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Abstract 
We believe concreteness , direct manipulation and 

responsiveness in a visual programming language increase 
its usefulness. However, these characteristics present a 
challenge in generalizing programs for reuse, especially 
when concrete examples are used as one way of achieving 
concreteness. In this paper, we present a technique to 
solve this problem by deriving generality automatically 

· through the analysis of logical relationships among 
concrete program entities from the perspective of a 
particular computational goal. Use of this technique 
allows a fully general form-based program with reusable 
abstractions to be derived from one that was specified in 
tenns of concrete examples and direct manipulation. 

1: Introduction 

We believe that concreteness, direct manipulation and 
responsiveness are among the most important advantages 
of working in a visual programming language. Toward 
this end, users of Forms/3 [Burnett 1991; Burnett and 
Ambler 1994] program very concretely, and receive 
continuous visual feedback throughout the process. But 
although they use direct manipulation and prototypical 
values extensively and without restriction during 
development, they do so with the expectation that the 
program they enter in such a concrete fashion will work 
the same way for any future values that might someday 
replace the prototypical values. The problem that we 
address in this paper is how to generalize the concrete 
program that was entered so that this expectation of 
generality can be fulfilled. 

In solving this problem, we could not use the simple 
generalization approach based on physical relationships 
used by spreadsheets . Forms/3, while similar in some 
ways to spreadsheets, is more powerful than spreadsheets, 
in part because it supports reusable user-defined 

*This work was supported in part by the National Science 
Foundation under grants CCR-9215030/CCR-9396134 and 
CCR-9308649. 
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abstractions. Thus, unlike spreadsheets, logical 
relationships instead of physical relationships define the 
generalized meaning of the program. We chose not to use 
an. abstract textual programming-language approach to 
allow the user to explicitly specify the intended generality, 
because such an approach would run counter to our goals 
of concreteness and programming with direct 
manipulation. 

The generalization technique presented in this paper 
uses deductive analysis to derive a generalized program 
from a concrete one. 9eneralization is accomplished 
through the analysis of logical relationships among 
concrete program entities from the perspective of a 
particular computational goal. Because it does not use 
inference, there is no risk of "guessing wrong". This 
technique improves upon an earlier approach used by 
Forms/3 because it supports a modeless direct 
manipulation interface, and because it is flexible enough 
to handle all possible referencing and calling patterns, 
including some not commonly found in traditional 
programming languages. This allows the user to program 
concretely and flexibly, without unnecessary rules and 
restrictions. 

1.1: Example of the problem 

We will illustrate the generalization problem with an 
example. A Forms/3 program consists of cells on forms. 
A form is used to group related calculations, providing the 
functionality of a procedure in other programming 
languages. Figure 1 shows a solution to the n'th element 
of the Fibonacci sequence, which is the sum of the n-1 'th 
and n-2'th Fibonacci numbers. The prototypical formula 
"5" has been specified for cell N on form FIB so that the 
user can receive concrete feedback. The solution involves 
three forms: one to compute the Fibonacci number for the 
desired N and two more to calculate N-l'th and N-2'th 
Fibonacci numbers. We term the original FIB the model, 
and FIB0l and FIB02 instances of FIB. In Forms/3, 
instances inherit their model's cells and formulas unless 
the user explicitly provides a different formula for a cell on 
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Figure 1: Fibonacci. Although none of the cells need to be . 
named unless the user wants to name them, we've named them 
all here for clarity of discussion. Several of the concrete 
fonnulas are shown. · 

an instance. Changes in the model are propagated to 
instances. 

To express the computation for the Fibonacci program, 
the following set of user actions is needed, but the. user 
may enter them in any order. The only restriction is thl;lt 
FIBOI and FIB02 have to be created before the user can 
refer to them. Notice that formula references can be made 
by direct manipulation (clicking), or alternatively, the user 
can type cell names if they have names and are on the 
same form. 

J. 
Qj 
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Copy FIB to create FIBOl 
Copy FIB to create FIB02 
User selects FIB's N and types 5 
User selects FIB's N-1, clicks in FIB's ·N and 

types -1 
User selects FIB's N-2, clicks in FIB's N and 

types -2 
User selects FIBOl's N and clicks in FIB's N-1 
User selects FIB02's N and clicks in FIBOl's 

N-1 
User selects FIB's FibAns, types if N = 0 or 

N = 1 then 1 else, clicks in FIBOl 's 
FibAns, types +, and clicks in FIB02 's 
FibAns 

If the formulas happen to be entered in the sequence 
listed above, the system will compute and · display the 
value 5 as soon as the formula for FIB ' s N is entered . 
Likewise, the system will display the value 4 as soon as 
the formula for FIB's N-1 is entered, and so on for each 
formula, as shown in figure 1. The problem is how to 
enable the system to display the answer (8) as soon as the 
formula for FIB's FibAns is entered. 

The problem lies in concreteness. As entered by the 
user, the recursive part of the formula for FIB's FibAns is 
the sum of the FibAns cells on FIBOI and FIB02. This is 
too concrete-without generalization, all future copies of 
FIB, regardless of how their N cells are changed, will sum 
the specific FibAns cells on FIBOI and FIB02 (which 

compute the fourth and third Fibonacci numbers). Because 
of this, without generalization , FIBOI's FibAns formula 
(which was inherited from FIB) is circular, because it too 
refers to FIBOI 's FibAns and FIB02's FibAns. To solve 
this problem, the system needs to recognize and record the 
logical relationship between FIB and its instances from the 
perspective of computing FibAns, instead of recording the 
concrete program exactly as it was entered. 

1.2: Factors involved in the problem 

There are several factors that can interfere both with 
generalization and with immediate feedback of the forms 
entered in this fashion. 

Modelessness: The first is the orderless nature of the 
input syntax. To encourage the user to concentrate on 
problem-solving rather than the computer's requirements, 
the user is entirely unrestricted in how s/he enters a 
program. Input is modeless, and formulas can be entered 
in any order. All cell references can be made by pointing 
at a cell, with no distinction in the way global references 
are mad_e from the way parameter-passing is _accomplished 
or from the way return values are referenced. To the user 
this means freedom to concentrate on the problem, but to 
the system it means lack of information. For example, in 
the set of formula entries given above, the user may enter 
the last formula first, thus referring to the return value 
FibAns from FIBOI before providing information that 
there will be an input parameter N. In this case, the 
reference to FIBOI 's FibAns appears to be a global 
(absolute) reference when in fact it is intended as the result 
of a pa.raiµeterized subroutine-like call. 

Flexibility : Second, there is no restriction on the 
patterns of references that can be made. This allows the 
user to modularize and re-use calculations with complete 
flexibility, including ways that are not supported in many 
programming languages. Thus, familiar program 
structures such as global references and subroutine-like 
uses of forms are possible, but less traditional referencing 
patterns such as mutually dependent modules (forms) and 
pipeline-like referencing are also possible . With this 
flexibility, a program's structure is hard to predict because 
it will not always fall into traditional patterns. 

Circularity: Third, because of the support for 
· recursion, a form must be able to be copied and re-used 

before its definition is completed. This can cause circular 
dependencies to be generated by the copying, as in the 
example above, making immediate feedback impossible 
until the relationships behind the concrete forms are 
analyzed to derive a generalized version of the recursive 
form. 

-2-

l 
7 
n 
n 
n 
l 

l 

n 

I 
J 

J 

u 

u 



l. 

n 
n 
fl 
n 

l 1 

l 

n 

[ j 

J 

1 

11 

Li 

□ 

2: Related work 

Although Forrns/3 does not use programming by 
example or programming by demonstration, because of its 
extensive use of prototypical values for concreteness and 
direct manipulation, Forrns/3 shares with that family of 
VPLs some of the same difficulties in determining the 
generality intended by concrete prototypical values. Many 
by-demonstration systems use inference to solve this 
problem. Inference is most effective in a limited problem 
domain; for example, inference was used in the by­
demonstration system Peridot [Myers 1993], which is a 
language specifically for user-interface specification. 

PT [Ambler and Hsia 1993] is a general-purpose by­
demonstration VPL that does not use inference. The 
feature of PT that makes this possible is the fact that 
generalized information is specified by the user as part of 
programming. For example, it is possible in PT to select 
an object by pointing at it, and to inform the system 
(using direct manipulation and formula-like operations) 
what attribute of the object caused it to be selected. An 
example of such an attribute might be the minimum­
valued object in the selected group. Although Forms/3 
does use examples, it is not a by-demonstration system. 
Another difference between PT and Forms/3 that is 
specific to the generalization problem is that in PT the 
user explicitly identifies the values that are examples 
versus those intended as constants. 

The distinction between concrete and generalized 
versions of a form-based program is similar to the 
difference between absolute and relative reference found in 
traditional spreadsheets, which are among the earliest 
examples of the form-based approach to programming. 
However, in spreadsheets the generalization problem is 
binary; either a cell reference is absolute, or it is defined 
by a specific physical relationship that can be expressed by 
an integer offset. In Forms/3 the generalization problem 
is deriving reusable abstractions, which requires detecting 
logical relationships among cells that reference each other. 
For example, in Forms/3 if cell A references cell B on a 
different form, A could be similar to a formal parameter 
with Bas the actual parameter, or B could be similar to a 
"return value" from another form's calculations, orB could 
be filling a role similar to a global constant. 

The form-based systems NoPumpG [Lewis 1990) and 
NoPuinpII [Wilde and Lewis 1990) are extensions to 
spreadsheets that support interactive graphics, but unlike 
traditional spreadsheets, the physical positions of cells do 
not determine a program's meaning. Because the NoPump 
systems are not intended to support general-purpose 
programming, there is no facility for generalized 
abstractions. 
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C32 [Myers 1991] is part of the Garnet user interface 
development system. It uses a spreadsheet model to allow 
users to construct constraints, which are relationships 
among graphical objects. In C32, prototypical values are 
explicitly designated by the user. C32 does not detect 
program structure based on the formula references. Instead 
the user explicitly provides formulas in LISP while 
referencing the prototypical objects by direct 
manipulation, and the user can · later instruct C32 to 
substitute formal parameter variables for prototypical 
values in these LISP formulas. 

An earlier version of Forms/3 [Burnett 1991; Burnett 
and Ambler 1994] used an internal textual notation to 
record the generality of a program, but the earlier version 
did not contain a facility for interpreting direct 
manipulations in order to produce the notation. In the 
earlier version, the internal textual notation described each 
copy of a form by enumerating exactly how it differed 
from the model. The notation supported the standard 
structures found in programming languages such as global 
references and subroutine-like relationships, but did not 
support some non-traditional structures because of the 
circularity they introduced into the notation. In this paper, 
we add the facility for interpreting direct manipulations to 
produce the notation, and revise the notation to support all 
program structures. 

3: The approach 

The approach to produce reusable generalized 
abstractions from concrete form-based programs is based 
on two key features: 

(1) Deductive analysis of the relationship between 
concrete program entities to derive a generalized program: 
This frees user from having to explicitly identify 
prototypical values, parameters, variables, and the like. It 
also allows the user to program flexibly, without being 
restricted to any particular kind of program structure. 

(2) Use of a calculation's perspective during the 
deductive analysis: Since the program structure is not 
explicitly specified by the user, perspective allows the 
system to locate the relationships that compute the 
intended results. Section 3.2 details the importance of 
perspective for this purpose. 

3.1: Step 1: Recognizing relationships among 
program entities 

As formulas are defined via direct manipulation in 
Forms/3, a cell reference graph. The cell reference graph 
is used to store the relationships and to trigger formula 
generalization. Informally, a cell reference graph is 
simply a representation of the cell references and the 
derived generalization information about them. There are 
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Figure 2: Cell reference graph showing only direct 
references (denoted by dotted edges). The direction of the 
edge indicates the direction of dataflow. For instance, the 
edge from N to N-1 in FIB indicated that N-1 is a reference to 
N. i.e., the value of N flows into N-1. 

three different kinds of references in a cell reference graph: 
direct references created by the user via direct 
manipulation, inherited references, and fully generalized 
ones. More formally, the cell reference graph CG= (V, E) 
is a directed graph where 

V= {u I u is a cell in the program} 
E = { (u, v) I cell v makes a reference to cell u} 
and a function f: E->L that assigns a label to each 

edge according to the origin of the reference, 
where: 

( 
0: Direct reference by the user 

f(E) = 1: Inherited reference 
2: Fully generalized reference 

We define 3 subsets of E: 
DEs;;;E ={(u,v)lf(u,v)=O} 
IE s;;; E = { (u, v) If (u, v) = 1} 
GEs;;;E ={(u,v)lf(u,v)=2} 

DE, IE and GE are disjoint sets and their union is E. 

3.1.1: Incremental processing of the user's actions 

The cell reference graph is built incrementally, and this 
allows incremental analysis. Incremental analysis of the 
direct references occurs as soon as the user refers to a cell 
by clicking on it. At first, each direct reference is 
considered to be an element of DE. This is depicted in 
figure 2, which shows only the edges in DE in the cell 
reference graph for the Fibonacci example. 

Some of the direct edges shown in figure 2, such as the 
edge from N to N-1 in FIB, are internal references. An 
internal reference is an edge (u,v) in E such that cell u and 
cell v are on the same form. Internal references do not 
need further processing to become general, because the . 
relationship between cells on the same form is made clear 
by the fact that they are encapsulated in one form, and will 
be reusable on new copies of the form without further 
generalization. Therefore, whenever a direct edge is added 
that is an internal reference, it is immediately considered to 
be a generalized edge and is defined as an element of GE 
instead of DE. 
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Figure 3: Cell reference graph with generalized references 
(denoted by solid edges) propagated to instances. 

When the user copies a form for reuse, inherited edges 
are added to the cell reference graph. If the original edge 
was in GE, its inherited version is also placed in GE 
because it is by definition already fully general . . Figure 3 
shows that the internal references were generalized, and 
that this is reflected in the inherited references in form 
instances. 

Inherited edges that did not originate in GE, i.e . those 
that have not been generalized yet, are placed in IE. This 
is depicted in the edges connected to the three FibAns 
nodes in figure 4. 

At this point, the cell reference graph has some 
similarities to a dataflow graph, but it contains anomalies 
and information about relationships that need to be 
analyzed before it can be reduced to a true dataflow graph. 
In figure 4, for example, the formula for FibAns in FIBOl 
and FIB02 is incorrect, because instead of the circular 
references to themselves and each other, the FibAns cells 
on FIBOl and FIB02's FibAns should reflect the general 
roles that they have in computing the N-1 'th and N-2'th 
numbers in the sequence. This type of anomaly triggers 
generalization, as is discussed in the next section. 

3.1.2: Cycle detection to trigger formula generalization 

Whenever edges are added, the graph is analyzed to find 
out if a cycle has been formed . Detection of a cycle will 
either result in an error message or will .trigger 
generalization. 

An error message is generated by a cycle formed by 
direct and/or generalized references only (DE v GE), 

Figure 4: · Cell Reference Graphfor FIB 
----11►► Direct references E DE 

:►-

Inherited references E IE 

Generalized references E GE 
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because circular formulas are not allowed in Forms/3 . 
1bis type of cycle is formed by direct references entered by 
the user. Since the cycle detection is done incrementally, 
the user's most recent reference created the cycle, and 
therefore this last reference must be illegal. The user will 
be warned about the error and the last reference will be 
rejected. Figure 5 shows an example of an illegal circular 
reference formed by edges in DE. 

However, if a cycle is formed that includes at least one 
edge in IE, i.e., an inherited reference, generalization must 
occur right away to remove the cycle because the cycle 
prevents responsiveness-the computation in its concrete 
form would be non-terminating. Figure 4 included an 
example of such a cycle formed by the inherited references 
of the cell FibAns. 

Figure5 

3.1.3: Other triggers 

Detecting cycles in the cell reference graph as described 
above is one way to trigger formula generalization . The 
other ways that trigger formula generalization are: 

(a) Saving or closing a form: Generalization must be 
done when saving or closing a form because otherwise the 
system might be saving references that are not reusable. 

(b) Copying a form: Reusing a form in this way 
requires the form to be generalized first. 

( c) Deleting an instance: Once an instance has been 
deleted , the system will not be able to use it later in 
deriving a generalization. 

Each time generalization is triggered, it is sufficient to 
only generalize those forms that are currently on the 
screen, even though they may contain references to forms 
previously created but no longer displayed. This is 
because all the other forms were already generalized when 
they were saved or removed from the screen . This fact 
reduces the time complexity of the generalization 
technique to be proportional to the amount of the program 
currently displayed on the screen. 

3.2: Step 2: Generalizing the relationship 

The goal of generalization is to reduce the cell reference 
graph to a dataflow graph that contains only references that 
are fully general (GE). Generalization is done by first 
performing a modified topological sort on the cell 
reference graph minus its IE edges to discern the flow of 
the logical relationships. The formulas are then 
generalized and recorded by describing the relevant 
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references from the perspective of each goal cell. When all 
of the references have been generalized, the cell reference 
graph is the same as a general dataflow graph. 

3.2.1: Identifying and using p erspective 

First, a modified topological sort is performed to 
identify the logical relationships of the referenced cells 
from the perspective of the goal cells. The topological 
sort is modified in that it preserves the edges in the graph. 
In the topologically-sorted CG = (V, E), the vertices in V 
are ordered such that if CG contains an edge (u,v), then 
vertex u appears before vertex v in V. The ultimate goals 
of the computations are the last node(s), i.e. the sink(s), in 
the sorted graph. Topologically sorting the graph locates 
all the sinks and also locates all the sources . Figure 6 
shows the topologically-sorted cell reference graph for the 
Fibonacci example. 

It is from the perspective of each goal that the 
generalized references to the other cells contributing to it 
take place. Finding this perspective is important because 
(1) it makes known the beginnings and ends of the 
dependencies, and (2) in mutually dependent forms, as in 
the case of co-routines and other non-traditional structures, 
perspective allows the system to deal with each individual 
cell's computation path separately to avoid generating 
circular expressions of dependency. 

FIB: FIB: FIB: FIBOI: FIBOl:FlBOI: FIBOJ: FIB02:FlB02: FlB02 : FIB02: FIB: 
N N-1 N-2 N N-1 N-2 FlbAns N N-1 N-2 FlbAnsFlbAns 

Figure6 

3.2.2: Recording the generalized relationships 

After the relationships have been located and sorted out 
by the topologically-sorted cell reference graph, the 
relevant portions of these relationships are recorded in the 
fully generalized formulas. This recording is done using 
an internal textual notation. It is important for this 
notation to provide enough information for the system 
(1) to recognize the needed form instance if it exists, and 
(2) to create the needed instance from its model form if 
such an instance doesn't exist. 1bis is important because 
if the system were not given enough information to 
automatically locate and create these instances, the only 
way a form could be reused during execution would be for 
the programmer to manually copy it from the model and 
modify it, just · as he or she did while programming it 
originally. (Since recording this information makes the 
internal description rather long and involved, it is never 
seen or used by the user.) 



To accomplish this, in the formula for a cell X, each 
reference to a cell on another form instance is described by 
enumerating each way the form instance is different from 
the model, if that difference is relevant to the goal cell X. 
If a form instance is different from the model in ways that 
are not relevant to computing the goal cell X, then that 
difference is recorded as don't care. The don't care 
differences are not used in the computation, but they 
provide information · necessary for the system to recognize 
the needed form instance if it already exists. 

This notation generalizes the Fibonacci problem posed 
at the beginning of this paper as follows. As shown in 
figure 6, the FibAns cell on FIB is the goal. The formula 
for FibAns makes references to three cells, FIB's N, 
FIBOl 's FibAns and FIB02's FibAns, and they are recorded · 
as: 

F/B's N: this is an internal reference. This reference is 
recorded as "self:N". (The use of "self' denotes the fact 
that this reference is on the same form as cell FibAns, the 
goal cell.) 

FIBOI 's FibAns: This is a reference to another cell 
FibAns on a form instance that, when viewed in figure 6 
from the perspective of the goal cell FibAns, is the 
instance of FIB in which N is defined as FIB's N-1. FIB 
is "self' from the perspective of the goal, so this reference 
is recorded as "FIB(N a-self: N-1):FibAns". 

FIB02's FibAns: FIB02's FibAns refers to N which 
refers to FIBOl's N-1. FIBOI's N-1 refers to its N which 
refers to FIB's N-1. Since this path leads back to the form 
FIB, ("self'), the reference is generalized as: 

"FIB(N a-FIB(N iarself: N-1):N-1):FibAns" 
Putting these three references together gives the 

complete generalized formula for FIB's FibAns: 
"If self:N = 0 or self:N = 1 then 1 else 

FIB(N iar self: N-1):FibAns + 
FIB(N ""FIB(N a-self: N-1):N-1):FibAns" 

Several additional examples are given in section 4, 
which discusses the generality of the approach. 

The Fibonacci example contains many relative (i .e. 
non-absolute) relationships. Examples of non-absolute 
relationships in other languages are those created by 
parameter-passing in traditional languages, by relative 
referencing in commercial spreadsheets, and referencing 
patterns such as the networks that can be built up in 
dataflow languages. 

Absolute relationships, the functional equivalent of 
absolute references in commercial spreadsheets and of 
references to global constants in traditional languages, are 
unchanged by generalization. For example, if a cell X on 
some form F referred to cell FibAns on an instance of FIB 
in which N's formula was 5+2, X's formula would be 
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"FIB(N"' 5+2)". The FIB(N"' TaxTable:Z) describes 
an instance of FIB in which N's formula -is an absolute 
reference to cell Z on the (model) form TaxTable. 

3.2.3: Reduction to a generalized dataflowgraph. 

As each cell's formula is generalized and recorded, the 
edges involved are relabelled as generalized edges. When 
the last edge is processed, the resulting cell reference graph 
is the same as a dataflow graph. After generalization, it is 
possible to discover that cycles remain that were formed 
by at least one of the generalized edges. Since such a 
cycle would be illegal, the dataflow graph is analyzed for 
cycles after generalization is complete. 

4: Generality of the approach 

This approach can be used to generalize all legal 
program structures. We will illustrate the generality of 
the approach . through the use of form-collapsed multi­
graphs, a diagram we introduce solely for the purpose of 
demonstrating the generality of the approach. (Form­
collapsed multi-graphs are not part of the approach itself). 
Each node in the form-collapsed multi-graph is a form and 
all the edges from the fully-generalized dataflow graph are 
retained at the form level. Thus each form has the same 
number of incoming and outgoing edges as in the cell 
reference graph . Figure 7 shows the resulting form­
collapsed multi-graph for the Fibonacci program . 

Program structures are reflected by these form-collapsed 
multi-graphs. There are only four possible patterns of 
these graphs. An example of each is given in figure 8. 
For each of the patterns, we will show an example and 
illustrate how generalization is performed. 

Pattern 1. no cycles: This pattern reflects abstractions 
with no parameter-passing, i.e. all references are absolute 
references, like global variables in other languages. 
Figure 9 shows the generalized dataflow graph of such a 
program. This program defines a screen saver with a 
floating image. The location of the floating image is 
computed and updated based on the system clock. Because 
all the references are absolute, they don't change with 
generalization. The formula for cell Floatinglmage thus 
needs only to reflect the dataflow path in absolute terms in 
recording how referenced cell Image's form differs from the 
model in ways that are relevant to cell Floatinglmage: 
"Picture(X ..- SystemClock:Sec; Y ..- SystemClock: 
Min):Image" 

FIB ~-F_IB_0_2_ 

Figure 7 
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No cycles: 
an example 

Figure8(a) 
A cyc_le with more 

than 2 nodes: an example 

Figure8(c) 

A 2-node cycle: 
an example 

......____,~ ► __ , 
Fi ure8 b 
Combination: 

an example 

. Figure8(d) 

Pattern 2. a graph with a 2-node cycle: A 2-node cycle 
models the functionality of a traditional subroutine with 
parameters. (Notice that such a cycle is at the granularity 
of forms, not cells. As previously discussed, circular cell 
references are not allowed after generalization is complete.) 
Figure 10 shows the generalized dataflow graph of a 
factorial program. Factorial of a number N is defined as 
N! = N * (N-1)! The topological sort determined that cell 
Ans on form Fact is the goal of the computation. In 
defining Ans's formula, those cells contributing to the 
computation and also on the same form as the Ans, 
namely N and N-1, are recorded as generalized references. 
The generalized formula for Ans becomes "If self:N = 1 
then 1 else self:N * Fact(N" self:N-1):Ans". 

Pattern 3. a cycle with more than 2 nodes: This 
pattern corresponds to a program structure that is not 
commonly found in most textual programming languages, 
because the values are passed forward, and only travel back 
to the original caller through a circular path . Figure 11 
shows the generalized dataflow graph of a program that 
computes the average of a list of numbers. The 
generalized formula for Average reflects the path of the 
parameters as they travel through the forms : 
"ComputeA vg(I:X " Summation(List q- Counter(List 
w self :List):List) ::EX; n " Counter (List " 
self:List):n): X". 

Pattern 4. any combination of the above patterns: 
Form FIB was one example of pattern 4, because it 
included both a 2-node cycle and a 3-node cycle. We have 
shown how each of the basic three patterns can be handled. 
Any combination of the above patterns can also be 
handled, because each cell's formula is recorded by 
isolating information relevant from that particular cell's 
perspective. The granularity of describing the form 
instances is at the cell level as it relates to one cell's goal, 
which means that regardless of how many ways the basic 
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three patterns are combined, no circularity in the notation 
can arise, because circularity at the cell level is not 
present. 

Another example of pattern 4 is depicted in figure 12, a 
dataflow graph containing two 2-node cycles . This is a 

· program to compute the permutation of N,K, defined by 
P(N,K) = N! / (N-K)!. The generalized formula for P(N,K) 
is "self:N! / self:N-K!" The formulas for cells N! and N­
K! are subsequently generalized as "Fact(N q­

self:N):Ans" and "Fact(N q- self:N-K):Ans" respectively. 
Two mutually-dependent co-routines would also be 
modeled by pattern 4 as a group of 2-node patterns. 

5: Efficiency 

The generalization technique developed in this paper is 
amenable to scaling up because its time complexity is 
bounded by V, the number of cells currently on the screen. 
Thus the complexity does not grow with the size of the 
program, but only with the amount of the program on the 
screen. The incremental cost to add edges to the graph is 
0(1) when a direct reference is made, or O(IV pl) when a 
form Fis copied (where IV pl denotes the number of cells 
on F). Cycle detection for the cell reference graph CG is 
O(IVI), using the standard DFS cycle-detection approach, 
and the topological sorting is 8(1Vl+IEI) using the standard 
algorithm. The implementation of the technique is 
currently being added to the Forms/3 system. 

6: Conclusion 

The approach presented in this paper allows a fully 
general form-based program to be derived from one that 
whose formulas were specified with concrete examples and 
direct manipulation. This is accomplished through 
recognizing and recording the logical relationships among 
the concrete data, from the perspective of the 
computational goals of the program fragment currently on 
the screen. The key benefits of the technique are: 

(1) It supports a visual style of general-purpose 
programming which incorporates extensive use of concrete 
examples, direct manipulation, and responsiveness. 

(2) It removes any order requirements from the user's 
program entry process. This frees the user to concentrate 
on problem-solving, rather than having to concentrate on 
providing information to the computer in the order the 
computer wants it. Since declarative languages strive to 
be solely dependent on definitions rather than on the order 
a program is specified, this is an especially important 
attribute for declarative VPLs. 

(3) It is scalable, because its performance is bounded by 
the number of program entities currently on the screen, 
not by the number of entities in the program. 



- . 
(4) It does not use inference. Hence there is no 

restriction to domain -specific programming tasks, because 
there is no risk of "guessing wrong" in the generalization 
process. 
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Figure 9: (above) The dataflow graph of the screen saver Figure JO: (above) The dataflow graph of the factorial 
program , superimposed on the form-collap sed multi-graph . program , superimposed on the form-collapsed multi-graph . 
This is an example of the first pattern , in which there are no This is an example of the second pattern, a 2-form cycle. The 
cycles. The goal is shown shaded. (below) The result of the goal is shown shaded. (below) The result of the topological 
topological sort . sort . 

Min S« X y Bitmap 

x 

Image Aoating 
Image 

Figure 1 I : (above) The dataflow graph of a program to 
compute the average of a list of numbers, superimposed on the 
form-collapsed multi-graph. This is an example of the third 
pattern , a cycle involving more than 2 forms. The goal is 
shown shaded. (below) The result of the topological sort. 

Fact :N Fact :N-1 FactOl:N Fac!Ol :N-1 Fac!Ol:An s 

Figure 12: (above) The dataflow graph of a permutation 
program, superimposed on the form -collapsed multi -graph. 
This is an example of the fourth pattern, which is any 
combination of the other three patterns. The goal is shown 
shaded. (below) The result of the topological sort . 
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