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Gene therapy is a powerful tool to treat various central nervous system 

(CNS) diseases ranging from monogenetic diseases to neurodegenerative 

disorders. Adeno-associated viruses (AAVs) have been widely used as the 

delivery vehicles for CNS gene therapies due to their safety, CNS tropism, 

and long-term therapeutic effect. However, several factors, including their 

ability to cross the blood–brain barrier, the efficiency of transduction, their 

immunotoxicity, loading capacity, the choice of serotype, and peripheral 

off-target effects should be carefully considered when designing an optimal 

AAV delivery strategy for a specific disease. In addition, distinct routes of 

administration may affect the efficiency and safety of AAV-delivered gene 

therapies. In this review, we summarize different administration routes of gene 

therapies delivered by AAVs to the brain in mice and rats. Updated knowledge 

regarding AAV-delivered gene therapies may facilitate the selection from 

various administration routes for specific disease models in future research.
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Introduction

Gene therapies exert their therapeutic effects by either removing pathologic genes or 
adding therapeutic genes, and such therapies can be used for various central nervous 
system (CNS) diseases including both genetic and neurodegenerative diseases 
(Hocquemiller et al., 2016). Gene therapies are usually partly or entirely composed of 
genetic materials (DNA or RNA) that are easily degraded in the body. Therefore, gene 
therapies require vehicles to deliver the genetic materials to the targeted cells or tissues. 
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Among all used delivery vehicles, recombinant adeno-associated 
viruses (rAAVs) are the leading vehicle for delivering gene 
therapies into the CNS due to their safety, CNS tropism, and long-
term therapeutic effect (Hastie and Samulski, 2015; Hudry and 
Vandenberghe, 2019).

Adeno-associated viruses (AAVs) are non-pathogenic viruses 
comprising an icosahedral capsid of ∼26 nm in diameter and a 
single-strand DNA of ∼4.7 kb, and they can be found in many 
mammals, including humans and non-human primates 
(Muzyczka and Berns, 2001). rAAVs are recombinant AAVs with 
exogenous DNA of interest. AAVs were first discovered in the 
1960s (Blacklow et al., 1967, 1968), and since then rAAVs have 
been proposed and extensively tested as gene delivery vehicles in 
preclinical and clinical trials. rAAVs can be  used to deliver 
therapeutic genes for correcting monogenetic diseases, silencing 
a mutated toxic gene, and releasing neurotrophic factors for 
multifactorial CNS diseases (Piguet et al., 2017). However, rAAVs 
cannot proliferate and replicate and thus they can only 
be expressed in the initially transduced cells, and thus repeated 
rAAV drug deliveries are sometimes needed (Samulski et al., 1987; 
Xiao et al., 1997). To date, two rAAV drugs have been approved 
by the FDA, namely Luxturna for inherited retinal dystrophy and 
Zolegensma for spinal muscular atrophy. In addition, rAAV-
delivered gene therapies have been tested in preclinical 
experiments and in clinical trials for other tissues, including the 
liver, muscle, blood, and brain (Keeler and Flotte, 2019).

Different serotypes, such as AAV1, AAV2, AAV5, AAV8, 
AAV9, and AAV rhesus isolate10 (AAVrh.10), have shown efficacy 
in transducing neurons, while they have limited efficacy in 
transducing other glia cells (Burger et al., 2004; Cearley and Wolfe, 
2006; Dodiya et al., 2010). In addition, different strategies have 
been used to identify or generate new AAVs with brain and other 
tissue tropisms, including natural discovery, capsid design, 
directed evolution, and in silico reconstruction (Keeler and Flotte, 
2019; Wang et  al., 2019). Many extracellular and intracellular 
trafficking processes are critical for successful gene delivery, such 
as cell-specific targeting and endosome escape, and these have 
been detailed and summarized in other reviews (Wang et  al., 
2019). Moreover, the tropism and transduction rates of different 
rAAV serotypes also depend on the tested species, brain regions, 
and administration routes (Pillay and Carette, 2017). The 
administration routes of rAAV delivery for clinical trials and large 
animals such as cats, dogs, and non-human primates have been 
examined in other reviews (Hudry and Vandenberghe, 2019; 
Piguet et al., 2021b). In this review, we mainly focus on the effect 
of delivery routes of rAAVs to the brain in mice and rats.

AAV delivery routes

Intravenous administration

AAVs are the leading vehicles for delivering gene therapies 
into the brain (Choudhury et al., 2017), and IV injection is the 

optimal brain-targeting rAAV injection route because it is 
minimally invasive, especially when widespread gene therapy is 
needed in the brain and in some disease conditions in which 
widely targeting both the CNS and peripheral system is required 
(Gessler et  al., 2019). However, most rAAVs cannot cross the 
blood–brain barrier (BBB), and different rAAV stereotypes 
recognize different cell receptors and thus have different tropisms 
for distinct tissues and cell types (Agbandje-McKenna and 
Kleinschmidt, 2011; Wang et al., 2019), which causes difficulties 
in delivering rAAVs into the brain by IV administration. 
Moreover, the required high concentration of virus vectors, rapid 
immune responses, immunotoxicity, and potential off-targeting to 
the peripheral tissues may limit the use of IV for rAAV delivery 
into the brain (Stephenson, 2001; Gessler et al., 2019).

rAAV9

AAV9, a naturally discovered AAV from human livers, can 
cross the BBB, and this makes it a useful vehicle for targeting the 
brain via IV injection (Gao et al., 2004; Foust et al., 2009) even 
though it is not CNS specific and can also robustly transduce 
peripheral tissues (Zincarelli et al., 2008; Bevan et al., 2011; Gray 
et al., 2011). Previous studies have shown that rAAV9 can robustly 
transduce neurons in rodents (Cearley and Wolfe, 2006, 2007; 
Cearley et  al., 2008), and IV injection of self-complementary 
rAAV9 (scAAV9; McCarty et al., 2003) can transduce widespread 
neurons in the brains of neonatal mice that do not yet have a fully 
developed BBB (Foust et al., 2009, 2010). Moreover, IV injection 
of scAAV9 can transduce twice as many neurons as astrocytes, and 
it can transduce a small number of oligodendrocytes but not 
microglia in the adult mouse brain (Gray et al., 2011). Another 
study came to the opposite conclusion and found that IV injection 
of scAAV9 strongly transduced astrocytes in adult mice; however, 
directly injecting scAAV9 into the adult brain parenchyma caused 
significant transduction of neurons but not astrocytes, indicating 
that the injection route is critical for targeting different cells (Foust 
et  al., 2009). Inconsistent results from previous studies may 
be attributed to various impurities in the viruses and different 
doses used in each study; thus, targeting cells via IV injection with 
rAAV9 is still controversial, and further investigation is required 
to validate these results.

The transduction rate after IV administration of rAAV9 may 
be influenced by BBB permeability (Boutin et al., 2010; Gray et al., 
2011). For example, mannitol can transiently open tight junctions 
in the BBB. Still, it only has mild or no effect on the CNS 
transduction rate depending on the time points of injection of 
rAAV9 following injection of mannitol, which is possibly due to 
the active transport of rAAV9 across the BBB instead of passively 
passing through tight junctions (Gray et al., 2011). Consistent 
with this, another study showed significantly increased numbers 
of transduced cells and increased enzyme activity in the brain after 
pretreatment with mannitol (Fu et  al., 2011). Moreover, 
pre-existing antibodies to rAAV9 capsid may limit the use of IV 
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injection of rAAV9. Notably, preexisting immunity to rAAV9 is 
seen in 33.5% of the human population, although it is less 
common than preexisting immunity to rAAV2 (Chirmule et al., 
1999; Halbert et al., 2006; Calcedo et al., 2009).

rAAVrh.10 and rAAVrh.8

In addition to rAAV9, IV injection of rAAVrh.10, rAAVrh.39, 
rAAVrh.43, and rAAV7 can also lead to widespread transduction 
in the brain, especially rAAVth.10, which has comparable 
transduction ability as rAAV9 in the neonatal mouse brain (Zhang 
et al., 2011). Another study showed that rAAV9, rAAVrh.10, and 
rAAVrh.8 are superior to rAAVrh.39, rAAVrh.43, rAAV7, and 
rAAV8 in transduction efficiency, and rAAVrh.8 is the leading 
vehicle amount these vehicles in adult mice. Moreover, rAAVrh.8 
transduces fewer peripheral tissues than other rAAVs, indicating 
that it is the optimal vehicle for delivery by IV injection to 
specifically transduce cells in the brain. Furthermore, these vectors 
transduce various cell types in the brain, such as neurons, 
astrocytes, and blood vessels, but not microglia, across multiple 
brain regions, including the cortex, striatum, hippocampus, 
thalamus, hypothalamus, amygdala, corpus callosum, and choroid 
plexus (Yang et al., 2014).

IV injection of various rAAVs has been tested in several 
diseases. For example, IV injection of rAAV9-human 
aspartoacylase (hAspA), rAAVrh.8-hAspA, and rAAVrh.10-hAspA 
in a neonatal mouse model of Canavan’s disease achieved 
widespread expression of hAspA in the brain, which alleviated 
neuropathy and increased the survival rate of these mice (Ahmed 
et  al., 2013). Moreover, rAAV9 has successfully been used in 
various adult mouse models of lysosomal storage disorders in 
order to normalize enzyme expression and rescue behavior deficits 
(Fu et al., 2011; Ruzo et al., 2012).

rAAV-PHP.B and rAAV-PHP.eB

AAV-PHP.B was generated by targeted evolution of Cre 
recombination-based AAVs, and IV injection of rAAV-PHP.B can 
transduce neurons, astrocytes, and oligodendrocytes, but not 
microglia, in widespread adult brain regions with a more than 
40-fold greater transduction rate than rAAV9 (Deverman et al., 
2016). Furthermore, IV injection of rAAV9 preferably transduces 
the liver (Pulicherla et al., 2011), while IV injection of rAAV-
PHP.B transduces the CNS and liver at a similarly efficient rate. 
Moreover, rAAV-PHP.B transduces human neurons and astrocytes 
more efficiently than rAAV9. However, this effect was 
conditionalized by a study showing that rAAV-PHP.B’s high CNS 
transduction rate was seen only in the C57BL/6 J mice in which 
the AAV was generated, but not in BALB/cJ mice or in non-human 
primates, thus indicating the strain-specific property of this AAV 
(Deverman et al., 2016; Hordeaux et al., 2018; Matsuzaki et al., 
2018). Later on, rAAV-PHP.eB, an enhanced rAAV-PHP.B variant, 

was developed with a lower virus dose requirement to transduce 
widespread cortical and striatal neurons after IV injection in 
C57BL/6 J mice (Chan et al., 2017). Moreover, rAAV-PHP.eB can 
transduce throughout the rat brain in a dose-dependent manner 
after IV injection (Dayton et al., 2018). However, similar to rAAV-
PHP.B, rAAV-PHP.eB failed to show higher efficiency in B6C3 
mice after IV injection (Mathiesen et al., 2020), thus indicating the 
strain specificity of rAAV-PHP.eB.

rAAV-B1

rAAV-B1 was selected in vivo and shows more efficient 
widespread transduction efficiency than rAAV9  in the brain, 
including the cerebral cortex, hippocampus, thalamus, and 
striatum, and it induces a weaker immune response in human sera 
(Choudhury et al., 2016a). Furthermore, systematic injection of 
rAAV.B1-acid alpha-glucosidase (Gaa) showed a better treatment 
effect in the Pompe disease mouse model than rAAV9-Gaa 
(Keeler et al., 2019).

rAAV-AS

AAV9.47 is a liver re-targeted variant of AAV9 (Pulicherla 
et al., 2011), and capsid-modified AAV9.47 was used to generate 
AAV-AS. rAAV-AS can transduce motor neurons and 
interneurons in the spinal cord, cortex, striatum, and hippocampus 
in the brain more efficiently than rAAV9. Notably, it can transduce 
36% of striatum neurons after a single IV injection in the adult 
mouse brain, with similar findings also being confirmed in the 
adult cat brain (Choudhury et al., 2016b). Moreover, IV injection 
of rAAV-AS-microRNA (miRNA)-Htt can delete up to 50% of 
huntingtin (Htt) in different brain regions (Choudhury 
et al., 2016b).

AAVHSCs

AAVHSCs are naturally occurring AAVs found in CD34-
positive human peripheral blood stem cells, and they have strong 
tropism to CD34-positive human stem cells both in vitro and in 
mice with engraftment of human stem cells (Smith et al., 2014). 
Moreover, AAVHSCs can transduce widespread brain regions 
along with spinal cord and peripheral tissues after IV injection in 
non-human primates, which makes them a desirable delivery 
vector for targeting both the CNS and peripheral tissues (Ellsworth 
et al., 2019).

Anc80L65

Anc80L65 is a novel AAV variant generated by in silico 
reconstruction, and it was first used for local delivery to the liver, 

https://doi.org/10.3389/fnmol.2022.988914
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Zhou et al. 10.3389/fnmol.2022.988914

Frontiers in Molecular Neuroscience 04 frontiersin.org

muscles, and retina (Zinn et  al., 2015). Later Anc80L65 was 
demonstrated to efficiently transduce neurons and astrocytes in 
the brain and spinal cord after IV injection in mice (Hudry 
et al., 2018).

Newly discovered or engineered AAVs in 
the past 3 years

More promising AAV9 variants have been discovered or 
engineered in recent years. For example, rAAV-F shows 65-fold 
and 171-fold higher transgene expression in astrocytes and 
neurons, respectively, than its parental rAAV9 after IV injection 
in mice (Hanlon et al., 2019). One study developed rAAV-PHP.V1 
with brain vascular cell tropism and rAAV-PHP.N with specific 
neuron tropism (Ravindra Kumar et al., 2020). Ten AAV9 variants 
selected using the TRACER (Tropism Redirection of AAV by Cell-
type-specific Expression of RNA) platform showed a higher brain 
transduction rate than AAV9 (13-fold to 385-fold) and a lower 
transduction rate in the peripheral tissues such as in the liver after 
IV injection in mice. Among these vectors, AAV-9P31 has the 
most striking brain transduction rate and can achieve a more than 
1,000-fold higher transduction rate in the spinal cord than AAV9 
after IV injection in mice (Nonnenmacher et al., 2021). Also, IV 
injection of the AAV9 variants MaCPNS1/2 can achieve a higher 
transduction rate for astrocytes and neurons in various brain 
regions compared with rAAV9 in non-human primates (Chen 
et al., 2022). It is important in future work to validate these novel 
AAV vectors in various disease models.

Using CNS-specific promoters in rAAVs 
to increase CNS specificity after IV 
injection

The CNS can be  specifically targeted using CNS-specific 
promoters; however, these promotors are usually too big to 
introduce into AAVs. Moreover, changing cellular states may 
change the promotor activities, and cells in the peripheral nervous 
system might share the same promotors as in the CNS (Foust 
et al., 2009). Furthermore, cellular or tissue-specific promoters 
usually express limited genes and fail to achieve therapeutic 
effects, thus robust ubiquitous promotors, such as CMV-enhancer/
chicken β-actin promoters, are commonly used in vector design.

Introducing binding sites of peripheral 
miRNAs increases CNS specificity 
following IV injection of rAAVs

Another way to specifically target the brain after IV injection 
is to use endogenous miRNAs. miRNAs can reduce the stability of 
mRNA or cleave the mRNA by partially or completely binding to 
the mRNA, respectively (Bartel, 2009), and thus introducing 

binding sites for miRNAs in the rAAVs can suppress the 
expression of rAAV-associated genes in specific tissues expressing 
these miRNAs. The liver, heart, and skeletal muscle are the most 
commonly off-targeted tissues following IV injection of rAAV9 
(Pacak et al., 2006; Zincarelli et al., 2008). Therefore, introducing 
the binding site of miR122, which is expressed in hepatocytes 
(Lagos-Quintana et al., 2002), and/or the binding site of miR-1, 
which is expressed in heart and skeletal muscles (Chang et al., 
2004), can suppress vector expression in these tissues and thus 
target the CNS more specifically (Xie et al., 2011). Another study 
successfully used rAAV9-hAspA-miRBS with an miRNA-regulated 
vector genome to silence the peripheral expression of hAspA 
(Ahmed et al., 2013). Moreover, IV injection of rAAVrh.10-Egfp-
miRBS showed efficient CNS transduction and limited peripheral 
transduction in adult marmosets (Yang et al., 2014). Furthermore, 
inserting an miR183 biding site in rAAVs can prevent dorsal root 
ganglion toxicity (Hordeaux et al., 2020). Therefore, introducing 
different peripheral miRNA binding sites is a powerful tool for 
more specifically targeting the CNS and minimizing the peripheral 
off-target side effects.

Stereotaxic intraparenchymal 
injection

Stereotaxic intraparenchymal injection using stereotaxic 
coordinates (Figure 1) is the most widely used brain gene therapy 
delivery strategy. Micropipettes and automated pumps are used to 
precisely deliver the dose and minimize injection-induced injury. 
Notably, intraparenchymal injection requires smaller numbers of 
rAAVs and causes less immune response than IV and 
cerebrospinal fluid (CSF) deliveries (McPhee et al., 2006; Zerah 
et al., 2015). However, this technique may cause brain injury; for 
example, intraluminal injection increased the risk of intracranial 
hemorrhage and self-limited headache in a clinical trial (Christine 
et al., 2009).

rAAVs start to diffuse and transduce targeted cells after 
injection into the targeted brain regions. However, AAVs only 
diffuse a relatively short distance and can only be expressed in 
limited areas around the injection sites, and thus multiple 
injection locations are required to reach the desired coverage of 
the therapeutic areas (Vite et  al., 2005; Worgall et  al., 2008; 
Leone et al., 2012). Some gene therapy-expressed therapeutic 
proteins – such as lysosome enzymes – can spread via axonal 
transport (Baek et  al., 2010). Moreover, rAAV vectors can 
be transported by anterograde and retrograde axonal transport 
(Boulis et  al., 2003; Kaspar et  al., 2003), which is serotype 
dependent (Salegio et al., 2013; Green et al., 2016; Table 1). For 
example, rAAV9 can be transported in neurons retrogradely 
and anterogradely driven by cytoplasmic dynein and kinesin 2, 
respectively. Moreover, increasing the amount of rAAV9 can 
increase rAAV9 transport, indicating that an increased dose of 
rAAV9 may improve its distal distribution (Castle et al., 2014). 
Furthermore, engineered AAV2-Retro and AAV9-Retro have 
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greater retrograde transport capacity than AAV9, and this 
provides new tools for efficiently targeting neural circuits (Tervo 
et al., 2016; Lin et al., 2020). Convection-enhanced delivery 
(CED) is a technology using pressure gradients to increase the 
diffused area of the delivered molecules or rAAVs. It can 
enhance delivery of small and large molecules from millimeters 
to centimeters (Bobo et al., 1994; Morrison et al., 1994), and it 
can be used to increase the distribution of the rAAVs and is 
especially useful for large animals (Bankiewicz et  al., 2000; 
Hadaczek et al., 2006; Mehta et al., 2017).

All cell types in the brain parenchyma are potential targets 
for gene therapy in different diseases. However, sometimes only 
one cell type is intended to be targeted in one specific disease, for 
example, neurons in Huntington’s disease (Yang et al., 2017) and 
astrocytes in astrocyte-to-neuron conversion studies of 
neurodegenerative diseases (Wang et al., 2021). Therefore, cell-
specific targeting is critical to achieving the intended therapeutic 
effects and minimizing off-target responses. One strategy to 
specific target one cell type, as we discussed above, is to use cell-
specific promoters for example, using glial fibrillary acidic protein 
(GFAP) promoter to increase astrocyte specificity (Chen et al., 
2020). Another strategy is to discover or develop AAVs with 
specific cell tropism. For example, the engineered AAV variants 
ShH13, ShH19, and L1-12 showed a higher astrocytes 
transduction rate than AAV2 and AAV6; however, AAV9 was not 
compared in this study (Koerber et al., 2009). Moreover, the AAV 
variant Olig001 was developed that has strong oligodendrocyte 
tropism (Powell et al., 2016; Mandel et al., 2017). Furthermore, a 
recent study found that an AAV9 variant, AAV-cMG, could 
efficiently and safely transduce microglia (Lin et  al., 2022). 
Therefore, different promoters and AAV serotypes can 
be combined to specifically target one specific cell type in the 
brain parenchyma.

Intrahippocampal viral injection

rAAV2 can transduce a large number of neurons in the 
hippocampus, especially in the dentate hilus, but with a very 
limited transduction rate in the dentate granule neurons (Bartlett 
et  al., 1998; Kaspar et  al., 2002). Apart from local diffusion, 
intrahippocampal rAAV2 can be  transported to other brain 
regions through anterograde and retrograde transport. For 
example, hippocampal hilus mossy cells project into the 
hippocampal molecular layer of both hemispheres, and green 
fluorescent protein (GFP) can be anterogradely transported to 
both ipsilateral and contralateral projections of hippocampal hilus 
mossy cells 2 weeks after intrahippocampal rAAV2-Gfp injection 
(Kaspar et  al., 2002), and anterograde transport of lysosome 
enzymes leads to their presence in distal brain regions (Passini 
et al., 2002; Hennig et al., 2003). Some studies have shown that 
retrograde transport of rAAV2 takes place when more than 1010 
genome vectors are injected (Kaspar et al., 2003; Passini et al., 
2005), while another study showed low retrograde transport using 
large amounts of rAAV2 (Burger et al., 2004). The method of 
rAAV preparation might be a critical factor affecting retrograde 
transport, and pathological neurons may have reduced ability for 
retrograde transport (Walkley, 1998; Passini et al., 2005).

Notably, rAAV2 vectors were shown to be robustly detected 
in the entorhinal cortex layer II neurons that project to the 
hippocampus, probably due to retrograde transport after 
intrahippocampal injection (Kaspar et  al., 2002). Entorhinal 
cortex layer II neurons are largely degenerated during the early 
development of Alzheimer’s disease, and retrograde targeting of 
these neurons by intrahippocampal injection of rAAV2-Bcl2l can 
prevent the death of entorhinal cortex layer II neurons, which may 
slow down the disease progression. Moreover, entorhinal cortex 
layer II neurons are widely anatomically distributed and thus are 

A B

FIGURE 1

Stereotaxic injection into the rodent brain. (A) The illustration shows the stereotaxic instrument used to locate the specific brain regions. (B) The 
illustration shows the injection sites in the brain as an example.
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difficult to target by direct injections, and retrograde targeting 
provides an attractive method to target all of these neurons after 
intrahippocampal injection. Unilateral hippocampal injection of 
rAAV2-human acid sphingomyelinase (hASM) results in protein 
and mRNA expression of hASM in the ipsilateral and contralateral 
hippocampus, entorhinal cortex, and medial septum, and this has 
been used to correct Niemann-Pick disease (a fatal lysosomal 
storage disease; Passini et al., 2005).

rAAV9 can retrogradely transduce neurons after 
intrahippocampal injection; for example, intrahippocampal 
injection of Cy3-labeled rAAV9 can transduce not only various 
regions of the hippocampus, including the dentate gyrus, 
pyramidal cell layer, and oriens cell layer, but can also transduce 
cells in the entorhinal and retrosplenial cortex, possibly due to 
retrograde transport of the vectors (Cearley and Wolfe, 2007). 
Moreover, both the β-glucuronidase (GUSB) enzyme and mRNA 
can be  detected in the contralateral hippocampus, the septal 
nuclei, and the ipsilateral entorhinal cortex after injection of 
rAAV9-Gusb, indicating the possible retrograde transport of the 
vectors, and only the enzyme, and not the mRNA, was found in 
the contralateral entorhinal cortex, indicating the presence of 
axonal enzyme transport (Cearley and Wolfe, 2006). Notably, 
CED can enhance the volume of distribution of various AAV 
vectors, and rAAV9 outperforms rAAV5 and rAAV 8 after 
intrahippocampal injection by CED in the adult mouse brain 
(Carty et al., 2010).

Furthermore, vector expression was detected in the CA1 
region of both the ipsilateral and contralateral hemispheres after 
CA2/3 injection of rAAV9, and the expression in contralateral 
CA1 may be attributed to anterograde transport because CA3 
sends projections to CA1  in both hemispheres. The vector 
expression was also detected in septal nuclei, which might be due 
to the retrograde transport and anterograde transport to medial 
septal nuclei and lateral septal nuclei, respectively, because the 
medial septal nuclei send projections to CA2/3 and the lateral 
septal nuclei receive projections from ipsilateral CA3. However, 

no vector expression was seen in the entorhinal cortex due to its 
weak projection to CA2/3 (Cearley and Wolfe, 2007). In the same 
study, after injection of rAAV9 into the dentate gyrus vector 
expression was detected in the entorhinal cortex and medial septal 
nuclei, which is possibly due to retrograde and anterograde 
transport, respectively, because of the large number of projections 
from the entorhinal cortex to the dentate gyrus and projections 
from the dentate gyrus to the medial septal nuclei (Steward, 1976; 
Wyss, 1981).

Intrastriatal viral injection

rAAV2, rAAV9, and rAAVrh.10 can strongly transduce 
striatum neurons after intratriatumic injection (Fan et al., 1998; 
Mandel et  al., 1998; Lo et  al., 1999; Cearley and Wolfe, 2007; 
Boussicault et al., 2016), and they can be retrogradely transported 
to and then transduce the neurons in the substantia nigra pars 
compacta that project to the striatum (Kaspar et al., 2002; Cearley 
and Wolfe, 2007). The degeneration of dopaminergic nigrostriatal 
neurons causes the clinical manifestations of Parkinson’s disease 
(Lew, 2007), and thus intrastriatal injection of rAAVs can provide 
a new injection route for targeting the substantia nigra pars 
compacta. The advantage of using retrograde targeting of the 
substantia nigra for Parkinson’s disease is that it can deliver 
therapeutic genes to both the striatum and substantia nigra after 
one injection because the substantia nigra is not easily located by 
direct injection. Moreover, rAAV9 can also be  retrogradely 
transported to the amygdala and thalamus, which have projections 
to the striatum (Cearley and Wolfe, 2007).

One study showed that rAAV5 can transduce both neurons 
and astrocytes after intrastriatal injection and that rAAV2 can 
transduce only neurons, while rAAV4 does not transduce any 
parenchymal cells after intrastriatal injection (Davidson et al., 
2000). Heparan sulfate proteoglycan (HSPG) has been reported to 
be  a primary receptor for rAAV2 binding (Summerford and 

TABLE 1 Anterograde and retrograde axonal transport of various rAAVs in different brain regions.

Serotypes Injected position Anterograde and retrograde axonal transport to References

rAAV2 Hippocampus Distal brain regions Kaspar et al. (2002), Passini et al. (2002), Hennig 

et al. (2003)

rAAV2 Hippocampus Entorhinal cortex Kaspar et al. (2002), Passini et al. (2005)

rAAV2 Hippocampus Medial septum and contralateral hippocampus Passini et al. (2005)

rAAV9 Hippocampus Contralateral hippocampus, the septal nuclei, and the entorhinal cortex Cearley and Wolfe (2006, 2007)

rAAV2 Striatum Substantia nigra Kaspar et al. (2002), Cearley and Wolfe (2007)

rAAV9 Striatum Amygdala, thalamus, and substantia nigra Cearley and Wolfe (2007)

rAAVrh.10 Striatum Frontal cortex, thalamus, and substantia nigra Sondhi et al. (2007), Cearley and Wolfe (2007)

rAAVrh.10 Striatum Hippocampus Winner et al. (2016), Gray et al. (2019)

rAAV-TT Striatum Corpus callosum, cortex, thalamus, and substantia nigra Tordo et al. (2018)

rAAV1 or rAAV2 Deep cerebellar nuclei Cerebellar cortex, hindbrain, brain stem, and spinal cord Dodge et al. (2008)

rAAV9 Ventral tegmental area Striatum, habenula, retrosplenial cortex, thalamus, and endopiriform 

nuclei

Cearley and Wolfe (2007)
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Samulski, 1998) and extracellular HSPG binds with rAAV2, thus 
limiting the distribution and conduction efficiency of rAAV2, 
which might explain why rAAV5 shows wider distribution after 
injection than rAAV2 (Davidson et al., 2000). But the volume of 
distribution of rAAV2 can be enhanced by CED in the rat brain 
(Nguyen et al., 2001). Moreover, intrastriatal injection of rAAV5 
carrying miRNA targeting Htt (AAV5-miHtt) transcripts can 
achieve widespread miRNA-Htt in the striatum and parts of the 
cortex of rats, mice, and large animal models, thus preventing 
mutant Htt aggravation and neuronal dysfunction (Miniarikova 
et al., 2016, 2017; Evers et al., 2018).

rAAVrh.10 outperforms rAAV2, rAAV5, and rAAV8 in terms 
of brain distribution after intrastriatal injection of these vectors 
carrying tripeptidyl peptidase I (Tpp-I), and the projecting neurons 
in the frontal cortex, thalamus, and substantia nigra also express 
rAAVrh.10-Tpp-I after the injection, indicating the retrograde 
transport of rAAVrh.10-Tpp-I. Moreover, a single rAAVrh.10-
Tpp-1 injection reduces the lysosome storage granules and 
improves behavior recovery in the mouse model of infantile 
neuronal ceroid lipofuscinosis (a lysosome disorder; Sondhi et al., 
2007). Moreover, intrastriatal injection of rAAVrh.10-
sulfoglucosamine sulfohydrolase (Sgsh) transduces neurons in the 
striatum and hippocampus, restores Sgsh expression in these 
regions, and ameliorates both GM3 accumulation in the injection 
site and the disease pathology in the adult mucopolysaccharidosis 
(MPS) IIIA mouse model (Winner et al., 2016; Gray et al., 2019).

A new variant called AAV-TT was generated based on AAV2. 
Intrastriatal injection of rAAV-TT outperforms AAV9 and 
rAAVrh.10 and transduces widespread brain regions, including 
the corpus callosum, cortex, thalamus, and substantia nigra pars 
compacta in adult mice (Tordo et al., 2018). Moreover, intrastriatal 
injection of a low dose of rAAV-TT-heparan sulphate acetyl-
CoA:α-glucosaminide N-acetyltransferase (Hgsnat), but not 
rAAV9-Hgsnat, can correct MPS III mouse pathological 
phenotypes (Tordo et al., 2018).

Deep cerebellar nuclei injection

DCN receive neuronal projections from all parts of the spinal 
cord (Matsushita and Yaginuma, 1995; Matsushita and Gao, 1997; 
Matsushita, 1999a,b). Bilateral injection of rAAV1 or rAAV2-
insulin-like growth factor 1 (Igf-1) into DCN results in IGF 
expression throughout the cerebellar cortex, hindbrain, brain 
stem, and spinal cord, and it delays the progression of the 
amyotrophic lateral sclerosis (ALS) mouse model, providing a 
novel gene therapy delivery route for ALS (Dodge et al., 2008). 
rAAV1 outperforms rAAV 2, 5, 7, and 8  in expressing the 
encoding genes after unilateral DCN injection, and the expression 
of hASM from rAAV1-hASM can be  detected throughout the 
cerebellum, brain stem, midbrain, and spinal cord. Moreover, 
bilateral injection of rAAV1-hASM alleviates storage of lysosomal 
sphingomyelin and further corrects the behavioral deficits (Dodge 
et al., 2005).

Ventral tegmental area injection

The VTA comprises a group of neurons projecting into 
various brain regions and receives divergent efferent neurons from 
different parts of the brain. VTA injections of rAAV1, rAAV9, and 
rAAVrh.10 achieve wide spreads of virus vectors across the brain, 
with rAAV9 being the most widely distributed vector. rAAV9 can 
be retrogradely transported after VTA injection to all areas with 
projections to the VTA, including the striatum, habenula, 
retrosplenial cortex, thalamus, and endopiriform nuclei, and a 
single injection of rAAV9-Gusb can correct the lysosomal 
disorders in all brain regions in the MPS VII mouse model 
(Cearley and Wolfe, 2007). Notably, the authors further showed 
that intrahippocampal and intrastriatal injections have much 
more limited rAAV9 transduction areas than the VTA.

Delivery into the CSF

Intracerebroventricular injection

ICV injections of rAAV2, rAAV4, and rAAV5 transduce 
primary ependymal cells in the choroid plexus but not in other 
parts of the brain in adult mice and rats (Bajocchi et al., 1993; 
McCown et  al., 1996; Lo et  al., 1999; Davidson et  al., 2000). 
However, other studies have shown that rAAV2 transduction can 
be observed in the hypothalamus after ICV injection in adult rats, 
although the transduction rate is limited (Alexander et al., 1996; 
Rosenfeld et al., 1997; Wu et al., 1998). Furthermore, ICV injection 
of rAAV9-iduronate-2-sulfatase decreases brain lesions and shows 
long-term cognitive improvement in the MPS II adult mouse 
model (Hinderer et al., 2016).

Intraventricular injections of rAAV2 in neonatal mice can 
achieve a global distribution in the brain parenchyma, especially 
in principle neurons such as granule cells in the hippocampus, 
mitral cells in the olfactory bulb, and Purkinje cells in the 
cerebellum, via its circulation in the subarachnoid space in the 
CSF (Passini and Wolfe, 2001). rAAV1 also shows widespread 
transduction in neonatal mice after lateral ventricular injection 
with different target regions compared to rAAV2. For example, 
rAAV1 transduces more cells in the neocortex, entorhinal cortex, 
and CA1 and CA3 of the hippocampus, but fewer cells in the 
dentate gyrus of the hippocampus, thalamus, and superior 
colliculus, which makes rAAV2 and rAAV1 complementary. 
Moreover, rAAV1-glucuronidase reverses the pathology in 
neonatal mice with MPS VII (Passini et al., 2003; Piguet et al., 
2021a), while rAAV1-βgal reverses the pathology of 
GM1-gangliosidosis after ICV injection in a neonatal mouse 
model of the disease (Broekman et al., 2007).

rAAV8 shows more efficient transduction than rAAV1 and 
rAAV2 and can significantly transduce the cerebral cortex, 
hippocampus, cerebellum, and olfactory bulb after ICV injection 
in neonatal mice (Broekman et  al., 2006). Furthermore, the 
human α-L-iduronidase gene (Idua) can be detected in multiple 
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brain regions, including the hippocampus, corpus callosum, 
cortex, caudate-putamen, and cerebellar Purkinje cell layer after 
ICV injection of rAAV8-Idua in a neonatal MPS I mouse model, 
and this reduces the accumulation of glycosaminoglycan and 
prevents cognitive dysfunction (Wolf et al., 2011). Furthermore, 
ICV injection of a low dose of rAAV9-, rAAVrh.8-, and 
rAAVrh.10-Aspa can increase the overall survival rate in a 
neonatal mouse model of Canavan’s disease but does not rescue 
the motor deficits, which is possibly due to a role for peripheral 
tissues in disease pathology (Ahmed et al., 2016).

SCH9, a novel AAV variant, can efficiently transduce neural 
stem cells with 24-fold greater GFP expression and 12-fold greater 
transduction volume compared with AAV9 after ICV injection in 
mice (Ojala et al., 2018). Another novel AAV variant, Anc80L65, 
spread throughout the brain more broadly than AAV9 and could 
even efficiently transduce cells in the cerebellum after ICV 
injection in mice (Hudry et al., 2018).

Intracisternal and intralumbar injection

Intracisternal injection of rAAV9-Sgsh restores Sgsh 
expression in widespread brain regions and somatic tissues in 
adult MPS IIIA mice, which prevents the pathology in both the 
CNS and peripheral tissues and normalizes the behavioral deficits 
in these mice (Haurigot et  al., 2013). Moreover, GFP can 
be detected in cerebellar Purkinje cells, the medulla, and discrete 
nuclei after intracisternal and intralumbar injection of 
rAAV9-GFP in 5-day-old pigs (Bevan et al., 2011). Studies showed 
that rAAV-PHP.eB was superior to rAAV9 in brain transduction 
rate after intracisternal injection in adult rats and after intrathecal 
injections in non-human primates (Arotcarena et  al., 2021; 
Chatterjee et  al., 2022). However, the PHP.eB variant raises 
concerns about their species and strain specificity as discussed 
above. Notably, intralumbar injection is usually used in large 
animals and is less efficient at brain transduction than 
intracisternal and intraventricular injections (Hinderer et  al., 
2018; Piguet et al., 2021a).

The Trendelenburg position after intracisternal or intralumbar 
injection has been shown to enhance virus transduction to the 
brain and spinal cord (Borel et  al., 2018; Cain et  al., 2019). 
However, one study showed that transduction efficiency was not 
improved using a 10-min Trendelenburg position after 
intralumbar injection in non-human primates (Hinderer et al., 
2018). Despite these contrasting results, a 2-h Trendelenburg 
position following intracisternal injections was shown to achieve 
a 15-fold increase in transduced neurons, increased transduction 
in cortical regions, and increased consistency of gene expression 
compared to an upright position in adult rats (Castle et al., 2018). 
Moreover, a 6-min Trendelenburg position after intralumbar 
injection of rAAV9 achieved widespread spinal cord and brain 
transduction in adult mice (Bey et al., 2017). Taken together, the 
Trendelenburg position appears to be  an effective method to 
enhance brain and spinal cord AAV transducing rate and 

distribution. However, different durations of the Trendelenburg 
position should be tested in different species and under different 
experimental settings.

Intranasal administration

Transduced cells are limited to the nasal epithelium and 
olfactory bulb after intranasal administration of rAAV9-Idua in 
an adult MPS I mouse model; however, accumulated pathogenic 
materials are reduced in the brain due to enzyme diffusion from 
transduced cells into the brain (Belur et al., 2017). Similar results 
have also been obtained in Idua-deficient mice after nasal 
administration of rAAV9-Idua (Wolf et  al., 2012). Intranasal 
administration of rAAV2-brain-derived neurotrophic factor (Bndf) 
enhances the level of BNDF in the hippocampus and prevents 
depression in these mice (Ma et al., 2016).

Conclusion

Different administration routes of rAAVs may affect the 
transduction rate and even the cellular types that are transduced in 
the brain. Therefore, different administration routes of rAAVs need 
to be carefully selected for different CNS diseases. For example, in 
some disorders AAV transduction in broad brain regions is required, 
such as in lysosomal disorders, and thus administration routes that 
can achieve widespread brain transduction are preferred, such as IV 
injection, delivery into the CSF, and intraparenchymal injections 
with retrograde and anterograde transport of the virus or enzymes. 
However, in some other diseases specific neuronal regions need to 
be targeted, such as in Parkinson’s disease and Huntington’s disease, 
and in these cases intraparenchymal injection may be the optimal 
administration route.

Each administration route has its benefits and shortcomings. 
For example, IV injection is less invasive and can be used to target 
widespread areas of the brain; however, the currently used rAAV 
serotypes lack robust brain tropism and may induce 
immunotoxicity. Notably, inserting a peripheral miRNA binding 
site can be  a solution to increasing the brain specificity. 
Nonetheless, new serotypes or engineered rAAVs with robust 
brain tropism, less immunogenicity, and less immunotoxicity 
need to be discovered or generated. Moreover, a large dose of 
rAAVs is usually required for IV injection, and thus the 
manufacturing capacity and costs can be  challenging. 
Intraparenchymal injection can achieve efficient neuron 
transduction in the injection site and in distal regions by 
retrograde and anterograde transport; however, no AAVs have 
been shown to target microglia for microglia-induced or 
microglia-involved diseases such as hereditary diffuse 
leukoencephalopathy with spheroids and most, if not all, 
neurodegenerative diseases. rAAV delivered to the CSF can widely 
transduce the brain in neonatal mice and rats, while the 
transduction rate is low in adult animals. Moreover, 
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intraparenchymal, intracisternal, and ICV injection may cause 
CNS injury and hemorrhage in the brain.

The efficiency and safety of distinct administration routes of 
rAAVs need to be tested in large animals after the proof of concept in 
rodents. The human brain is 1,000 times larger than the mouse brain 
and has different anatomy, and the distance between brain regions to 
the ventricle for ICV injection is much greater in large animals and 
humans compared to rodents. Therefore, it is essential to conduct 
studies using large animals to design optimal clinical trial protocols.
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Glossary

CNS - Central nervous system

AAV - Adeno-associated virus

rAAV - Recombinant Adeno-associated virus

AAVrh.10 - AAV rhesus isolate 10

IV - Intravenous

BBB - Blood–brain barrier

scAAV9 - Self-complementary rAAV9

hAspA - Human aspartoacylase

Gaa - Acid alpha-glucosidase

miRNA - MicroRNAs

hASM - Human acid sphingomyelinase

Gusb - β-glucuronidase gene

Htt - Huntingtin

Tpp-I - Tripeptidyl peptidase I

Sgsh - Sulfoglucosamine sulfohydrolase

MPS - Mucopolysaccharidosis

Hgsnat - Heparan sulphate acetyl-CoA:α-glucosaminide N-acetyltransferase

DCN - Deep cerebellar nuclei

Igf-1 - Insulin-like growth factor 1

ALS - Amyotrophic lateral sclerosis

VTA - Ventral tegmental area

CSF - Cerebrospinal fluid

CED - Convection-enhanced delivery

ICV - Intracerebroventricular

Idua - α-L-iduronidase gene

Bndf - Brain-derived neurotrophic factor
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