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ABSTRACT 

ELGDF (Extended Large Grain Data Flow) is a design language that allows representation of a 

wide variety of parallel programs. The syntax is graphical and hierarchical to allow construction 

and viewing of realistically sized programs. ELGDF language facilitates describing parallel 

programs in a natural way for both shared memory model as well as message passing model. The 

syntax poses high level structures such as replicators, loops , pipes, branches, and fans, as well 

as constructs for shared resources. ELGDF resolves arc overloading in current graphical 

languages by using different symbols and different attributes for different types of arcs. 

The ELGDF serves as the foundation of a parallel programming environment under development at 

Oregon State University. The complete syntax of ELGDF helps the program designers to deal 

with parallelism in the manner most natural to the problem at hand. It also helps as a way to 

capture parallel program designs for the purpose of analysis such as scheduling and 

performance estimating. Thus, the goal of ELGDF is two-fold: 1) a program design notation and 

computer-aided software engineering tool, and 2) a software description notation for use by 

automated schedulers and performance analyzers. 

INTRODUCTION 

It seems clear that the next generation of computers will be based on the multiprocessor 

paradigm, but more effort is needed to help software engineers develop programs for parallel 

computers. 

Because humans tend to think sequentially rather than concurrently, program development is 

most naturally done in a sequential language [19]. Unfortunately sequential programming is 

incapable of directly making effective use of parallel computers. 

If we look at the evolution of sequential programming, we find that sequential programming has 

evolved in the following way: at the beginning all the programs were written in 

architecture-specific low level languages. Then high level languages started to appear allowing 

programs to be written in architecture independent languages so the programmers didn't have to 

worry about the architectural details. Finally extensions have been made to high level languages 

to make them more structured and abstract leading to programs that are easier to develop, test, 

and maintain. 

2 



We believe that parallel programming should evolve in the same direction. Developing 

hand-coded parallel programs is equivalent, in a sense, to programming in a low level 

sequential language, because hand-coded parallel programs are quite architecture dependent. For 

example synchronization is done using locks in a shared memory architecture, but 

synchronization is done via message passing in a distributed memory architecture. 

In order to develop hand-coded programs for parallel systems, the programmer has to exploit 

the potential concurrency of the algorithm, write the parallel program for a given architecture 

using a language and synchronization constructs suitable for the given architecture, schedule 

tasks on the available processors using intuitive methods, execute the program, and finally debug 

the program if it doesn't give the expected results or if it goes into a deadlock situation. 

Programmers have a great deal of details to worry about at any time which makes parallel 

programming a very difficult process. In order to make parallel programming easy, we need to 

get the system to shoulder more of the burden. 

Given these facts, it is not surprising that an architecture independent higher abstraction is 

needed so program designers can express their algorithms in high level structures without 

having to worry about the details like the synchronization code. High level parallel programs 

then can be analyzed and translated into schedulable units of computation that fit the target 

hardware architecture . 

In this paper we describe the ELGDF design language that allows program designers to express 

parallel program designs in a graphical and hierarchical syntax. Graphs can be used to represent 

the potential concurrency in programs [15]. We beleive that the ELGDF will help programmer 

comprehension and will produce parallel program designs in a form appropriate for analysis. 

This work is related to a number of other studies [1,2,5,6, 11, 15]. In our work the program is 

represented as a large grain data flow network. Our work extends LGDF [2,6, 11] to facilitate the 

following: 1 )ELGDF syntax poses high level structures such as replicators, loops, pipes, etc., 2) 

ELGDF allows the designer to express branches and loops that give more information for 

scheduling and analysis purposes, 3) ELGDF expresses parameterized constructs compactly,4) 

ELGDF has arc hierarchy as well as node hierarchy, 5) ELGDF resolves arc overloading by 

providing different symbols and different attributes for different types of arcs, 6) ELGDF allows 

the user to express mutual exclusion easily , 7) ELGDF provides synchronized pipelining 

through repeated arcs, and 8) ELGDF can be easily transformed into a precedence task graph 

which is useful for task scheduling and processor allocation. 
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THE LANGUAGE 

ELGDF is a graphical language for designing parallel programs. ELGDF designs can be refined into 

Pascal, C, FORTRAN, etc. source code programs through simple transformation. However, ELGDF 

is designed as a program design language, and not a programming language. ELGDF is rich enough 

to express many of the common structures found in parallel programs (replicators, pipes, 

branches, fans, etc.). An ELGDF design takes the form of a directed network consisting of nodes, 

structures, storage constructs, parameterized constructs, and arcs. 

BASIC CONSTRUCTS 

1-Nodes 

A node, as shown in FIG-1 is represented by a "bubble", and can represent either a simple or a 

compound node. A simple node consists of sequentially executed code and is carried out by at most 

one processor. A compound node is a decomposable high level abstraction of a subnetwork of the 

program design network. 

A node TASK-1 8 
FIG-1 

2- Storage Constructs 

A storage construct, as shown in FIG-2 is represented by a rectangle, and can represent either a 

storage cell or a collection of storage cells. A storage cell represents the data structure to be read 

or written by a simple node. A node connected to the top of a storage construct has access to it 

before any node connected to its bottom. Nodes connected to a storage construct on the same side 

(top/bottom) compete to gain access to that storage construct in any order. A compound node 

connected to the left or the right sides of a rectangle representing a collection of storage cells 

means that the compound node will be using the constituents of the storage collection and the 

details will be given in lower levels description. 
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3- Arcs 

A sorage construct 
INPUT-1 INPUT-1 

FIG-2 

An arc in ELGDF can express either data dependency, sequencing, transfer of control, or read 

and/or write access to a storage construct. A set of attributes is associated with each arc to 

provide information about the arc type, data to be passed through the arc, storage access policy, 

communication strategy, and others. 

An arc can be either a simple arc which cannot be decomposed or a compound arc which is 

decomposable into a set of other simple and/or compound arcs. Simple arcs can be classified into 

control and data arcs. FIG-6 shows simple arcs classification. 

A control arc expresses sequencing and transfer of control among nodes. FIG-3-a shows a control 

arc connecting node A to node B. Thus, B cannot start execution before A finishes and A should 

activate B once it is done. A control arc going from compound node C to compound node D is 

actually a set of control arcs going from the constituents of C to those of D to make sure that 

every node in C must finish before any node in D can start. Two or more control arcs can meet at 

a connection point and become one control arc. A control arc leaving a connection point gets 

activated when all the control arcs coming into the connection point get activated. 

A data arc can carry data from one node to another or can connect a node to a storage construct. 

FIG-3-b shows a data arc connecting node C to node D which means that node B cannot start 

execution until it gets the data structure (X) associated with the arc from node A. The data arc 

connecting nodes C and D can be thought of as a channel carrying (X) in a message passing system. 

However, it means that C writes to the storage construct (X), then D reads from (X), as shown in 

FIG-3-c, in a shared memory system. A data arc which is not connected at one end represents a 

connection. 
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cp data arc 
data 

control 
~ X arc 

arc 

l data arc 

0 0 
(a) (b) (c) 

FIG,3 

A data arc connecting a node and a storage construct can represent READ, WRITE, or READ/WRITE 

access depending on the direction of the arc. An arc going to a storage construct means WRITE, an 

arc leaving a storage construct means READ. A bi-directional arc means READ/WRITE. A 

READ/WRITE compound arc means its constituents can be READ, WRITE, or READ/WRITE arcs. A 

simple READ/WRITE data arc connecting a simple node to a storage cell means the node reads and 

then writes from and to the storage cell. See FIG-4. 

data 
arc 

WRITE 

X 

Simple node A writes 
into storage cell X 

y 

Simple node B reads 
from storage cell Y 

FIG-4 
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z 

Simple node C reads from 
storage cell Z and then 
writes into it 



A data arc can be used to carry data once or repeated times per activation. One of the arc's 

attributes is used to indicate the number of times the data will be passed through. If the value of 

that attribute is greater than one then the arc is considered a repeated arc. 

The repeated arc is used basically in pipelines. It can carry data (repeated times) from a simple 

node to another in a synchronized fashion. Also it can express synchronized writing and reading 

to or from a storage cell. FIG-5-a shows three simple nodes A, B, and C forming a pipeline, the 

three simple nodes can run concurrently as a pipeline. Node A gets X, processes it, sends Y to B, 

gets another X (now A and B can process their input concurrently) and so on. Using this kind of 

arc, A cannot send another Y until B consumes the first one and so on. FIG-5-b shows two 

producers and one consumer problem. The two producers are competing because they are on the 

same side of X. One producer cannot overwrite the value produced by the other until the 

consumer consumes it. 

X 

y 

z 

V 

10-tim es 
repeated data arc 

10-tim es 
repeated data arc 

10-tim es 
repeated data arc 

10-times 
repeated data arc 

A pipeline of 3 stages 

(a) 

10-times 
repeated data arc 

10-times 
repeated data arc 

20-times 
repeated data arc 

8 
Two producers and one consumer (20 times) 

(b) 

FIG-5 
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SIMPLE ARC 

DATA CCNTRa... 

ONE-TIME REPEATED 

FIG-6 (simple arcs classification) 

4- Split and Merge 

Split and merge are special purpose simple nodes for representing conditional branching. Split 

has one input data-arc, two output control-arcs; one for T = True, and the other for F = False. 

According to the truth or the falsehood of the condition associated with the split node one of the 

two control arcs coming out of it is activated as shown in FIG-7-a. Merge has N input control 

arcs and one output control arc. Merge activates its output arc when it gets activated by any one 

of its N inputs. See FIG-7-b. 

X i data arc 

C ,T f~~~it ,F) 
f(X) is a condition 

control arcs 

node A gets activated if f(X) is TRUE 

node B gets evaluated if f(X) is FALSE 

(a) 

FIG-7 

8 

N-control arcs 

) 
control arc 

0 
node C gets activated when 
any of the N input control arcs 
activates merge. 

(b) 



5- Loops 

A loop can represent FOR, WHILE, or REPEAT. In this section we explain how these three 

structures can be represented in ELGDF. Figures 8, 9, 11 show the loop symbols and their 

semantics. 

i) For Loops 

A for loop is one of the parameterized constructs in ELGDF that allows program designers 

express loops compactly without having cycles in the graph. A set of attributes is associated with 

the loop such as the control variable, initial value, step, loop bound, and others. A loop over a 

node for N times, produces a sequence of N instances of that node connected by N-1 control arcs. 

FIG-8-a shows looping over a node P(i), [i = 1 to 3]. FIG-8-b shows the unrolled loop. 

P(i) 
i = 1, 3 

8 
(a) (b) 

FIG-8 
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ii) While loop 

A while loop structure helps program designers express while loops compactly . A program 

designer only defines the node representing the body of the while structure and the while 

predicate. For analysis purposes, the system deals with while structures using branches. As 

long as the while predicate evaluates to true, a new instance of the node representing the while 

body is generated. FIG-9 shows the semantics of the while structure ,in terms of split, merge, 

node and while construct. The graph in FIG-9-a means: while f(X) do P.0; and The graph in 

FIG-9-b means: if f(X) then { P.O; while f(X) do P.1 ;};. (P.1 is another instance of P.0). 

FIG-10-a shows the while construct in FIG-8-a when the condition f(X) evaluates to True twice 

and then evaluates to False. FIG-10-b shows the same graph in FIG-10-a after replacing the 

three merge nodes with one merge. 

data arc X 

condition: f(X) 

P.0 

(a) 

data needed in 
the condition 

FIG-9 

1 0 

X 

X 
data arc 

split 
T F 

0 

P.1 

( merge ) 

(b) 



It executes 
P.O and P.1 
then it exits 
the while loop 

X 

f(X) = False 

X 

data arc X 

f(X) = True 
split 

__ ,,......_T __ ..r:::.F...,, 
---

X 

9 
split 

f(X) = True T F _..,.,-~--_L..../ 

~ 

F 

I 

I 

( ~erge ) 
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( merge ) 

FIG-10-a 
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It executes 
P.O and P.1 
then it exits 
the while loop 

X 

f(X} = False 

X 

data arc X 

f(X} = True · 
split 

T F 

X 

f(X} = True F 

I 

F 

::.::I I 
c--=---+--J_.,. _ _i.,.:.__ 

_____ m ___ e::.:.:rg:..:e:_ ________ ) 

I 
1 

FIG-10-b 
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iii) Repeat-Until loop 

Repeat-until structure is similar to while structure explained above except that the predicate 

comes after the repeat-until body. A new instance of the node is generated until the condition 

evaluates to true. FIG-11 shows the semantics of the repeat-until structure, in terms of split, 

merge, a node and repeat until construct. The graph in FIG-11-a means: repeat P.O until f(X); 

and The graph in FIG-11-b means: P .O; if f(X) then { repeat P .1 until f(X)}. (P .1 is another 

instance of P.O). FIG-12-a shows the repeat until construct in FIG-11-a when the condition 

f(X) evaluates to False once and then evaluates to True. FIG-12-b shows the graph in FIG-12-a 

with replacing the two merge nodes with one merge. 

condition: 
f(X) 

X 

(a) 

data arc 

condition: 

FIG-11 
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X 

Q 
½ control 

split 
T F 

( merge ) 

(b) 



X 

split 
T F 

( merge ) 

It executes P.O and P.1 

f(X) = False then it exists the repeat loop 

f(X) = True 

( merge ) 

FIG-12-a 
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X 
0 

! 
split 

T F 

X 

It executes P.O and P.1 

f(X) = False then it exists the repeat loop 

split 
T F f(X) = True -----

X 

data 

condition: f(X) 

(._ ___ m_e_rg_e ____ ..;.__....,.) 

FIG-12-b 
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6) Replicators 

A replicator is one of the parameterized constructs in ELGDF that allows program designers to 

represent concurrent loop iterations compactly. A set of attributes is associated with the 

replicator such as the control variable, initial value, step, replicator bound, and others. 

Replication of a node N times , produces N concurrent instances of that node. FIG-13-a shows a 

replicator over a node P(i) (i = 1 to 3) and its expansion. An arc connected to a replicator is 

expanded as a set of identical arcs each of which is connected to one of the replicated instances. 

See FIG-13-b. 

i=1,3 ® 

i= 

FIG-13 -a 

FIG-13-b 
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7) Homogeneous Pipes 

A homogeneous pipe is a high level abstraction that allows program designers to represent a set 

of N nodes forming a pipeline compactly. The pipe consists of N simple nodes and N-1 

m-repeated arcs. The nodes forming the pipeline are replications of the same simple node. A pipe 

has several attributes associated with it such as number of stages in the pipeline (N), number of 

times the data will be passed through repeated arcs in the pipe (m) and others. A pipe of N stages 

of node p(i) is shown in FIG-14-a and its expansion is given in FIG-14-b. 

stages= N 

number of 
times data 
is passed = m 

0 

ipe 

Homogeneous pipe: pipe1 (N,m) 

(a) 

m-repeated arc 

m-repeated arc 

m-repeated arc 

m-repeated arc 

m-repeated arc 

(b) 

FIG-14 (pipe pipe1 (N,m)) 
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CONVENIENT STRUCTURES 

i) IF-THEN-ELSE 

IF-THAN-ELSE is one of the convenient structures in ELGDF, in which the designer uses the 

symbol given in FIG-15-a and then he/she can define the two alternatives and the condition 

later. That will reduce drawing time and will help design readability. An IF-THEN-ELSE 

structure is composed of a split node connected to the two alternatives of the IF-THEN-ELSE by 

control arcs. Then those two alternatives are connected to a merge node by control arcs at the end 

point of the IF. Compound arcs that are connected to the body of IF-THEN-ELSE carries data to or 

from the two alternatives within the structure. FIG-15-b shows the decomposition of an 

IF-THEN-ELSE structure with two alternatives: node A if the condition evaluates to True and 

node B if the condition evaluates to False. 

X 

data needed data 

in the condition split 
T F condition: f(X) 

If f(X) then A else B; 

( 

2

merge ) 

(a) (b) 

FIG -15 
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ii) Fan 

Fan is another form of convenient structures in ELGDF, in which the designer can use the 

skeleton prepared as fan and then define its constituents later. That will help design readability 

and will reduce drawing time. A fan of size N is composed of a start node (S), N parallel nodes Pi 

,i = [1 .. N], 2N control arcs aj, j = [1 .. 2N], and an end node (E). Arc aj is connecting S to Pj, j 

= [1 .. N]. Arc ak is connecting Pk-N to E, k = [N+ 1 .. 2N]. The start node activates the parallel 

nodes and when they all finish E gets activated. Compound arcs that are connected to the body of 

Fan carries data to or from its constituents. FIG-16 shows a fan of size n and its expansion. 

A fan of size n (n parallel nodes) 

ai , i = [1 .. 2n] are control arcs 

S activates P1 .. Pn 

E start execution after (P1 .. Pn) finish 

FIG-16 
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DEFINITIONS 

Semi-Sink Split: 

A split is called semi-sink if it has one of its two connection points (T & F) not connected. See 

FIG-17. 

Source node: 

semi-sink split 

'T' connection point 
is unconnected 

FIG-17 

semi-sink split 

'F' connection point 
is unconnected 

A node is called a source if it does not have any predecessor nodes. See FIG-18. 

Local source node (merge): 

A node (merge) in a compound node is called a local source if it does not have any predecessor 

nodes within that compound node. See FIG-18 

Sink node (merge): 

A node (merge) is called a sink if it does not have any successor nodes. See FIG-18 

Local sink node: 

A node in a compound node is called a local sink if it does not have any successor nodes within 

that compound node. See FIG-18 
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A decomposition 

Source nodes : A, a0,a1 

Local source nodes : bO 

Sink nodes: 8, b1, b2, b3 

Local sink nodes : a2 

FIG-18 
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COMPOUND NODES CONNECTION 

i) Using compound arcs 

FIG-18 shows a compound arc going from compound node A to compound node B having X, Y as 

data structure associated with it. Thus, some constituents in B are data dependent on some 

constituents in A and the data involved are X, Y. In the lower level decomposition of A and B , 

node bO needs X from node aO and node b1 needs Y from node a2. 

ii) Using control arc 

A control arc going from compound node A to compound node B means that all the constituents of A 

must finish before any of B's constituents can start execution. In the lower decomposition of A 

and B, there must be a control arc going from any sink, local sink, or the unconnected connection 

point of semi-sink split nodes in A to every source, or local source nodes in B. For example 

FIG-19-a shows a compound node P(i) and its decomposition. FIG-19-b shows a network that 

has a loop over the compound node P(i) and its expansion. Notice the control arcs from b(1) 

(sink) to a(2) (source), c(1) (sink) to a(2) (source), b(2) (sink) to B and c(2)(sink) to B. 
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g === 

( a) 

i = 1, 2 
p ( i) 

0 () 
\ 

(0 
( b) 

FIG-19 
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TRANSFER OF CONTROL AND USING GHOST MERGE 

A ghost merge is a merge that is used else where in the network and we use it to express transfer 

of control such as exit from a loop. FIG-20-a shows a compound node P(i) and its expansion that 

includes a ghost merge (merge-1 which is already used in the program network). FIG-20-b 

shows the program network which has a loop over P(i) and its expansion. The loop expansion 

shows the four different paths in the program network according to the truth or the falsehood of 

the condition associated with the split node at each loop iteration. 

FIG-21 shows another example of transfer of control. The top level design has three nodes B, C, 

and D. Nodes B and Dare compound nodes and C is a simple one. Two control arcs are going from 

B to C and from C to D because at that level we know that B must finish before C and C must finish 

before D. The lower level expansion of B shows a transfer of control to D if the condition 

associated with the split evaluates to False. The description of A should have a ghost merge to 

show transfer of control to merge-d. 
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MUTUAL EXCLUSION IN ELGDF 

ELGDF helps users to easily express mutual exclusive access to shared variables by having an 

attribute associated with each arc connecting a node to a storage construct. If the exclusion 

attribute is set to ON , then mutual exclusion will be guaranteed. FIG-22 shows three simple 

nodes A, B, and C and a storge cell X forming an ELGDF network. Nodes A, B, and C share the 

variable X, yet A and B will have access to X before C because A and B are connected to the top of X 

and C is connected to the bottom. A and B can access X in any order since they are both in the same 

side of X. Both A and B want to update X through a READ/WRITE arc and that might produce 

incorrect result unless we set the exc (mutual exclusion) attribute associated with those 

READ/WRITE arcs to guarantee mutual exclusive access to X as shown in the figure. 

FIG-22 
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LOOP UNROLLING WITH DATA FLOW IN ELGDF 

ELGDF helps designers express their loops compactly for analysis purposes. FIG-23-a shows a 

process P(i) that takes two inputs SUM and X(i) and produces one output SUM to be run in a loop 

with loop bound = 3. FIG-23-b shows the unfolding of the loop and how an iteration of the loop 

can use the result of the previous iteration. 

SUM X ( 1) 

SUM~ ✓ X(i) SUM X ( 2) 

Fm 

i = 1, 3 

SUM 
X(3) 

SUM 

(a) (b) 

FIG-23 
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PRECEDENCE GRAPH 

A precedence graph of a parallel program can easily be obtained from its ELGDF design at 

different levels of granularity for use by automated schedulers. A precedence graph is a directed 

graph G (V, S, M, E) where V is a set of vertices, S is a set of split nodes, M is a set of merge 

nodes, and E is a set of edges. The set of vertices at certain level consists of all the ordinary 

nodes in the ELGDF network at that level. The set of split nodes at certain level consists of all the 

split nodes in the ELGDF network at that level. Similarly the set of merge nodes at certain level 

is the set of all the merge nodes in the ELGDF network at that level. The set of edges consists of 

all the control arcs connecting split and merge nodes to ordinary nodes and all edges Vi->Vj, if 

any of the following conditions hold in the ELGDF program network: 

o There is a control arc going from node Vi to node Vj. 

o There is a data arc going from node Vi to node Vj. 

o There exist a storage construct (Q) such that Vi is connected to the top of Q and Vj is connected 

to the bottom of it. 

A precedence graph can be represented compactly using parameterized nodes (replicators and 

loops}. 

FIG-24 shows an ELGDF design network (the top level) and the decomposition of some of its 

constituents. FIG-25 (a through c) shows the precedence graphs of the program at different 

levels of granularity. 

29 



FIG-24 

30 

Top level 



0 

-o~ ::!' 
-

E 

FIG-25-a 

31 



_.,---~0 __ 
~--- ----

_..:--_/ -------0 ---------G 
I ----~---ae i / Q ( .,!lit-I 

01.f /'\., / 

I "'~ =- --.. --"---~------~"--~ 0 0 

) 

( merge-1 ) 

E 

FIG-25-b 

32 



~-~O_ 
/ -----

~-/ ___ / _____ / -----------------g· 

0 1° 

;--------0 S1';1i,-I 

0 / ~~-,, 0//~6 
---------------~-0 0 ~0 

J ) 

7 
( merge-I ) 

E 

Fl G-25-c 

33 



EXAMPLE-1 

The solution of lower triangular matrix AX = B 

1 

2 

sol# 

N 

1 

A :- N * N lower triangular matrix. 

X :- N vector 

B :- N vector. 

A(sol#,sol#) 

2 sol# 

A 

Fl G-26 

34 

N 

X(sol#) B(sol#) 

X = B 



There are two types of tasks in the solution: 

Task S(sol#) 

Computes X(sol#) = B(sol#)/A(sol#,sol#) for a given sol# 

Task T(i,j) 

Computes B(i) = B(i) - A(i,j)*X(j) for a given i, j 

FIG-27 shows the top level design which consists of a compound node (AX=B) and a storage 

construct of the data structure to be used in the program. FIG-28 shows the decomposition of the 

compound node (AX=B) into the compound node solve(1 ), a replicator over a compound node 

solve(sol#) for sol# = 2, N, and two strorage constructs. 

N, A(1 :N,1 :N), 
8(1 :N), X(1 :N) 

B(arow) arow = 1,N 
A(1,1) 
A(arow, 1) arow = 2, N 
X ( 1) 

B(arow) arow = sol#,N 

A(sol#,acol) acol = 1, sol# 

A(arow,sol#) arow = sol#+1,N 

X(sol#) 

FIG-27 (The top level design) 

... .... .... 

sol#= 2, N 

FIG-28 (AX=B decomposition) 
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FIG-29 shows the decomposition of the compound node solve(1) and FIG-30 shows the 

decomposition of the compound node solve(sol#). FIG-31 shows the FORTRAN code associated 

with simple nodes s(i) for a given i and T(i,j) for a given i and j. The program designer now has 

finished the program description and the system has to do the rest of the work such as generating 

the ELGDF program network for a given N, generating the precedence graph for scheduling 

analysis, and producing synchronization code for certain arcitecture. FIG-32 shows the expanded 

ELGDF network when N = 3. A precedence graph in compcat form is shown in FIG-33 and an 

expanded precedence graph when N = 3 is shown in FIG-34. The final FORTRAN code of the 

program might look like the program given in FIG-35. 

arow = 2,N 

exclusion 

B(arow) 

FIG-29 
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k = 1, sol#-1 

X(sol#) 

A(j,sol#) 

exclusion 

FIG-30 

The FORTRAN code at simple process s(i): 

X(i) = B(i)/A(i,i) 

The FORTRAN code at simple process T(i,j): 

B(i) = B(i) - A(i,j)*X(j) 

FIG-31 
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exclusion 

exclusion 

X ( 3) 

FIG-32 (the expanded ELGDF program when N =3) 
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k = 1, sol#-1 

G 
8 

e arow=2,N 

8 j = sol#+1, N 

sol#= 2, N 

FIG-33 (compact precedence graph) 
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FIG-34 (expan e h when N=3) d d precedence grap 
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C MAIN 

COMMON A(N,N), B(N), X(N), COUNT(N), N 

C Do loop for parallel execution 

PARDO 77 I = 1, N 

77 SOLVE(I) 

END 

SUBROUTINE SOLVE(I) 

COMMON A(N,N), B(N), X(N), N, COUNT(N) 

INTEGER I, K 

C Synchronization function: the process waits till the condition is true 

WAIT-FOR (COUNT(I) = 1-1) 

CALL S(I) 

C Do loop for parallel execution 

~ARDO 88 K = 1+1, N 

CALL T(K,I) 

M-lOCK(COUNT(I)) 

COUNT(I) = COUNT(I) +1 

M-UNlOCK(COUNT(I)) 

88 CONTINUE 

99 CONTINUE 

RETURN 

END 

SUBROUTINE S(I) 

COMMON A(N,N), B(N), X(N), N 

INTEGER I 

X(I) = B(l)/A(l,I) 

RETURN 

END 

SUBROUTINE T(l,J) 

COMMON A(N,N), B(N), X(N), N 

INTEGER I, J 

B(I) = B(I) - A(l,J)*X(J) 

RETURN 

END 

FIG-35 
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EXAMPLE-2 

A pipelined sort program 

The basic principle of the program will be that a stream of unsorted numbers is passed into a 

pipeline which has as many parallel processes as there are numbers. Each replicated process has 

local variables called highest and next. As a number enters a new process it will be compared 

with the value in highest. If it is not larger than highest, then it will be passed straight on to the 

next process in the pipe. Otherwise it will be put in highest and the previous value of highest 

will be sent on to the next process. 

FIG-36 shows the top level design which consists of two storage cells (X & Y) and a pipe named 

pipe1. two repeated arcs (A 1 & A2) are connecting X to the top of the pipe and its bottom to Y. 

FIG-37 shows the attributes associated with the pipe and the two repeated arcs. The expanded 

ELGDF program network when N · = m = 4 is shown in FIG-38. The program designer can use the 

predefined routines GET and PUT in the FORTRAN code at stage #i. GET(i, VALUE) receives 

VALUE from the previous stage (i-1) in the pipe or from outside if i = 1. PUT(i, VALUE) sends 

VALUE to the next stage (i+ 1) in the pipe or to outside if i = N. The progrm designer does not 

have to worry about writing the synchronization code for sending and receiving to and from the 

channels in the pipe or even taking care of the special cases at the two ends of the pipe (stages 1, 

N). The FORTRAN code associated with stage #i is given in FIG-39 and the FORTRAN code 

generated by the system is shown in FIG-40 (a & b). 
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X 

A1 m-times repeated arc 

PIPE1 
A pipe of N identical stages 

N 

A2 m-times repeated arc 

y 

FIG-36 
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PIPE ATTRIBUTES 

NAME: PIPE1 

NUMBER OF STAGES : N 

NUMBER OF ITERATIONS : m 

DATA TYPE : INTEGER 

CHANNELS PROTOCOL (SH/CC)* : SH 

STAGE # i : COMP(i) 

.. SH/CC : shared memory I communication channels 

REPEATED ARCS ATTRIBUTES 

NAME : A1 

NUMBER OF ITERATIONS : N 

DATA TYPE: INTEGER 

SOURCE: X 

DESTINATION : PIPE1 

NAME : A2 

NUMBER OF ITERATIONS : N 

DATA TYPE : INTEGER 

SOURCE : PIPE1 

DESTINATION : Y 

FIG-37 
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A1 

channel(1) 

channel(2) 

., 

channel(3) 

A2 

X 

4-times repeated arc 

4-times repeated arc 

4-times repeated arc 

4-times repeated arc 

4-times repeated arc 

y 

FIG-38 (expanded program when N = m = 4) 
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The FORTRAN code associated with comp(i) 

SUBROUTINE COMP(I) 

COMMONm 

INTEGER I, HIGHEST, NEXT,J 

CALL GrET (!,HIGHEST) 

DO 99 J = 2, m 

CALL GET(l,NEXT) 

IF (NEXT. LE. HIGHEST) THEN 

CALL PUT(l,NEXT) 

B.sE 

CALL PUT(l,HIGHEST) 

HIGHEST= NEXT 

ENDIF 

99 CONTINUE 

CALL PUl'(I, HIGHEST) 

RETURN 

END 

FIG-39 
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C MAIN 

C R(N-1) , W(N-1) are two arrays of semaphores 

COMMON N, m, CHANNEL(N-1 ), R(N-1 ),W(N-1) 

INTEGER I 

C initialization 

DO 33 I = 1, N-1 

C P & V (semaphore operations) 

33 P ( R (I)) 

C Do loop for parallel execution 

PAflDO 88 I = 1 , N 

CALL COMP(I) 

88 CONTINUE 

END 

SUBROUTINE GET(INDEX, VALUE) 

INTEGER INDEX, VALUE 

IF (INDEX .EQ. 1) THEN 

VALUE= X 

ELSE 

VALUE= GIET-~ROM-CH(INDEX-1) 

RETURN 

END 

SUBROUTINE PUT(INDEX,VALUE) 

INTEGER INDEX, VALUE 

IF (INDEX .EQ. N) THEN 

Y= VALUE 

ELSE 

CALL PllT-!NTO-CH(INDEX, VALUE) 

RETURN 

END 

FIG-40-a 
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FUNCTION GET-FROM-CH(INDEX) 

COMMON N, CHANNEL(N-1), R(N-1), W(N-1) 

INTEGER INDEX 

C P & V semaphore operations 

P(R(INDEX)) 

GET-FROM-CH= CHANNEL(INDEX) 

V(W(INDEX)) 

RETURN 

END 

SUBROUTINE PUT-INTO-CH(INDEX,VALUE) 

COMMON N, CHANNEL(N-1), R(N-1), W(N-1) 

INTEGER INDEX, VALUE 

C P & V semaphore operations 

P(W(INDEX)) 

CHANNEL(INDEX) = VALUE 

V(R(INDEX)) 

RETURN 

END 

FIG-40-b 
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