
l
I
I
J

H
j

Li

J

J

Implementation of Processor Allocation in an N-Cube

Multiprocessor on Macintosh

by

Jinyue Liu

A research project submitted to Oregon State University in partial

fulfillment of the Degree of Master of Science

Committee Members:

Dr. Bella Bose

Dr. Toshi Minoura

Dr. Bruce D'Ambrosia

Department of Computer Science

Oregon State University

Corvallis, Oregon

April, 1990

l
fl
n
n
n
n
I
l
d
1

I
IH
d
l J

u

u
u

Abstract

The processor allocation in an n-dimensional hypercube

multiprocessor using buddy strategy, gray code strategy, and a new

strategy is implemented on Macintosh. Our implementations show that

when processor relinquishment is not considered (i.e. static

allocation), all these strategies are optimal in the sense that each

incoming request sequence is always assigned to a minimal subcube.

Our implementations also show that the gray code strategy

outperforms the buddy strategy in detecting the availability of

subcubes, and furthermore, when some faulty processors are

considered or processors are allocated dynamically, the new strategy

does better than the buddy strategy or gray code strategy in subcube

recognition.

l
n
n
n
n
n
l
l
ll
)

)

{i

I
u
u
j

u

Table of Contents

1. Introduction

2. Processor Allocation Strategies

3. User Interface

4. Implementation and Simulation Results

5. Summary

References

l
~

n
n
n
l
]

I
]

I
I
H
j

d
j

J

u
LI

1. Introduction

This project implements the processor allocation in an N-cube

multiprocessor using three strategies, i.e. buddy strategy, gray code

strategy[4], and the new strategy proposed by AI-Dhelann and Bose[1].

What is an hypercube? An hypercube is a network of loosely

coupled processors connected in such a way that two processors are

linked if and only if their binary representation differ in exactly one

bit position, i.e. the indices of neighboring processors differ by a

power of 2.

A n-dimensional hypercube, denoted as n-cube or On, is a

hypercube with 2n processors and is defined recursively as: A

0-dimensional hypercube, Q0 , is a single processor, and an

n-dimensional hypercube is two (n-1)-dimensional hypercube with

links between corresponding processors in each of them. Fig.1.1 and

Fig.1.2 show a 0 4 and a 0 5, hypercube respectively.

Fig.1.1 4-dimensional hypercube, ~

-1 -

l
n
n
n
n
fl

l
J

I
lJ

j

J

u
u

Fig.1.2 5-dimensional hypercube, Q5

A task arriving at a hypercube multiprocessor --- this is called

an "incoming request" --- can be specified in graph form and must be

assigned "optimally"(in some sense) to a subcube in the

multiprocessor for execution. Upon completion of execution, the

subcube used for the task must be released(relinquished or

deallocated) for later use. Efficient allocation and/or deallocation of

node processors in a hypercube multiprocessor is a key to its

performance and utilization. Each incoming task to an n-cube

multiprocessor is described by a graph, in which each node denotes a

module of the task and each link represents inter-module

communication. Each module must be assigned to a subcube so as to

preserve node adjacencies in the associated task graph. Thus,

processor allocation in an n-cube multiprocessor consists of two

-2 -

l
~

n
n
n
n
I
l
II
l

'i
J

J

l
J
J
u
u

sequential steps :

1) Determination of the dimension of the subcube required to

accommodate all the modules of each incoming task and allocation

of modules of the task to nodes within the subcube.

2) Recognizing and locating each subcube that can accommodate the

incoming task.

In this project, we are only concerned the second step in which

several processor allocation strategies are used to implement the

recognition and location of the subcubes in the n-cube system,

assuming that all the incoming task graphs have already been

embedded into subcubes[S].

2. Processor Allocation Strategies

In an N-cube multiprocessor, processors must be allocated to

incoming tasks in a way that will maximize the processors utilization

and minimize the system fragmentation. In order to achieve this goal,

it is necessary to detect the availability of a subcube of required size

and merge the released small cubes to form a larger ones. Following

are the processor allocation strategies to be used in implementation

later.

• Algorithm 1 (Buddy System Strategy)

Processor Allocation:

Step1 .Set k to the dimension of a subcube required to

accommodate the request.

Step2. Determine the least integer a, O ::; a::; 2n-k - 1, such that

-3 -

l
l
n
n
n
n
I
I
I
I
I
H
J

lJ
j

j

J

all ,8th allocation bits, a2k :s; ~ :s; (a+ 1) 2k -1, are O's. Set all

these bits to 1 's.

Step3.Allocate processors with addresses Bn(~) to the request,

where

a2k :s; ~ :s; (a+1)2k -1.

Processor Relinquishment:

Reset every pth allocation bit to 0, where Bn(P) is used in the

subcube released.

Note: Bn(P) above is the binary representation of an integer p with n

bits. e.g. B3(1)=001, B4(3)=0011.

• Algorithm 2 (Gray Code Strategy)

Processor Allocation:

Step1 .Set k to the dimension of a subcube required to

accommodate the request.

Step2.Determine the least integer a, O :s; a :s; 2n-k+1 - 1, such that

all (~ mod 2n)th allocation bits are O's, where a2k- 1 :s; ~ :s;

(a+2) 2k-1 - 1. Set all these bits to 1 's.

Step3.Allocate nodes with addresses Gn(b mod 2n) to the

request, where

a2k-1 :s; ~ :s; (a+2)2k-1 - 1.

Processor Relinquishment:

Reset every pth allocation bit to 0, where Gn(P) is used in the

subcube released.

Note: Gn(m) is the BRGC (Binary Reflected Gray Code) representation

of m. e.g. G4 (3) = 0010. Following formula can be used to translate the

-4 -

~

n
n
n
fl

l
1
tl

J

H
I
u
u
J

gray code to its corresponding binary representation and vice versa:

gi = bi xor bi+1 i -::t; n

Note:

gn = bn

• Algorithm 3 (New Strategy)

Processor Allocation:

Step1 .Set k to the dimension of a subcube required to

accommodate the request.

Step2.Determine the least integer a, O ~a~ 2n-k+1 - 1, such that

B n-k+ 1 (a) is free and it has a pth, O ~ p ~ n-k, partner

BPn-k-1 (a) which is also free. Take p as small as possible.

Step3.Allocate these processors to the request, and set their

allocation bits to 1.

Processor Relinquishment:

Reset the allocation bits of all the processors that correspond to

the descendants of the nodes Bn-k+1 (a) and BPn-k-1 (a) to 0.

1) The ath partner of ak_1ak_2 ... aa+1aaaa_1 ... a0 for any O ~a~ k-1

is defined as

ak-1 ak-2 .. . aa+ 11 aa-1 .. ,ao

undefined

if aa = 0

if aa = 1

We denote the pth partner of Bk(i) as 8Pk(i).

2) For any integer a, 0 ~ a ~ 2n-k+1 - 1, the node Bn-k+1 (a) is free if

and only if all of its descendants are free. e.g. for n = 4 and k = 2,

-5 -

l
n
n
n
n
n
]

l
1

I
H
u
LI

u
j

u

the node 000 is free if and only if the processors 0000 and 0001 are

free.

3. User Interface

Fig.3.1 shows the screen for the main menu for the hypercube

application environment.

/ • File Edit Strategies Layout

Fig.3.1 The main menu of the Hypercube application

3.1. Apple Menu (Fig.3 .2)

File Edit Strategies Layout

About Hypercube ...

Calculator

Chooser

Control Panel

Key Caps

Scrapbook

Fig.3.2 Apple menu

-6 - .

l
~

n
n
n
n
I

rl

11

l
I J

A

I
u
I
u

u

• About Hypercube ...

This item gives an About dialog (Fig .3.3) that displays

author information, project information, and version information. The

main purpose is to provide user quick information about the

application.

• Desk Accessories

The other items include desk accessories which depend on

your Macintosh system file.

♦

..
•

•
+

•

♦

♦

. . . .
. . ..
. HVPERcub~, -Yersior1_ 1.0

. . •· by

JINVUE Ll ·U

+

♦

• ♦ •

Depat~me~t of ~o~~·uter Sc~ence ·.

_; _·Qrego~ Sta.te· Ura_iversit_y
. .

• Corva.~.Hs,- Oregon
.. • ..

+ .

Fig.3.3 About dialog

-7 -

1

~

n
n
n
n
I
n
fl

I
]

H
I
u
u
u

u

/

3.2 File Menu (Fig.3.4)

• 111 r:::11 Edit Strategies Loyout
....

New ... XN
Open ... XO
CIOH~

...

Saue
Saue Rs ... XS

••• •••• •• •.,• •• •• ••• •• •• ••• •••• ••.,• • n •••• • •• • •• •••• ••

Quit XQ

Fig.3.4 File menu

• New

This command is intended to set up a diagram window

with a hypercube in it whose size is given by users.

• Open

This command is used to load an already existing diagram

in memory.

• Close

This command is used for closing any window that appears

on the screen.

• Save

This command is used to save the diagram with its

existing name.

-8 -

l
~

n
n
n
I l
I
l

f I
I
I
H
J

J

u
u

u
u

/

• Save As ...

This command is used for saving the diagram with another

name.

• Quit

This command as usual is used for quiting the application.

3.3 Edit Menu (Fig.3.5)

• File 1:r.11■ Strategies Layout "
Allocate ... XA

Faulty ... XF

Show ►
Release ►

. Fig.3.5 Edit menu

• Allocate ...

This command allocates the available processors to the

incoming task according to some strategy chosen

previously by users.

• Faulty ...

This command allows users to give the faulty processors.

-9 -

1

n
~

n
n
fl

I
l

11

)

J

H
J

ll
j

J

J

u

• Show

This is a submenu. It includes all the existing tasks that

can be showed.

• Release

This is a submenu. It includes all the existing tasks that

can be released.

3.4 Show Submenu

This menu allows users to show whatever the existing task he

wants (Fig.3.6).

a File Strategies Layout

te... 3€H

Tosk_l
l<l~k 2

Tosk_3
Tosk_4
Tosk_5

l<l~k 6

Tosk_7
Tosk_8

Fig.3.6 Show subrnenu

Here we use the new menu feature: hierarchical menu, which is

l
~

n
n
n
n
I
n
f I
1

J

H
I
l I

J

J

u
LI

used for lists of related items, such as tasks, to keep them simplicity

and clarity. A hierarchical menu is a logical extension of the current

menu metaphor: another dimension is added to a menu, so that a menu

item can be the title of a submenu. When the user drags the pointer

through a hierarchical menu item, a submenu appears after a brief

delay.

Hierarchical menu items have an indicator (a small black

triangle pointing to the right, to indicate "more") at the edge of the

menu, as illustrated in Fig.3.6 and Fig.3.7.

3.5 Release Submenu

This command allows users to release whatever the existing

task he wants (Fig.3.7). Once a task is released, it can not be showed

or released again and the correponding menu item is dimmed(as is

Task_2 and Task_6 in Fig.3.7).

-11-

l
n
n
n
n
n
I
n
l) .

I
H
I
j

j

u

u

S File Strategies Layout

Rllocate... XR

Faulty... X F

Show ►

Release ►
------.

Task_l

l<l~k 2

Task_3

Task_4

Task_5

l<l~k. ... 6

Task_7

Task_8

Fig.3.7 Release submenu

3.6 Strategies Menu (Fig.3 .8)

This menu consists of three menu items representing three

strategies which can be chosen by users.

Ii File Edit Strategies Layout

✓ Buddy

Gray_Code

New Strategy

XI

3€2

3€3

Fig.3.8 Strategies menu

-12-

l
n
n
n
n
n
I
1
[J

J

J

ll
1

J

3.7 Layout Menu (Fig.3.9)

• File Edit Strategies

Reduce To Fit

TeHt

Fig.3.9 Layout menu

• Reduce To Fit

This command is used for viewing entire hypercube in

reduced size.

• Text

This command lists all the existing tasks and the faulty

processors in binary representation in a text window.

4. Implementation and Implementation Results

4.1. Implementation

The user can create a new hypercube by selecting the New

command in File menu. First, a dialog will come up allowing users to

give the hypercube order (Fig.4.1).

-13-

l
n
n
n
n
n

1

r 1

I
J
H
I
u
u
u
u

Please enter the hypercube order:

I..___ 4 ____.I ·

• OK II [. CANCEL

Fig.4.1 Enter hypercube order

After we give the hypercube order and click OK button, a diagram

window with hypercube in it will be set up (Fig.4.2).

-14-

l
n
n
n
n
n
I
7
I

fl

lJ
I
J

u
u

Hypercube

: •:•:•

111111
:-:-: -

lilill
mm

.. ...
.

Fig.4.2 4-dimensional hypercube, ~

Here each circle stands for a processor and processors connected

by line or arc are neighbors. In a two dimensional plane, to draw an n

dimension hypercube will result in many line or arc crosses among

node connections. In order to reduce the crosses, we design a very

special way to arrange the processor location.

The next step is to allocate the processors to the incoming task.

This can be achieved by choosing the Allocate command in Edit menu.

A dialog will pop up allowing users to enter the task size or subcube

order (Fig .4.3). But remember to pick up the strategy you want before

you allocate processors. The default strategy will be the buddy

-15-

1

n
n
n
n
I]

I
l
I

H
u
j

j

u
u

strategy when a new hypercube is created. After you enter the task

size and click OK button, those processors allocated to this task will

be shaded-in (Fig.4.4).

Please enter the task size:

II OK B CRNCEL

Fig.4.3 Enter task size

-16-
. I

l
n
n
n
n
fl

I
r]

d
I]

11

H
u
u
u
u

Hypercube

Fig.4.4 Processor allocation with requests 11 = Q2, 12 = Q1 using Buddy Strategy

The tasks are given sequentially in Show and Release submenu.

A user can display whatever task he wants by selecting the task in

Show submenu. Those processors or nodes belonging to this task we

choose will be blinking until the mouse is pressed down. Once the task

is finished, these processors belonging to the task may be

relingquished. Release submenu can do this by choosing the task in

the Release submenu. The processors belonging to the task we choose

will be blanked after release and can be allocated to incoming task

later.

This application also provides users an opportunity to give some

faulty processors. The faulty processor could be assumed by users

-17-

l
n
n
n
n
n
I
l
i]

I J

1

I H
I
lJ

J

J

giving the processor number in a dialog which will be brough up when

selecting Faulty command in Edit menu. The faulty processor is

represented by a black node and it can be either the busy processor or

the idle processor (Fig.4.5). But the faulty processor can not be

recovered once it is assumed fault.

Hypercube

111111

111111
:,:,:,

...
........ -... ···········

Fig.4.5 Hypercube with a faulty node 15

An entire hypercube can be viewed by the Redoce To Fit menu

choice available in the Layout menu (Fig.4.6). This is useful especially

when the hypercube order is large and the user can not see the entire

hypercube on the screen in the normal size. The application also

provides the user with a text window that shows all the existing

-18-

1

n
n
n
n
l
I
~

J

I
l
H
J

j

J

u

u

tasks with the processors represented in binary and all faulty

processors (Fig.4.7). The text window can be opened by selecting the

text item in the layout menu and can be hidden by clicking the close

box. The contens of the text window is keeping updated automatically

every time the diagram is changed.

l ,.--H"l --. ~
I,

, , ,;

~
.,.. -H

u_ -
1,,- = = r-, ~ ,. '-~ \ "\i \, "' .I r...,lJ
--....::::- ~

[(OK)]

Fig.4.6 Reduced view of the 5-Cube

-19-

l
n
n
n
n
~

I
I

I l
I
J

H
J

u
u
I
u

Hypercube task assignment table ~

TASK_ 1 (buddy)

0000 0001 0010 0011

T ASK_2 (buddy)

0100 0101

Faulty Processors

1 1 1 1

Fig.4.7 Text window corresponding to Fig.4.5

4.2. Implementation Results

i) Static Allocation Test

A test of the static processor allocation using three strategies

in a 4-cube multiprocessor is given in Fig.4.8 . Following are the

incoming request numbers li's and their sizes Oi 's:

I 1 = Oo , 12 = 03 , 13 = 02 , 14 = 01 , Is = Oo .

-20-

l
n
n
n
n
0
I
l
ti
r J

d
H
j

u
Li

J

u

•

□ TeHt

Hypercube task: assignment table IQ

TASK_ 1 (buddy)

0000

T ASK_2 (buddy)

1 000 1001 101 0 10 1 1 1 1 00

1101 1110 1111

TASK_3 (buddy)

0100 0101 0110 0111

T ASK_4 (buddy)

0010 0011

T ASK_S (buddy)

0001

No Faulty Processors

Fig.4.8.a Processor allocation using buddy system

-21-

l
n
n
n
n
l]

I
~
]

J

J

H
J

u
I
J

·J

□ TeHt

Hypercube tosk assignment toble -

TASK_ 1 (grey_code)

0000

TASK_2 (grey_code)
0 1 1 0 0 1 11 0 10 1 0 100 1 100

1101 1111 1110

TASK_3 (grey_code)
1010 1011 100 1 1 000

TASK_4 (grey_code)

000 1 0011

TASK_S (grey_code)
0010

No Foul ty Processors

111111

!!!ill

Fig.4.8.b Processor allocation using gray code system

-22-

l
n
n
n
n
n
I
1
t1

J

n

J

u
j

J

□ TeHt

Hypercube t~sk assignment table -

TASK_ 1 (new stretegy)
0000

TASK_2 (new stretegy)
0100 0101 0110 0111 1100

1101 1110 1111

TASK_3 (new stretegy)
00 1 0 00 1 1 10 1 0 101 1

TASK_4 (new stretegy)
0001 1001

TASK_S (new stretegy)
1000

No Faulty Processors

TI
rnrn

Fig.4.8.c Processor allocation using new strategy

The results show that all these three strategies are optimal in the

sense that each incoming request sequence is always assigned to a

minimal subcube, and furthermore, from Fig.4.8.c we can see that the

new strategy compacts things to the left which result in less system

-23-

l
n
n
n
n
n
I

l

I
H
j

Li
J

J

fragmentation; thus the new strategy recognizes more subcubes.

ii) Dynamic Allocation Test

Following are a series of requests:

I 1 = 02 ' 12 = 02 ' 13 = 02 ' 14 = 02

After allocation, release tasks 11 and 13 . Now try allocating

processors to incoming task 15 = 0 3 . A stop alert dialog will suggest

that using other strategies may satisfy this (Fig.4.9).

Our results

request, but

There is no way to assign the task.

Try other strategies !

OK)]

Fig.4.9 Stop alert dialog

show that the buddy strategy will not satisfy this

gray code strategy and new strategy will satisfy this.

This means that gray code strategy and new strategy outperform the

buddy strategy in detecting the availability of subcube.

-24-

l
n
n
n
n
fl

I
n
l J

j

I
H
1

[J

lJ .

Another series of requets is

11 = 01 ' 12 = 02 ' 13 = 01 ' 14 = 03

After allocation, release tasks 11 , 13 and reallocate the processors

to in coming request 15 = 0 2 , then both buddy strategy and gray code

strategy will not be satisfied. But the new strategy will satisfy this

which means that the new strategy outperforms both buddy strategy

and gray code strategy.

iii) Fault Tolerance

In a 4-cube multiprocessor with the processors

0000,0001, 1000, and 1001 faulty, consider the requests { 11 = 0 3 , 12

= 0 2 }. Our result shows that neither buddy system allocation nor

gray code strategy will be able to satisfy this. But the new strategy

will satisfy this (Fig.4.10). This means that when some faulty

processors are cosidered or processors are allocated dynamically the

new strategy does better than buddy strategy or gray code strategy.

-25-

l
n
n
n
n
fl
l
I

I
, J

H
J

u
j

J

u

Hypercube TeHt

Hypercube task assignment

TASK_ 1 (new strategy)

0100 0101 0110 0111

1101 1110 1111

TASK_2 (new strategy)

00 1 0 00 1 1 1010 101 1

Faulty Processors

0000 000 1 1000 1001

Fig.4.10 Processor allocation using new strategy with processors 0, 1, 8, 9 faulty

5. Summary

We have presented the design and implementation of the

processor allocation in an n-cube multiprocessor using several

processor allocation strategies on Macintosh microcomputer. We

design an easy way to draw the n-dimension hypercube in the

2-dimension plane and users can easily simulate the processor

allocation in an n-cube multiprocessor using some processor

allocation strategy. A text window is also provided for users to look

at the task assignment textually.

-26-

I
n
n
n
n
fl
l
1
]

j

[I

H
j

u
l
J

u

References

[1] A. AI-Dhelaan and B. Bose, "A New Strategy for Processors
Allocation in an N-Cube Multiprocessor," Computer Science
Department, Oregon State University, 1988.

[2] Apple Computer, Inc., Inside Macintosh, Vol. I, II, and V,
Addison-Wesley Publishing Company, Inc.

[3] Stephen Chernicoff, Macintosh Revealed, Vol. I and II.

[4] M. Chen and K. G. Shin, "Processor Allocation in an N-Cube
Multiprocessor Using Gray Codes," IEEE Trans. Comput., Vol. C-36, Dec.
1987, pp. 1396-1407.

[5] M. Chen and K. G. Shin, "Embedment of interesting task modules
into a hypercube multiprocessor," in Proc. Second Hypercube Cont.,
Oct. 1986, pp. 121-129.

[6] Y. Saad and M. H. Schultz, "Topological Properties of Hypercubes,"
IEEE Trans. Comput., Vol. C-37, July 1988, pp. 867-872.

-27-

