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Abstract: Experimental limitations such as optical loss and noise have prevented entanglement-
enhanced measurements from demonstrating a significant quantum advantage in sensitivity.
Holland-Burnett entangled states can mitigate these limitations and still present a quantum
advantage in sensitivity. Here we model a fiber-based Mach-Zehnder interferometer with internal
loss, detector efficiency, and external phase noise and without pure entanglement. This model
features a practical fiber source that transforms the two-mode squeezed vacuum (TMSV) into
Holland-Burnett entangled states. We predict that a phase sensitivity 28% beyond the shot noise
limit is feasible with current technology. Simultaneously, a TMSV source can provide about
25 times more photon flux than other entangled sources. This system will make fiber-based
quantum-enhanced sensing accessible and practical for remote sensing and probing photosensitive
materials.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantum states of light give access to greater sensitivity in measurement than what is possible
classically. Shot noise limits classical measurements, in which sensitivity scales as n̄−1/2 with an
average number of photons n̄. With entangled states of light, it is possible to reach the Heisenberg
limit, which scales as n̄−1, yielding a

√
n̄ enhancement. However, practical implementations

remain elusive, due to obstacles such as optical losses, detection efficiency, and the fidelity of the
input state.

Some experiments have implemented free-space quantum-enhanced interferometers. At high
light levels, a displaced squeezed state can deterministically give a quantum enhancement [1].
However, here we focus on methods using entangled photons, which can demonstrate a higher
phase sensitivity per photon. Entangled photons have been used to better sense a photosensitive
protein [2,3], probe an atomic spin ensemble [4], a nitrogen vacancy center in diamond [5],
as well as image a photosensitive birefringent sample [6]. Additionally, fiber-based quantum
interferometers may offer simplifications in the phase stabilization of quantum networks [7].

A challenge with many of the experiments is the operation with post-selection, which means
that lost photons and incorrect input states are neglected. Including lossy measurements often
reduces or eliminates any quantum advantage in sensitivity. One exception is [8], which was
performed in free space with two-photon, polarization-entangled N00N states. They limit the
need for postselection by reducing the probability of multi-pair generation, at the cost of photon
flux. The average photon number per measurement interval n̄ was about 0.003 for that experiment.
Therefore, future modeling and experiments should focus on refining these techniques with higher
photon flux, deterministic input states, and loss tolerance.
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In this work, we model a practical entanglement-enhanced Mach-Zehnder Interferometer
(MZI) in optical fiber, including all significant experimental effects and without postselection.
We predict that our technique offers a compromise between quantum-enhanced phase sensitivity
and overall photon flux; this creates a practical, deterministic, and accessible sensing scheme for
photon-starved applications. This model takes losses and external noise that were previously
modeled separately [9–13], and cohesively integrates them into a single deterministic framework.
In addition, we introduce a new method for handling a finite Hong-Ou-Mandel visibility. The
fiber-based design makes the technique accessible for remote sensing applications due to its low
loss and flexibility. For two, four, and six-photon entangled states, we demonstrate a quantum
advantage in phase sensitivity of 14%, 26%, and 28%, respectively, under experimentally realistic
conditions. We also consider a superposition of entangled states obtained from a two-mode
squeezed vacuum (TMSV) state, showing a quantum advantage in sensitivity of 28% with the
added benefit of roughly 25 times the photon flux as compared to a typical entangled photon
source.

Many have modeled quantum-enhanced interferometry with various quantum states of light,
each with their own merits and pitfalls [11,14–17]. J. Dowling [15] has pioneered the use of
maximally entangled N00N states, which are theoretically optimal, but are especially sensitive to
losses [11], and difficult to generate beyond N = 2. Alternatively, Holland-Burnett states HB(N)

[16] are directly generated by taking N photon pairs from spontaneous parametric downconversion
(SPDC) through Hong-Ou-Mandel interference at a beamsplitter. This forms a path-entangled
state of the form:

ψ =

N∑︂
i=0

ci |2N − 2i, 2i⟩. (1)

While HB(N) accumulate less phase information than N00N states in a lossless interferometer,
HB(N) states are more resilient to loss and noise [9].

Others have modeled and demonstrated ways to mitigate the effects of optical loss, noise, and
other effects [9,12,13,18–21]. An OAM-enhanced angular displacement estimation scheme was
demonstrated to be robust against dark counts and response-time delay [18,19]. By engineering
the spatial structure of input photons, it is possible to counteract spectral distinguishability and
recover super-sensitivity [20]. Quantum state engineering may also eliminate components of the
entangled state that do not accumulate phase information. Examples include the use of non-50:50
beamsplitters [22,23] (at the cost of a lower degree of entanglement) or asymmetric heralded
Holland-Burnett states [21].

There is a substantial difference in average photon number between classical interferometry
and entanglement-enhanced interferometry. A classical measurement may have 1016 photons/s
to probe a sample, while a typical entangled photon measurement might have 106 photons/s.
Due to this large difference in flux, classical measurements will often remain more sensitive.
However, for photon-starved applications, where a sample may be destroyed from too much
incident power, the sensitivity per photon becomes the figure of merit. This is the regime where
quantum metrology is applicable.

2. Methods

2.1. Model setup

Figure 1 illustrates a proposed schematic of our model interferometer. The source of entangled
photons is spontaneous parametric downconversion in a waveguide with a χ(2) nonlinearity.
This waveguide converts pump photons into photon pairs via type-II SPDC, which are spatially
separated at a polarizing splitter. Rotating one polarization results in indistinguishable photons
prior to the first directional coupler, which subsequently produces the entangled Holland-Burnett
state HB(N). This first directional coupler begins the MZI, with a bottom sensing branch, and a
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top reference branch. The feedback element θfeedback ensures that the two parts of the entangled
state are matched in path length, allowing for an optimal measurement. The single photon
detectors provide photon-number-resolved detection statistics, from which we extract phase
information.

Fig. 1. (a) Schematic of an entanglement-enhanced Mach-Zehnder Interferometer, with
equal photon number inputs |n⟩ in each port creating a Holland-Burnett state inside the
interferometer. The bottom branch accumulates an unknown phase ϕ while the top branch
includes a controllable element θfeedback that can ensure an optimal measurement. (b)
Simplified schematic for modeling. The state experiences loss (red) both inside the
interferometer (η1 and η2) and in the number-resolving detectors (ηd). The internal loss
mode L1 with loss 1 − η1 is grouped into other losses for simplified analysis.

Other detection options such as homodyne or heterodyne are certainly possible. However,
these are capable of phase sensing with a single mode, and so the structure of the Mach-Zehnder
interferometer becomes redundant [24]. In other words, adding an external phase reference with
a local oscillator creates a different problem than the one we present, and the two problems are
not necessarily comparable [25]. We instead focus on the Mach-Zehnder interferometer and
how well it can perform for entanglement-enhanced phase estimation, given no external phase
reference. Photon number detection then becomes the natural detection method.

Our analysis is restricted to a single frequency mode. Instead of a multimode model, effects
such as spectral and spatial overlap between interfering photons are accounted for in the Hong-Ou-
Mandel visibility V . We require matching of the interferometer path lengths in order to maximize
photon indistinguishability, which is vital for obtaining a reliable entangled state (V ≈ 1). Also,
the range of phases over which phase estimation applies is less than half of a period, where this
period is even shorter for an entangled state [26]. To compensate for the small measurement
range, as shown in Fig. 1(a), the feedback element θfeedback can shift so that ϕ − θfeedback is still
within range. In practice, θfeedback could be a varying strain in a section of fiber, adjusting its path
length. However, changes in phase must be slower than the measurement speed (for our model,
100 Hz).
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Experimental imperfections will limit the sensitivity of this quantum-enhanced sensor. Detec-
tion efficiency has perhaps been the most detrimental of these factors, but recent technological
advances show promise in overcoming this obstacle. Both superconducting transition-edge and
nanowire sensors have demonstrated with over 90% detection efficiency [27–29], some with
inherent photon-number resolution [30–32]. In particular, interfacing a nanowire detector with
an impedance-matching taper currently resolves up to 4 photons [30]. With a higher-impedance
taper and lower-noise amplifiers, higher photon numbers may be resolved. Efficiently coupling to
these detectors is also a significant challenge, but references [32,33] provide methods to obtain
up to 99% coupling efficiency with optical fiber. Other common detector metrics like dark count
and timing jitter will also degrade performance. Fortunately, compared to the input photon flux
of at least 106/s, a typical dark count rate of <103 /s does not contribute any significant error.
Additionally, timing jitter is not an issue since the time between pulses (several ns) is much
greater than typical timing jitters (several ps). Based on this technological review, we consider it
a realistic goal to have detectors with 90% efficiency and number resolution up to 6 in the near
future.

A finite degree of entanglement will impair the input state fidelity, and therefore affect the
phase sensitivity. The quality of Hong-Ou-Mandel interference in producing an entangled state
depends on both the individual spectral purity and the joint indistinguishability of the interfering
photons [34,35]. Experimentally, the visibility can be increased by applying narrow spectral
filters to the photon pair source, but at the expense of overall photon flux. Recent development in
photon sources have demonstrated very high two-photon indistinguishabilities in a variety of
sources [36–40]. We expect that a practical implementation of our model based on a MgO:PPLN
source can achieve 95% visibility while maintaining a photon flux of around 106 /s [40]. In order
to maintain this visibility throughout the interferometer, polarization-maintaining fiber must be
used to minimize polarization mode dispersion, which could eliminate quantum interference
[41].

2.2. Modeling framework

We take a similar approach to other modeling efforts, accounting for internal transmission η
(encompassing losses in fiber, fiber couplers and the splitter) and detector efficiency ηd [9],
Hong-Ou-Mandel visibility V [39,42,43], and phase noise δϕ [10,44]. Our model assumes a
visibility of 95%. Based on measurements of phase noise in classical interferometry, we expect
about 2 mrad of phase noise in a laboratory-scale experiment [45–47]. We took additional
steps to ensure compatibility between these various approaches when integrating them into one
model. In the end, for each Holland-Burnett state, the model produces a probability matrix ρ′ij(ϕ),
representing the probability of detecting i photons in one detector and j photons in the other. This
matrix is constructed from a base probability matrix ρij that considers losses. See appendix A for
more information and appendix C for an example calculation. This base matrix is modified by a
finite Hong-Ou-Mandel visibility and external phase noise, as described below.

2.3. Finite visibility

Although modern photon-pair sources can exhibit 99% photon indistinguishability [36,42], some
amount of photon distinguishability will affect the degree of entanglement in the interferometer
[39]. Interestingly, as our model accounts for every photon input into the system, distinguishable
photons cannot be ignored, and will still trigger the detectors. A first-order approximation to a
finite distinguishability is that photons will not always undergo Hong-Ou-Mandel interference,
and instead act as independent photons throughout the interferometer. As a further complication,
this may happen at either the first or second 50:50 beamsplitter. Improper interference can happen
with probability (1 − V) where V is the Hong-Ou-Mandel visibility of a given input state. This
would then modify the photon detection probability matrix ρ′ij from the original ρij with two
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new probability matrices Pij and P′
ij. Pij represents the probability matrix from seeing n photons

undergo single-photon interference in the interferometer, as they were considered distinguishable
at beamsplitter 1 but indistinguishable at beamsplitter 2. This allows for photon self-interference.
Similarly, P′

ij represents the case where photon pairs are considered distinguishable at beamsplitter
2, no inter-photon interference occurs; no phase information is gained in this case.

ρ′ij = V1V2ρij + V2(1 − V1)Pij + (1 − V2)P′
ij (2)

Here, V1 and V2 represent photon visibilities at the first and second beamsplitters, respectively.
V1 may not be equal to V2 due to a phase mismatch and possible losses during propagation
between the two beamsplitters. Note that the sum of all elements in Pij and P′

ij equal 1, and that
V1V2 + V2(1 − V1) + (1 − V2) = 1 so that the final probability matrix ρ′ij accounts for all possible
events. See Appendix B for the formulation of the Pij matrices for up to 6 photons.

2.4. Phase noise

A degradation in sensitivity in an entanglement-enhanced interferometer from phase noise is
explored in [10]. For small amounts of phase noise, a state may undergo phase evolution from a
random phase δϕ. On average, ⟨δϕ⟩ = 0 and ⟨δϕ2⟩ = ΓL for a dephasing rate Γ over a length L.

einδφ = 1 + in⟨δϕ⟩ −
n2

2
⟨δϕ2⟩ + · · · ≈ e−n2ΓL (3)

An output state will have exponentially lower phase information than normal when subject to
phase noise. In our model, we include phase noise by appending e−n2ΓL to each occurrence of
einφ. Although this destroys the normalization of the state, it is still a useful metric to assess
sensitivity to phase noise and understand where the quantum advantage in phase sensitivity will
be destroyed.

2.5. Quantum Fisher information and the quantum Cramér-Rao bound

The amount of phase information contained in the output state can be calculated with the Fisher
information F(ϕ) and the photon detection probabilities ρ′ij [48]:

F(ϕ) =
∑︂
i,j

1
ρ′ij

(︄
∂ρ′ij

∂ϕ

)︄2

. (4)

An optimal quantum measurement will extract the maximum information, or the quantum
Fisher information, which is obtained from maximizing the Fisher information:

Fquantum = Max(F(ϕ)). (5)

In other words, by choosing an optimal ϕ at which to measure, we find the quantum Fisher
information. When the measurement is repeated m times, the optimal phase sensitivity is then
the quantum Cramér-Rao bound:

∆ϕquantum =
1√︁

mFquantum
. (6)

Due to the entanglement-enhanced phase estimation, ∆ϕquantum should be lower than the shot
noise limit:

∆ϕclassical =
1

√
mn̄

. (7)
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Since this model uses Holland-Burnett states HB(N) with N pairs of input photons, the phase
sensitivity limit in a lossless system with m measurements is [9]:

∆ϕquantum =
1√︁

2N(N + 1)m
. (8)

This entire operation was performed in parallel for several values of N under realistic conditions.

2.6. Two-mode squeezed vacuum interferometry

Since this model can handle any input state in the Fock state basis, it can also handle superpositions
of Fock states. This includes the two-mode squeezed-vacuum (TMSV) state, which can provide
more photon flux than a typical entangled photon source, dependent on the degree of squeezing.
It has also been theoretically shown that in a lossless interferometer the TMSV can give a phase
uncertainty that we will refer to as the theoretical TMSV limit [49]:

∆ϕ =
1

√
n̄2 + 2n̄

. (9)

This slightly exceeds the Heisenberg limit. It may seem that, comparing Eqs. (8) and (9),
that the phase sensitivity of a Holland-Burnett (discrete-variable) state is higher than TMSV (a
continuous-variable state). Note, however, that a comparison between average photon number and
phase sensitivity between discrete and continuous-variable states can be misleading [24]. To avoid
confusion, using the TMSV and its average photon number is a fairer, more practical assessment
of sensor performance. Also, since the TMSV is the direct output of type-II spontaneous
parametric downconversion, it does not need any postselection. This results in more overall
photon flux available for the sensor. Therefore, using the TMSV will be highly beneficial to the
speed and sensitivity of the sensor in comparison to using individual Holland-Burnett states.

The TMSV state can be described in the photon-number basis as a probability distribution of
N pairs of photons [50]:

PN =
(tanh r)2N

(cosh r)2
, n̄ = 2(sinh r)2, (10)

where r is the squeezing parameter, proportional to the pump power. The two modes in question
are usually orthogonal polarizations, but a polarizing beamsplitter can separate these into separate
paths as required for this path-entangled interferometer. The entangled state in the interferometer
will then be a weighted sum of Holland-Burnett states HB(N):

|ψ⟩ = P0 |0, 0⟩ + P1HB(1) + P2HB(2) + · · · (11)

Equation (11) demonstrates the quantum advantage of TMSV with its decomposition into Fock
space. Each individual Holland-Burnett state HB(N) has its own quantum advantage (Eq. (8)),
and the TMSV gives access to many of these HB(N) states simultaneously, without the need to
isolate them with postselection.

The primary limitation on using the two-mode squeezed vacuum comes from the use of
photon-number resolving detectors. Since we have assumed a limited number resolution of 6,
any part of the squeezed light containing 7 or more photons at one detector must be discarded.
For example, an 8-photon event at one detector would suggest a different measured phase than a
10-photon event, but the inability to distinguish these events from each other provides no clear
phase estimate. Also, to simplify analysis, we have neglected effects of finite visibility and phase
noise in analyzing the TMSV state.

A consequence of limited number resolution is that the squeezing parameter r in our state should
not be too high; too much squeezing will contain too many irresolvable, high-photon-number
states. With too little squeezing, the sensor will not benefit from the higher entangled states. For
a given system efficiency, we have optimized r to produce the most phase information per photon.
That is, we choose r such that Fquantum/n̄ is maximized.
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3. Results

Figure 2 shows the resulting quantum Cramér-Rao bounds from a 2, 4, and 6-photon Holland-
Burnett state in the interferometer, as a function of system efficiency ηsys = ηηd, with our assumed
realistic conditions of 95% visibility [43] and 2 mrad of phase noise [47]. To better represent the
sensor performance under practical circumstances, we have included an integration time of 10
ms, allowing measurements to be repeated m times, where m is the number of occurrences of that
state in 10 ms. We have found this time to be sufficient to accumulate enough photon detection
statistics and saturate the sensitivity limit. For Fig. 2, we have assumed an equal flux of each
state of 8 × 106 /s. Strictly speaking, if using these states individually, the 4- and 6-photon states
would be much less common than the 2-photon state, but for the sake of comparison all fluxes
are identical here. Also, for comparison, the equivalent shot noise 1/√ηηdn for each state is also
plotted. The intersection of the quantum phase uncertainty for each state with its equivalent shot
noise is a good indication for how robust the state is against loss. At 90% internal transmission,
the model shows a quantum advantage of 18%, 26%, and 28% beyond the shot noise limit for the
2, 4, and 6-photon states, respectively. These states do no better than shot noise at 59%, 63%,
and 65% system efficiency, showing that higher-photon-number states are more sensitive to loss.

Fig. 2. Phase sensitivity of 2, 4, and 6-photon Holland-Burnett states as a function of system
efficiency ηsys = ηηd . We assume 95% Hong-Ou-Mandel visibility, and 2 mrad of phase
noise. Each state’s equivalent shot noise 1/√ηηdn, is also plotted for comparison. Each
state has equal flux, assumed to be 8 × 106 / s, where 10 ms is the sensor integration time.

While Fig. 2 shows a detailed analysis of the lowest three Holland-Burnett states, even higher
states are possible in a bright TMSV state. As mentioned earlier, the number of useful states
is limited by the two detectors having an assumed number resolution of 6. Fortunately, at an
optimal phase and at ηsys ≈ 81%, the most probable outcomes of the 8, 10, 12, and (to an extent)
14-photon Holland-Burnett states are still resolvable. So, despite having more photons than a
single detector can resolve, these states still provide significant phase information. From Eq. (11),
the TMSV state provides a practical way to access these higher-photon-number states.
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Figure 3 visualizes the Fisher information obtained from each detection event (na photons in
one branch and nb photons in the other) for each simulated Holland-Burnett state. These values
are weighted by the likelihood of detecting the event. Here, ηsys = 81% and θfeedback is optimal
for that state. Despite some detection events exceeding the number resolution of the detectors
(n>6, indicated in red), we observe that these events contribute relatively little to the total Fisher
information. Instead, the most information is obtained for events where na ≈ nb. It is not until
the 14-photon entangled state that we see significant loss of information from limited number
resolution in detectors.

Fig. 3. Matrix plots for the performance of Holland-Burnett states with up to 14 photons
when put through the interferometer under realistic conditions and an optimal measurement.
The plotted Fisher information for each detection event shows which events give the most
phase information. These values are weighted by the likelihood of detecting the event. The
red barriers (n>6) correspond to events that the detectors cannot resolve due to limited
photon number resolution. The maximum information per event for each plot is scaled
differently. For each plot, in order of increasing photon number, the maximum information
is 0.93, 2.1, 2.7, 3.9, 4.2, 4.1, and 3.7.

In other words, if N photons are sent through the interferometer, a photon number resolution
between N/2 and N is sufficient to extract most of the possible phase information. This is due to
the fact that an optimal measurement will tend to distribute the photons evenly between the two
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detectors. The exact number resolution that will be sufficient will depend on losses. Overall,
this significantly relaxes the photon number resolution requirements on the detectors and shows
another advantage to using Holland-Burnett states.

From the discussion following Eq. (11), when using the TMSV in the interferometer, there
are competing effects that determine what squeezing parameter r is optimal. Results of this
optimization are shown in Fig. 4. In a 100% efficient system, roptimal = 0.903, and the
corresponding photon number per mode n̄ = 2.13. We compare this to a typical entangled
photon pair source, which intentionally limits n̄ to 0.02 [39,40]. The limited n̄ ensures that, if any
photons are produced, the likelihood of a single pair of photons (99%) is much higher than any
other outcome. n̄ is proportional to the photon flux of the entangled photon source, and so the
increase in n̄ for the TMSV source shows up to 107 times the photon flux of a typical entangled
source. Near 81% system efficiency, the optimization changes so that we get 25 times the photon
flux. This higher photon flux enables faster phase measurements, making the sensor much more
practical to use.

Fig. 4. Results from optimizing a two-mode squeezed vacuum (TMSV) state’s squeezing
parameter to provide maximum phase information per photon, as a function of system
efficiency. We show both (a), the average photon number n̄, and (b) the corresponding
optimal squeezing parameter r. For comparison, the state’s photon number per temporal
mode can be compared to that of a typical entangled source n̄ ≈ 0.02. The optimized
TMSV can provide 25 times the flux at 80% system efficiency, or 107 times the flux at 100%
efficiency.

The other notable feature in Fig. 4 is that roptimal drops to 0 near 70% system efficiency. As
seen earlier in Fig. 2, as system efficiency decreases, higher photon-number entangled states
tend to lose their quantum advantage earlier than the two-photon state. This means that beyond
certain thresholds it is no longer advantageous for an optimized TMSV state to include these
states. Consequently, roptimal decreases as efficiency decreases. Taking this to the limit, near 70%
efficiency, only the 2-photon entangled state shows a quantum advantage, and so the optimization
suppresses any likelihood of seeing higher states. With even lower efficiencies, it will not be
practical to use the TMSV state in this manner.

The performance in phase sensitivity of the TMSV state in the interferometer is summarized
in Fig. 5. We assume an integration time of 10 ms to represent practical performance. By
increasing both photon flux and phase information per photon, the phase sensitivity from the
TMSV state scales exponentially with increasing system efficiency. When compared to shot
noise, we notice two limits. Near 100% efficiency, we see a 78% sensitivity enhancement. In
contrast, near 70% efficiency, this enhancement is only 20%, which marks the point where the
quantum advantage of the two-photon state exceeds that of all other states. Thus, the optimization
lowers r to below 10−3 below 70% efficiency in order to exclusively produce the two-photon
state. Under an experimentally achievable 81% system efficiency, the TMSV can provide 25
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times more flux over typical entangled-photon sources [37], and a 28% enhancement in phase
sensitivity over shot noise.

Fig. 5. (a) Phase sensitivity of the optimized TMSV state as a function of system efficiency,
given an integration time of 10 ms. For comparison, the equivalent shot noise and the
theoretical TMSV limit are plotted as well. (b), The ratio of shot noise and phase sensitivity,
showing a quantum advantage varying from 20% to 78% with increasing system efficiency.
At 81% system efficiency, the TMSV state provides a 28% phase sensitivity enhancement
over shot noise.

These results are consistent with previous models of TMSV phase estimation [49]. When
accounting for system losses in the theoretical TMSV limit (Eq. (9)), this method of sensing comes
within 14% of the limit near 100% efficiency. We attribute this to the fact that different entangled
states have a different optimal phase at which measurement is optimal (Fisher information is
maximized). As a combination of all of these states, the TMSV would require θfeedback to be set
to multiple values simultaneously, which is not possible. Instead, the best θfeedback was chosen as
a function of system efficiency, which favored some entangled states over others.

4. Conclusion

Recent advances in quantum optical technology allow for fiber-based entanglement-enhanced
interferometry to show a quantum advantage, without post-selection, under realistic conditions.
We present a model of a quantum-enhanced fiber interferometer that compromises between
phase sensitivity and photon flux to make a practical and accessible sensing scheme. Our
modeling results show that, under 90% internal transmission, 90% detection efficiency, 2 mrad
of phase noise, and 95% visibility, 2, 4, and 6-photon Holland-Burnett states show a 18%, 26%,
and 28% sensitivity improvement beyond the shot-noise limit, on a per-photon basis. When
superimposed into a two-mode squeezed vacuum state, these states show a 28% sensitivity
improvement while also allowing for 25 times the photon flux of typical entangled-photon sources,
which allows for faster measurements. We also show that this sensor may effectively use higher
photon-number states than the photon number resolution of a detector would allow. Further
improvements in performance can by obtained with improved number-resolving detectors so that
the sensor may make use of higher photon-number states. This method may be useful for any
photon-starved application, such as probing photosensitive or atomic samples, or transferring
information between quantum systems, It may also aid in the phase stabilization of quantum
networks. More generally, this model demonstrates a practical, scalable, and robust approach to
obtain quantum-enhanced phase information at the few-photon level.

Appendix A

Modeling the interferometer was performed using symbolic math in Wolfram Mathematica, in the
photon number basis. By expressing an arbitrary input state in terms of photon creation operators,
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the state can be transformed as an algebraic expression, and represented as a polynomial in
creation operators. An input state |na, mb⟩, representing n photons into port a, and m photons
into port b, is transformed itno photon creation operators:

|ψin(n, m)⟩ =
1

√
n!m!

(â†)n(b̂†)m |0⟩ (12)

Each operator then transforms as the state propagates through the interferometer. When a state
hits a beamsplitter (directional coupler) of coupling ratio t, the operators transform as:

â† →
√

tâ† +
√

1 − tb̂† (13)

b̂† → −
√

1 − tâ† +
√

tb̂† (14)

For instance, a |1, 1⟩ state will transform at a 50:50 beamsplitter into 1√
2
(|2, 0⟩ + |0, 2⟩). This

implements Hong-Ou-Mandel interference for perfectly indistinguishable photons and creates a
path-entangled state. More generally, with N photon pairs, this creates the Holland-Burnett state
HB(N).

As b̂† represents a photon in the sensing arm inside the interferometer, each b̂† will pick up a
phase ϕ as:

(b̂†)n → einφ(b̂†)n (15)

In this way, the Fock state |n⟩ undergoes phase evolution n times faster than a coherent state.
This enhanced phase evolution in Fock states is the basis for achieving super-resolution with
entangled photons. Furthermore, to account for loss inside the interferometer η, operators
undergo additional splitting into loss modes L̂†

1, L̂†

2, which are not measured.

â† →
√
η1â† +

√︁
1 − η1L̂†

1 (16)

b̂† →
√
η2b̂† +

√︁
1 − η2L̂†

2 (17)

Here, η1,2 is the internal transmission of the interferometer in branches a and b. Separate
vacuum modes are necessary for each branch to avoid terms with L̂†

1 from cancelling with terms
with L̂†

2. Cancellation here would represent photon interference, which is not physical for photons
lost in separate branches. Since [â†, L̂†

i ] = [b̂†, L̂†

i ] = 0 for any i, the order in which the phase
shift and losses occur does not matter. Thus, this model of one discrete loss is equivalent to a
continuous lossy process such as propagation in fiber.

After internal losses, the state is re-combined again at another 50:50 beamsplitter, with the same
transformations, allowing for interference effects to become visible. Finite detector efficiency is
accounted with additional losses ηd, this time with loss modes L̂†

3, L̂†

4. However, due to the unitary
nature of a beamsplitter, one vacuum mode can be eliminated. Referring to Fig. 1(b), when the
reference branch transmission η1 is higher than the sensing branch transmission η2, the internal
losses can be re-formulated as a common-mode loss η and extra loss in one branch η2. Then
losses can be equivalently formulated by applying loss η2/η to branch b and losses ηηd at both
detectors. This eliminates the need to include vacuum mode L̂†

1, simplifying the computation for
detection probabilities. The red fictional beamsplitters in Fig. 1(b) illustrate this reformulation.

A complex polynomial in terms of operators â†, b̂†, L̂†

2, L̂†

3, L̂†

4 represents the output state. This
polynomial is transformed back into the Fock state basis |ja, kb, lL2, mL3, nL4⟩ and organized into
a rank-5 tensor ρjklmn. Each element in the tensor represents all coefficients for in the expression
proportional to (â†)j, (b̂†)k, (L̂†

2)
l, (L̂†

3)
m, (L̂†

4)
n,. For a general Fock state,

√
n!|n⟩ = (â†)n |0⟩, so
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the conversion factor for each term in the tensor is
√︁
(j!)(k!)(l!)(m!)(n!). Additionally, since

vacuum modes are not detected, the sensor should not distinguish between vacuum modes. The
detection tensor is flattened into:

ρjk =
∑︂
l,m,n

|ρjklmn |
2 (18)

ρjk then represents the probability of detecting j photons in mode a and k photons in mode b,
with any combination of other photons lost to any vacuum mode. For an state input |n, n⟩, ρjk has
dimensions 2n + 1, 2n + 1, and has nonzero elements for j + k ≤ 2n. In a lossless environment,
only the elements i, 2n − i are nonzero, as all 2n photons are always detected. In a lossy case,
however, lower elements may still contain useful phase information. The symbolic form of ρjk
for each Holland-Burnett state is available from the author upon request.

Appendix B: matrices for finite visibility

Pij can be formed from the base probabilities of detection in branches a and b from a single
input photon. For brevity, we abbreviate these as x, y, z for describing the probability matrices for
events where photons are considered distinguishable.

Pa =
ηd

4
(η1 + η2 + 2

√
η1η2 cos ϕ) = x (19)

Pb =
ηd

4
(η1 + η2 − 2

√
η1η2 cos ϕ) = y (20)

Pnone =
1
2
((1 − η1) + (1 − η2) + ηd(η1 + η2)) = z (21)

P2,dist =

⎛⎜⎜⎜⎜⎝
z2 2yz y2

2xz 2xy 0

x2 0 0

⎞⎟⎟⎟⎟⎠
(22)

P4,dist =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z4 4yz3 6y2z2 4y3z y4

4xz3 12xyz2 12xy2z 4xy3 0

6x2z2 12x2yz 6x2y2 0 0

4x3z 4x3y 0 0 0

x4 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(23)

P6,dist =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z6 6yz5 15y2z4 20y3z3 15y4z2 6y5z y6

6xz5 30xyz4 60xy2z3 60xy3z2 30xy4z 6xy5 0

15x2z4 60x2yz3 90x2y2z2 60x2y3z 15x2y4 0 0

20x3z3 60x3yz2 60x3y2z 20x3y3 0 0 0

15x4z2 30x4yz 15x4y2 0 0 0 0

6x5z 6x5y 0 0 0 0 0

x6 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

Similar combinatorics are used to calculate the matrix P′
ij, which represents the probabilities

for n single photons to be detected after a beamsplitter with no interference. Due to the lack of
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interference, no phase information is obtained from the events this matrix represents. This is
merely for completeness such that the total probability matrix ρ′ij sums to 1.

For a single photon, we have the probabilities of detection:

Pa = 0.5ηd = x′

Pb = 0.5ηd = y′

Pnone = 1 − ηd = z′
(25)

For each state, then, P′
ij is constructed identically to Pij above, except with x′, y′, z′ instead of

x, y, z.

Appendix C: example calculation

Here we provide an example calculation of ρij, the probability detection matrix for a 2-photon
input. We include one loss mode and phase noise, but skip the visibility. To begin, our input
state is:

ψ = â†b̂† |0, 0⟩ (26)

After the first beamsplitter and a phase shift this becomes:

ψ =
1
2

(︂
−â†

2
+ b̂†

2
e2iφ

)︂
|0, 0⟩ (27)

Adding in a loss mode L2 with transmission η2:

ψ =

(︃
−1
2

â†
2
+

1
2

e2iφL̂†

2

2
(1 − η2) +

√︁
1 − η2

√
η2e2iφ b̂†L̂†

2 +
1
2
η2e2iφ b̂†

2
)︃
|0, 0, 0⟩ (28)

After the second beamsplitter, this becomes:

ψ =

(︃
−1
4

â†
2
−

1
2

â†b̂† −
1
4

b̂†
2
+

1
2

ei2φL̂†

2

2
(1 − η2) −

1
√

2
√
η2

√︁
1 − η2e2iφ â†L̂†

2

+
1
√

2
√
η2

√︁
1 − η2e2iφ b̂†L̂†

2 +
1
4
η2e2iφ â†

2
+

1
2
η2e2iφ â†b̂† +

1
4
η2e2iφ b̂†

2
)︃
|0, 0, 0⟩

(29)

Converting this to a tensor of coefficients for each of the three modes a, b, L2, we have:

ρijk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0

0
−1√

2
e2iφ(η2 − 1)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0
1√
2
e2iφ

√︁
η2(1 − η2)

0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2
√

2
(−1 + e2iφη2)

0

0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0

1√
2
e2iφ

√︁
η2(1 − η2)

0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 (−1 − η2e2iφ)

0

0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0

0

0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

2
√

2
(−1 + η2e2iφ)

0

0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0

0

0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0

0

0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

ρij then sums over the third dimension in ρijk such that we get a 3 x 3 matrix, and takes the
absolute value squared of each element.
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