
)

Parallax: An Implementation of ELGDF
(Extended Large Grain Data Flow)

by
Inkyu Kim

A Research Project Submitted in Partial

Fulfillment of the Degree of Master of Science

Major Professor

Dr. Ted. G. Lewis

Department of Computer Science

Oregon State University

Corvallis, OR 97331-3902

I

)

ACKNOWLEDGEMENTS

I am deeply grateful to my advisor, Professor Ted G. Lewis, for his
help, guidance, understanding, support and encouragement. Also, I
would like to thank Dr. Bella Bose , Dr. Walter Rudd my other
committee members for their constructive criticisms and helpful
suggestions.

2

I express my gratitude to the members of OACIS, Hesham El-rewini ,
Scott Handley, David Judge, who gave me constant encouragement

and help.

I thank my friends S. Choi, H. Kim, for their help and encouragement.

Best thanks go to my parents, Hee-Tae Kim and Byung-Ok Choi, for

their love, supports and encouragements throughout my life.

Finally, I thank my wife, Geeyeoun and my son, Hyunwoo for their
patience arid love .

Table of Contents.

Abstract

1. Introduction.

1.1 Motivation.

1.2 Existing Approaches to Parallel Programming.

1.2.1 Enhanced Versions of Sequential Programming

Languages.

1.2.2 Developing Intelligent Compilers.

1.3 What others are doing.
1.3 .1 Language Layering for Concurrency.

1.3.2 New Language/Compiler.

1.4 PPSE project.

1.4.1 Reverse Engineering.

1.4.2 Parallax, a Forward Engineering Component of

PPSE.

1.4.3 Other Forward Engineering Components of

PPSE.

2. Parallel programming.

2.1 Defining Parallel Sub-tasks.

2.2 Starting and Stopping Parallel Execution.

2.3 Coordinating Parallel Execution.
2.4 Scheduling Program on given Architecture.

3. ParallaH.

3 .1 What is Parallax ?

3 .2 Why Parallax ?

3 .3 Functions of Parallax.

3.3.1 Basic Constructs.

3.3.2 Convenient Structure.

3.3.3 Mutual Exclusion.

3.3.4 Hierarchical Design.

3

)

4. Using ParallaH.

4.1 Menus.

4.1.1 Apple Menu.

4.1.2 File Menu.

4.1.3 Edit Menu.

4.1.4 Tools Menu.

4.2 Tools.

4.2.1 Drawing Tools.

4.2.2 Manipulation Tools.

4.2.3 An Example (Traveling Salesman Problem).

5. Implementation.

5.1 Design.

5.2 Data Structure.

6. Conclusion

7. Further research

Appendices

A. Parallel Architecture.

B. Parallax File Format.

C. Dialogs for Symbols and Arcs.

References

4

List of Figures

Figure

Fig. 1.1

Fig. 3.1

Fig. 3.2

Fig. 3.3

Fig. 3.4

Fig. 3.5

Fig. 3.6

Fig. 3.7
Fig. 3.8

Fig. 3.9

Fig. 3.10

Fig. 3.11

Fig. 3.12

Fig. 3.13

Fig. 4.1
Fig. 4.2

Fig. 4.3

Fig. 4.4

Fig. 4.5

Fig. 4.6

Fig. 4.7

Fig. 4.8

Fig. 4.9

Fig. 4.10

Fig. 4.11

Fig. 4.12

Fig. 4.13

Fig. 4.14

Fig. 4.15

Fig. 4.16

PPSE Overview

Node
Storage

Split
Merge

Loop
Replicator
Control Arc
Data Arc

Pipe
Fan and its equivalent

IfThenElse and its equivalent

Access Control in Parallax

Hierarchical Design in Parallax

Apple Menu
File Menu
Dialog for saving PP Design file

Dialog for saving Code fragment

Dialog for saving Documentation

Edit Text menu

Control menu

Dialog for opening documentation file

Palette

Dialog for disposing layers below the symbol

Packing symbol(s).

Dialog for packing

Unpacking a symbol

After unpacking a symbol

Go Down

Dialog for opening a text file

5

Page

1 1

26
27

27
27

28
28
29
29
30
3 1

3 1

32

33
34
34

35

35

36

37

37

38

39

40

41

42

43

44

45

46

Fig. 4.17
Fig. 4.18

Fig. 4..19

Fig. 4.20

Fig. 4.21

Fig. 4.22.a

Fig. 4.22.b

Fig.4.23

Fig.4.24

Fig.4.25

Fig.5.1

Fig.5.2

Fig.5.3

Fig.C.1

Fig.C.2

Fig.C.3
Fig.C.4
Fig.C.5

Fig.C.6

Fig.C.7

Fig.C.8

Fig.C.9

Fig.C.10

Fig.C.11

Fig.C.12

Fig.C.13

Fig.C.14

Fig.C.15

SFGetFile dialog

Connect upper level first

Dialog for selecting source symbol

Dialog for selecting destination symbol

After bridge

Map

Distances matrix

Top level design

Expansion of find_min_ v

Expansion of do_in_par

Data Structure

An example of Parallax design

Top level data structure of Fig.5.2

Dialog for NODE

Dialog For Replicator

Dialog for IfThenElse
Dialog for FAN

Dialog for Storage

Dialog for data type for each variable

Dialog for Loop

Dialog for Pipe

Dialog for Split

Dialog for Merge

Dialog for Simple Data Arc

Dialog for Compound Data Arc

Dialog for Simple Data Arc for Storage

Dialog for Compound Data Arc for Storage

Control Arc

46

48

49

50

5 1
52

52
54

55
56

59

60

60

67

68

68
69

69

70

7 1

72

72

73

74

75

75

76

76

6

)

7

Abstract

The major obstacle to widespread parallel programming of

multiprocessors is the lack of a convenient parallel programming

system[19]. PPSE (Parallel Programming Support Environment) is a

unified approach to parallel programming. Parallax is developed as a

component of PPSE based on ELGDF which is a graphical language for
designing parallel programs. The goals of Parallax are to solve the
following problems:

1) How to represent parallelism naturally in an application,

2) How to make a parallel program portable across different

parallel computers ,

3) How to remove time-dependent problems from the

programmer's concern ,

4) How to provide a standard software description format that
can be used by other tools such as automated schedulers and
performance analyzers, and

5) How to increase programmer's productivity.

Our approach to these problems are:

1) ELGDF notation: Parallax uses ELGDF notation that allows a wide

representation of a variety of parallel programs in a natural way for

both shared-memory and message-passing models using higher level

parallel abstractions. Program details such as synchronization are

handled by the system using reusable libraries specific to each target

system. Parallax is a CASE tool which supports common Software­

Engineering techniques such as hierarchical design concepts that

support both top-down and bottom-up design using visual­

programming techniques.

)

)

8

2) PP Design File: Parallel program designs are stored in a standard

format in a PP (Parallel Program) Design File. This representation can

be transformed into a task graph representation at different levels

of granularity. The task graph of the problem can be used to estimate

execution time and performance of the resulting parallel program.

Parallax is implemented on Macintosh as part of the PPSE

project. It has been used to represent the design for both shared and

distributed memory machines, with individual programs written m

FORTRAN and C, with and without Linda support, and it has

successfully produced program designs which can be analyzed by

other tools such as TaskGrapher[5] and SuperGlue[6]. Parallax

currently does not automatically produce a task graph, nor does it

fully represent programs written in high level languages such as

FORTRAN. Finally, ELGDF currently lacks formal semantics for

representing computations.

)

9

1. Introduction

Increasing efforts are being carried out to develop parallel

programming languages suitable for parallel computing [13]. But, the

evolution of parallel programming languages has not kept up with

the evolution of parallel architectures. The PPSE (Parallel

Programming Support Environment) project is a unified approach

towards parallel programming. The main purpose of this paper is to

describe the design and implementation of Parallax: a forward

engineering component of the PPSE project. This introduction section
deals with the problems in parallel programming, a description of
PPSE and explanation for developing PPSE and where Parallax fits in

PPSE.

1.1 Motivation.

Writing parallel programs 1s significantly more difficult than

writing sequential programs. Programmers of parallel programs must

deal with a variety of new issues, including program partitioning ,

synchronization, concurrence, communication, fault tolerance,

allocation and problems involving portability and compatibility

between different parallel and sequential architectures. Even

seemingly simple tasks(for example, detecting termination) become

complicated and error-prone in parallel programming. These

problems are inherent in the nature of parallelism and exist

independently of the hardware [11]. For these reasons, we need to

help parallel programmers.

)

)

1.2 Existing Approaches to Parallel Programming.

Followings are major existing approaches to parallel

programming and critical assessment of each.

1.2.1 Enhanced versions of sequential programming languages.

10

Currently, most parallel programmers use enhanced versions of

sequential languages to express parallelism. Enhanced version of

sequential languages adapt some parallel constructs such as

fork/join, parbegin/parend, doall, etc. to express parallelism. These

enhanced versions are efficient for implementing parallel programs.

However, these languages are machine dependent- each for a

particular computation mode. Architectural details are exposed to the
user. Program development is less productive since the designer is
responsible for details of partitioning, synchronization,

communication, and allocation etc ..

1.2.2 Developing Intelligent Compilers.

With this approach, parallel algorithms are written m a

conventional sequential language such as Pascal, FORTRAN, C.

Intelligent compilers are developed to detect parallelism in

sequential code and convert it into parallel machine code. This

approach is user friendly because programmers can continue to use

their familiar sequential languages. However, this approach is not

flexible because parallel algorithms have to be sequentially coded.
The efficiency depends on the intelligence of the compiler [13]. Most

advanced compilers can enhance the performance by only a limited

factor, due to the difficulty in exploiting global parallelism, which

humans can do better. Also this approach is not always efficient,

because the best algorithm for sequential code is not always best in

parallel code.

)

)

1.3 What others are doing.

Some frontier research groups are trying to solve these

problems. There are two major approach to new parallel

programming problem : 1) Language Layering for Concurrency 2)

New Language/Compiler [18].

1.3 .1 Language Layering for Concurrency:

1 1

We can add a new language layer on the top of an existing language
to describe the desired concurrency and neq~ssary synchronization,

while allowing the basic application programs to remain relatively

unchanged . In enhanced versions of sequential programming

languages, the most difficult to fix errors are made in

synchronization-related code . or in partitioning functions/data. These
errors are concerned with parallel constructs not in the original

programming languages. So it is good idea to develop a new language
form to specify the parallel constructs and use an existing

programming language to specify the detailed algorithm. Many

groups are taking this approach.

Among them, CODE (Computation Oriented Display Environment)

takes the most interesting approach [8]. They used visual technique

to represent parallel constructs. In this section, a brief description of

CODE is given.

CODE takes a unified approach to parallelism in trying to

establish a basis for parallel programs that can be transported across

parallel architectures. Two basic elements that express parallel

program in CODE are:

)

12

computation-unit: A computation-unit is represented by a node
on the screen and has a form, called node -specification form, to be

filled by the user. The typical computation-unit is a function or a
procedure that has been defined in a sequential, high-level language.

Node-specification form incorporates the source code of a node. A

computation-unit is composed of a functionality and firing rule.

Functionality of computation-units is the transformation of its input­

dependency set to its output-dependency set. Firing rules specify the

states of the input dependencies that enable the unit to execute.

dependency relations: Dependency relations are represented by arcs

on the screen. Dependencies are described in separate forms from

firing rules. Dependency relations compose computation-units into

parallel-computation structures .

One advantage of CODE is in enhancing the reusability of the
parallel program by separating dependency and firing rule

specifications from the functionality specification. Another idea is to

use generalized dependency graphs to integrate design and

specification with programming. This project shows that it is possible

to write architecture independent parallel programs.

Problems

General problems with systems . that adopt graphics in addition
to text such as CODE, is loosing information in the translation of

diagrams to text . Actually, CODE does not use diagram information to

generate schedules while Parallax is able to produce process­

processor scheduling information from a graphic description , CODE

needs additional textual information to perform the same task. The

constructs of CODE are not rich enough to express all possible

parallelism. For instance, Loop constructs can not be expressed

Graphically.

)

1 3

One big advantage of usrng well-defined language model such

as C, Pascal, etc .. instead of developing new one is that we can use

dusty deck serial code. But there is no discussion of reverse

engineering in CODE documentation. For CODE system, reverse

engineering will be very hard because of complicated firing rules for

each process.

CODE does not address the data partitioning problem which 1s very

important for scientific computation.

1.3.2 New Language/Compiler

Another possible approach is developing entirely new programming

languages and compiler systems that integrate the concepts of

concurrency and synchronization with all existing views of describing
computational algorithms [18] .This strategy is extremely expensive

and potentially very labor intensive. Given the tremendous

investment in existing application codes, this option must viewed as

either a last resort or a means for developing ideas on how we could

gradually evolve our existing systems into a structure more

amenable to parallel processing.

)

)

14

1.4 PPSE project.

The Parallel Programming Support Environment(PPSE) project

1s an attempt to create a unified approach toward parallelism. PPSE

research involves the following topics [5]:

1) how to partition an application into parallel parts,

2) how to map parallel parts onto multiple processors,

3) how to optimally schedule and run parallel parts,

4) how to reverse engineer existing serial source code,

4) how to measure and analyze performance,

5) how to distribute data over a multi-processor network,

6) how to coordinate design, code, debug and analyze

performance.

Fig 1.1 shows how we organized these problems in the PPSE

project. Reverse engineering involves retrofitting existing sequential

programs onto parallel computers. Forward . engineering deals with

the task of writing a new parallel program from scratch. PPSE

contains a set of software tools designed to help parallel

programmers deal with reverse engineering and forward engineering

aspects of parallel programs.

)

Serial Source Code

Modify Design ,-
1

Code Fragments

Select O timal Mapping
Algorith

r- - -

Manual Update

Automatic Update

PP Design File

Source Code

Traces

PerFormance Report

- - - t- -
Fig. 1.1 PPSE Overview

15

-

Performance

______ I

)

1 6

1.4.1 Reverse Engineering

The reverse engineering part of the PPSE project involves

converting serial source programs to parallel programs. Our

reverse engineering tool analyzes an existing serial source code and

generates Parallax compatible files. These files can be graphically

displayed so that a user can modify and reorganize the program

structure.

1.4.2 Parallax, a forward engmeenng component of PPSE.

The forward engineering part of PPSE involves how to design,

implement, test, and evaluate the performance of a parallel program

on specific hardware. Five tools have been developed. They are:

Parallax, Target Machine Editor, TaskGrapher, SuperGlue, and EPA.

Parallax is designed and implemented to work as one of forward
engineering components of PPSE that allow a programmer to design

and implement a parallel program in a natural way. Other three
components of PPSE are briefly described in 1.4.3.

Design issues of ParalhlH.

1) How to write an architecture independent program.

2) How to represent a wide variety of parallel programs m most

natural way.

3) How to provide information for mappmg and/or scheduling.

4) How to reverse engineer existing serial code into Parallax form.

17

Approach

1) Higher degree of abstraction.

Raising the abstraction level allows program designers to

express their algorithms in a higher level structure without having

worry about the details of the specific hardware (Portability).

Another advantage of a higher degree of abstraction is improving
program maintainability. If the program can be broken into well­

defined higher structured modules that are defined by their

interface and what they do, not by how they do it. Changes in the
programming of a module do not affect any of the rest of the

program as long as · the design discipline is adhered to.

2) Visual programming technique in addition to text.

Graphics has a growing role to play in programming. One of the

purposes of using ~raphics in programming is to substitute some of

text with some more natural, easy-to-understand means of

expression. However, visualization of all program details

overburdens the programmer and not efficient.

3) Provide a PP Design file that can be transformed into a task graph.

One nice feature of Parallax is providing information for

scheduling tools and performance analyzer tools. The PP design file

can be transformed into task graphs at different levels of granularity

to be used by scheduling tools. Estimated execution time of tasks at

different levels of granularity can also used by performance analyzer

tools.

4) Support hierarchical design concept.

Parallax supports hierarchical design to allow construction and

viewing of realistically sized applications. This also provides the

flexibility for scheduling tools which means that can provide

different task graph for different granularity.

)

1 8

Parallax provides a rich set of parallel constructs to express a
variety of parallelism naturally, and adopts visual programming

techniques for ease of use. Parallax takes full advantage of the

information that is provided by the user in graphic description. For

instance, we can generate Task Graphs from graphic descriptions for

the use of scheduling and analyzer tools.

Parallax outputs Code Fragments and a PP Design File that 1s

used by SuperGlue and Transformer (See Fig. 1.1). A detailed

description of Parallax is given in Chapter 3.

)

19
1.4.3 Other components of PPSE.

Three other forward engineering components of PPSE, that work with

Parallax, are briefly described m this section.

1) Target Machine Editor.

The Target Machine Editor is a graphical editor for g1vmg a

high-level description of architectures on which the parallel program

might run. The Target Machine Editor provides the ability to

graphically describe small irregular architectures or easily describe

large regular architectures, graphically create shared memory,

tightly coupled distributed memory or loosely coupled distributed

memory architecture descriptions. Also some system specific

information can be entered through the dialog boxes which are

logically attached to the graphical icons. It produces a Target

Machine Description File as an output to be used by TaskGrapher,

SuperGlue, and Simulator [5].

2) TaskGrapher

The TaskGrapher 1s a tool which determines a schedule or map

for assigning program segments to processors. It performs an

automated mapping of the software onto the hardware, i.e. it maps

program modules represented as nodes in a precedence task graph

with communication (a transformation of the Parallax design file)

onto arbitrary machine topologies and gives an allocation and

ordering of tasks onto processors. It produces as output a Gantt chart,

providing easy visualization of the allocation . of the program modules

onto the target machine processing elements, and the execution order

of tasks allocated to each processing element. The Gantt chart

consists of a list of all processing elements in the target machine. For

each processing element, the Gantt chart shows a list of all tasks

allocated to that processing element, ordered by execution time,

including task start and finish times [6].

)

20

3) SuperGlue.

SuperGlue is a tool that automatically generates source code for

a specific parallel computer from Parallax description of the

software and the description of the target machine. SuperGlue 1s a

software that takes a flow file (dataflow representation) of a parallel

program (which is translated from the output of the Parallax), along

with a target machine file, a Gannt file (which represents task

scheduling) from TaskGrapher, and code fragments (from Parallax)

and generates a parallelized version of source code that can be run

on the described architecture [5].

4) Execution Profile Analyzer (EPA)

EPA is a tool that measures the performance of a parallel

program. Timing routines are used to generate an execution profile

of an application. These routines are the common interface of
performance analysis to the SuperGlue source code generator. The

timing routine generates a file which is called the "execution trace

file". EPA uses this file as input and yields execution times of the

grain and the communication delay or synchronization wait time as

output which serves as input to TaskGrapher. It also produces a

general report giving the overall speedup , overall and individual

processor utilization and the time distribution among the grains

which were mapped onto it.

)

21

2. Parallel programming

This chapter describes what components a parallel program

should have and what steps are necessary to run the program on a

parallel machine.

A parallel program must 1) define a set of sub-tasks to be

executed in parallel, 2) specify when to start/stop their parallel

execution, 3) specify coordination of parallel execution [15]. After

writing a parallel program, this program must be scheduled to run on

specific hardware.

2.1 Defining Parallel Subtasks

Defining subtasks refers to the decomposition of a large

computation to a number of subprograms which can be executed
concurrently. Defining subtasks of a program in a way that exploits

as much parallelism as possible with lowest possible overhead is not

easy. Parallelism and Scheduling with synchronization are the two
most important factors influencing performance. Both of these
factors depend on the granularity of code. If tasks are too fine

grained, there is a time penalty for scheduling each node and

synchronizing each arc which must be added to the execution time of

the program. If the tasks are too large grained, which reduces the

time penalty, all the available parallelism will not be exploited.

Furthermore, when our target machine is distributed machine we

must partition the tasks in a way that minimizes the communication

between other tasks.

)

2.2 Starting and stopping parallel execution

A parallel program must specify when parallel tasks should

start and stop execution. Current parallel programing languages

provide abilities (fork/join, parbegin/parend, doall etc.) to express

this.

2.3 Coordinating Parallel · Execution

22

A parallel program must have a way to express the
Coordination of Parallel Execution. Two mechanisms, Synchronization

and communication can be used for this purposes. Synchronization

involves the activation and suspension of concurrent processes to

ensure correct results. Communication is the scheme for information

exchange between processes. Synchronization is needed for

communication and communication can be used for synchronization
[11].

1. Communication- Shared Memory and Message-Passing

Cooperating tasks of a parallel program must communicate
with each other. Two mechanisms that are currently popular,

Message-passing and Shared-Memory. A parallel program must have

functions to describe these two mechanisms.

2. Synchronizing Concurrency-Sequence Control, Access Control

Two synchronization mechanisms , Sequence control(control

flow) and Access Control(mutual exclusion) can be used. Sequence

control constrains events to make sure they happen in the right

order and Access Control controls the access to a section of code in

such a way , that only one competing process may enter at a time.

23

2.4 Scheduling program on given architecture.

Scheduling is the assignment of tasks to processors under time

constraints. Scheduling can be either static or dynamic.

In static scheduling, tasks are allocated to processors during

the algorithm design by the user or compiler. Scheduling costs for

this method are paid only once even if the program is run many

times with different data. Moreover, there is no run time overhead.

The disadvantage of static scheduling, however, is possible

inefficiencies in gu~ssing the run time profile of each task.

Dynamic scheduling by the machine at run time offers better
utilization of processors, but at the price of additional scheduling

time.

2.5 Classification of Parallel Programming Languages.

A variety of programming models based on classes of

architectures are described briefly in appendix A. The methods of

exploiting parallelism are different in each class and are oriented

toward utilizing specific aspects of the hardware. This section

discusses how these parallel constructs can be represented in parallel

programming languages. Parallel programming languages can be

classified according to four attributes [19]:

I) Implicit or explicit parallelism?

Does the language have explicit constructs for concurrency(e.g.

cobegin/coend, doall, tasks) or is the parallelism implicit(e.g.

dependence analysis of "dusty decks")?

24

2) Implicit or explicit partition?

If the language has explicit parallelism, then is the part1t10n

implicit(e.g. doall) or explicit(e.g. tasks)? The partition of a

parallel program specifies the sequential units of computation
in the program and hence the granularity of execution.

3) Implicit or explicit schedule?
If the language has explicit parallelism and explicit part1t10n,

then is the schedule implicit or explicit(e .g. explicit use of

processor numbers)? The schedule of a parallel program

specifies the mapping of computations onto processors.

4) Shared-memory or distributed-memory?.

Is the communication model in the programming language

based on a shared global memory? Any non-shared-memory

model can be easily implemented on a shared-memory

multiprocessor, but this issue is relevant because the converse
is not true. In general, it is very difficult to efficiently
implement a language with a shared memory model on a
message-passing multiprocessor.

The next chapter describes how Parallax provides all necessary

functions and information described in this chapter.

)

25

3. ParallaH

This chapter describes Parallax. Some descriptions of Parallax

syntax are also given. For more detailed information, refer to [2].

3 .1 What is Parallax ?

Parallax 1s a design editor that provides a visual method of

inputting software design details in ELGDF notation. Ideally, parallel

software should be designed independent of any specific hardware

on which the developed code might eventually run. Parallax allows

the development of a high level, machine independent description of

a parallel program. Parallax also allows the design of parallel

software without being bound to any particular programming
language. The following are major features of Parallax:

1) ability to produce a hierarchical design for parallel software
in ELGDF notation,

2) ability to add information to graphic notation through dialog,

3) easy manipulation of design by re-sizing, encapsulating, and

expanding the graphical description,

4) ability to add detailed textual specification to specific graphical

notation of algorithm as code fragments,

)

)

26

3.2 Why Parallax ?

Parallax allows the development of a high level, machine
independent description of a parallel program. · Parallax also allows

the design of parallel software without being bound to any particular

programming language.

3.3 Functions of Parallax

Parallax describes parallelism and partitioning explicitly in the

program. Each parallel construct is described in this section. The

scheduling will be done implicitly by the scheduling tools.

3.3.1 Basic Constructs

1. Node: A circle, shown in Figure 3.1, can represent either a simple

or a compound node. A simple node consists of sequentially executed
code and is carried out by at most one processor. A compound node

is a decomposable high level abstraction of a subnetwork of the
program design network.

0
Fig 3.1 Node

)

J

27

2. Storage: A storage construct is represented by a rectangle, shown
in Fig 3 .2, and can represent either a storage cell(red color) or a

collection of storage cells(blue color). A storage cell represents the

data structure to be read or written by a simple node. A compound

storage cell means constituents of the storage collection, but the

details are given in a lower level description.

CJ
Fig 3.2 Storage

3. Split and Merge : Split and merge, shown in Figure 3.3 and 3.4

each, are special purpose simple nodes for representing conditional

branching. Split has at most two output control-arcs; one for T = True,

and the other for F = False. According to the truth or the falsehood of

the condition associated with the split node one of its two output

control arcs is activated.

Merge has N input control arcs and one output control arc. Two

different kind of merges are defined according to its firing rules.

OrMerge activates its output arc when it gets activated by any one of

its N inputs. AndMerge activates its output arc when it gets

activated by all of its N inputs.

Fig 3.3 Split Fig 3 .4 Merge

28

4. Loop: A loop can represent For, While, or Repeat structures.

Parallax represents serial loop compactly without using cycles in the
graph. This is possible by describing only one loop body, and then
specify a set of attributes such as the control variable, initial value,

step, and loop bound in case of "For" or the termination condition m

case of While or Repeat. A For loop iterated N times of the loop.
Similarly, a While or Repeat structure can automatically be

represented m terms of split, merge, node and While or Repeat

constructs .

• Fig 3.5 Loop

5. Replicator: A replicator, as shown m Figure 3.6, is one of the

parameterized constructs in Parallax that represents concurrent loop

iterations compactly. A set of attributes is associated with the

replicator such as the control variable, initial value, step, and

replicator bound. Replication of a node N times produces N

concurrent instances of that node. An arc connected to a replicator 1s

expanded as a set of identical arcs each of which is connected to one

of the replicated instances .

• Fig 3.6 Replicator

)

29

6. Arcs: An arc m Parallax can express either data dependency,

sequencing, transfer of control, or read and/or write access to a
storage construct. A set of attributes is associated with each arc to

provide information about the arc type, data to be passed through

the arc, storage access policy, and communication strategy. An arc

can be either a simple arc(red color) which cannot be decomposed

or a compound arc which is decomposable into a set of other simple

and/or compound arcs(blue color).

Fig. 3.7 Control Arc Fig 3.8 Data Arc

Simple arcs can be classified into control and data arcs. A

control arc, as shown in Fig. 3.8 (dotted line) expresses sequencing or
transfer of control among nodes. A data arc, shown in Fig. 3.9,

carries data from one node to another or can connect a node to a

storage construct. A data arc connecting a node and a storage

construct can represent READ, WRITE, or READ/WRITE access

according to the direction of the arc. A data arc can be used to carry

data once or repeated n times per activation. One of the arc's

attributes is used to indicate the number of times the data will be

passed through. If the value of that attribute is greater than one then

the arc is considered a repeated arc. The repeated arc is used

basically in pipelines. It can carry data (repeated times) from a

simple node to another in a synchronized fashion. Also it can express

synchronized writing and reading to or from a storage cell.

3.2.2 Convenient Structures.

Parallax also supports many of the common structures in

parallel programs that can be synthesized using the constructs. It

automatically provides them for program designer convenience.

D

Fig 3.9 Pipe and its equivalent

30

A pipe, as m Fig 3.7, is a high level abstraction that represents a set

of N nodes forming a pipeline . The pipe consists of N simple nodes

and N-1 m-repeated arcs. The nodes forming the pipeline are

replications of the same simple node. A pipe has several attributes

associated with it such as number of stages in the pipeline (N),

number of times the data will be passed through repeated arcs in the

pipe (m) and others.

3 I

0
When n=3

Fig. 3.10 Fan and its equivalent

A fan of size n is composed of a start node S, n parallel nodes, 2n

control arcs, and an end node (E) as shown in Fig. 3.11. The start

node activates the parallel nodes and when they all finish E gets

activated. The size of fan should be constant. Compound arcs that are

connected to a fan carry data to or from its constituents.

Fig. 3.11 IffhenElse and its equivalent

)

32

IfThenElse and fans are examples of common structures. The system

can prepare skeletons for the types of structures per designer

request. Using these structures reduces the drawing time, helps

design readability and comprehension, gives more information for

analysis tools.

3 .3 .3 Mutual Exclusion

Parallax helps designers to easily express mutual exclusive

access to shared variables by having an attribute associated with

each arc connecting a node to a storage construct. If the exclusion

attribute is set, then mutual exclusion is guaranteed. In Fig. 3.10, A

and B can access X in any order. Both A and B want to update X

through a Read/Write arc and that might produce an incorrect result

unless we set the mutual exclusion attribute associated with those

Read/Write arcs to guarantee mutual exclusive access to X.

r.'\ R!W
\.:..J\ data

exclu sion: ON ~
,---'-,

X

Fig. 3.12 Access Control m Parallax

)

)

33
3.3.4 Hierarchical Design

Parallax supports hierarchical design to allow construction and

viewing of realistically sized applications. In Fig.3.11, a compound

node NodeA is a higher abstraction of node a0, al and arc dal. A

compound Arc d2 is higher abstraction of d21 and d22. Only bottom

level node has some source code associated with it. This feature

make integrating design and coding phase of software developing

cycle possible.

Fig. 3 .13 Hierarchical Design m Parallax

)

34

4. Using Paralhu-c

This chapter shows how to design and write a parall~l program

with Parallax . An example will make things clear. This chapter also

shows how use tools and menus .

4.1 Menus

This section describes each of the Parallax menu commands. It

is organized by menu, from left to right along the menu bar. Within

each menu, commands are described in the order in which they

appear in the menu.

4.1.1 Apple Menu

About ParallaH ...

Fig 4.1 Apple Menu

This command tells you what vers10n of Parallax you are using.

4.1.2 File Menu

New WN
Open WO
Close

Saue WS
Saue As ...

Quit WO

Fig. 4.2 File Menu

35

New

This command opens a new PP Design window. This window is top

level window, and can not be closed until all other windows are

closed. This command also open a tool window(Palette). Tool window

will not be closed until top level window is closed.

Open

This command lets you open an ex1stmg PP Design file on top level

window. It also set up tool window(Palette).

Close

Basically this command close active window. Following are some

rules for closing window:

If current active window is top level window, then close current PP
Design if there is no other opened window. If current PP Design file is

not saved, system will ask you if you want to save current PP Design
file.

Soue PP Design File ?

(Cancel) (Discard) ((Saue J)

Fig. 4.3 Dialog for saving PP Design file

If current active window is a text window, system will ask you if you

want to save current text file(program fragment) if it is modified

and not saved.

Soue This Program Fragment ?

(Cancel) (Discard) [Saue))

Fig. 4.4 Dialog for saving Code Fragment

36

If current active window is a documentation window, system will ask
you if you want to save current documentation file if it is modified

and not saved.

Save This Documentation ?

(Cancel) (Discard) ((Saue)]

Fig. 4.5 Dialog for savrng Documentation

If current active window is gra:rhic window but not top level, system

will just close the window.

Save

This command saves the file in the active window if it is text

window. If the current active window is top level window, system
saves current PP Design file. If the current active window is graphic
window but not top level, system does nothing.

Saue As

This command lets you the current file under other name. All others

are same as Save.

Quit

This command quits Parallax and returns to the Finder. If project has

been modified and not saved, system shows the dialog showed at

Fig. 4.3

)

37
4.1.3 Edit Menu

This menu will be enabled if current active window is either text or

documentation window. The Edit menu has the standard Macintosh
editing command.

fut ~i:,H
[{) p ~J ~i:, [
P as 1 (~ ~}((U
Sele(t HH

Fig . 4.6 Edit Text menu

4.1.4 Tool Menu

c:ontrol
Show Palette
Stiow ropU~tH~f Wintiow

✓Auto Info. Dialog

✓Set Documentation

Fig. 4. 7 Control menu

Show Palette

This command shows the palette if it 1s hidden by some other
window.

Show Topleuel Window

This command makes top level window front window if front

window is not top level window.

38

Auto Info. Dialog

When a user draws a symbol or an arc with checking Auto Info.

Dialog, the system automatically shows a dialog so that user can

enter information for the symbol or the arc right after he/she creates

the symbol.

Set Documentation

Checking Set Documentation has two different features:

When double click on a symbol or an arc with select tool, the

system checks Set Documentation is selected. If selected, it opens a

documentation file otherwise open a dialog for the symbol or the arc.

Set documentation is also used to enable or disable

documentation window. If Set documentation is selected, user can

edit the · contents of the documentation window otherwise its just for

browsing the documentation.

If the documentation is not in the current directory, the system show

a dialog to ask user if he want to find or making a new

documentation file for that symbol.

Open a New or [Histing Doc. File ?

(Cuncel) (New) [Open]

Fig . 4.8 Dialog for opening documentation file

)

4.2 Tools

This section describes the tool palette. The palette has two

different kinds of tools: 1) manipulation tools, 2) drawing tools.

~ Tools _

Select ~ @!) Split Control

Node

(0 ➔ Replicator Data Arc

lfThenElse u Control Arc

Fan o· . . : Pack \~/
/~

Storage D \@;:: Unpack
I ' ·---.,

Loop 0 (.,,o\.
Go Down

Pipe ~ Bridge

Node

Fig. 4.9 Palette

39

40

4.2.1 Manipulation tools

Manipulation tools are for modifying and reorgamzmg the

program. Four tools are dedicated for this purpose and their usages

are described in this section.

Select Tool

This tool has four different functions:
1) To delete, first select symbol(s) you want to delete and hit delete

button.
2) To move, symbol(s) pick a symbol and drag it to the place you

want.

3) To enter information, double click on the symbol for you want to

enter information. Appendix C shows all different dialogs for each

different symbol and describes how to enter information.

4) To show documentation file, double click the symbol after

selecting Set Documentation from control menu. The system open the

documentation file and shows a documentation window as described

above(see Set Documentation).

If you change a symbol from compound to simple even though lower

layers exist, system also will ask you if you really want to discard all

layers below that symbol.

Dispose c1II lc1yers below this symbol ?

(Cc1ncel) (No) [Yes))

Fig. 4.10 Dialog for disposing layers below the symbol

41

Pack Tool

For bottom-up design, the Pack tool allows user to compose

symbol(s) as a node that represent higher level abstraction of the

symbol(s). To do this, select symbol(s) with this tool, then the system

will ask you if you want to pack.

r
~

I

I

L

Top Level Window

Fig. 4.11 Packing symbol(s).

111111

111111

!iiiii

liiili

Note that there are radio buttons that the user can select the symbol

he wants for the packing.

42

Do you want to Pack Selected?

@Node O Replicator

0 Storage OLoop

(Cancel) (No) [Yes))
Fig. 4.12 Dialog for packing

Unpack Tool

Unpack tool allows the user to decompose a symbol if it is compound

and has at least one next level symbol. To do this, double click on a

compound symbol with this tool that has at least one symbol at a

lower hierarchical level, then the system will display the next level

of the symbol on current window if it is not opened. If there is no

next level symbol, system will give you an alert. If a window is

opened for that symbol, the system gives alert. If the user unpacks a

Loop or Replicator, the system warns the user that he/she will lose

the functionality of the Loop or Replicator. This tool is also needed if

user make mistakes in Packing symbols. Fig. 4.14 shows the window

after the user unpacks the symbol.

43

Top Leuel Window

ewDete

!!!!!!

iiiiii

)

!!!!!!

lliill

!Ill!!

Fig. 4.13 Unpacking a symbol

44

Top Leuel Window

ReedDete rnrn

······

esultData 11!1!1

rnw

)
Fig. 4.14 After unpacking a symbol

)

)

)

45
GoDown Tool

If the user double clicks on a compound symbol which is an

encapsulated node(as in Fig . 4.13) with this tool, the system opens a
window and shows next level of that symbol (shown in Fig.4.15) if

not opened already. If that window is already opened, system will

make that window the front window so that user can specify next

level of the symbol. This tool supports a top-down design concept.

Top Leuel Window

encapulated

mm
....

mm mm

111111

WH~

nr-111 f f""lcit Cl
111111

::::::::::::::::::::: :: ::::::: :::::::::::;: :::::::::::: :::::::::::: :::::::: :::: :::::: :::::::::: ::::: :::::::: : :::::::::: :::: ::::: ::::: :::::::: ::::::::::
:-:•:•: •:-:, :,:•: •:•:•:•:•:•:•:•:•:•: •:•:•:- :, ;,: , :-: ,: -:-:•:-:-:-:-:,:-:,:-:-:,:,:,:,:,:,:-:,:, , ,;,:, :-:-:- : -:-:-:-: -:-:-: -.- :-.-:-.-:-:,:-:-.-:-:-:,:

Fig . 4.15 Go Down

)

)

If you you repeat the above procedure on a simple symbol, the

system will ask if you want to open a new text file or open an

existing text file.

Open o New or [Histing TeHt File ?

(Concel) (New) [Open)]

Fig. 4.16 Dialog for opening a text file

46

If you select N e w , the system opens a new text window so that you

can enter code fragments for that symbol. If you select Open, System

will show you standard dialog (shown in Fig. 4.17) so that you can

select the file you want to open.

I c::) Or. Moc I
D lHologOesign
D Documentation
D LSP U.2.0
D Moc240
D OACIS
D OOD Parallel
D System Folder

(=:)Dr. Moc

[(: j (~ (t]

[rlritie]

(Open]

(Cancel]

Fig. 4.17 Standard dialog for openmg files

)

47

4.2.2 Drawing Tools

This section describes how to draw symbols and arcs, which

represent computation units and communication, respectively, and

how to enter information for them. There are two different kinds of

drawing tools: One is for drawing symbols (symbol drawing tools

include: Node, Replicator, lfThenElse, Fan, Storage, Loop, Pipe,

Sp Ii t, M e r g e) and the other is for drawing arcs between two

symbols (arc drawing tools include: Data Arc, Control Arc). In

addition, there is a special tool B rid g e to connect two symbols from

different window.

1) How to draw symbols and arcs on screen:
To draw symbols, select the symbol drawing tool you want. The

cursor changes to a representation of the symbol. To make the

symbol appear in the drawing window, click at the location in the

window where you want the symbol to be located. To draw an arc

between two symbols, select one of arc drawing tools and drag from

one symbol to another. There are 9 symbol drawing tools and 2 arc
drawing tools.

2) How to enter information for the symbol:

There are two ways to enter information for a symbol or an

arc. First, the user can enter information for the symbol or the arc

right after he/she draw by checking Auto Info. Dialog as explained

before. Secondly, if you double click on a symbol with a symbol

drawing tool or select tool, the system will show a dialog for the

double clicked symbol so that user can enter information for the

symbol. To enter information for an arc, select the select tool and

double click on an arc . The system will show you a dialog so that you

can enter information for the arc. Appendix C shows all information

dialogs for symbols and arcs and description of each session for each

dialog.

) 48

Bridge

This tool lets you connect a symbol from one window to one

from another window. To connect two lower level symbols, their

upper level counterparts should be connected first . At the lower

level, the user must choose a source and destination symbol. These

should agree with the flow direction at the higher level. The system ·

will check for flow direction consistency. In the source dialog, cancel

and no does the same thing (for complying Macintosh user interface

convention).

Top Leuel Window

l!ili! ·

111111

iiiiii

➔

iiiiii

Fig. 4.18 Connect upper level first

49

Top Leuel Window

Is this source symbol ?

(Cancel) (No) [Yes))

odeCA

esultD------------+---1

Fig. 4. 19 Dialog for selecting source symbol

50

When you select destination symbol, the system shows a dialog so

that you can specify the type of arc. Note that this dialog has radio

buttons to specify whether the arc is data arc or control arc. Cancel

button in this dialog means canceling source symbol- the user must

select a new source symbol. The No button means that this symbol is
not the destination.

Top Leuel Window

[r Is this

Arc Type:

(Cancel)

=□= - -= ==

destination Symbol?

@ Data Arc O Control Arc

(No) [Yes]

odeCA

Fig. 4. 20 Dialog for selecting destination symbol

5 1

Top Leuel Window

NodeC

NodeB

odeCA

Fig. 4.21 After bridge

)

52

4.3 An example program: The Traveling salesman problem

The Traveling salesman problem is presented to show how to

design a parallel program with Parallax. In this discussion we shall,

without loss of generality, regard a tour to be a simple path that
starts and ends at vertex 1. Every tour consists of an edge <1,k> for k

<- V - { 1} and a path from vertex k to vertex 1. We define g(l, V -

{ 1}) is the length of an optimal salesman tour, when V includes all

cities. From the principle of optimality it follows that:

g(l., V-{1}) = min {elk+ g(I<., V - {1.,k})}
21.ki.n

Let's consider a simple example and show how to write a

parallel program for this problem with Parallax. Consider the

directed graph of Fig a. The edge lengths are given by the matrix Fig

4.22.b.

Fig.4.22.a map

0 10 15 20
5 0 9 10
6 13 0 12
8 8 9 0

Fig. 4.22.b distances matrix

The definition is given rn recursive form, but this can be converted to

a FOR loop. A dynamic programmrng version of TSP is presented.

First step, refer from the distances matrix.

g(2,!ZS)= c21 =5; g(3,!ZS) = c31 = 6; g(4,!ZS) = c41 = 8;

Second step, calculate when the loop variable i is2:

g(2, {3}) = c23+ g(3,!ZS) = 15; g(2, { 4}) = 18

g(3, {2}) = 18;

g(4, {2}) = 13;

g(3, { 4}) = 20

g(4, {3}) = 15

Third step, calculate when loop variable i is 3:
(that means g(i,S) with ISi = 2 and i <> 1 and 1<-/ S and i<-/ S)

g(2, {3,4}) = min { c23 + g(3, { 4 }), c24 + g(4, {3})} = 25;

g(3,{2,4}) = min{ c32 + g(2,{4}), c34 + g(4, {2})} = 25;

g(4, {2,3}) = min { c42 + g(2, {3 }), c43 + g(3, {2})} = 23;

Fin a 11 y, calculate when loop control variable i is 4:

g(l,{2,3,4} = min{c12 + g(2, {3,4}), c13 + g(3, {2,4}),

c14 + g(4, {2,3})} = 35;

53

The Top level description of TSP in Parallax might look as in Fig

4.23.

TSP_Par

Fig.4.23 Top level design

54

ReadData node reads data like the number of cities and edge length
matrix and put them in Table_Stor. The find_min_ v is a compound
loop. This loop repeats n-1 times and sends the result to the
Write_min node. The Write_min node outputs the min value. Fig.24
shows the expansion of compound loop find_min_ v.

)

55

find_min_u

Table-5tor

rite...rnin

Fig.4.24 Expansion of find_min_ v

This compound loop will be executed n-1 times from i = 2 to i = n.
In find_min_v, n-lPi processors will be executed in parallel. For
example, when n = 4 and i= 2, 6 processors will execute in parallel,
each computing one of 6 paths described in the second step of the

example. Then do_in_par saves the result in temp_stor.

56

do_in_par

Fig.4.25 Expansion of do_in_par

The lookup_table replicator refers to two tables, one is Table_stor
and the other is temp_stor to find the next step solution. Table_Stor
has the original distances matrix and temp_stor has the previous
results. The select_min node selects minimum value among the same
starting and ending point paths. For example, when i = 3, it selects 25

for g(2, { 3 ,4 }).

Finally, when the compound loop finishes its execution, it sends the

minimum value to Write_min. Write_min writes the minimum value

to storage.

)

)

57

5. Implementation

5 .1 Design Consideration

Making an Easy-to-use, fast, small, maintainable and portable

software is not easy, because these attributes conflict with one
another. Therefore, a designer must make "trade-offs", which is not
easy either. The major design considerations in designing Parallax
are :

- Easy to use:

Parallax takes advantage of icons and Macintosh Standard User
interface. Parallax incorporates a menu bar, a group of icons that are
on the Tools palette, basic working space.

- Portable

Portability is a big issue especially when many people work together.
PPSE project has a lot of subprojects , some of them use different
machines and moreover target machine may vary. For this reason,
we chose ASCII File format so that we can communicate with each
other.

- Maintainable

Structural design and OOD(Object-Oriented Design) concepts are rules

that guided the design and implementation of Parallax. OOD takes
more time to define modules and design inter-module dependencies,

but the result source code is more understandable and modifiable.

)

58

5.2 Data Structure

To represent all the symbols and arcs on the screen, Parallax
uses a clustered linked list in which symbols and arcs may be

inserted, deleted, dragged or inspected at any moment. The linked

list structure of Parallax is shown in Fig 5.1. Handles were used

instead of pointers because handles are relocatable and will prevent
memory fragmentation. An object has 6 handles, each of them used

for different purposes. ObjectFriend Handle is used to point to the
next object in the window. If there is an Arc between Object A and B
then, these two objects are connected by SuccConn and PreConn,
otherwise SuccConn and PreConn are set to NIL.SuccConn and
PreConn are also handles, that form a linked list. ChildObject points
to the first object of next level that associates with the object.
WindowTo field points to the window that shows all objects of the
next level. For example, WindowTo field of Object A shows all
children objects of A. One handle, the OBJ_topHeadHdl points to the

very first object in the list so that searching whole linked list is easy.
Also windowObjectHdl points to the first object in the window for the

same reason.

)

)

Window

nil

Obj_to HeadHdl

Symbol Name
Symbol ID

object Friend

PreConn

DocWindow

WindowTo

ChildObject

Symbol Name
Symbol ID

ID

nil extPre

preConn

arcName
arcID

arc Vars

succConn

object Friend
__ _... ____ nil

eConn

DocWindow

WindowTo
nil

Child Object
nil

Fig 5.1 Data Structure

Symbol Name
Symbol ID

object Friend

PreConn

DocWindow

WindowTo

ChildObject

59

---+-..,.. nil

---+~~ nil
succConn

nil

nil

As . an example, Fig 5 .2 has 4 objects on the toplevel. N odeA has Arc
to NodeB, NodeC,and has children Object a0, al. Fig 5.3 shows data

structure for Fig 5.2. example of PPDesign .

60

Fig. 5.2 An example of Parallax design

)

Fig.5.3 Top level data structure of Fig.5.2

)

6 1
6. Conclusion

Parallax is powerful enough to express parallelism and to

provide information for automated schedulers and performance

analyzers. Parallax also integrates the design and coding , phase of the

software life cycle. However, only through real practice and

experimentation will the ultimate solutions to the parallel software

design . problem emerge.

My experience of Parallax 1s easy to use, a natural way to express

parallelism and very useful tool for designing and implementing

parallel programs.

)

62

7. Further Research

Parallax has several problems:

1) The syntax of the graphic notation 1s sometimes not clear.

2) According to the current definition of Parallax, a primitive symbol

can have any type source code, but I think that a primitive symbol
should have only procedure or function level code, otherwise the

system provides heading part of it to make it procedure or function

level. A good reason of doing this is to improve reusability of both

source fragments and PP Design files.
3) Data arc definition in Parallax can represent almost anything. This

is confusing. There are design inconsistencies in drawing arcs too.

4) Firing rules are also not clear. These unclear definitions make

clear design difficult.

I think we need to test Parallax with more example programs to

develop and redefine the tool to make it real good stuff.

)

Possible research areas are:

1) Developing a conversion algorithm that converts PP Design into

task graphs.

2) Developing intelligent debugging tools.

3) Extending Parallax

- How to minimize communication overhead among tasks

automatically or semi-automatically.

- How to improve reusability of both code fragments and PP

Design file.
- Refining the firing rule of each task.

- Refining the rule for drawing arcs between tasks.
- Type declaration functions.

4) Depveloping standard synchronization patterns

63

Nonrepeatable · errors(time dependant error) are most difficult

to debug. In [18], it was pointed out that, "As long as programmers

are responsible for managing synchronization, it will be extremely

difficult to know that all possible timing errors have been

eliminated". We need to develop standard synchronization patterns
if possible and encapsulate them as completely as possible.

5) Develop a source-level tool for prediticting execution Times of

tasks.

6) Providing user-defined structures.

7) Developing a formal representation of Parallax

8) Developing forms to express data parallelism.

9) Developing forms to express dynamic data structure.

10) Developing non-Linda vers10n Code generator.

11) Developing Ii braries

12) Developing standard program partitioning patterns

)

64

Appendix A. Parallel Architectures

It is possible to discern four major divisions which have been

widely examined: Pipeline and vector processors, SIMD machines,

Shared memory architectures and Message passing multiprocessors

[12]. Last two categories are our main concern in PPSE project.

A. I Pipeline and Vector Processors

Pipeline and Vector Processors focus mainly on internal
parallelism, i.e. parallel operation within a single processor. The

architectures are characterized by high computation speed, large

main memory and fast, large secondary storage support. Concurrency

is achieved through multiple functions and logic units, assorted
pipelines, multiple large high-speed register files, associative

memory and fast memory access via interleaving etc. All of the

architecture provide hardware support for vector instructions which

operate on full vector operands through pipelining.

A.2 SIMD Machine

SIMD machine consist of a collection of synchronized processing

elements(PEs) with an associated control processor. The control

processor broadcasts the same instruction stream to all PEs. Each PE

has some form of enabling facility such that if it is enable then

broadcast instructions are executed on local data; this provides the

ability to perform branching. This machines are useful for limited

class of problems which have simple control flow and operate on

large amounts of data. The main reason for this restriction is that the

architectures are particularly susceptible to sequential code

segments and branching; these result in poor processor utilization

and load balancing difficulties.

)

_)

65

A.3 Shared Memory Architectures

Theoretically, shared memory computers employs a large

number of identical processors which share a common memory. The

processors may read simultaneously in a single cycle; any number of

processors may write to memory simultaneously. A memory cell to

which a number of writes occur simultaneously contains one of the

values written(or a random value/minimal value, etc.). For this

reason, shared memory machines provide the ability to synchronize

processes when many processors access a shared variable.

A.4 Message Passing Models

Message passing models have a collection of processors which

do not share memory but communicate and synchronized by sending

messages. Each processor is an independent MIMD machine with

attached local memory. Two approaches to utilizing machines of this

class have been investigated based on synchronous and

asynchronous message passing.

)

)

Appendix B. Parallax File Format.

Parallax -> Win

Win ->'$**WinSt **$' Symbol_List '$**Win Ed**$'

Symbol_List -> Symbol !Symbol Symbol_List le

Symbol ->'$Symb St$' Symbol_Info Pre_List Arc_Data '$Symb Ed$'

-> '$Symb St$' Symbol_Info Pre_List Arc_Data '$Symb Ed$' Win

Arc_data

Arc_List

Arc_Info

Pre_List

Preds

-> '$StArc$' Arc_List '$EndArc$'

-> e I Arc_Info I Arc_Info ArcList

-> '()' Arc_Rec '()'

->'(Pred Obj St)' Preds '(Pred Obj Ed)'

-> e I Pred I Pred Preds

66

AppendiH C. Dialogs for symbols and arcs.

Followings are dialogs for different symbols and arcs. Brief

description of each session for each dialog are given.

C.1 Dialogs for entering symbol information.

· 1) Node dialog

Information For Node

Name:

Compound: ONo ® Yes

Est. EHec. Time:

Documentation: @No 0 Yes

(Cancel) GJ
Fig. C.1 Dialog for NODE

67

N a me: This editing session lets you specify name of the symbol.

Compound: These two radio button lets you specify whether symbol

is compound or simple.

[st. [He c. Time: This editing session lets you enter estimated

execution time of this node.

no cum en tat ion: These two radio button lets you specify whether

documentation is ON or OFF. Initially, documentation is OFF and after

you close this dialog, you won't see documentation. But if you set to

documentation ON, you will see documentation window for that

symbol after you close the dialog.

)

2) Replicator dialog

Information For Replicator

Nome:

Control Uarable:

Initial Uolue:

Upper Bound:

Step:

Compound: QNo @Yes

Est. Exec. Time:

Documentation: @No QYes

(Cancel) n OK n
Fig. C.2 Dialog For Replicator

Cont ro I u aria b I e: This session is for entering name of control

variable.

68

In it i a I U a I u e: This session is for entering initial value of the control

variable.

Upper Bound: This session is for entering upper bound value of the

control variable.

Step: This session is for entering step value of the control variable.

3) IfThenElse dialog

Information For ITE

Name:

1
1
1 Est. Exec. Time:

Documentation: @No QYes

(Cancel) n OK n
Fig. C.3 Dialog for IfThenElse

J

69

4) FAN dialog

Information For FAN

Nome:

1~ Est. EHec. Time:

Num. Of Porollel Cons:

Uocumentotion: @No OYes

(Concel) rr OK D
Fig. C.4 Dialog for FAN

Number Of Parallel constructs: This editing session lets you specify

how many parallel constructs this Fan has.

5) Storage dialog

Information For Storoge

Nome:
11 Uoriobles:

Compound: ONo ® Yes

Documentotion: @No 0 Yes

(Concel) IT OK D

Fig. C.5 Dialog for Storage

U a ri ob I es: This editing session lets you specify name of variables in

this storage. If you type variables, the system will show dialog
shown in Fig. C.6 for each variable. Variables are separated by "," if

more than one.

70

Pleose specify Doto Type !

Ila I Has .__[mt_t~_g_e_r ___ __,

(Cancel) [OK]

Fig. C.6 Dialog for specifying data type for each variable

)

7 1

6) Loop dialog

I nformotion For Loop

Nome:

Loop Type: @ ForO while O Repeot

Compound: 0 No @Yes

Condition:

Control Uoroble:

I nitiol Uolue:

Upper Bound:

Step:

Est. Exec. Time: 1

Documentation: @No 0 Yes

(Cancel) OK D
Fig. C.7 Dialog for Loop

Loop Type: These three radio button lets you specify whether loop 1s

For, while or Repeat.

C on di ti o n: This editing session lets you specify the condition of the

loop if you select as either while or repeat on loopType session.

Cont ro I u a ri t1 b I e: This session is for entering name of control

variable if you select as for loop on loopType session.

In it i t1 I U a I u e: This session is for entering initial value of the control

variable if you select as for loop on loopType session.

Upper Bound: This session is for entering upper bound value of the

control variable if you select as for loop on loopType session.

Step: This session is for entering step value of the control variable if

you select as for loop on loopType session.

)

)

72

7) Pipe dialog

I n f o rm at ion For Pipe

Name:

Num.0f Iteration:

Num. Of Stages:

Documentation: @No 0 Yes

(Cancel)

Fig. C.8 Dialog for Pipe

Number Of Iteration: This editing session lets you specify how many

times it should be executed this pipe.

Number Of St ages: This editing session lets you specify how many

stages this pipe have.

8) Split dialog

I n form a ti o n For Sp Ii t

Name:

Condition:

Documentation: QNo OYes

(Cancel) a OK D
Fig C.9 Dialog for Split

)

)

)

73

9) Merge dialog

Information For Merge

Name: 11

Merge Type: @AND QOR

Documentation @No 0 Yes

(Cancel) a OK ~
Fig. C.10 Dialog for Merge

Merge Type: These two radio button lets you specify whether merge

is AND or OR merge.

)

)

74

C.2 Dialogs for entering arc information

1) Data arc dialogs: Data arc can be either Simple arc or Compound

arc. If a data arc connect two simple symbol, it is simple otherwise

compound. If it is connected to storage, it should have radio button

for expressing mutual exclusion. Therefore, we need four different

kind of dialogs and the system automatically show appropriate dialog

for each arc. Followings are four different dialogs and brief

description is given for each session.

Information For Data Arc

.Name:

Uariables:

Num. Of Iteration: 0

Message Size: 0 IByt es

Documentation: ® No O Yes

(Cancel)

Fig C.11 Dialog for Simple Data Arc

A re Usage: These three radio buttons lets you specify whether arc is

to write, read or read/write if it is connected to storage.

Number of It e nit ion: This editing session lets you specify how many

times data will be passed through this arc.

Mess Hg e Size: This editing session lets you specify how many byte

will be passed through this arc.

)
Information For Data Arc

Name:

Uariables:

Message Size: O I Bytes

Documentation: @No O Ves

(Cancel) GJ
Fig C.12 Dialog for Compound Data Arc

Information For Data Arc

Name:

Uariables:

Arc Usage:

Mutual EHclusion:

Num. Of Iteration:

Message Size:

Documentation:

(Cancel)

QR @W QR/W

@No O Ves

I~ I ---~I Bytes
@No 0 Ves

Fig C.13 Dialog for Simple Data Arc for Storage

75

Mu tu a I EH c I us ion: · These two radio buttons lets you specify whether

arc is mutually excluded or not.

)

j

76

Information For Data Arc

Name:

Uariables:

Arc Usage: QR @W QR/W

Mutual EHclusion: @ No O Yes

Message Size: ~I o ____ ~IBytes

Documentation: @No O Yes

(Cancel) ICEJ
Fig C.14 Dialog for Compound Data Arc for Storage

2) Control Arc dialog:

Information For Control Arc

Name:

Probablity:

Documentation: @ No OYes

(Cancel) ((OK J)
Fig.C.15 Control Arc

Prob 11 bi Ii t y: This editing session lets you specify the probability of

this arc will be activated.

)

References.

1) Apple Computer, Inc.

"Inside Macintosh", May 1986, Volumn I, II.

2) Hesham El-rewini, and Ted Lewis

"Software Development in Parallax:The ELGDF"
Computer Science Department, Oregon State University,

Corvallis Or 97330, 1988.

3) Ted Lewis
"CASE computer Aided Software Engineering"

Computer Science, Oregon State University,

Corvallis, OR 97330

4) Stephen Chernicoff

"Macintosh Revealed", 1987 Volumn I, II.

Hayden Books.

5) OACIS TR-PPSE-89-1
"Parallel Programming Support Environment Research."

6) W.G. Rudd, El-Rewini, Scott Handley, D. V.Judge, Inkyu Kim

Status Report:"Parallel Programming Support Environment

Research at Oregon State University"

7) Daniel D. Gajski, Jih-Kwon Peir

8)

"Essential Issues in Multiprocessor System"

IEEE Software, pp.9-27 June 1985.

J.C. Brown, Muhammad Azam, Stephen Sobek

"CODE:A Unified Approach to Parallel Programming"

IEEE Software pp. 10-17 July 1989.

77

1

)

78

9) Vincent A. Guarna, Jr. Gannon, Jablonowski, Malony, Gaur

"Faust:An Integrated Environment for Parallel Programming"

IEEE Software pp. 20- 26 July 1989.

10) Bill Appelbe, Kevin Smith

"Start/Parallel-Programming Toolkit"

IEEE Software pp. 29- 38 July 1989.

11) Constantine D. Polychronopoulos
Parallel Programming and Compilers.

Kluwer Academic Publisher. 1989

12) Stephen Taylor

"Parallel Logic Programming Techniques"

Prentice Hall. 1989

13) Zhiwei Xu, Kai Hwang
Molecule: A Language Construct for Layered Development of

Parallel Programs.
IEEE Transaction on Software Engineering. May 1989.

14) Zary Segall, Larry Rudolph

PIE: A Programming and Instrumentation Environment for

Parallel Processing .

IEEE Software November 1985.

15) H. Muhlenbein, 0. Kramer, F. Limburger,Streitz.

MUPPET: A programming environment for message-based

multiprocessors.
Parallel Computing 8 (1988)P.201-221 North-Holland.

Elsevier Science Publishers B.V.

)

)

)

16) George S. Almasi, Allan Gottlieb
. Highly Parallel Computing

The Benjamin/Cummings Publishing Company 1989.

1 7) Raphael A. Finkel

Large-grain parallelism - Three case studies

The characteristics of Parallel Algorithm.

The MIT Press 1987.

18) James R. McGraw and Timothy S. Axelrod

Exploiting Multiprocessors: Issues and Options

79

Programming Parallel Processors, Addison-Wesley, Reading,MA
19) Vivek Sarkar

Partitioning and Scheduling Parallel Programs for

Multiprocessors

The MIT Press, Cambridge, MA 1989

