
l
l
7

j

@00~@@00 ®U·ii\ U~ GJJOOOW~OO®OUW
[Q)~[F)£00Uffin~OOU @[p

©@[M][F)GJJIJ~OO ®©0[g00©~

94-60-3 April 1994

~[ffi@[M] ©@!M©rffi~li~ ~@lru[M]®

li@ @~!M~rffi£lb □ ~~[Q) £lID®lilru£©1f' □ @!M®

lf'[X] rffi@(W@[X] [F) ~ rffi ® [F) ~ ©lf' □ W~ 0 © rffi a~ !Mli~ [Q) £ !M £ lb W ®a®
@~ lb@@ □ ©£lb rffi~lb£li □ @!M®D-00[F)®

Sherry Yang
Margaret M. Burnett

' Oregon State University
Department of Computer Science

Corvallis, OR 97331

l
l
n
n
fl

n

l J

J

u
IJ
0

From Concrete Forms to Generalized Abstractions
through Perspective-Oriented Analysis Of Logical Relationships *

Sherry Yang and Margaret M. Burnett

Department of Computer Science, Oregon State University
Corvallis, Oregon 97331-3202 USA

E-mail: yang@research .cs.orst.edu, bumett@cs .orst.edu

Abstract
We believe concreteness , direct manipulation and

responsiveness in a visual programming language increase
its usefulness. However, these characteristics present a
challenge in generalizing programs for reuse, especially
when concrete examples are used as one way of achieving
concreteness. In this paper, we present a technique to
solve this problem by deriving generality automatically

· through the analysis of logical relationships among
concrete program entities from the perspective of a
particular computational goal. Use of this technique
allows a fully general form-based program with reusable
abstractions to be derived from one that was specified in
tenns of concrete examples and direct manipulation.

1: Introduction

We believe that concreteness, direct manipulation and
responsiveness are among the most important advantages
of working in a visual programming language. Toward
this end, users of Forms/3 [Burnett 1991; Burnett and
Ambler 1994] program very concretely, and receive
continuous visual feedback throughout the process. But
although they use direct manipulation and prototypical
values extensively and without restriction during
development, they do so with the expectation that the
program they enter in such a concrete fashion will work
the same way for any future values that might someday
replace the prototypical values. The problem that we
address in this paper is how to generalize the concrete
program that was entered so that this expectation of
generality can be fulfilled.

In solving this problem, we could not use the simple
generalization approach based on physical relationships
used by spreadsheets . Forms/3, while similar in some
ways to spreadsheets, is more powerful than spreadsheets,
in part because it supports reusable user-defined

*This work was supported in part by the National Science
Foundation under grants CCR-9215030/CCR-9396134 and
CCR-9308649.

- I -

abstractions. Thus, unlike spreadsheets, logical
relationships instead of physical relationships define the
generalized meaning of the program. We chose not to use
an. abstract textual programming-language approach to
allow the user to explicitly specify the intended generality,
because such an approach would run counter to our goals
of concreteness and programming with direct
manipulation.

The generalization technique presented in this paper
uses deductive analysis to derive a generalized program
from a concrete one. 9eneralization is accomplished
through the analysis of logical relationships among
concrete program entities from the perspective of a
particular computational goal. Because it does not use
inference, there is no risk of "guessing wrong". This
technique improves upon an earlier approach used by
Forms/3 because it supports a modeless direct
manipulation interface, and because it is flexible enough
to handle all possible referencing and calling patterns,
including some not commonly found in traditional
programming languages. This allows the user to program
concretely and flexibly, without unnecessary rules and
restrictions.

1.1: Example of the problem

We will illustrate the generalization problem with an
example. A Forms/3 program consists of cells on forms.
A form is used to group related calculations, providing the
functionality of a procedure in other programming
languages. Figure 1 shows a solution to the n'th element
of the Fibonacci sequence, which is the sum of the n-1 'th
and n-2'th Fibonacci numbers. The prototypical formula
"5" has been specified for cell N on form FIB so that the
user can receive concrete feedback. The solution involves
three forms: one to compute the Fibonacci number for the
desired N and two more to calculate N-l'th and N-2'th
Fibonacci numbers. We term the original FIB the model,
and FIB0l and FIB02 instances of FIB. In Forms/3,
instances inherit their model's cells and formulas unless
the user explicitly provides a different formula for a cell on

E7 E7 • lUi.ifil ■-1 ~

I 2•-2 wl

E7 121
■ t.@Df.y ~

Figure 1: Fibonacci. Although none of the cells need to be .
named unless the user wants to name them, we've named them
all here for clarity of discussion. Several of the concrete
fonnulas are shown. ·

an instance. Changes in the model are propagated to
instances.

To express the computation for the Fibonacci program,
the following set of user actions is needed, but the. user
may enter them in any order. The only restriction is thl;lt
FIBOI and FIB02 have to be created before the user can
refer to them. Notice that formula references can be made
by direct manipulation (clicking), or alternatively, the user
can type cell names if they have names and are on the
same form.

J.
Qj

't:S
J.
0

Copy FIB to create FIBOl
Copy FIB to create FIB02
User selects FIB's N and types 5
User selects FIB's N-1, clicks in FIB's ·N and

types -1
User selects FIB's N-2, clicks in FIB's N and

types -2
User selects FIBOl's N and clicks in FIB's N-1
User selects FIB02's N and clicks in FIBOl's

N-1
User selects FIB's FibAns, types if N = 0 or

N = 1 then 1 else, clicks in FIBOl 's
FibAns, types +, and clicks in FIB02 's
FibAns

If the formulas happen to be entered in the sequence
listed above, the system will compute and · display the
value 5 as soon as the formula for FIB ' s N is entered .
Likewise, the system will display the value 4 as soon as
the formula for FIB's N-1 is entered, and so on for each
formula, as shown in figure 1. The problem is how to
enable the system to display the answer (8) as soon as the
formula for FIB's FibAns is entered.

The problem lies in concreteness. As entered by the
user, the recursive part of the formula for FIB's FibAns is
the sum of the FibAns cells on FIBOI and FIB02. This is
too concrete-without generalization, all future copies of
FIB, regardless of how their N cells are changed, will sum
the specific FibAns cells on FIBOI and FIB02 (which

compute the fourth and third Fibonacci numbers). Because
of this, without generalization , FIBOI's FibAns formula
(which was inherited from FIB) is circular, because it too
refers to FIBOI 's FibAns and FIB02's FibAns. To solve
this problem, the system needs to recognize and record the
logical relationship between FIB and its instances from the
perspective of computing FibAns, instead of recording the
concrete program exactly as it was entered.

1.2: Factors involved in the problem

There are several factors that can interfere both with
generalization and with immediate feedback of the forms
entered in this fashion.

Modelessness: The first is the orderless nature of the
input syntax. To encourage the user to concentrate on
problem-solving rather than the computer's requirements,
the user is entirely unrestricted in how s/he enters a
program. Input is modeless, and formulas can be entered
in any order. All cell references can be made by pointing
at a cell, with no distinction in the way global references
are mad_e from the way parameter-passing is _accomplished
or from the way return values are referenced. To the user
this means freedom to concentrate on the problem, but to
the system it means lack of information. For example, in
the set of formula entries given above, the user may enter
the last formula first, thus referring to the return value
FibAns from FIBOI before providing information that
there will be an input parameter N. In this case, the
reference to FIBOI 's FibAns appears to be a global
(absolute) reference when in fact it is intended as the result
of a pa.raiµeterized subroutine-like call.

Flexibility : Second, there is no restriction on the
patterns of references that can be made. This allows the
user to modularize and re-use calculations with complete
flexibility, including ways that are not supported in many
programming languages. Thus, familiar program
structures such as global references and subroutine-like
uses of forms are possible, but less traditional referencing
patterns such as mutually dependent modules (forms) and
pipeline-like referencing are also possible . With this
flexibility, a program's structure is hard to predict because
it will not always fall into traditional patterns.

Circularity: Third, because of the support for
· recursion, a form must be able to be copied and re-used

before its definition is completed. This can cause circular
dependencies to be generated by the copying, as in the
example above, making immediate feedback impossible
until the relationships behind the concrete forms are
analyzed to derive a generalized version of the recursive
form.

-2-

l
7
n
n
n
l

l

n

I
J

J

u

u

l.

n
n
fl
n

l 1

l

n

[j

J

1

11

Li

□

2: Related work

Although Forrns/3 does not use programming by
example or programming by demonstration, because of its
extensive use of prototypical values for concreteness and
direct manipulation, Forrns/3 shares with that family of
VPLs some of the same difficulties in determining the
generality intended by concrete prototypical values. Many
by-demonstration systems use inference to solve this
problem. Inference is most effective in a limited problem
domain; for example, inference was used in the by­
demonstration system Peridot [Myers 1993], which is a
language specifically for user-interface specification.

PT [Ambler and Hsia 1993] is a general-purpose by­
demonstration VPL that does not use inference. The
feature of PT that makes this possible is the fact that
generalized information is specified by the user as part of
programming. For example, it is possible in PT to select
an object by pointing at it, and to inform the system
(using direct manipulation and formula-like operations)
what attribute of the object caused it to be selected. An
example of such an attribute might be the minimum­
valued object in the selected group. Although Forms/3
does use examples, it is not a by-demonstration system.
Another difference between PT and Forms/3 that is
specific to the generalization problem is that in PT the
user explicitly identifies the values that are examples
versus those intended as constants.

The distinction between concrete and generalized
versions of a form-based program is similar to the
difference between absolute and relative reference found in
traditional spreadsheets, which are among the earliest
examples of the form-based approach to programming.
However, in spreadsheets the generalization problem is
binary; either a cell reference is absolute, or it is defined
by a specific physical relationship that can be expressed by
an integer offset. In Forms/3 the generalization problem
is deriving reusable abstractions, which requires detecting
logical relationships among cells that reference each other.
For example, in Forms/3 if cell A references cell B on a
different form, A could be similar to a formal parameter
with Bas the actual parameter, or B could be similar to a
"return value" from another form's calculations, orB could
be filling a role similar to a global constant.

The form-based systems NoPumpG [Lewis 1990) and
NoPuinpII [Wilde and Lewis 1990) are extensions to
spreadsheets that support interactive graphics, but unlike
traditional spreadsheets, the physical positions of cells do
not determine a program's meaning. Because the NoPump
systems are not intended to support general-purpose
programming, there is no facility for generalized
abstractions.

- 3 -

C32 [Myers 1991] is part of the Garnet user interface
development system. It uses a spreadsheet model to allow
users to construct constraints, which are relationships
among graphical objects. In C32, prototypical values are
explicitly designated by the user. C32 does not detect
program structure based on the formula references. Instead
the user explicitly provides formulas in LISP while
referencing the prototypical objects by direct
manipulation, and the user can · later instruct C32 to
substitute formal parameter variables for prototypical
values in these LISP formulas.

An earlier version of Forms/3 [Burnett 1991; Burnett
and Ambler 1994] used an internal textual notation to
record the generality of a program, but the earlier version
did not contain a facility for interpreting direct
manipulations in order to produce the notation. In the
earlier version, the internal textual notation described each
copy of a form by enumerating exactly how it differed
from the model. The notation supported the standard
structures found in programming languages such as global
references and subroutine-like relationships, but did not
support some non-traditional structures because of the
circularity they introduced into the notation. In this paper,
we add the facility for interpreting direct manipulations to
produce the notation, and revise the notation to support all
program structures.

3: The approach

The approach to produce reusable generalized
abstractions from concrete form-based programs is based
on two key features:

(1) Deductive analysis of the relationship between
concrete program entities to derive a generalized program:
This frees user from having to explicitly identify
prototypical values, parameters, variables, and the like. It
also allows the user to program flexibly, without being
restricted to any particular kind of program structure.

(2) Use of a calculation's perspective during the
deductive analysis: Since the program structure is not
explicitly specified by the user, perspective allows the
system to locate the relationships that compute the
intended results. Section 3.2 details the importance of
perspective for this purpose.

3.1: Step 1: Recognizing relationships among
program entities

As formulas are defined via direct manipulation in
Forms/3, a cell reference graph. The cell reference graph
is used to store the relationships and to trigger formula
generalization. Informally, a cell reference graph is
simply a representation of the cell references and the
derived generalization information about them. There are

t

I

G)
N

0
N-1

0
N-2

Figure 2: Cell reference graph showing only direct
references (denoted by dotted edges). The direction of the
edge indicates the direction of dataflow. For instance, the
edge from N to N-1 in FIB indicated that N-1 is a reference to
N. i.e., the value of N flows into N-1.

three different kinds of references in a cell reference graph:
direct references created by the user via direct
manipulation, inherited references, and fully generalized
ones. More formally, the cell reference graph CG= (V, E)
is a directed graph where

V= {u I u is a cell in the program}
E = { (u, v) I cell v makes a reference to cell u}
and a function f: E->L that assigns a label to each

edge according to the origin of the reference,
where:

(
0: Direct reference by the user

f(E) = 1: Inherited reference
2: Fully generalized reference

We define 3 subsets of E:
DEs;;;E ={(u,v)lf(u,v)=O}
IE s;;; E = { (u, v) If (u, v) = 1}
GEs;;;E ={(u,v)lf(u,v)=2}

DE, IE and GE are disjoint sets and their union is E.

3.1.1: Incremental processing of the user's actions

The cell reference graph is built incrementally, and this
allows incremental analysis. Incremental analysis of the
direct references occurs as soon as the user refers to a cell
by clicking on it. At first, each direct reference is
considered to be an element of DE. This is depicted in
figure 2, which shows only the edges in DE in the cell
reference graph for the Fibonacci example.

Some of the direct edges shown in figure 2, such as the
edge from N to N-1 in FIB, are internal references. An
internal reference is an edge (u,v) in E such that cell u and
cell v are on the same form. Internal references do not
need further processing to become general, because the .
relationship between cells on the same form is made clear
by the fact that they are encapsulated in one form, and will
be reusable on new copies of the form without further
generalization. Therefore, whenever a direct edge is added
that is an internal reference, it is immediately considered to
be a generalized edge and is defined as an element of GE
instead of DE.

-4-

Figure 3: Cell reference graph with generalized references
(denoted by solid edges) propagated to instances.

When the user copies a form for reuse, inherited edges
are added to the cell reference graph. If the original edge
was in GE, its inherited version is also placed in GE
because it is by definition already fully general . . Figure 3
shows that the internal references were generalized, and
that this is reflected in the inherited references in form
instances.

Inherited edges that did not originate in GE, i.e . those
that have not been generalized yet, are placed in IE. This
is depicted in the edges connected to the three FibAns
nodes in figure 4.

At this point, the cell reference graph has some
similarities to a dataflow graph, but it contains anomalies
and information about relationships that need to be
analyzed before it can be reduced to a true dataflow graph.
In figure 4, for example, the formula for FibAns in FIBOl
and FIB02 is incorrect, because instead of the circular
references to themselves and each other, the FibAns cells
on FIBOl and FIB02's FibAns should reflect the general
roles that they have in computing the N-1 'th and N-2'th
numbers in the sequence. This type of anomaly triggers
generalization, as is discussed in the next section.

3.1.2: Cycle detection to trigger formula generalization

Whenever edges are added, the graph is analyzed to find
out if a cycle has been formed . Detection of a cycle will
either result in an error message or will .trigger
generalization.

An error message is generated by a cycle formed by
direct and/or generalized references only (DE v GE),

Figure 4: · Cell Reference Graphfor FIB
----11►► Direct references E DE

:►-

Inherited references E IE

Generalized references E GE

l
n
n
fl
1
l

I
l

n

j

J

J

u

1.

7
n
l
n

l

'. J

I J

lI

j

Li

Li
u

because circular formulas are not allowed in Forms/3 .
1bis type of cycle is formed by direct references entered by
the user. Since the cycle detection is done incrementally,
the user's most recent reference created the cycle, and
therefore this last reference must be illegal. The user will
be warned about the error and the last reference will be
rejected. Figure 5 shows an example of an illegal circular
reference formed by edges in DE.

However, if a cycle is formed that includes at least one
edge in IE, i.e., an inherited reference, generalization must
occur right away to remove the cycle because the cycle
prevents responsiveness-the computation in its concrete
form would be non-terminating. Figure 4 included an
example of such a cycle formed by the inherited references
of the cell FibAns.

Figure5

3.1.3: Other triggers

Detecting cycles in the cell reference graph as described
above is one way to trigger formula generalization . The
other ways that trigger formula generalization are:

(a) Saving or closing a form: Generalization must be
done when saving or closing a form because otherwise the
system might be saving references that are not reusable.

(b) Copying a form: Reusing a form in this way
requires the form to be generalized first.

(c) Deleting an instance: Once an instance has been
deleted , the system will not be able to use it later in
deriving a generalization.

Each time generalization is triggered, it is sufficient to
only generalize those forms that are currently on the
screen, even though they may contain references to forms
previously created but no longer displayed. This is
because all the other forms were already generalized when
they were saved or removed from the screen . This fact
reduces the time complexity of the generalization
technique to be proportional to the amount of the program
currently displayed on the screen.

3.2: Step 2: Generalizing the relationship

The goal of generalization is to reduce the cell reference
graph to a dataflow graph that contains only references that
are fully general (GE). Generalization is done by first
performing a modified topological sort on the cell
reference graph minus its IE edges to discern the flow of
the logical relationships. The formulas are then
generalized and recorded by describing the relevant

- 5 -

references from the perspective of each goal cell. When all
of the references have been generalized, the cell reference
graph is the same as a general dataflow graph.

3.2.1: Identifying and using p erspective

First, a modified topological sort is performed to
identify the logical relationships of the referenced cells
from the perspective of the goal cells. The topological
sort is modified in that it preserves the edges in the graph.
In the topologically-sorted CG = (V, E), the vertices in V
are ordered such that if CG contains an edge (u,v), then
vertex u appears before vertex v in V. The ultimate goals
of the computations are the last node(s), i.e. the sink(s), in
the sorted graph. Topologically sorting the graph locates
all the sinks and also locates all the sources . Figure 6
shows the topologically-sorted cell reference graph for the
Fibonacci example.

It is from the perspective of each goal that the
generalized references to the other cells contributing to it
take place. Finding this perspective is important because
(1) it makes known the beginnings and ends of the
dependencies, and (2) in mutually dependent forms, as in
the case of co-routines and other non-traditional structures,
perspective allows the system to deal with each individual
cell's computation path separately to avoid generating
circular expressions of dependency.

FIB: FIB: FIB: FIBOI: FIBOl:FlBOI: FIBOJ: FIB02:FlB02: FlB02 : FIB02: FIB:
N N-1 N-2 N N-1 N-2 FlbAns N N-1 N-2 FlbAnsFlbAns

Figure6

3.2.2: Recording the generalized relationships

After the relationships have been located and sorted out
by the topologically-sorted cell reference graph, the
relevant portions of these relationships are recorded in the
fully generalized formulas. This recording is done using
an internal textual notation. It is important for this
notation to provide enough information for the system
(1) to recognize the needed form instance if it exists, and
(2) to create the needed instance from its model form if
such an instance doesn't exist. 1bis is important because
if the system were not given enough information to
automatically locate and create these instances, the only
way a form could be reused during execution would be for
the programmer to manually copy it from the model and
modify it, just · as he or she did while programming it
originally. (Since recording this information makes the
internal description rather long and involved, it is never
seen or used by the user.)

To accomplish this, in the formula for a cell X, each
reference to a cell on another form instance is described by
enumerating each way the form instance is different from
the model, if that difference is relevant to the goal cell X.
If a form instance is different from the model in ways that
are not relevant to computing the goal cell X, then that
difference is recorded as don't care. The don't care
differences are not used in the computation, but they
provide information · necessary for the system to recognize
the needed form instance if it already exists.

This notation generalizes the Fibonacci problem posed
at the beginning of this paper as follows. As shown in
figure 6, the FibAns cell on FIB is the goal. The formula
for FibAns makes references to three cells, FIB's N,
FIBOl 's FibAns and FIB02's FibAns, and they are recorded ·
as:

F/B's N: this is an internal reference. This reference is
recorded as "self:N". (The use of "self' denotes the fact
that this reference is on the same form as cell FibAns, the
goal cell.)

FIBOI 's FibAns: This is a reference to another cell
FibAns on a form instance that, when viewed in figure 6
from the perspective of the goal cell FibAns, is the
instance of FIB in which N is defined as FIB's N-1. FIB
is "self' from the perspective of the goal, so this reference
is recorded as "FIB(N a-self: N-1):FibAns".

FIB02's FibAns: FIB02's FibAns refers to N which
refers to FIBOl's N-1. FIBOI's N-1 refers to its N which
refers to FIB's N-1. Since this path leads back to the form
FIB, ("self'), the reference is generalized as:

"FIB(N a-FIB(N iarself: N-1):N-1):FibAns"
Putting these three references together gives the

complete generalized formula for FIB's FibAns:
"If self:N = 0 or self:N = 1 then 1 else

FIB(N iar self: N-1):FibAns +
FIB(N ""FIB(N a-self: N-1):N-1):FibAns"

Several additional examples are given in section 4,
which discusses the generality of the approach.

The Fibonacci example contains many relative (i .e.
non-absolute) relationships. Examples of non-absolute
relationships in other languages are those created by
parameter-passing in traditional languages, by relative
referencing in commercial spreadsheets, and referencing
patterns such as the networks that can be built up in
dataflow languages.

Absolute relationships, the functional equivalent of
absolute references in commercial spreadsheets and of
references to global constants in traditional languages, are
unchanged by generalization. For example, if a cell X on
some form F referred to cell FibAns on an instance of FIB
in which N's formula was 5+2, X's formula would be

-6-

"FIB(N"' 5+2)". The FIB(N"' TaxTable:Z) describes
an instance of FIB in which N's formula -is an absolute
reference to cell Z on the (model) form TaxTable.

3.2.3: Reduction to a generalized dataflowgraph.

As each cell's formula is generalized and recorded, the
edges involved are relabelled as generalized edges. When
the last edge is processed, the resulting cell reference graph
is the same as a dataflow graph. After generalization, it is
possible to discover that cycles remain that were formed
by at least one of the generalized edges. Since such a
cycle would be illegal, the dataflow graph is analyzed for
cycles after generalization is complete.

4: Generality of the approach

This approach can be used to generalize all legal
program structures. We will illustrate the generality of
the approach . through the use of form-collapsed multi­
graphs, a diagram we introduce solely for the purpose of
demonstrating the generality of the approach. (Form­
collapsed multi-graphs are not part of the approach itself).
Each node in the form-collapsed multi-graph is a form and
all the edges from the fully-generalized dataflow graph are
retained at the form level. Thus each form has the same
number of incoming and outgoing edges as in the cell
reference graph . Figure 7 shows the resulting form­
collapsed multi-graph for the Fibonacci program .

Program structures are reflected by these form-collapsed
multi-graphs. There are only four possible patterns of
these graphs. An example of each is given in figure 8.
For each of the patterns, we will show an example and
illustrate how generalization is performed.

Pattern 1. no cycles: This pattern reflects abstractions
with no parameter-passing, i.e. all references are absolute
references, like global variables in other languages.
Figure 9 shows the generalized dataflow graph of such a
program. This program defines a screen saver with a
floating image. The location of the floating image is
computed and updated based on the system clock. Because
all the references are absolute, they don't change with
generalization. The formula for cell Floatinglmage thus
needs only to reflect the dataflow path in absolute terms in
recording how referenced cell Image's form differs from the
model in ways that are relevant to cell Floatinglmage:
"Picture(X ..- SystemClock:Sec; Y ..- SystemClock:
Min):Image"

FIB ~-F_IB_0_2_

Figure 7

l
l
n
fl
fl
l

l

j

J

u
LI

□

l
l
n
n
fl
l

n

I I

Li

0

No cycles:
an example

Figure8(a)
A cyc_le with more

than 2 nodes: an example

Figure8(c)

A 2-node cycle:
an example

......____,~ ► __ ,
Fi ure8 b
Combination:

an example

. Figure8(d)

Pattern 2. a graph with a 2-node cycle: A 2-node cycle
models the functionality of a traditional subroutine with
parameters. (Notice that such a cycle is at the granularity
of forms, not cells. As previously discussed, circular cell
references are not allowed after generalization is complete.)
Figure 10 shows the generalized dataflow graph of a
factorial program. Factorial of a number N is defined as
N! = N * (N-1)! The topological sort determined that cell
Ans on form Fact is the goal of the computation. In
defining Ans's formula, those cells contributing to the
computation and also on the same form as the Ans,
namely N and N-1, are recorded as generalized references.
The generalized formula for Ans becomes "If self:N = 1
then 1 else self:N * Fact(N" self:N-1):Ans".

Pattern 3. a cycle with more than 2 nodes: This
pattern corresponds to a program structure that is not
commonly found in most textual programming languages,
because the values are passed forward, and only travel back
to the original caller through a circular path . Figure 11
shows the generalized dataflow graph of a program that
computes the average of a list of numbers. The
generalized formula for Average reflects the path of the
parameters as they travel through the forms :
"ComputeA vg(I:X " Summation(List q- Counter(List
w self :List):List) ::EX; n " Counter (List "
self:List):n): X".

Pattern 4. any combination of the above patterns:
Form FIB was one example of pattern 4, because it
included both a 2-node cycle and a 3-node cycle. We have
shown how each of the basic three patterns can be handled.
Any combination of the above patterns can also be
handled, because each cell's formula is recorded by
isolating information relevant from that particular cell's
perspective. The granularity of describing the form
instances is at the cell level as it relates to one cell's goal,
which means that regardless of how many ways the basic

-7-

three patterns are combined, no circularity in the notation
can arise, because circularity at the cell level is not
present.

Another example of pattern 4 is depicted in figure 12, a
dataflow graph containing two 2-node cycles . This is a

· program to compute the permutation of N,K, defined by
P(N,K) = N! / (N-K)!. The generalized formula for P(N,K)
is "self:N! / self:N-K!" The formulas for cells N! and N­
K! are subsequently generalized as "Fact(N q­

self:N):Ans" and "Fact(N q- self:N-K):Ans" respectively.
Two mutually-dependent co-routines would also be
modeled by pattern 4 as a group of 2-node patterns.

5: Efficiency

The generalization technique developed in this paper is
amenable to scaling up because its time complexity is
bounded by V, the number of cells currently on the screen.
Thus the complexity does not grow with the size of the
program, but only with the amount of the program on the
screen. The incremental cost to add edges to the graph is
0(1) when a direct reference is made, or O(IV pl) when a
form Fis copied (where IV pl denotes the number of cells
on F). Cycle detection for the cell reference graph CG is
O(IVI), using the standard DFS cycle-detection approach,
and the topological sorting is 8(1Vl+IEI) using the standard
algorithm. The implementation of the technique is
currently being added to the Forms/3 system.

6: Conclusion

The approach presented in this paper allows a fully
general form-based program to be derived from one that
whose formulas were specified with concrete examples and
direct manipulation. This is accomplished through
recognizing and recording the logical relationships among
the concrete data, from the perspective of the
computational goals of the program fragment currently on
the screen. The key benefits of the technique are:

(1) It supports a visual style of general-purpose
programming which incorporates extensive use of concrete
examples, direct manipulation, and responsiveness.

(2) It removes any order requirements from the user's
program entry process. This frees the user to concentrate
on problem-solving, rather than having to concentrate on
providing information to the computer in the order the
computer wants it. Since declarative languages strive to
be solely dependent on definitions rather than on the order
a program is specified, this is an especially important
attribute for declarative VPLs.

(3) It is scalable, because its performance is bounded by
the number of program entities currently on the screen,
not by the number of entities in the program.

- .
(4) It does not use inference. Hence there is no

restriction to domain -specific programming tasks, because
there is no risk of "guessing wrong" in the generalization
process.

Acknowledgments

We would like to thank Marla Baker for her assistance
in editing this paper and Carisa Bohus and Pieter van Zee
for their helpful suggestions on earlier drafts.

References

[Ambler and Hsia 1993] Allen Ambler and Yen-Teh Hsia,
"Generalizing Selection in By-Demonstration
Programming," Journal of Visual Languages and
Computing, 4(3), 283-300, September 1993.

[Burnett 1991] Margaret Burnett, "Abstraction in the
Demand-Driven, Temporal-Assignment, Visual Language
Model", Ph.D. Thesis, Department of Computer Science,
University of Kansas, 1991.

Bitmap

[Burnett and Ambler 1994] Margaret Burnett and Allen
Ambler, "Interactive Visual Data Abstraction in a
Declarative Visual Programming Language", Journal of
Visual Languages and Computing, March 1994.

[Lewis 1990] Clayton Lewis , "NoPumpG : Creating
Interactive Graphics with Spreadsheet Machinery", in
Visual Programming Environments : Paradigms and
Systems, (E. Glinert, editor), IEEE CS Press , Los
Alamitos, California, 526-546, 1990.

[Myers 1991] Brad Myers, "Graphical Techniques in a
Spreadsheet for Specifying User Interfaces", ACM
Sigplan Notices/Proceedings CHI '91, New Orleans,
Louisiana, 243-249, Apr. 27-May 2, 1991.

[Myers 1993] Brad Myers, "Peridot: Creating User Interfaces
by Demonstration", Watch What I Do: Programming by
Demonstration (A. Cypher, editor), The MIT Press,
Cambridge, Massachusetts, 125-154, 1~93.

[Wilde and Lewis 1990] Nicholas Wilde and Clayton Lewis,
"Spreadsheet-based Interactive Graphics: from Prototype
to Tool," ACM Sigplan Notices/Proceedings CHI '90,
Seattle, Washington, 153-159, April 1990.

Fact FactOl

An5 An5

Figure 9: (above) The dataflow graph of the screen saver Figure JO: (above) The dataflow graph of the factorial
program , superimposed on the form-collap sed multi-graph . program , superimposed on the form-collapsed multi-graph .
This is an example of the first pattern , in which there are no This is an example of the second pattern, a 2-form cycle. The
cycles. The goal is shown shaded. (below) The result of the goal is shown shaded. (below) The result of the topological
topological sort . sort .

Min S« X y Bitmap

x

Image Aoating
Image

Figure 1 I : (above) The dataflow graph of a program to
compute the average of a list of numbers, superimposed on the
form-collapsed multi-graph. This is an example of the third
pattern , a cycle involving more than 2 forms. The goal is
shown shaded. (below) The result of the topological sort.

Fact :N Fact :N-1 FactOl:N Fac!Ol :N-1 Fac!Ol:An s

Figure 12: (above) The dataflow graph of a permutation
program, superimposed on the form -collapsed multi -graph.
This is an example of the fourth pattern, which is any
combination of the other three patterns. The goal is shown
shaded. (below) The result of the topological sort .

.......... a.-..--: ~ llodft Jliil:t!I! ~
Jtl' X If-« Ji Aas ll'! N A:. »-«! JO{.Q

- 8-

n
fl

l
l

n

j

	Yang_Burnett_94_60_03_A
	Yang_Burnett_94_60_03_B

