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Abstract
The US drought monitor (USDM) has been widely used as an observational reference for
evaluating land surface model (LSM) simulation of drought. This study investigates potential
caveats in such evaluation when the USDM and LSMs use different base periods and drought
indices to identify drought. The retrospective national water model (NWM) v2.0 simulation
(1993–2018) was used to exemplify the evaluation, supplemented by North American land data
assimilation system phase 2 (NLDAS-2). Over their common period (2000–2018), in distinct
contrast with the USDM which shows high drought occurrence (>50%) in the western half of the
continental US (CONUS) and the southeastern US with low occurrence (<30%) elsewhere, the
NWM and NLDAS-2 based on soil moisture percentiles (SMPs) consistently show higher drought
occurrence (30%–40%) in the central and southeastern US than the rest of the CONUS. Much of
the differences between the LSMs and USDM, particularly the strong LSM underestimation of
drought occurrence in the western and southeastern US, are not attributed to the LSM deficiencies,
but rather the lack of long-term drought in the LSM simulations due to their relatively short
lengths. Specifically, the USDM integrates drought indices with century-long periods of record,
which enables it to capture both short-term (<6 months) drought and long-term (⩾6 months)
drought, whereas the relatively short retrospective simulations of the LSMs allows them to
adequately capture short-term drought but not long-term drought. In addition, the USDM
integrates many drought indices whereas the NWM results are solely based on the SMP, further
adding to the inconsistency. The high occurrence of long-term drought in the western and
southeastern US in the USDM is further found to be driven collectively by the post-2000 long-term
warm sea surface temperature (SST) trend, cold Pacific decadal oscillation and warm Atlantic
multi-decadal oscillation, all of which are typical leading patterns of global SST variability that can
induce drought conditions in the western, central, and southeastern US. Our findings highlight the
effects of the above caveats and suggest that LSM evaluation should stay qualitative when the
caveats are considerable.

1. Introduction

Land surface models (LSMs) have been commonly
used as an objective tool for operational drought
monitoring (e.g. soil moisture) (Wood et al 2015).
Land analyses, produced by driving LSMs with

observation-based meteorological forcings (e.g.
North American land data assimilation system, phase
2—NLDAS-2, Xia et al 2012a, 2012b), provide data
continuous in both time and space and thus facilit-
ate land surface monitoring. The LSMs simulate the
exchange of water and energy fluxes at the Earth’s
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land surface and have been used as an essential tool
to understand, simulate, and predict the land surface
and its role within the Earth system. The LSMs are
nevertheless subject to limitations in their representa-
tions (e.g. parameterization schemes) of land physical
processes and the quality of the input meteorological
forcing data. Their evaluation using observations
is thus essential for the LSM development and the
assessment of land products they produce.

The evaluation of LSMs in simulating drought
requires independent observation-based data (e.g.
for soil moisture) as the references. Such data
include ground observations, satellite observa-
tions, and the US drought monitor (USDM, http:/
/droughtmonitor.unl.edu). These data have their
respective strengths and weaknesses (Ford and
Quiring 2019). The ground observations are based on
in-situmeasurements and typically represent ground
truth. They are nevertheless point observations with
limited spatial and temporal coverage; some of them
are also subject to random and systematic measure-
ment errors. The satellite observations are available
at the global scale. Their data quality is subject to
coverage gaps due to satellite orbits, capabilities of
satellite sensors in detecting land surface properties,
as well as performance of calibration algorithms. The
satellite data records are also relatively short, typically
ranging from several years to a few decades (Beck
et al 2021), which makes them difficult for monitor-
ing long-term drought. As an alternative, the USDM
has been commonly used to evaluate LSM simula-
tions of drought, including both drought statistics
and individual drought events (e.g. Su et al 2021,
Mocko et al 2021). The USDM starts from 2000. It
is an operational weekly map that shows the location
and intensity of drought across the US. It uses five
drought categories based on percentile ranking, con-
sisting of D0 (abnormally dry, 21%–30%), D1 (mod-
erate drought, 11%–20%), D2 (severe drought, 6%–
10%),D3 (extreme drought, 3%–5%) andD4 (excep-
tional drought, 0%–2%). The drought categories are
determined based on a combination of both objective
and subjective expert assessments, where the ‘conver-
gence of evidence’ approach is used to integrate short-
and long-term drought indicators based on precip-
itation, temperature, soil moisture, streamflows and
reservoir levels, runoff, snow water equivalent, and
regional drought impacts. The number of the input
indices and indicators has changed over time, which
increased from ∼5 to 6 in early USDM years to sev-
eral dozen today. It is also worth noting that these
input drought indicators and indices are computed
using their respective datasets and unique periods of
record, which vary from century long for divisional
precipitation measurements (1895–present) to a few
decades for satellite-based observations. The USDM
website (https://droughtmonitor.unl.edu/About/
WhatistheUSDM.aspx) provides reference informa-
tion on converting individual drought indices (e.g.

soil moisture percentiles—SMPs) to the USDM
drought categories, which enables a direct quantit-
ative comparison between the USDM and LSM sim-
ulations of drought based on a single drought index.

This study has two related but distinct goals. First,
it aims to perform an in-depth investigation on the
LSM evaluation using the USDM. While the differ-
ences between the USDM and LSM-based objective
drought indices have been discussed in the past (e.g.
Wood et al 2015, Mocko et al 2021), a systematic
investigation of potential caveats therein is lacking.
The study will address this by systematically studying
the fidelity in such evaluation, identifying potential
caveats, and assessing their effects. Second, in the con-
text of the above evaluation, the study investigates the
causes of spatial distribution of drought occurrence
in the USDM, and reveals why relatively short LSM
simulations have difficulties in reproducing the spa-
tial distribution.

2. Methods

2.1. LSM evaluation using the USDM
To exemplify the LSM evaluation using the USDM,
the national water model (NWM) v2.0 retrospect-
ive simulation (1993–2018) (https://water.noaa.gov/
about/nwm) was used, supplemented by NLDAS-2
(1979–present). The NWM is an operational hydro-
logic modeling framework built onWeather Research
and Forecasting-Hydro. It produces hydrologic guid-
ance at a very fine spatial and temporal scale (e.g.
1 km and 3 h for soil moisture) covering the con-
tinental US (CONUS). The NWM v2.0 retrospective
simulation was produced by driving the NWM v2.0
with the NLDAS-2 hourly meteorological forcings.
NLDAS-2 is an operational multi-model land model-
ing system run uncoupled to the atmosphere covering
the CONUS. It consists of four LSMs, among which
Mosaic, Noah and variable infiltration capacity (VIC)
were used in this study. The data are in 1/8◦ grid spa-
cing and hourly from 2 January 1979 to the present
with a 4 d latency.

To facilitate the USDM and LSM comparison, all
the data were spatially interpolated onto NLDAS-2’s
1/8◦ spatial grid. The USDM data (2000–present) are
weekly and are obtained by rasterizing the USDM
shapefiles. To match the USDM, for each of the
USDM map release dates, the daily top 1 m SMPs
in the NWM and NLDAS-2 were computed relative
to the 1993–2018 period using a 15 d moving win-
dow of daily soil moisture values, where the use of the
same base period for the NWM and NLDAS-2 facilit-
ates a fair LSM intercomparison. The SMPs were sub-
sequently converted toD0–D4 drought categories fol-
lowing the USDM recommendations (e.g. 21%–30%
for D0).

The evaluation of the NWM v2.0 and NLDAS-2
using the USDM focused on their common period
(2000–2018). For a given grid box, a drought is
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defined to occur when the grid box has drought cat-
egory of D0, D1, D2, D3 or D4. The evaluation met-
rics for drought statistics are frequency of drought
occurrence and metrics based on a contingency table
(hit, miss, false alarm, correct negative), where the
former is defined as the percentage of number of
weeks in drought, and the latter includes probabil-
ity of detection, false alarm ratio (FAR), and crit-
ical success index. The frequency of occurrence for
all drought conditions is further separated into those
for short-term (<6 months) drought and long-term
(⩾6 months) drought, where the drought duration
of 6 months is used for the separation following
the USDM conventions. Such evaluations were per-
formed for D0–D4 as well as higher drought cat-
egories (e.g. D2–D4). Since the choices of drought
categories affect the magnitude of drought statistics
(e.g. frequency of occurrence) but not the qualitative
picture and conclusions we draw (not shown), we
only show the evaluation results for D0–D4.

It is worth noting that the evaluation of the NWM
and NLDAS-2 using the USDM is complicated by
their use of different base periods and drought indic-
ators to identify drought anomalies. Specifically, the
drought indicators and indices used in the USDM
production have differing periods of historical record,
which vary from century long for divisional precip-
itation measurements to a few decades for drought
indices based on satellite observations. By compar-
ison, the NWM and NLDAS-2 use 1993–2018 as the
base period to compute SMPs. Further, the USDM
is obtained by subjectively integrating a number of
drought indicators, whereas the LSM results shown
here use a single index—SMP—to indicate drought
conditions.

2.2. Long-term VIC land surface analysis
To assess the separate effects of using different
base periods and drought indicators on estimating
drought statistics, we analyzed daily soil moisture
from a century-long (1915–2011) land surface dataset
for the CONUS. The dataset was generated by driving
the VIC hydrologic model v4.1.2c with a companion
set of observed daily meteorological forcings (Livneh
et al 2013).

2.3. Diagnosis of spatial distribution of USDM
drought occurrence
To investigate the causes of spatial distribution of
USDM drought occurrence, we studied the effects
of climate variations on decadal and longer times-
cales by performing an integrated data diagnosis
using long-termobservations and atmosphericmodel
intercomparison project (AMIP)-style simulations.
The observations analyzed include the global pre-
cipitation climatology centre (GPCC) precipitation
(1891–2019, Schneider et al 2011), the national aero-
nautics and space administration, goddard institute
for space studies (NASA GISS) surface temperature

analysis (1880–present, Lenssen et al 2019), and
the national oceanic and atmospheric adminis-
tration (NOAA) extended reconstructed sea sur-
face temperature (SST) (1854–present, Huang et al
2017). To investigate the contributions from SST and
atmospheric internal variability, we also analyzed
three long-term AMIP-style simulations forced with
observed SST and time-varying external radiative
forcings, produced respectively using the national
center for atmospheric research (NCAR) community
atmosphere model version 5 (CAM5, 1900–2019, 40
ensembles), the geophysical fluid dynamics labor-
atory, atmospheric model version 3 (GFDL AM3)
(1870–2014, 17 ensembles), and the national aero-
nautics and space administration, goddard earth
observing system model, version 5 (NASA GEOS-
5) (1871–2014, 12 ensembles) (Murray et al 2020).
The analysis of the AMIP simulations focused on the
CAM5 as it is available through 2019 and has data
for more variables (e.g. soil moisture) and ensembles
available. In the analysis, the 20th century (1900–
1999) was used as the base period to identify drought,
as it not only provides adequate samples but also is
sufficiently long to average out much of the effects
of natural decadal-to-multidecadal variabilities (e.g.
Pacific decadal oscillation (PDO), Atlantic multi-
decadal oscillation (AMO)). The period 2000–2018
was contrasted with the 20th century base period
to examine their differences in mean climate and
drought statistics, with a focus on the effects of the
post-2000 SST anomalies. Since long-term soil mois-
ture observations are unavailable, much of the invest-
igation focused on precipitation and temperature as
they are the key meteorological drivers for drought.

3. Results

3.1. LSM evaluation using the USDM
Figure 1(a) shows the frequency of drought occur-
rence over the CONUS in the USDM for 2000–2018.
The most striking features are the considerably more
frequent drought occurrence (>50%) in much of the
western US, the Great Plains and southeastern US
than elsewhere in the CONUS, consistent with past
studies (e.g. Chen et al 2019). In the western US,
the frequency of drought occurrence is particularly
high (>70%) in Arizona, New Mexico and most of
Utah. By comparison, the Midwest, northeast and
coastal Pacific Northwest had <20% drought occur-
rence. In distinct contrast with the USDM, the NWM
(figure 1(b)) shows a spatially more homogeneous
distribution, with moderately more droughts occur-
ring in the Great Plains, southeastern US, and Cali-
fornia than the rest of the CONUS. Much of the
high drought occurrence in the western and south-
eastern US in the USDM is almost entirely miss-
ing in the NWM simulation. As a result, when using
the USDM as the observational reference, the NWM
has rather low detection rate (<0.5) in the western
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Figure 1. Frequency of drought occurrence (%) (2000–2018) for D0–D4 in (a) the USDM and (b) the NWM v2.0 retrospective
simulation. The evaluation of the NWM using the USDM as the observational reference for (c) probability of detection and (d)
FAR. In panel (a), the 50% drought occurrence in the USDM is plotted using thick black contours, it is used to define the western
US and southeastern US regions in figure 6. The drought categories in the NWM simulation were determined based on
percentiles of top 1 m soil moisture.

and southeastern US, and has relatively high detec-
tion rate (>0.7) in regions where both the USDM
andNWM show lower drought occurrence (e.g. Mid-
west) (figure 1(c)). The FAR is overall low (<0.2),
particularly in the western, central and southeast-
ern US; the exceptions are in the northeastern US
and coastal Washington state where the FAR exceeds
0.5 (figure 1(d)). The three NLDAS-2 LSMs (figure
S1 (available online at stacks.iop.org/ERL/17/014011/
mmedia)) in general well resemble the NWM for the
above drought statistics.

3.2. Roles of base period and drought indicators
The distinct differences between the LSMs and
USDM (figures 1 and S1), particularly the rather low
probability of detection in the western and southeast-
ernUS in the LSMs, raise the question ofwhether they
reflect the true performance of the LSMs or are due to
the use of different base periods and drought indic-
ators between the LSMs and USDM in estimating
drought. To investigate this, we analyzed the century-
longVIC land analysis (Livneh et al 2013), while keep-
ing in mind that it uses a LSM and input meteorolo-
gical forcings different from theNWMandNLDAS-2.
To assess the dependence of drought anomalies on the
length of base periods, SMPs were computed using
two base periods: a century-long 1915–2011 and a

short 1993–2011. When the short base period (1993–
2011) is used, the LivnehVIC simulation (figure 2(d))
broadly agrees with the NWM (figure 2(b)) in that
their spatial distribution is in general homogeneous
across the CONUS. Such homogeneous distribution
is expected, as the period (2000–2011) over which the
SMP-based drought occurrence was obtained is not
too different from the base period (1993–2011) used
to define soil moisture anomalies. In fact, when the
two periods are identical, one would expect a perfect
spatially homogenous distribution by design. In con-
trast, when the century-long base period (1915–2011)
is used, the Livneh VIC simulation captures consid-
erably more droughts in the western and southeast-
ern US (cf figures 2(c) and (d)) and shows lower
drought occurrence in the northeastern US, yield-
ing a better agreement with the USDM (figure 2(a)).
The Livneh VIC simulation, however, still consid-
erably differs from the USDM (cf figures 2(a) and
(c)), displaying underestimations across parts of the
western, central and southeastern US. These differ-
ences could be due in part to the differences in the
drought indicators they use and in part to the VIC
performance in these geographical regions. Despite
these differences, figure 2 suggests that the choices
of base periods and drought indicators matter for
drought monitoring. In particular, when LSMs use
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Figure 2. Frequency of drought occurrence (%) (2000–2011) for D0–D4 in (a) the USDM, (b) the NWM that uses 1993–2011 as
the base period to compute SMPs, (c) the Livneh VIC simulation with drought anomalies quantified using percentiles of total
column soil moisture with respect to the period 1915–2011, (d) same as (c) but using 1993–2011 as the base period to compute
SMPs. Note that the comparison was performed for 2000–2011, the common period between the USDM, the NWM and the
Livneh VIC simulation.

relatively short base periods to identify drought, the
inter-model differences (e.g. figure 2(b) vs 2(d)) in
drought statistics are substantially smaller than their
differences from the USDM (cf figures 2(b) and (d)
with figure 2(a)); much of the differences between the
LSMs and the USDM are attributed to their differ-
ing aspects of drought identifications rather than the
LSM deficiencies.

The causes of the differences between the LSMs
and USDM were further investigated by decom-
posing their drought anomalies into short-term
and long-term ones and comparing their statist-
ics (figures 3(a)–(d) and S2) with those of the
total (figures 1(a)–(b) and S1). Such decomposition
method can effectively separate drought events of dif-
ferent durations (Andreadis et al 2005, Sheffield and
Wood 2008). Focusing on the NWM, the comparison
clearly shows that the frequent drought occurrence
in the western and southeastern US in the USDM
is contributed by long-term drought. By compar-
ison, the NWM shows weak indications of long-term
drought in the western US (<0.3) and little indica-
tions elsewhere. The USDM and NWM have a con-
siderably better agreement for short-term drought,
with the NWM showing slightly higher occurrences
in the central US, parts of the southeastern US and
the Pacific Northwest. Their differences mainly occur

in the northeastern US, where the NWM (<0.3) has
higher drought occurrence than the USDM (<0.2).
The three NLDAS-2 LSMs broadly agree with the
NWM (figure S2). Figure 3(f) further examines the
ratio of the NWM drought occurrence to that in
the USDM for each of the US hydrologic unit code
(HUC)-2 regions. The NWM considerably under-
detects long-term drought in the USDM for all
regions, with the ratio ranging from ∼30% in the
western US to∼50% in the HUC-2 region 9 (Souris-
Red-Rainy). For short-term drought, the NWMover-
estimates the USDM in both the western and eastern
US (e.g. by 50% in HUC-2 region 1 New England)
while underestimating the USDM in the central US.

Taken collectively, the above results suggest that
much of the differences between the LSMs and
USDM are traced to the lack of long-term drought
in the LSMs due to their relatively short simulations.
Their use of different drought indicators to quantify
drought further adds to the inconsistency.

3.3. Causes of spatial distribution of drought
occurrence in the USDM
Wenext investigated the causes of the spatial distribu-
tion of drought occurrence in theUSDM, particularly
the higher occurrence in the Intermountain West,
Great Plains and southeastern US. Since a number of
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Figure 3. Frequency of drought occurrence (%) (2000–2018) for D0–D4 in the USDM for (a) long-term drought (>=6 months)
and (b) short-term drought (<6 months), where the long-term drought and short-term drought are separated using the 6 month
duration, following the USDM. (c)–(d) Same as (a)–(b) but for the NWM. (e) The HUC-2 mask. (f) The ratio of the NWM to
the USDM in their frequency of occurrence (D0–D4) for short-term drought (blue line) and long-term drought (red line) for the
18 HUC2 regions in the CONUS.

input drought indices and indicators (e.g. precipita-
tion) in the USDM use long base periods to identify
drought, theUSDMdrought occurrence likely reflects
the effects of post-2000 anthropogenic and natural
climate variations on decadal and longer timescales
(e.g. Williams et al 2015, 2020, Berg and Hall 2017,
USGCRP 2018, Xiao et al 2018). To investigate this,
we first examined the mean differences between the
post-2000 period and the 20th century for precipita-
tion and temperature, the immediate meteorological
drivers for drought. Not surprisingly, precipitation
(figure 4(a)) shows a remarkable spatial resemblance
to the USDM drought occurrence (figure 1(a)). Rel-
ative to the 20th century, the post-2000 precipita-
tion decreased in the western and southeastern US
where the USDM shows higher drought occurrence,
and increased in the Midwest and northeastern US
where the USDM has lower drought occurrence. The
elevated surface warming is prominent across much
of the CONUS, ranging from 0.4 K in the south-
eastern US to 1.2 K in the southwestern US. The

spatial resemblance between the mean precipitation
changes (figure 4(a)) and the USDM drought occur-
rence (figure 1(a)) suggests the dominant role of
precipitation deficits in driving drought, consistent
with past studies (e.g. Livneh and Hoerling 2016, Luo
et al 2017, Koster et al 2019).

The above mean changes in precipitation and
temperature (figures 4(a) and (b)) presumably result
from the effect of climate variations on decadal and
longer timescales, a considerable amount of which
is reflected in oceanic low-boundary conditions (e.g.
SST). Figure 4(c) shows that, relative to the 20th cen-
tury, the post-2000 period had an overall SST warm-
ing, with stronger warming (>0.6 K) in the Indian
Ocean, western Pacific, much of the tropical and
North Atlantic, and weaker warming (<0.4 K) in the
central and eastern Pacific. Much of these mean SST
changes are due to the combined contributions from
the global warming trend, negative PDO, and posit-
ive AMO (figure 4(d)). These three SST modes are
among the leading modes of global SST variability
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Figure 4. The observed climatology differences between the periods 2000–2018 and 1900–1999 for (a) GPCC precipitation
(mm d−1), (b) surface temperature (K) from the NASA GISS, and (c) SST (K) from the NOAA ERSST v5. The stippling in (a)–(c)
indicates significance at the 10% level based on a t test. (d) Standardized anomalies (color bar) and their 5 year running means
(black line) for the three leading modes of global SST variability on decadal and longer time scales, consisting of the global
warming trend, PDO and AMO. The global warming trend is approximated using global mean SST anomalies with respect to the
1900–1999 climatology. The starting year of the USDM, i.e. 2000, is indicated using a vertical dashed line in (d).

(Schubert et al 2009). Their phases, as occurred in the
post-2000 period, are well-known leading SST pat-
terns that can induce drought conditions over the
western, central and southeasternUS via atmospheric
teleconnections (e.g. Mo et al 2009, Kushnir et al
2010, Schubert et al 2009, Wang et al 2010).

To investigate the roles of the post-2000 global
SST changes and atmospheric internal variability,
we turned to the century-long (1900–2019) 1◦

40 ensemble CAM5 AMIP simulations (Murray et al
2020). The AMIP ensemble mean highlights the SST-
forced signal whereas the ensemble spread reflects the
unforced variability generated by processes internal
to the atmosphere. The precipitation differences
in the CAM5 ensemble mean broadly agree with
those of the GPCC observations. Consistent with
the GPCC (figure 4(a)), the CAM5 ensemble mean
(figure 5(a)) shows dry responses in the western,
southern central and southeastern US and wet anom-
alies in the Midwest and nearby regions. Strong
warming responses span across the entire CONUS,
with the peak warming (∼1.5 K) occurring in parts
of the western US (figure 5(b)). Associated with the
changes in precipitation and temperature, the CAM5
ensemble mean soil moisture considerably dries in
the western, southern central and southeastern US
(figure 5(c)). As a result, relative to the 20th cen-
tury, the recent decades (2000–2018) in the CAM5
ensemble mean have >40% of drought occurrence

across much of the western and southeastern US,
with lower occurrence elsewhere (figure 5(d)). Select
individual ensemble members have higher drought
occurrence (>50%) in the western and southeastern
US (figure 5(e)), in better agreement with the USDM
(figure 1(a)). The above results, particularly the spa-
tial resemblance between the CAM5 ensemble mean
and the observations for precipitation and drought
occurrence, suggest that the mean SST changes acted
as a main driver.

Given the prominent role of accumulated pre-
cipitation deficits in driving drought and that their
spatial distribution and controlling physical processes
vary from season to season, figure 6 further examines
the mean precipitation changes by focusing on their
variations with season. The CAM5 ensemble mean
simulation was compared with the GPCC to infer the
role of SST. During winter and spring, consistent with
the GPCC (figures 6(a)–(d)), the CAM5 ensemble
mean (figures 6(e)–(h)) produces dry anomalies in
the western and southeastern US and wet anom-
alies in the Midwest and nearby regions, much of
which resemble the effect of a cold PDO (Newman
et al 2016). During summer and fall, the CAM5
ensemble mean agrees with the GPCC in dry anom-
alies in the western and southeastern coastal states;
there are however considerable differences in the
central and eastern US, where the observed anom-
alies could be due to processes unrelated to the mean
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Figure 5. The climatology differences between the periods 2000–2018 and 1900–1999 in the NCAR CAM5 AMIP ensemble mean
simulation for (a) precipitation (mm d−1), (b) near-surface air temperature (K), (c) water content of top 1 m soil layer (kg m−2).
The frequency of drought occurrence (%) during 2000–2018 with respect to 1900–1999 in the CAM5 AMIP simulations for
(d) the average of the 40 ensemble members and (e) the average of 5 better performing ensemble members. In producing the
results in (d) and (e), for each of the CAM5 ensemble members, the drought occurrence for 2000–2018 was obtained based on
percentiles of monthly top 1 m soil moisture during the period relative to its probability distribution function (PDF) constructed
using the 40 member CAM5 simulations for 1900–1999. The stippling in (a)–(c) indicates significance at the 10% level based on a
t test.

Figure 6. The climatology differences of seasonal precipitation (mm d−1) between the periods 2000–2018 and 1900–1999 for
December–January–February (DJF), March–April–May (MAM), June–July–August (JJA), and September–October–November
(SON) in (a)–(d) the GPCC observations, (e)–(h) the CAM5 AMIP ensemble mean simulations, and the comparison between the
GPCC (red), the CAM5 ensemble mean (black), and the 40 CAM5 individual ensemble members (gray) for 3 month running
mean precipitation averaged over (i) the western US and (j) southeastern US throughout the seasonal cycle. Here the western US
and southeastern US regions are respectively defined as 125 ◦W–90 ◦W, 25 ◦N–50 ◦N and 90 ◦W–67 ◦W, 25 ◦N–40 ◦N that have
the USDM frequency of drought occurrence (figure 1(a)) exceed 50%; they are indicated using thick black contours in figure 1(a).
The stippling in (a)–(h) indicates significance at the 10% level based on a t test.
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SST changes. In particular, the observed substantial
precipitation increases in the southern-central and
eastern US during fall are likely due to the recently
intensified western North Atlantic Subtropical High,
which enhanced moisture transports into the region
and led to substantial increases in intensity of extreme
precipitation events (Bishop et al 2019). Focusing on
the western US and southeastern US (figures 6(i)
and (j)), throughout the seasonal cycle, the CAM5
ensemble mean in general agrees with the GPCC
for all seasons except in late fall when the GPCC
shows a modest wet anomaly whereas the ensemble
mean displays a dry anomaly. The GPCC neverthe-
less falls within the CAM5 ensemble spread, suggest-
ing that the CAM5 does a reasonable job in captur-
ing the observed precipitation changes. The above
further substantiates that a considerable portion of
the observed precipitation deficits in the western and
southeastern US (figure 4(a)) are driven by the global
SST changes, the accumulated effects of which sub-
sequently leads to considerably drier soil (figure 5(c))
and more frequent drought occurrence (figures 5(d)
and (e)) in these regions. The CAM5-based results on
the role of SST for the mean changes of precipitation
and temperature are broadly supported by the GFDL
AM3 and NASA GEOS-5 (cf figures S3 and S4 with
figures 5 and 6).

4. Conclusions

This study performed two related but distinct invest-
igations. It systematically investigated potential
caveats in using the USDM to evaluate LSM simu-
lations of drought, and in the context of the evalu-
ation, looked into the causes of high USDM drought
occurrence in the western and southeastern US. The
NWMv2.0 retrospective simulation (1993–2018) and
NLDAS-2 were used to exemplify the evaluation.

The evaluation shows that the LSM simulations
strongly underestimate the USDM drought occur-
rence in the western and southeastern US, where
the probability of detection is less than 0.5. Much
of the LSM underestimation, however, is not attrib-
uted to LSM deficiencies. Rather, it occurs because
such evaluation does not represent a fair compar-
ison. Specifically, the LSMs and USDM utilize differ-
ent base periods and drought indicators to identify
and quantify drought. The USDM integrates a num-
ber of drought indicators and indices that have long
periods of record dating back to the early 20th cen-
tury or earlier, which enables it to capture both short-
term drought and long-term drought. By compar-
ison, the relatively short base period (1993–2018)
of the NWM v2.0 and NLDAS-2 allows them to
adequately detect short-term droughts but not long-
term ones. This leads to the strong LSM underes-
timation of drought occurrences in the western US
and southeastern US where long-term droughts are
abundant.Moreover, theUSDM integrates numerous

drought indicators and indices that represent various
drought types whereas the LSMs in this study util-
ize a single index—SMP—and focus on agricultural
drought, further adding to the inconsistency. The
effects of the caveats can be substantial in that the
differences between the USDM and LSMs can be
considerably larger than the inter-LSM differences.
This study stresses the importance of considering the
above potential caveats when evaluating LSMs using
the USDM, and suggests that the evaluation should
stay qualitative when the aforementioned caveats are
considerable. The study also suggests that when using
the USDM to quantitatively evaluate LSM simula-
tions of relatively short lengths, one may consider
focusing on components that both data have, e.g.
short-term drought.

In the above context, we further investigated why
the USDM has more drought occurrence in the west-
ern and southeastern US than elsewhere. Such spatial
distribution of drought occurrence is found to result
from the post-2000 precipitation changes relative to
the 20th century, which consist of reductions in the
western and southeasternUS and increases elsewhere.
The elevated surface temperatures played a second-
ary contributing role. A considerable portion of these
post-2000 precipitation and temperature changes are
driven by the concurrent global SST changes contrib-
uted by the global warming trend, negative PDO and
positive AMO, all of which are the well-known lead-
ing patterns of global SST variability that can induce
drought conditions in thewestern, central, and south-
eastern US. It can be inferred that when the PDO and
AMO reverse their phases in the future, they can act
to offset the warming and drying effects of the long-
term warming trend, reducing drought occurrence in
the western, central and southeastern US.
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