspicious plot-based canopy cover estimates in a variety of forest 

settings. Expert evaluation of these tree cover estimates, along with ad-hoc comparison to field crew 

observations (available from field plots measured between 1995-2003 and 2012-2020) ultimately led to 

their exclusion from mapped forest attributes in this study. As tree canopy cover can be an important 

indicator of many landscape characteristics, future mapping efforts could be improved by incorporating 

tree cover estimates at the plot level from field observations rather than from estimates derived from 

regression equations. Limitations in the availability and consistency of FIA canopy cover data collected 

by field crews hindered my ability to include cover-related attributes in the current maps. 

 

Nonforest Mask 

Estimates made by summarizing the GNN dataset over a given geographic extent are subject to 

a certain level of bias associated with the selection of a nonforest mask. For particular research 

questions, an un-masked version of the GNN data may be preferable to elucidate information about 
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areas considered to be near the forest edge or transition areas. I elected to create a custom mask for 

the GNN forest maps in southeast and southcentral Alaska based on a desire to a) limit general user 

inference to forested lands in the study area, and b) align areas of inference with those reported by the 

FIA program to facilitate comparisons with design-based estimates. The custom mask excluded 30-m 

pixels estimated to contain less than 10% tree canopy cover (Megown 2016), and areas classified as any 

kind of developed land use condition (Dewitz 2019). Comparisons to high resolution satellite imagery 

indicate the resulting mask successfully captured most obviously forested areas and excluded many 

obviously nonforest areas (Figure 8). The resulting estimated forestland across the study area was 6% 

greater than the design-based forestland estimates by Cahoon et al. (2020, Table 13). As compared with 

structural attribute predictions which may be of concern to informing management questions at 

watershed or landscape scales, the areal extent of GNN maps contributes substantially to regional 

predictions, for instance, of total biomass or carbon. 

 

Scale and the Effects of Averaging 

My selections of the value of k (7 for structural attributes, 1 for species composition 

predictions), the model grain size (0.81ha), imputation grain size (0.09ha), the spatial extents analyzed 

for accuracy assessment, and the criteria used to screen plots for model development were based 

primarily upon previous research and recommended practices (e.g. Ohmann et al. 2014, Bell et al. 

2015a, Riemann et al. 2010, Gregory et al. 2011). Each decision regarding model parameterization 

impacts the resulting imputation surfaces, and the choice of extents over which to evaluate model 

accuracy has direct impacts on the assessment results. Additional sources of error and averaging come 

from the environmental predictor covariates; climate data were downscaled from data modeled at 

larger pixel sizes using bilinear interpolation, and Landsat timeseries were constructed using a variety of 
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masking and pixel substitution algorithms to produce a spatially and temporally comprehensive dataset. 

In each case, decisions were made to balance the availability and accuracy of input data sources with a 

desire to construct effective models and generate predictions across a variety of spatial extents. 

Selection of a 30-m pixel size takes advantage of a spatially and temporally rich Landsat dataset, 

but potentially misses biologically important variation in topographic or climatic environmental 

predictors occurring at finer spatial scales (e.g. Zald et al. 2014). Additionally, some ecologically 

important components of forest structure, such as standing dead trees and down wood, may be difficult 

to detect at the 30-m pixel size due to their relatively limited contribution to spectral reflectance 

compared with live vegetation (although see Bell et al. 2021). The spatial mismatch between the scale of 

the FIA plot footprint (0.067 ha) and the 3x3 average pixel value used in model development (0.81ha) 

also leaves uncertainty in whether forest attributes estimated in the field at the plot level are consistent 

representations of the conditions present across the entire 3x3 pixel footprint (e.g. Ohmann et al. 2014). 

Plot screening criteria were implemented to help identify and exclude outliers from model 

development, but screening was restrained to avoid bias towards homogenous forest conditions (sensu 

Riemann et al. 2010), and I did not explore in this study whether heterogeneity in forest patterns may 

be better described at a finer resolution, though research suggests that gap dynamics in the region may 

occur across finer spatial scales (e.g. Ott and Juday 2002).  

An abundance of forest-nonforest ecotones in the region near the altitudinal tree-line and 

alpine tundra, and among forested wetlands and wet openings (muskegs) (e.g. Alaback 1991, Neiland 

1971) make these important transition zones to capture in forest models. Neighbor distance was 

particularly large in high elevation areas (Figure 17), but modeled conditions near or across such 

transition zones may have benefitted from a robust set of field reference data collected in naturally 

vegetated non-forested areas on USFS managed lands throughout the region between 2011-2020. 
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Indeed, fine spatial patterning observed in the GNN models appears in most cases to mirror 

observations from high resolution satellite imagery along such natural gradients, though patterns are 

less distinct on the Kenai Peninsula (Appendix 3). 

The selection and weighting of k in nearest neighbor imputation have been the subject of much 

research (e.g. Stage and Crookston 2007, Bell et al. 2015). Values of k>1 better represent characteristics 

of more common types but tend to truncate distributions (Table 11) by producing averaged estimates at 

the expense of rarer attributes (e.g. Ohmann et al. 2014). My selection of k =7 to build GNN maps in this 

study balances a desire to mirror the range of conditions observed in the field reference data (as in k=1), 

with a desire to constrain the absolute influence of a single nearest neighbor by incorporating elements 

of multiple neighbors to imputation surfaces. Similarly, the selection of multiple extents over which to 

conduct accuracy assessment was based in part on expected uses of mapped datasets and reasonable 

areas over which inferences should be made from mapped predictions (Riemann et al. 2010). However, 

the relative scarcity of field observation data in some geographic areas of the region imposes limitations 

to the multi-scale accuracy assessment technique, which relies on direct comparisons between model 

generated predictions and field observations across each extent. 

Finally, the effects of masking and temporal smoothing of spectral data in creation of the 

Landsat timeseries could lead to inadvertent loss of detail in areas of persistent cloud cover or where 

transient surface conditions are interpreted as anomalies and replaced. Cloud, snow, and shadow 

masking is intended to reduce noise in the annual composites, and the temporal smoothing in 

LandTrendr is intended to fill missing data. LandTrendr additionally reduces noise arising from variation 

in plant phenology, sun angle, and atmospheric effects, but could mask important but short-lived 

ecological impacts (e.g. pathogens that impact community dynamics but do not kill trees). However, I 
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expect such impacts to be limited in stable forested ecosystems where intra-annual variability is 

relatively low (e.g. Kennedy et al. 2018b).  

 

Selection of Predictor Variables 

Canonical correspondence analysis is robust to many of the limitations of multiple linear 

regression (e.g. data which contain many null values and are not normally distributed) and does not 

require iterative successional runs to elucidate the effects of many predictors on many response 

variables. However, selection of appropriate predictor variables is still critical to effective model 

development, and to prevent unintended consequences of overly complex models (e.g. Palmer 1993, 

Bell and Schlaepfer 2016). Selection of appropriate environmental predictors is critical in model 

development as it is not unusual for community assemblages or structural conditions to be associated 

with similar sets of environmental conditions across the landscape. Future modeling efforts in Alaska 

may consider inclusion of cumulative Potential Relative Radiation (Pierce et al. 2005), a more robust 

measure of solar insolation than the Heat Load Index, accounting for sun angle and terrain interference; 

the effects of which can be particularly pronounced at higher latitudes (e.g. Beamish et al. 2020). 

Additional environmental predictor covariates which were not included in the current study but may 

play an important role in driving forest composition and structure in the region include geomorphologic, 

edaphic and hydrologic characteristics (e.g. Hoffman et al. 2021, Bisbing et al 2016, Neiland 1971), along 

with aerial survey disturbance history data (e.g. Brannoch and Moan 2020). In all cases, the accuracy 

and consistency of spatial resolution across predictor datasets may play important roles in model 

development. 
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Potential Applications 

These new GNN data for southeast and southcentral Alaska may provide opportunities to inform 

research, management or policy decisions in a variety of applications due to their capacity for describing 

a range of forest attributes across the landscape. Regional vegetation maps have been used elsewhere 

to inform assessments of regional biomass and carbon storage (e.g. Kennedy et al. 2018a, Bell et al. In 

Press), to monitor spatial patterns of disturbance (e.g. Cohen et al. 2018) or land cover change through 

time (e.g. Moisen et al. 2020), and to assess patterns of vegetation response to climatic changes (e.g. 

Schleeweis et al. 2020). In the hypermaritime forests of southeast and southcentral Alaska, these data 

may support research on carbon and nutrient fluxes between terrestrial and aquatic ecosystems (e.g. 

Bidlack et al. 2021), or on the spatial arrangement and continuity of forest structural classes 

characterizing critical wildlife habitats (e.g. Lorenz et al. 2021). 

Alaskan ecosystems may store as much as 53% of the nation’s total terrestrial carbon (Zhu and 

McGuire 2016). Projections indicate that the boreal and temperate ecosystems of the state may reveal 

complex responses to climate change (Wolken et al. 2011, Shanley et al. 2015, Hayward et al. 2017, 

Fellman et al. 2017), with increasing temperatures possibly increasing emissions in the boreal region but 

increasing sequestration rates in the coastal temperate zone (McGuire et al. 2018). Though a majority of 

the carbon in Alaskan ecosystems is stored below-ground (Zhu and McGuire 2016, McNicol et al. 2019, 

Cahoon et al. In Review), forests play an important role in contributing biomass inputs to belowground 

carbon pools (e.g. Adams et al. 2019), moderating soil temperatures (e.g. Li 1926, Bonan 1991), and 

cycling water and nutrients (e.g. Bisbing and D’Amore 2018) which drive rates of respiration and 

decomposition (e.g. Fellman et al. 2017). In addition, above-ground biomass pools in the temperate 

forests of Alaska are substantial (Blackard et al. 2008, Buma et al. 2016, Table 13) and may constitute a 

relatively stable carbon reservoir in national reporting (USEPA 2021).  
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Forest management plays an important role in affecting carbon storage as well as the nature 

and arrangement of forest characteristics as they relate to other management objectives and ecosystem 

services. Timber harvest in southeast Alaska has fallen dramatically in recent years, but still 56% of 

timber volume harvested in the state originates from this region. The proportion of timber volume 

harvested from National Forest lands in the region has fallen from greater than 90% in the 1970s to just 

22% in 2015 (Marcille et al. 2021), yet the Tongass National Forest (TNF) represents ~30% of earth’s 

remaining old-growth temperate rainforest (Alaback 2015). The majority of TNF forestlands are 

designated either as Inventoried Roadless Area (IRA, 52%, 2.4 mil ha) or Wilderness (33%, 1.5 mil ha) 

and reserved from active management operations (Table 13). The remaining 14% of forestland on the 

TNF outside the IRA and Wilderness boundaries is comprised of several other conservation designations, 

and an even smaller proportion has been the primary source of commercial timber supply in the region 

for the past decades. Still, independent reviews have demonstrated a disproportionate impact of timber 

harvest to stands of the largest trees (e.g. Albert and Shoen 2007, Fennel et al. 2016). Recent efforts to 

allow development in the IRA (USDA 2021b) warrant more explicit information regarding the nature and 

condition of forests in these areas specifically. Further, the public image of the TNF largely relies on its 

‘wilderness character,’ yet systematic sampling by the FIA program is prohibited in Wilderness areas 

(USDA 2008), leading to a relative scarcity of field data describing forests in USFS Wilderness across the 

region. 

While broad categories of biomass, tree size, or density are useful indicators of some forest 

characteristics, GNN might be used to estimate any number of forest attributes across the landscape 

based on measurements collected in the observation dataset. Of interest on the TNF may be 

investigations exploring forest characteristics associated with suitable wildlife habitat, patch size and 

distribution of merchantable young-growth stands, or assessments of the status and spatial distribution 
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of culturally, ecologically, and economically important tree species such as Callitropsis nootkatensis. 

Summaries of modeled attribute data are possible across a range of extents by aggregating data to meet 

monitoring objectives, exploring connectivity and fragmentation patterns, and by enabling comparisons 

across smaller areas, such as ranger districts or watersheds, for example. Fine scale spatial patterning 

across land use designations (e.g. Figure 14) may also be of interest for some applications. Accuracy 

assessments help inform decisions about potential uses of GNN data for a variety of purposes by 

indicating the precision and bias of predictions of each attribute and by reporting on the magnitude, 

frequency, and location of prediction errors. My goal with this study was to provide managers and 

policymakers with a new dataset to support informed decision making, and to facilitate future research 

initiatives with a baseline dataset describing status of forest conditions across southeast and 

southcentral Alaska. 

 

Conclusion 

Alaska’s boreal and coastal temperate forests comprise an estimated 17% of all US forestland 

(Andersen et al. 2019) and are described as being among the world’s most intact terrestrial ecosystems 

(Dellasala et al. 2011, Wells et al. 2020). Vynne et al. (2021) argue that Alaska ought to be “considered 

as a key element of a climate stabilization and biodiversity conservation strategy for the United States” 

based upon the extent of intact ecosystems and species assemblages across the state. Alaska’s 

perhumid and subpolar coastal temperate rainforests are characterized by complex structural 

heterogeneity, developed in the absence of fire over centuries of gap-phase dynamic disturbance 

regimes (e.g. Alaback 1996, Hastings 1997, Ott and Juday 2002, Schneider and Larson 2017). Their 

influence over a productive terrestrial-marine ecotone contributes substantially to regional carbon and 

nutrient transport (Bidlack et al. 2021), and their relative stability (e.g. Dellasala et al. 2011, Wolken et 
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al. 2011) and high biomass (e.g. Cahoon et al. 2020, McNicol et al. 2019) makes them ideal candidates 

for conservation efforts aimed at preserving natural terrestrial carbon stocks (e.g. Vynne et al. 2021, 

Griscom et al. 2017). 

Coastal temperate rainforests of this region are naturally fragmented owing to their unique 

island biogeography and to a mix of areas of glacial refugia (Carrara 2007) and of relatively recent 

deglaciation (Alaback 1991, Dellasala et al. 2011). A jurisdictional framework including many land 

managers (e.g. Cahoon et al. 2020), land-use designations (e.g. US Forest Service 2016), ongoing land 

conveyances (e.g. Dunleavy 2022), and shifting management objectives (e.g. Sealaska 2021) add to the 

complexity of understanding historic trends and projecting future conditions across the landscape. 

Uncertainty surrounding potential impacts of future climate scenarios to Alaska’s forests (e.g. Wolken et 

al. 2011, Kelly 2013, Hayward et al. 2017) add urgency to the need for spatially comprehensive and 

consistent data facilitating local- to region-wide analyses of forest conditions and trends (e.g. Schleeweis 

et al. 2020). 

This study contributes to a body of work aimed at characterizing and mapping forests of the 

temperate and boreal biomes across broad geographic extents. To my knowledge, the application and 

assessment of Gradient Nearest Neighbor (GNN) methods (Ohmann and Gregory 2002) parameterized 

to southeast and southcentral Alaska are previously untested. A multi-step cloud masking procedure 

along with LandTrendr implemented in Google Earth Engine (LT-GEE, Kennedy et al. 2018b) facilitated 

annual alignment between imagery and the inventory plot data used for GNN modeling (e.g. Kennedy et 

al. 2018a). These methods enabled the development of a new set of maps representing a suite of forest 

attributes at a consistent resolution of 30-m across ~8.5 mil ha of forestland in Alaska, including 

Wilderness and other areas with relatively lean observational datasets.  



   

 

57 

 

The spatial complexity of forests and forested wetlands mosaicked across the region offered an 

opportunity to test GNN predictions in a heterogeneous, high-latitude landscape. Challenges remain in 

addressing the impacts of terrain shadows and canopy shading on pixel saturation which can be 

particularly pronounced at high latitudes and in high-biomass forests were canopy structure tends to be 

complex and shading is substantial. In the coastal temperate rainforests, rugged terrain and horizontal 

and vertical heterogeneity in forest structure contributed to reduced model accuracy when results were 

aggregated at intermediate extents (Table 10, Figure 9), but fine-scale spatial patterning in predicted 

forest attributes appeared to align relatively well with high resolution satellite imagery (Appendix 3), 

and some region-wide predictions aligned closely with design-based estimates (Table 13). Accuracy 

assessments suggest that GNN may offer a particularly promising option for mapping forest conditions 

in Alaska’s boreal forests (Tables 10-13, Figures 15, 17) and support calls for spatially unbiased field 

surveys by the national Forest Inventory and Analysis (FIA) program across the state (e.g. Barrett and 

Gray 2011, Andersen et al. 2019). 

I established in this study a framework for integrating existing tools for compilation of annual 

imagery mosaics (LT-GEE), for ingesting regional observational datasets, and for implementing GNN 

modeling and imputation methods (pynnmap) in Alaska. Future directions for building upon this work 

include the creation of annual timeseries of forest attribute predictions for forecasting and back-casting, 

geographic expansion to adjacent areas with different or only recently acquired survey information, and 

the exploration of active, higher resolution, and newly acquired remotely sensed datasets to help inform 

model predictions. The availability of these new GNN data and regionally parameterized models now 

present an opportunity to implement widespread and consistent monitoring to inform research 

direction and policy decisions across some of the most culturally significant, carbon rich, and biologically 

intact ecosystems in the world.  
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Tables 
Table 1. LandTrendr parameters implemented in this study 

Parameter Value Description 
Start and End year 1995 - 2020 Defines the start and end years of the timeseries 
Imagery Dates 06/20 – 09/20 Annual Image Date Range 
Segmentation Index NBR Segmentation Index 
Pixel Selection Medoid See Flood (2013) 
Max Segments 8 Maximum # Image Segments 
Spike Threshold 0.9 Threshold for Dampening Spikes 
Vertex Count Overshoot 3 Initial Model can overshoot vertices by this number 
Prevent One Year Recovery TRUE Prevents Segments that represent recovery in a single year 
Recovery Threshold 0.75 If a segment has a recovery rate faster than 1/threshold, segment disallowed 
p-Value Threshold 0.05 If the p-value of a fitted model exceeds this threshold, the model is discarded and a new model fitted. 

Best Model Proportion 0.5 
Allows models with more vertices to be chosen if their p-value is less than 2 minus this value times the p-value of the best 
model 

Min Observations Needed 8 Minimum number of observations needed to perform output fitting 
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Table 2. Number of field plots in each modeling region, before and after plot screening 
 Field Plots in Final Model 
Year MR101 MR105 MR110 Total 

1995 198 0 22 220 
1996 234 0 29 263 
1997 273 0 64 337 
1998 192 0 45 237 
1999 0 27 196 223 
2000 0 0 30 30 
2001 0 211 83 294 
2002 0 31 88 119 
2003 0 5 39 44 
2004 94 63 84 241 
2005 137 10 82 229 
2006 130 52 86 268 
2007 117 15 66 198 
2008 103 49 86 238 
2009 104 21 90 215 
2010 116 45 75 236 
2011 104 9 63 176 
2012 120 40 78 238 
2013 111 16 60 187 
2014 0 35 23 58 
2015 86 27 57 170 
2016 81 11 42 134 
2017 73 40 70 183 
2018 112 8 71 191 
2019 78 27 62 167 
2020 30 2 8 40 

Field Plots 
Screened Out 562 19 36 617 
TOTAL 2493 744 1699 4936 
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Table 3. Environmental covariates, data sources, ranges, and scaling 
Variable Subset Source Code Units Transformation Range Description 
Annual Landsat timeseries, 
expressed using tasseled 
cap transformations, 
processed using LandTrendr 
algorithms 

Kennedy et al. 2010, 
Crist and Cicone 1984 

TCB  none (-15) - 17491 Brightness (axis 1) from tasseled cap transformation 

TCG  none (-4516) - 4726  Greenness (axis 2) from tasseled cap transformation 

TCW  none (-3950) - 6704 Wetness (axis 3) from tasseled cap transformation 
Climate, from 771-m 30-
year normal PRISM rasters, 
downscaled using bilinear 
interpolation 

Daly et al. 2018 ANNTMP °C * 100 (-1615) - 830 Mean annual temperature 
SUMMAXT °C * 100 (-500) - 1933 Mean maximum temperature between June-August 
DECMINT °C * 100 (-2439) - 248 Mean minimum temperature in December 
ANNPRE mm ln * 1000 0 - 922 Mean annual precipitation 

Topography, from 30-m 
ASTER digital elevation 
model (DEM) 

NASA 2018 ELEV m none 0 - 3750 Elevation 

 ASP degrees cosine * 100 0 - 200 Aspect 

 SLOPE % * 10 0 - 2243 Slope 
Weiss 2001 

TPI300  none (-130) - 180 
Topographic position index; the difference between a cell's elevation 
and the mean elevation of cells within a 300-m radius neighborhood 

TPI450  none (-192) - 283 
Topographic position index; the difference between a cell's elevation 
and the mean elevation of cells within a 450-m radius neighborhood 

TPI1000  none (-455) - 529 

Topographic position index; the difference between a cell's elevation 
and the mean elevation of cells within a 1000-m radius 
neighborhood 

McCune and Keon 
2002 HLI unitless none 0-989 Potential annual direct incident radiation 
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Table 4. Forest attributes computed at each field plot location used for illustration of potential mapping variables 
Variable Range Units Description 

BPH_GE_3_REG 0-1416 Mg/ha 
Aboveground total biomass of live trees >2.5cm DBH 
calculated using regional FIA biomass equations 

QMD_DOM 0-110 cm 
Quadratic mean diameter of all live dominant and 
codominant trees 

SBPH_GE_25 0-787 Mg/ha 
Aboveground total biomass of dead trees >25cm DBH 
calculated using regional FIA biomass equations 

SDI_REINEKE 2-976 unitless Reineke's Stand Density Index 
STNDHGT 0-52 m Average height of all dominant and codominant live trees 

VPH_GE_3 0-1631 m3/ha 
Aboveground net volume of live trees >12.5cm DBH 
between a 1-foot stump and a 4-inch top 

 

 

Table 5. Neighbor weighting based on bootstrap sampling approximation (Bell et al. 2015a) 
Neighbor 
Position Weighting 

1 0.6321 
2 0.2325 
3 0.0855 
4 0.0315 
5 0.0116 
6 0.0043 
7 0.0016 
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Table 6. Vegetation Class (VEGCLASS) categories and errors considered to be egregious between predicted vs. observed values 

Vegetation Class 
VEGCLASS 

# Definition 

Egregious errors 
between Predicted 
and Observed 
VEGCLASS 

Sparse 1 Canopy Cover < 10% 10, 11 
Open 2 10% < Canopy Cover < 40% 11 
Broadleaf, small 3 Canopy Cover >40%, BA Proportion Hardwood > 65%, QMD <25   
Broadleaf, medium/large 4 Canopy Cover >40%, BA Proportion Hardwood > 65%, QMD >25   
Mixed conifer-broadleaf, small 5 Canopy Cover >40%, 20% < BA Proportion Hardwood < 65%, QMD <25  11 
Mixed conifer-broadleaf, medium 6 Canopy Cover >40%, 20% < BA Proportion Hardwood < 65%, 25 < QMD < 50   
Mixed conifer-broadleaf, large/very large 7 Canopy Cover >40%, 20% < BA Proportion Hardwood < 65%, QMD > 50   
Conifer, small 8 Canopy Cover >40%, BA Proportion Hardwood < 20%, QMD <25  11 
Conifer, medium 9 Canopy Cover >40%, BA Proportion Hardwood < 20%, 25 < QMD < 50   
Conifer, large 10 Canopy Cover >40%, BA Proportion Hardwood < 20%, 50 < QMD < 75  1 
Conifer, very large 11 Canopy Cover >40%, BA Proportion Hardwood < 20%, QMD > 75  1, 2, 5, 8 
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Table 7. Screening criteria used to remove plots from model 
Criteria Description 
Boundary Plots which straddle distinct ecological boundaries, e.g. at the edge of a densely 

forested area along an open, non-forested area. 
Disturbance Plots where a disturbance occurred (either natural or anthropogenic) between the 

date of field measurement date and the date of spectral data acquisition. 
Imagery Plots where the LTS spectral data covering the plot area and associated with the 

year of plot measurement does not reflect the conditions observed using alternative 
imagery sources or ancillary information; those errors often associated with shadow, 
snow, or clouds impacting imagery over part or all of the nine-pixel window covering 
the plot footprint.  

Location Plots where a clear error exists in the coordinates associated with the field plot 
measurement such that the conditions at the coordinate location do not match 
those of the field measurements. 

Other Any other reason for screening out a plot not covered by the other descriptions.  
 

 

 

 

Table 8. Structural attribute classes used for illustration of potential GNN application 
 QMD Biomass Stand Height 
Reference Caouette and DeGayner 2008 Krankina et al. 2014     
Units   percentile cm   Mg/ha   m 

Classes 

1 <25th  <23.7 1 1-200 1 <10 
2 >25th, <75th <44.3 2 201-400 2 <20 
3 >75th  >44.3 3 >400 3 <30 
         4 <40 
          5 >40 
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Table 9. Local accuracy: predicted (k=7) vs. observation estimates at the plot (3x3 pixel) level 
 

      QMD_DOM STNDHGT SDI_REINEKE VPH_GE_3 BPH_GE_3_REG SBPH_GE_25 

M
ar

iti
m

e 

MR101 

R_SQUARE 0.35 0.5 0.34 0.34 0.34 -0.02 
PEARSON R 0.60 0.70 0.59 0.59 0.59 0.21 
NORMALIZED_RMSE 0.42 0.35 0.41 0.69 0.67 1.77 
BIAS_PERCENTAGE 1.14 1.61 0.23 2.2 2.24 3.69 

MR110 

R_SQUARE 0.24 0.34 0.4 0.37 0.39 0.01 
PEARSON R 0.52 0.60 0.64 0.63 0.63 0.26 
NORMALIZED_RMSE 0.48 0.41 0.5 0.85 0.81 1.99 
BIAS_PERCENTAGE 2.54 3.7 2.97 7.19 6.57 1.92 

Bo
re

al
 

MR105 

R_SQUARE 0.11 0.23 0.49 0.27 0.36 0.35 
PEARSON R 0.37 0.49 0.70 0.53 0.60 0.59 
NORMALIZED_RMSE 0.58 0.41 0.61 1.12 0.8 1.89 
BIAS_PERCENTAGE -0.76 -0.37 1.34 0 0.16 1.02 
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Table 10. Multi-scale accuracy: agreement coefficients and the KS statistic for k=7 predictions vs observation estimates 
10a. MR101 

  QMD_DOM STNDHT SDI_REINEKE VPH_GE_3 BPH_GE_3_REG SBPH_GE_25 
PLOT_PIXEL AC -0.20 0.20 -0.22 -0.15 -0.16 -3.18 

AC_SYS 0.81 0.91 0.78 0.83 0.83 -0.14 
AC_UNS -0.01 0.29 0.01 0.02 0.02 -2.04 
KS_MAX 0.12 0.11 0.14 0.14 0.15 0.28 
KS_MEAN 0.04 0.03 0.05 0.04 0.03 0.02 

HEX_10 
8,660 ha scale 
# hexes = 550 
Avg. # plots per hex = 5 

AC -0.16 0.15 -0.30 -0.43 -0.43 -1.62 
AC_SYS 0.79 0.88 0.67 0.63 0.62 0.43 
AC_UNS 0.05 0.27 0.02 -0.06 -0.05 -1.06 
KS_MAX 0.12 0.12 0.15 0.16 0.16 0.25 
KS_MEAN 0.03 0.04 0.05 0.04 0.04 0.03 

HEX_30 
78,100 ha scale 
# hexes = 99 
Avg. # plots per hex = 30 

AC 0.14 0.34 0.13 -0.25 -0.21 -0.37 
AC_SYS 0.78 0.85 0.68 0.62 0.64 0.72 
AC_UNS 0.36 0.49 0.45 0.13 0.15 -0.08 
KS_MAX 0.14 0.16 0.14 0.17 0.18 0.23 
KS_MEAN 0.05 0.05 0.05 0.04 0.04 0.08 

HEX_50 
216,000 ha scale 
# hexes = 44 
Avg. # plots per hex = 69 

AC 0.35 0.52 0.51 0.52 0.52 0.18 
AC_SYS 0.81 0.89 0.77 0.89 0.92 0.80 
AC_UNS 0.54 0.63 0.74 0.63 0.60 0.38 
KS_MAX 0.18 0.18 0.18 0.18 0.18 0.34 
KS_MEAN 0.04 0.06 0.08 0.04 0.05 0.12 
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10b. MR105 
    QMD_DOM STNDHT SDI_REINEKE VPH_GE_3 BPH_GE_3_REG SBPH_GE_25 
PLOT_PIXEL AC -0.87 -0.87 -0.87 -0.74 -0.27 -0.48 

AC_SYS 0.57 0.57 0.57 0.72 0.78 0.69 
AC_UNS -0.44 -0.44 -0.44 -0.46 -0.04 -0.17 
KS_MAX 0.15 0.15 0.15 0.25 0.15 0.51 
KS_MEAN 0.07 0.07 0.07 0.04 0.05 0.02 

HEX_10 
8,660 ha scale 
# hexes = 118 
Avg. # plots per hex = 6 

AC -0.33 -0.33 -0.33 -0.39 0.16 0.14 
AC_SYS 0.72 0.72 0.72 0.84 0.92 0.89 
AC_UNS -0.05 -0.05 -0.05 -0.23 0.24 0.25 
KS_MAX 0.18 0.18 0.18 0.17 0.14 0.20 
KS_MEAN 0.06 0.06 0.06 0.06 0.05 0.03 

HEX_30 
78,100 ha scale 
# hexes = 22 
Avg. # plots per hex = 34 

AC 0.50 0.50 0.50 0.31 0.53 0.64 
AC_SYS 0.69 0.69 0.69 0.81 0.92 1.00 
AC_UNS 0.81 0.81 0.81 0.50 0.62 0.65 
KS_MAX 0.23 0.23 0.23 0.14 0.14 0.14 
KS_MEAN 0.09 0.09 0.09 0.06 0.07 0.03 

HEX_50 
216,000 ha scale 
# hexes = 9 
Avg. # plots per hex = 84 

AC 0.52 0.52 0.52 0.93 0.94 0.96 
AC_SYS 0.76 0.76 0.76 0.99 0.99 0.98 
AC_UNS 0.75 0.75 0.75 0.94 0.95 0.98 
KS_MAX 0.22 0.22 0.22 0.22 0.22 0.22 
KS_MEAN 0.10 0.10 0.10 0.04 0.05 0.05 
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10c. MR110 
    QMD_DOM STNDHT SDI_REINEKE VPH_GE_3 BPH_GE_3_REG SBPH_GE_25 

PLOT_PIXEL 

AC -0.40 -0.02 0.07 0.04 0.04 -2.56 
AC_SYS 0.80 0.89 0.89 0.90 0.90 0.11 
AC_UNS -0.20 0.09 0.18 0.14 0.14 -1.67 
KS_MAX 0.11 0.13 0.13 0.15 0.15 0.41 
KS_MEAN 0.04 0.03 0.04 0.03 0.02 0.02 

HEX_10 
8,660 ha scale 
# hexes = 424 
Avg. # plots per hex = 4 

AC -0.32 0.04 0.25 0.09 0.09 -2.05 
AC_SYS 0.80 0.88 0.90 0.87 0.87 0.31 
AC_UNS -0.12 0.16 0.35 0.22 0.23 -1.36 
KS_MAX 0.15 0.14 0.12 0.15 0.14 0.27 
KS_MEAN 0.04 0.04 0.05 0.03 0.03 0.05 

HEX_30 
78,100 ha scale 
# hexes = 111 
Avg. # plots per hex = 15 

AC 0.23 0.37 0.54 0.61 0.62 -0.59 
AC_SYS 0.91 0.90 0.95 0.96 0.96 0.62 
AC_UNS 0.31 0.47 0.59 0.65 0.66 -0.21 
KS_MAX 0.17 0.15 0.13 0.17 0.19 0.26 
KS_MEAN 0.04 0.05 0.05 0.05 0.05 0.05 

HEX_50 
216,000 ha scale 
# hexes = 57 
Avg. # plots per hex = 28 

AC 0.57 0.48 0.73 0.65 0.69 -0.17 
AC_SYS 0.96 0.91 0.98 0.97 0.98 0.65 
AC_UNS 0.60 0.57 0.75 0.68 0.72 0.18 
KS_MAX 0.21 0.18 0.12 0.18 0.16 0.25 
KS_MEAN 0.06 0.08 0.04 0.05 0.05 0.07 
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Table 11. Distribution of prediction vs. observation estimates by modeling region 
      Min Lower Q Median Mean Upper Q Max 

M
ar

iti
m

e 

M
R1

01
 

QMD_DOM 
obs 0.0 20.5 30.7 33.9 45.2 122.2 
k7 2.9 25.0 33.9 34.4 43.3 82.6 

SDI_REINEKE 
obs 1.9 197.8 321.6 321.6 441.5 1081.1 
k7 4.1 267.6 351.7 328.0 404.8 627.8 

VPH_GE_3 
obs 0.0 85.9 221.7 281.3 415.8 1807.3 
k7 0.3 149.7 291.5 293.5 412.4 1256.2 

BPH_GE_3_REG 
obs 0.0 75.0 170.2 220.7 318.2 1547.4 
k7 0.7 120.5 226.9 230.1 319.8 949.5 

STNDHGT 
obs 0.0 10.7 15.5 17.0 22.3 56.1 
k7 0.8 12.2 17.2 17.2 22.1 43.3 

SBPH_GE_25 
obs 0.0 2.4 13.9 34.3 40.2 1089.2 
k7 0.0 15.6 31.7 36.5 50.5 394.5 

M
R1

10
 

QMD_DOM 
obs 0.0 18.6 28.7 30.9 40.4 112.5 
k7 6.2 22.5 31.9 31.8 39.9 76.5 

SDI_REINEKE 
obs 1.9 112.2 241.6 252.3 373.8 906.0 
k7 23.5 157.1 265.9 261.1 354.3 602.7 

VPH_GE_3 
obs 0.0 35.3 136.5 210.6 324.3 1807.3 
k7 5.9 75.0 208.7 228.1 344.4 1004.1 

BPH_GE_3_REG 
obs 0.0 36.0 109.5 158.3 237.1 1547.4 
k7 7.6 63.3 153.1 170.4 252.3 762.1 

STNDHGT 
obs 0.0 9.9 14.1 15.4 19.9 56.1 
k7 4.0 11.4 15.4 16.0 20.0 42.5 

SBPH_GE_25 
obs 0.0 0.0 2.7 13.0 14.2 304.2 
k7 0.0 4.4 10.0 13.4 18.4 122.6 

      Min Lower Q Median Mean Upper Q Max 

Bo
re

al
 

M
R1

05
 

QMD_DOM 
obs 0.0 7.9 14.5 16.1 22.7 65.3 
k7 4.5 12.1 15.4 16.0 19.5 42.8 

SDI_REINEKE 
obs 1.9 38.7 104.7 127.9 196.8 609.6 
k7 2.8 58.5 124.7 130.3 192.4 485.9 

VPH_GE_3 
obs 0.0 2.6 18.8 38.2 55.1 307.4 
k7 0.4 15.6 31.6 38.7 54.1 165.3 

BPH_GE_3_REG 
obs 0.0 10.2 28.2 42.4 63.4 244.3 
k7 0.4 19.1 40.3 42.9 62.7 142.3 

STNDHGT 
obs 0.0 7.0 10.6 10.4 13.8 23.5 
k7 1.3 8.7 10.5 10.4 12.3 18.5 

SBPH_GE_25 
obs 0.0 0.0 0.0 10.3 9.4 199.9 
k7 0.0 1.5 4.3 10.3 12.3 122.0 

 



   

 

69 

 

Table 12. Species accuracy 
OP_PP: Observed present, predicted present (count) 

OP_PA: Observed present, predicted absent (count) 

OA_PP: Observed absent, predicted present (count) 

OA_PA: Observed absent, predicted absent (count) 

 
  SPECIES OP_PP OP_PA OA_PP OA_PA 

FALSE 
NEGATIVE 

FALSE 
POSITIVE 

PERCENT 
CORRECT KAPPA 

M
ar

iti
m

e 

MR101 

ALRU2 93 47 472 1880 0.34 0.20 0.79 0.19 
CHNO 1205 43 941 303 0.03 0.76 0.61 0.21 
NOTALLY 20 13 90 2369 0.39 0.04 0.96 0.26 
PICO 441 27 655 1369 0.06 0.32 0.73 0.41 
PISI 1690 14 686 102 0.01 0.87 0.72 0.16 
POBAT 2 8 29 2453 0.80 0.01 0.99 0.09 
THPL 598 32 751 1111 0.05 0.40 0.69 0.40 
TSHE 2147 6 293 46 0.00 0.86 0.88 0.21 
TSME 1441 28 819 204 0.02 0.80 0.66 0.20 

MR110 

ALRU2 0 8 25 1648 1.00 0.01 0.98 -0.01 
BEPA 216 23 272 1170 0.10 0.19 0.82 0.50 
CHNO 70 29 192 1390 0.29 0.12 0.87 0.33 
NOTALLY 9 17 114 1541 0.65 0.07 0.92 0.10 
PICO 10 14 71 1586 0.58 0.04 0.95 0.17 
PIGL 249 15 164 1253 0.06 0.12 0.89 0.67 
PIMA 95 11 121 1454 0.10 0.08 0.92 0.55 
PISI 1061 33 363 224 0.03 0.62 0.76 0.40 
POBA2 0 0 0 1681 0.00 0.00 1.00 0.00 
POBAT 158 67 440 1016 0.30 0.30 0.70 0.24 
POTR5 32 22 150 1477 0.41 0.09 0.90 0.23 
THPL 0 1 2 1678 1.00 0.00 1.00 0.00 
TSHE 565 23 379 714 0.04 0.35 0.76 0.54 
TSME 666 40 479 496 0.06 0.49 0.69 0.42 

Bo
re

al
 

MR105 

ALRU2 0 0 0 744 0.00 0.00 1.00 0.00 
BEPA 360 9 310 65 0.02 0.83 0.57 0.15 
NOTALLY 21 19 147 557 0.48 0.21 0.78 0.13 
PIGL 497 6 232 9 0.01 0.96 0.68 0.03 
PIMA 309 6 233 196 0.02 0.54 0.68 0.40 
PISI 24 14 129 577 0.37 0.18 0.81 0.18 
POBAT 36 23 193 492 0.39 0.28 0.71 0.14 
POTR5 88 21 277 358 0.19 0.44 0.60 0.19 
TSME 26 12 100 606 0.32 0.14 0.85 0.26 
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Table 13. Regional biomass and volume prediction estimates 

      Area 
Aboveground Live Tree  
(>2.5cm DBH) Biomass 

Aboveground Snag  
(>25cm DBH) Biomass Live Tree (>12.5cm DBH) Volume  

    (1000 ha)  (Mg ha-1)  (Tg)  (Mg ha-1)  (Tg) (m3 ha-1)  (mil m3) 
   Total Forested Mean Median Total Mean Median Total Mean Median Total 

Study Area 
excluding USFS 
Wilderness and 

Glacier Bay 
National Park 

GNN 

Boreal 878.5 709.4 38.5 27.0 27.3 7.7 2.0 5.5 26.1 5.0 18.5 

Maritime 12,340.9 5,870.4 204.1 172.0 1,198.0 26.0 14.0 152.7 176.1 100.0 1,033.5 

COAK Unit 13,219.4 6,579.8 178.7 138.0 1,225.4 23.2 11.0 158.2 159.9 71.0 1,052.0 
Cahoon et al. 

2020 
                        
COAK Unit 22,020.0 6,196.1 (95.3) 200.2 (5.5)   1241.5 (34.0) 31.9 (1.2)   197.5 (7.5) 137.1 (5.4)   1,610 

Yatskov et al. 
2019 

Boreal   595 41.6 (2.5)   24.6 (1.7) 23.5 (2.4)   13.9 (1.6)       
Maritime  3,660 218.9 (4.6)  790.5 (17.3) 30.5 (1.0)  110.0 (3.8)    
COAK Unit   4,255 194.0 (4.1)   815.1 (17.3) 29.5 (1.0)   123.9 (4.0)       

Study Area 
including USFS 
Wilderness and 

Glacier Bay 
National Park 

GNN 

Boreal 878.5 709.4 38.5 27.0 27.3 7.7 2.0 5.5 26.1 5.0 18.5 

Maritime 16,300.2 7,796.7 212.0 180.0 1,652.5 26.7 15.0 208.5 187.8 117.0 1,464.6 

COAK Unit 17,178.7 8,506.2 191.7 153.0 1,679.9 24.5 13.0 213.9 174.4 91.0 1,483.1 

Tongass National 
Forest GNN 

Not Reserved 717.2 652.5 238.2 207.0 155.4 31.3 20.0 20.4 306.3 269.0 199.9 
Inventoried 
Roadless Area 3,726.4 2,362.9 218.8 186.0 516.9 31.2 20.0 73.6 281.0 241.0 664.0 

Wilderness 2,334.0 1,503.6 244.0 215.0 366.9 36.5 24.0 54.9 314.4 283.0 472.7 
Forest Total 6,777.6 4,518.9 229.8 199.0 1,039.2 32.0 20.0 148.9 295.5 259.0 1,336.6 
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Figures 
Figure 1. Study area including modeling regions modified from Nowacki et al. (2002) Ecological Provinces of Alaska 
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Figure 2. Environmental characteristics across the coastal Alaska region 
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Figure 3. Approximate FIA field plot locations across the study area 
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Figure 4. Effects of various cloud masking techniques on Landsat surface reflectance 
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Figure 5. LandTrendr pixel timeseries 
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Figure 6. Soil hydrologic characteristics influence on model output 

 

  



   

 

77 

 

Figure 7. FIA field plot footprint overlaid by 3x3 30-m Landsat pixels.  
Microplot was centered at subplot centers during periodic surveys in Alaska (1995-2003) but offset by 
3.7m as shown during annual inventories (2004-2020). FIA crews in Alaska install plot footprints without 
adjusting for declination (USDA 2021c). 
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Figure 8. Nonforest mask options and development 
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Figure 9. Multi-scale accuracy assessed using the Geometric Mean Functional Relationship (GMFR) for aboveground live tree biomass 
9a. MR101 

 

  



   

 

80 

 

9b. MR105 
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9c. MR110 
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Figure 10. Mapped results of biomass predictions at multiple scales 
10a. Hex-10km (8,660 ha) 
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10b. Hex-30km (78,100 ha) 
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10c. Hex-50km (216,000 ha) 
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Figure 11. Distribution and frequency of aboveground live tree biomass by Modeling Region (plot-pixel) 
11a. MR101 observed vs. predicted (k=7) 

 

11b. MR105 observed vs. predicted (k=7) 

 

11c. MR110 observed vs. predicted (k=7) 
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Figure 12. Environmental Predictors and Species Abundance 
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Figure 13. Tongass National Forest biomass, diameter, and height classes showed similar distributions across land designations 
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Figure 14. Aboveground live tree biomass on the Tongass National Forest 
14a. Average aboveground live tree biomass per hectare by land designation 
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14b. Predicted biomass per hectare at 30-m pixel resolution 
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14c. Comparison of high resolution satellite imagery vs predicted biomass (Mg/ha) at 30-m pixel resolution on Prince of Wales Island 
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Figure 15. Biomass estimate difference (predicted - observed) across aggregation extents 
15a. Hex-10km (8,660 ha) 
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15b. Hex-30km (78,100 ha) 
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15c. Hex-50km (216,000 ha) 
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Figure 16. Terrain shadowing: high resolution satellite imagery vs. aboveground live biomass predictions (30-m) in Prince 
William Sound 
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Figure 17. Distribution of neighbor distances (Euclidean) across study area 
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Appendix 1. Image Processing & LandTrendr Script 
All code used to process Landsat Timeseries and create fitted image stacks available at: 
https://code.earthengine.google.com/fcf51ecc63c7ca021b473ef920e2ed89  

https://code.earthengine.google.com/fcf51ecc63c7ca021b473ef920e2ed89
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Appendix 2. Species presence: observed vs. predicted 
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Appendix 3. Comparison of TC indices, high resolution satellite imagery, 
k=1 prediction, and k=7 prediction across study area 
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