
87-10-1

Parallelizing WHILE Loops

Youfeng Wu
T.G. Lewis

Department of Computer Science
Oregon State University
Corvallis, Oregon 97331

7
7
n
n
fl
1)

l
I I

ll

u
u
u

Parallelizing WHILE loops

Youfeng Wu
T.G. Lewis

Oregon State University
Corvallis, OR 97331

(503)754-3273

Abstract Two methods for parallelizing WHILE loops
are presented. The first method converts a WHILE
loop into a FORALL construct, and the second method
pipelines a WHILE loop. Each of the methods is based
on a transformation that makes explicit the loop
counting. Also, we propose two parallel WHILE
constructs.

1. INTRODUCTION

Automatically parallelizing a sequential program is desirable not
only because of the need to restructure large amounts of existing
sequential software, but also because programmers become less
competent at optimization as computer complexity increases
([LAMPORT-75], [LUBECK-85]). It has long been recognized that
designing parallel programs imposes a heavy burden on the
programmers -- it can be extremely tedious for a programmer to
ensure that the components of a parallel program do not interact
unexpectedly. For example, to decide whether to use a FORALL i:= 1
TO n DOS ENDFORALL parallel construct or a FOR i:= 1 TO n DOS
ENDFOR sequential construct, a programmer has to determine
whether or not the executions of S in different iterations will
interfere with one another. To discover such an interference, a
programmer may have to mentally unwind the loop and imagine the
many possibilities of interactions between different iterations.
People tend to ignore such considerations, while a computer tool can
analyze such loops faster and with greater precision.

The paradox is that there are cases beyond the capability of an
automatic tool. One instance is very complex array subscripts,
pointers. When this happens, human insight might be the . only w~y
to decide parallelism. Also, if an algorithm has already been
designed, the compiler's analysis can be saved. In either case, an
explicit parallelism construct is useful.

There are rather sophisticated techniques for parallelizing FORTRAN
like DO loops (for example, see [PADUA-86]). Since the DO loops are
equivalent to the FOR loops of PASCAL, MODULA-2, etc., we do not
distinguish them and refer to them all as FOR loops. Also, the
parallel FORALL construct has been included in almost every parallel
language [KARP-88]. However, to our knowledge, no technique for
parallelizing WHILE loops has been proposed in literature (although
several compilers, such as the Alliant FORTRAN compiler, actually
performs certain while loop parallelization). In general there is the

. need for studying WHILE loop parallelism because most of the
modern languages like Pascal, C, Modula-2, etc. have the WHILE
construct, and the WHILE loop is a good source of parallelism.

Assume a WHILE loop has the following format:

(*) WHILE b(D) DO
S(D);

ENDWHILE;

where D is a set of variables and S is performed on D only when b 1s
true and repeats until b becomes false.

A straightforward method to parallelize a WHILE loop is to rewrite
the WHILE loop as a FOR loop (with exit), and parallelizing the FOR
loop using the known techniques. In this method, the given loop is
converted to

FOR i:=1 TON DO
IF b(D) THEN S(D) ELSE exit ENDIF

ENDFOR;

l
n
n
n
n
l

I
J

l
J

J

j

J

n
n
0
n

l
. I

I
J

I J

J

11

j

u

f

where N is the estimated upper bound of the WHILE loop based on
"worst case performance" ([LEE-85]). This method suffers from at
least three drawbacks. First, it does not work in general because it 1s
not always possible to estimate the upper bound N. Secondly, the
estimation may be too conservative such that the parallelism .
obtained may be overweighted by the extra overhead introduced by
the unreasonable N. Third, the method creates an IF construct and
exit inside the FOR loop, which could make the FOR loop hard to be
parallelized ([LEE-85]).

In this paper, we present two general methods to parallelize WHILE
loops. The first method also converts a WHILE loop into a FOR
construct, although we provide a method to determine the exact
upper bound and introduce no IF construct. The second method
pipelines a WHILE loop. Also, we propose parallel constructs to
explicitly express parallelism in a WHILE loop like form .

2. DEFINITIONS AND ASSUMPTIONS

The concepts of iteration vector and loop carried dependence of
[ALLEN-83] are introduced here.

Iteration vector. For a k-level nested loop (either FOR or WHILE),
a vector (il ,i2, .. .ik) is called an iteration vector if the loop body can

be executed when the j'th level loop is in the ij'th iteration for all j =

1, .. ,k.

We use S(I) to denote the execution of statement S during the
iteration I= (il,i2, .. .ik).

Loop carried dependence. Statements Sl and S2 have (true) loop
carried dependence iff there exist I = (il,i2, .. .ik) and 'L = (i,l, i2, ... ik),

I > 'L, S l(I) uses the variables updated by S2('L). Further, S 1 and S2
have level j loop carried dependence iff i1 = i, 1, i2 = i2, ... , ij-1 = ij-1 ,

ij :/: ij.

Example 2.1. Consider the following FOR loop,

FOR i:=1 TO 100 DO
FOR j:=1 TO 100 DO

S: x[i,j] := comp(x[i-2, j+3]);
ENDFDR;

ENDFOR;

On iteration (i, j), S((i, j)) reads x[i-2, j+3]. The same memory location
is written on iteration (i-2, j + 3). Since iteration vectors (i, j) > (i-2,
j+3), we conclude that S has a loop carried dependence on itself.

There are various techniques ([WOLFE-82] and [ALLEN-83]) that can
be used to break up loop carried dependencies (especially those false
dependencies: anti-dependence and output-dependence [KUCK-81]).
In this paper, we assume that these techniques will be applied
automatically whenever appropriate and the loop carried
dependencies we addressed in the fallowing are those that cannot be
removed. Also, our context of loop parallelizability is constrained to
the possibility of the parallel executions of all of the loop iterations,
and we assume that any partial parallelism of a loop has been
properly handled by other techniques such as expression tree height
compression and loop splitting (see [PADUA-86]).

-Based -on these definitions and assumptions, we can state the
following as a theorem, without giving its proof.

Theorem 1. A FOR loop at level j is parallelizable iff the loop body
does not have level j loop carried dependence.

In the following, we consider non-nested loops. For simplicity, we
use S(i) to indicate the execution of statement S in iteration i, instead
of S((i)). The results can be easily extended to nested loops.

~

n
n
n
n
,l
l
I
l
]

I
I
, I

J

n
n
n
n
n
fl

I
1
I
I
I
l

I
)

J
J
u

3. CHARACTERISTICS OF WHILE LOOPS

Trivially, the loop condition b in a while loop of form (*) must have
true dependence on loop body S. Otherwise the condition will never
change and the loop is either a empty loop of an infinite loop. Als_o,
each iteration has control dependence on the loop condition.
However, this two facts do not imply that S has loop carried
dependence on itself. For example, in the following loop,

X := 1;
WHILE x > 0 DO x := -1 ENDWlllLE;

the loop condition has true dependence on loop body, and the loop
body has control dependence on the loop condition. However, the
loop body has no loop carried dependence on itself.

In the following, we show that every iteration S(i) is truly dependent
on S(i-1), if the loop is finite and executes more than once.

PROPOSITION 3.1. A WHILE loop body must have loop carried
dependence on itself, or the WHILE loop is either an empty loop,
being executed only once, or an infinite loop.

PROOF. Assume Ui be the set of variables that are actually used in
iteration i. Since not all variables in D are used in every iterations, Ui
may change from iteration to iteration. For the WHILE loop in (*),
each iteration s(i) can be thought as performing two functions: r that
selects a subset variables Ui from D, and f that maps Di together with
the values in these variables Vi(U i) to another set of variables Mi
with new values Vi(Mi) :

S(i): Ui = r(U'i, Vi(U'i)), (Mi, Vi(Mi)) = f(Ui, Vi(Ui)),

where U'i is a subset of Ui. The WHILE loop is neither an empty loop
nor an infinite loop and is executed more than one iteration means
that the condition b is true S(i-1) and is evaluated to false by S(i), for
some i > 1. This implies that (Mi, Vi(Mi)) -::/:-(Mi-1, Vi(Mi-1)), since
otherwise b will remain unchanged. This in turn requires (Ui-1, Vi-
l (U i-1)) -::/:-(Ui, Vi(U i)). If S(i) does not use the variables modified by

S(i-1), namely if Mi « U i = F, then the selection function r in iteration
i will select the same set of variables as in iteration i-1, so Ui = Ui-1.

From (Ui-1, Vi-1(Ui-1)) =t-(Ui, Vi(Ui)) and Ui-1 = Ui, we have Vi-1(Ui) =t

V i(U i). This can happen only if Mi-1 « U i -::t-F, a contradiction.
QED.

In the following, we will call a finite WHILE loop that can iterate
more than once a normal WHILE loop. Obviously, any WHILE loop
appearing in a meaningful program should be a normal WHILE loop.

To convince ourselves that there is potential parallelism in a WHILE
loop, even with the establishment of the above proposition, we
consider the following WHILE loop:

WHILE i<= n DO x[i]:= comp(i); i:=i+l ENDWHILE;

where comp(i) is a function free of side effects. This WHILE loop is
trivially equivalent to the following FOR loop:

FOR i:=1 TO n DO x[i]:= comp(i) ENDFOR;

and can be parallelized as

FORALL i:=1 TO n DO x[i]:= comp(i) ENDFORALL;

In summary, any normal WHILE loop has loop carried dependence,
and thus should not be parallelizable according to Theorem 1 on
parallelizing FOR loops. However, there do exist parallelizable WHILE
loops. This phenomenon can be explained by the fact that the loop
carried dependency in a WHILE loop is often caused by implicit loop
counting, which is explicit in a FOR loop. If we can make the loop
counting of a WHILE loop explicit, we can discover the parallelism
inside a WHILE loop. This is discussed in the next section.

7

n
n
q

l
I
I
I
l

I
I
I

I

l
~

n
n
D
n
I

I
I
l
I

J

J
I

4. TRANSFORMATIONS OF WHILE LOOPS

We are interested in transforming a WHILE loop to an equivalent
form in which its loop counting is explicit.

The first form is that in which the loop counting statements (LC) are

at the end of the loop body as in (1) below, where D A » B and A «

B=F.

(1) D :=Do;
WHILE b(A) DO

RS: B := h(D);
LC: A := g(A);

ENDWHILE;

The second form is that in which the loop counting statements (LC)
are in the beginning of the loop body, as in (2).

(2) D :=Do;
WHILE b(A) DO

LC: A := g(A);
RS: B := h(D);

ENDWHILE;

In both form (1) and form (2), we require that A « B = F. This
ensures that LC does not depend on RS, though RS is allowed to be
dependent on LC. So, when RS is removed, the loop will iterate the
same number of times as the original loop.

Trivially, a WHILE loop of form (*) can be transformed into form (1)
(e.g. by assuming A=D). In general, we can transform a WHILE loop
such that RS is not empty as follows:

TRANSFORMATION 1. Let A be the variables used by band A' ce D
be the duplication of A. Then RS consists of the assignment A' := A
and those statements in S that are not related to the change of A
with all occurrences of A replaced by A'. Similarly, LC consists of all
of the statements of S that contribute to the change of A. That is,

RS: A' := A; S(A -> A') except the statements that are
only used for updating A';

LC: the statements in S that solely update A;

For this transformation, when removing RS, the WHILE loop will
iterate the same number of times as the original loop because LC
changes A the same way as the original loop, and RS does not change
A at all.

Example 4.1. The following WHILE loop

WHILE i <= n DO
x[i] := comp(i);
IF i < 5 THEN i:=i+ 1 ELSE i := i + 2 ENDIF;
y[i] := comp(i)

ENDWHILE;

can be transformed into the form (1) WHILE loop as below:

WHILE i <= n DO
RS: i' := i; x[i'] := comp(i');

IF i' < 5 THEN i':= i'+ 1 ELSE i' := i' + 2 ENDIF;
y[i'] := comp(i');

LC: IF i < 5 THEN i:=i+ 1 ELSE i := i + 2 ENDIF;
ENDWHILE;

Similarly, a WHILE loop of form (*) can be transformed into the form
(2) as follows.

TRANSFORMATION 2. First, loop (*) is transformed to form (1)
using transformation 1, and then LC is moved to before RS and all of

the occurrences of variables in A are replaced by g-l(A).

7
n
n
n
ll

l
I
l
I
I
I
I
J

7
n
n
n
n
In
I
1

l
l
I

I I
l

J
I
u

Example 4.2, the WHILE loop in example 4.1, can be transformed to
the following form (2) WHILE loop:

WHILE i <= n DO
LC: IF i < 5 THEN i := i + 1 ELSE i := i + 2 END IF;
RS: IF i <= 5 THEN i":=i-1 ELSE i" := i - 2 ENDIF;

i' := i"; x[i']:= comp(i');
IF i' < 5 THEN i':= i'+l ELSE i' := i' + 2 ENDIF;
y[i'] := comp(i');

ENDWHILE;

We make no claim that the transformations proposed here are
efficient (obviously some code in the above loop can be removed). In
particular, since the transformations duplicate some amount of
computation in both LC and RS, an algorithm that would minimize the
duplication is an open problem. We expect that the compiler
optimization methods like forward substitution and dead code
deletion can be explored here ([AHO-87]).

5. CONVERTING WHILE LOOPS TO FOR LOOPS

After transforming a WHILE loop into either form (1) or form (2), we
can focus our attention on the parallelizability of RS. The main result
in this section is that once a WHILE loop is transformed into either
form (1) or form (2), it can be parallelized iff RS does not have loop
carried dependency.

The approach used in this section is to convert a WHILE loop into a
FOR loop, and use the result on parallelizing FOR loops to establish
our result. Note that in a FOR loop, the upper bound is independent
of the loop body. In the case of a while loop, the upper bound is
often dependent on the execution of the loop body. However, once
we have transformed a WHILE loop to either form (1) or (2), the
upper bound of the loop count can be determined independently of
RS.

PROPOSITION 5.1. Assume Ao is the initial values of A. A form (1)
WHILE loop can be converted to:

N = min (n I b(gn(Ao)) = false)
FOR i:=1 TON DO

RS;
LC-,

ENDFOR;

PROOF. In a form (1) WHILE loop, A will not be modified by RS. So,
if we let Ai be the values of A at the end of iteration i, we have

AO= Ao,

Al= gl(Ao),

A2 = g2(Ao),

AN= gN(Ao),

The total number of iterations of the loop is the smallest n such that

b(An) = false.

This is exactly the definition of N. This tells us that the code in the
above FOR loop iterates the same number of times as the given
WHILE loop. Also the FOR loop has the same effect on the variables
modified by RS and on A.
QED.

In proposition 5.1, we still have the loop counting statements LC
inside the FOR loop. We have to get rid of LC in order to parallelize
the loop. We notice that in the FOR loop the purpose of LC is to
update A, which might be used by RS and/or by the statements after
the loop. As we know that the values of A at the end of iteration i is

Ai= gi(Ao), we can let the RS(i) directly access the values gi-l(Ao)

instead of referencing the variables in A. Also, we can let AN =

gN(Ao) be the values of A used by the statements after the loop.

l
n
n
n
n
1

l
I
l
1

}

I
I
J

I
I
Ji
LI I
,:-

n
n
n
fl
I]

n
I
l
I
l
I
1

I
l l
J

u
u

f

PROPOSITION 5.2. A form (1) WHILE loop can be converted to the
following FOR loop

N = min (n I b(gn(Ao)) = false)
FOR i:=1 TON DO

RS(A-> gi-l(Ao));
ENDFDR;
A= gN(Ao);

PROOF. From the above discussion.
QED.

According to Theorem 1, the FOR loop above is parallelizable iff RS
does not have loop carried dependence. Consequently, the given
WHILE loop is parallelizable iff in the transformed form the N can be
found and RS does not have loop carried dependence.

Consider the following form (1) WHILE loop, where c>0, M > io:

i := io;
WHILE i <= M DO

x[i]:= comp(i);
i:=i+c;

ENDWHILE;

In this example,

gl(io) = io + c,

gn(io) = io + n*c,
b(i) = (i ~ M),

N = min (n I b(gn(io)) = false)

= min (n I io + n *c > M)

= min (n I io + n*c ~ M + 1)
= E(M- io +1)/c-.

gN(io) = io + N*c
= io + E(M- io +1)/c- * c.

The corresponding FOR loop is:

i := io;
FOR j := I TO E(M- io +1)/c- DO

x [io + (j-1) * c]:= comp(io + (j-1) * c);
ENDWHILE;
i := io + E(M- io +1)/c- * c;

This FOR loop is immediately parallelizable.

This example shows that for certain functions g and b, N and gll(Ao),
0 < n < N, can be statically defined as expressions. It is an interesting
topic to characterize the class of functions which have the property
and to study the complexity of deriving the expressions. For
example, we can define the property "function f(n) can be statically
defined as an expression" as that "f(n) can be computed without
using GOTO and repetitions". Namely, f(n) is a primitive recursive
function. Based on this definition, as long as g and b are primitive

recursive functions and N is bounded, N and gn(Ao) can be statically
defined as expressions ([BRAINERD-74], p64). Since the majority of
practical g and b are primitive recursive, we claim that in practice,
WHILE loops can be converted to WHILE loops as above.

Even in the most general case, when N cannot be calculated without
using a WHILE loop (at runtime), we can calculate the N using the
following WHILE loop (at runtime) which produces the values of A[n]

= gn(Ao), 0 < n < N, as side products.

A[0] := Ao; N := 0;
WHILE b(A[N]) DO

A[N+ I] := g(A[N]);
N :=N + I;

ENDWHILE;

This WHILE loop stands for the sequential portion of the original
WHILE loop that has to be done sequentially. So whatever amount of
parallelism we can obtain by parallelizing RS will speed up the
program. The speed up will be analyzed in section 6.

We have similar results for the form (2) WHILE loops.

7
n
n
n
[I

l
l
l
l
l
l
f

. I
j

j

j

J
LI I

n
n
n
n

1

I
11

J

u
J

1

u
u

6.

PROPOSITION 5.3. A form (2) WHILE loop can be converted to the
following FOR loop

N = min (n I b(gn(Ao)) = false)
FOR i:=1 TON DO

RS(A-> gi-l(Ao));
ENDFOR;
A= gN(Ao);

PROOF. Omitted.

PIPELINING WHILE LOOPS

In [CYTRON-86], DOACROSS was proposed to parallelize FOR loops that
have loop carried dependence. A similar idea can be used to execute
WHILE loops in the form of pipelining.

The power of pipelining lies in the overlapping of operations. This
can be used to execute a loop by overlapping part of the iterations.
Another feature of pipelining is that the operations do not have to be
data independent as long as certain conditions hold. This latter
feature makes it especially attractive for executing WHILE loops.

We first review the classic example of the two-stage instruction
pipeline. The process of each instruction is decomposed into a fetch
stage and an execution stage, and the instruction stream is fed into
the two-stage pipeline as in figure 6.1 (a). The explicit condition that
allows a stream to be executed in the pipeline is that the first stages
should not depend on the immediately preceding second stage
operations (In other words, the Fetch stage and Execution stage do
not have loop carried dependence). The implicit conditions that are
guaranteed by the single two-stage hardware is that no two
first/second stage operations should be executed at the same time.
For a steam of N instructions, the timing of the execution is shown in
figure 6.1 (b). The total execution time is

T(fetch) + T(execution) + N * MAX(T(fetch),T(execution)).

When we have multiple processors, each capable of executing the
two stages, we have a multiprocessor two-stage pipeline (see figure
6.2). The conditions to guarantee the proper pipelining is that (a)
first stages should not depend on any of the second stages and (b)
the second stages must be independent of any of the other second
stage operations. Note that, these two conditions do not exclude the
possibility that the first stages have loop carried dependence on
themselves and that the second stages depend on the first stages.

Several timing patterns are possible depending on the patterns of
dependence. The pattern in which the first stages are dependent is
shown in figure 6.3. The timing of the pattern is shown in figure 6.4.

Fetch
An execution

B A fetch
Execution

~ Unused 1 2 3 4 N

(a) (b)

Figure 6.1. (a) two-stage pipeline, (b) timing of the pipeline.

Stege 1 Stege 1 Stage 1

Stege 2 Stege 2 Stage 2

processor 1 processor 2 processor p

Figure 6.2. A multiprocessor two-stage pipeline.

~

n
n
n
n
n

,.

l
l
l
I
l
I
J

j

J

J

I ~I

n
n
n
0
LJ

I
1
I
I

J
u
LI

I tereti on 1 Iteration 2 Iteration N

Stege 1

Stage 2
Stage 2

Stage 1

Stege 2

Figure 6.3. An execution of multiprocessor two stage pipeline.

' ' ✓ ✓ Stege 2 ' ' ✓ .,

' ' ✓ ✓

§ Stage 1

1234 N

' ' ,,
' ' ,,
' ' ,,

t

Figure 6.4. Timing of the multiprocessor two stage pipeline.

The multiprocessor pipeline is a good device to execute the form (2)
WHILE loop. The conditional checking (b(D)) and the statements in
LC can be thought of as the first stage operation, while the
statements in RS can be considered as the second stage operations.
The pipelining is safe as long as RS does not have loop carried
dependence on itself, since this and the properties of form (2),
namely LC does not depend on RS, are exactly the conditions
required to execute the loop on the multiprocessor pipeline. Because
we allow LC to have loop carried dependence, the WHILE loop can be
executed as in figure 6.4.

The advantage of pipelining a · WHILE loop over parallelizing a WHILE
loop is that we do not have to calculate an upper bound on the
number of loop iterations. Another advantage is that the first stage
of the pipeline does not need to be used only for loop counting. Even
if RS has loop carried dependence, we may be able to isolate the part

of RS that has loop carried dependence and put it into the first stage.
This suggests a generalization of the form (2) WHILE loop as stated in
the fallowing proposition.

PROPOSITION 6.1. Any WHILE loop of the following form can ~e
pipelined as long as S 1 does not depend on S2 and S2 does not have
loop carried dependence on itself.

(3) D :=DO;

WHILE b(D) DO
Sl;
S2;

ENDWH1LE;

PROOF. This is obvious from the conditions of the multiprocessor
pipeline. Q.E.D.

7. SPEEDUP ANALYSIS.

As the discussion in section 4 showed, transforming a loop to either
form (1) or form (2) will duplicate a certain amount of code in the
original loop body. It is a challenging task to devise a
transformation algorithm to minimize the duplications. For now, we
assume the time taken by the sequential execution of is t units, and
the execution time of LC is t 1 == at units and RS is t2 = bt units, 1 < a + b

< 2, 0 < a, b < 1. Then, the execution time of the original loop is N* t.

The time taken by one iteration of the transformed loop is:

(t1 + t2) = (a+ b) * t.

For the parallelizing schema of section 4, the calculation of N takes N*
t 1 time units when N has to be calculated at runtime using a WHILE

loop, or takes a constant time if a formula for N can be found at
compilation time. Since the statement RS can be done in p~allel
(assuming we have sufficiently many processors), the total execution
time of the transformed loop is mNt1 + t2 where m is either O (the

calculation of N can be done completely at compilation time) or 1
(the calculation of N has to be done completely at runtime by a

7
n
n
n
n
n
l
l

I
J

J

I
I

1
n
n
n
0
n
I
l
l
I
J
I
j

I
1

I

WHILE loop). The speed up is

SP = Nt I (mNt1 + t2) = N/ (mNa + b).

When m = 0,

SP1 = N/ b.

When m = 1,

SP2 = NI (Na + b) = 1/ a - b / (N a2+ b a).

Since b <l, SP1 may be greater than N. This is achieved by
performing the runtime loop counting computation at compilation
time.

On the other hand, SP2 is dominated by 1/a = Nt/ Nt 1, which is the
ratio of the execution time of the original loop to its sequential
portion that calculates N. Since the parallelized loop cannot be
executed faster than the sequential portion, 1/ a is the best speedup
for this case.

For the pipelining schema of section 5, the N LC's are executed
sequentially. This is exactly the case of the parallelizing schema
when m = 1. So the speedup is SP2.

In summary, the speedups of both parallelizing schema and the
pipelining schema are dependent on how much of the loop body is
loop independent. The parallelizing schema can further speed up the
loop if the calculation of N can be done statically.

8. PARALLEL WHILE CONSTRUCTS

We propose form (1) and (2) WHILE loops discussed in section 4 as
the parallel constructs to explicitly express parallelism. Although it
seems a little counterintuitive that in form (2) the loop counting .
statements for the next iteration are executed upon entry to the loop,
sophisticated users may find it useful to specify parallel WHILE loop
to by-pass compiler's transformation. The abstract constructs can be
specified as:

(l ') PARWHILE b(il,i2, .. .ik) DO

S;
NEXT (il ,i2, .. .ik) := exp

ENDWHILE;

(2') PARWHILE b(il,i2, .. .ik) NEXT (il,i2, .. .ik) := exp DO

S;
ENDWHILE;

As with the FORALL construct, the user must decide that (a) S has no
loop carried dependence on itself, and (b) b does not depend on S,
before coding in either form (l ') or (2'). The compiler can translate
these constructs into either a parallelized or a pipelined execution
without performing data dependency analysis and loop
transformations. For example, the loop in Figure 8.l(a) can be coded
as in Figure 8.l(b) or Figure 8.l(c).

(a)

(b)

WHILE i <= n DO
x[i] := comp(i);
IF i < 5 THEN i+l ELSE i + 2 ENDIF
y[i] := comp(i)

ENDWHILE;

PARWHILE i <= n DO
x[i] := comp(i);
IF i < 5 THEN i' := i+ I ELSE i' := i + 2 ENDIF;
y[i'] := comp(i');
NEXT IF i < 5 THEN i+ 1 ELSE i + 2 END IF;

ENDPARWHILE;

1

0
I l
I
l
l
I
I

J

I
I
I

7
n
n
fl
n
n
l
l
l
I
lJ
I
lf
I

. 1

j

u
I

B

(c) PAR WHILE i <= n DO NEXT IF i < 5 THEN i+ 1 ELSE i + 2 END IF;
IF i <= 5 THEN i':=i-1 ELSE i' := i - 2 ENDIF;
x[i'] := comp(i');
y[i] := comp(i);

ENDPARWHILE;

Figure 8.1. Explicitly Expressing Parallel WHILE loops.

9. CONCLUSIONS.

Though a WHILE loop looks inherently sequential, as Proposition 3.1.
suggested, a WHILE loop may be parallelized automatically by first
transforming it into either form (1) or form (2) and then either
converting the transformed loop into a parallel FOR loop or pipelining
the loop. This method is general in the sense that it works for any
given WHILE loop and it can be used equally well to parallelize other
iterative control structures such as REPEAT loops. To save the
transformation work, a programmer can also use the parallel WHILE
constructs to directly code in either form (1 ') or form (2').

10. REFERENCES

[AHO-87] Aho, Alfred, U. Ravisethe, and Jeffres D. Ullman, "Compilers,
Principles, Techniques, and Tools," Addison-Wesley, 1987.

[ALLEN-83] Allen, J. R., Dependence Analysis for Subscripted Variables
and Its Applications to Program Transformations, Ph.D. Thesis,
Rice University, Houston, April 1983.

[BRAINERD-74] Brainerd, W.S. and L.H. Landweber, Theory of
Computation, John Wiley & Sons, 1974 .

[CYTRON-86] Cytron, Ron, "Doacross: Beyond Vectorization for
Multiprocessors," Proceedings of the 1986 International
Conference on Parallel Processing.

[KARP-88] Karp , Alan H. and Robert G. Babb II, "A Comparison of 12
Parallel Fortran Dialects," IEEE Software, vol. 5, no . 5, Sept 1988.

l
I

,.
f:,

[KUCK-81] Kuck, D. J., R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe,
"Dependence Graphs and Compiler Optimizations," Proc. 8th ACM
Symp. Principles Programming Languages, Jan. 1981, pp. 207-
218.

[LAMPORT-75] Lamport, L., On Programming Parallel Computers, in
Proc. of a Conf. on Prog. Lang. and Compilers for Parallel and
Vector Machines, New York, March 18-19, 1975.

[LEE-85] Lee, Gyungho, Clyde P. Kruskal, and David J. Kuck, An
Empirical Study of Automatic Restructuring of Nonnumerical
Programs for Parallel Processors, IEEE Trans. on Computers, Vol.
c-34, No. 10, October 1985.

[LUBECK-85] Lubeck, 0. M., P. -0. Frederickson, R. E. Hiromoto, and J. W.
Moore, "Los Alamos Experiences with the HEP Computer," m
Parallel MIMD Computation: HEP Supercomputer and Its
Applications (MIT Press, 1985).

[PADUA-86] Padua, D.A., and M.J. Wolfe, Advanced Compiler
Optimizations for Supercomputers, CACM, 29(12), Dec. 1986.

[WOLFE-82] Wolfe, M.J., Optimizing Supercompiler for Supercomputers,
Ph.D. Thesis, University of Illinois, Urbana-Champaign, 1982.

7
n
n
n
n

l

	Wu_Lewis_87_10_01_A
	Wu_Lewis_87_10_01_B

