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Abstract

We report on a particular example of noise and data representation interacting to introduce systematic error into
scientific measurements. Many instruments collect integer digitized values and apply nonlinear coding, in
particular square root coding, to compress the data for transfer or downlink; this can introduce surprising
systematic errors when they are decoded for analysis. Square root coding and subsequent decoding typically
introduces a variable ±1 count value-dependent systematic bias in the data after reconstitution. This is significant
when large numbers of measurements (e.g., image pixels) are averaged together. Using direct modeling of the
probability distribution of particular coded values in the presence of instrument noise, one may apply Bayes’
theorem to construct a decoding table that reduces this error source to a very small fraction of a digitizer step; in
our example, systematic error from square root coding is reduced by a factor of 20 from 0.23 to 0.012 count rms.
The method is suitable both for new experiments such as the upcoming PUNCH mission, and also for post facto
application to existing data sets—even if the instrument noise properties are only loosely known. Further, the
method does not depend on the specifics of the coding formula, and may be applied to other forms of nonlinear
coding or representation of data values.

Unified Astronomy Thesaurus concepts: Astronomy data reduction (1861); Measurement error model (1946);
Coronagraphic imaging (313); Direct imaging (387)

1. Introduction

Scientific measurement generally includes both “noise,”
which is frequently treated as a zero-mean normally distributed
random variable, uncorrelated across measurements; and
systematic “error,” which is typically correlated across
samples, and/or has a nonzero mean value. Systematic error
is typically minimized by instrument calibration, and would
ideally be zero in a perfectly calibrated instrument. Uncorre-
lated normally distributed noise therefore drives the sensitivity
of most astronomical and heliophysical remote sensing:
essentially every telescopic or spectroscopic measurement
includes Poisson-distributed noise associated with photon
counting in each sample, and the Poisson distribution is very
well approximated by a normal distribution for large numbers
of photons (e.g., Feller 1971). This property is important
because many postprocessing techniques, from commonly used
averaging or smoothing to more sophisticated Fourier-domain
(e.g., de Boer 1996; Yaroslavsky 1996; DeForest 2017) or AI-
based (e.g., Park et al. 2020) methods can reduce noise effects
well below the nominal noise floor of a single measurement,
provided that the noise itself is well behaved in the data
products being processed.

Under linear transformations of data values, including data
vectors comprising several independent measurements, nor-
mally distributed (“Gaussian”) noise is indeed well behaved. Its
properties as a random variable may be treated with
conventional rules of thumb, such as addition in quadrature
to combine multiple noise sources and/or “beat down” noise
through averaging. However, under nonlinear transformation,
normally distributed noise is not in general well behaved, and
can transform to different statistical distributions or even

develop a nonzero mean value (becoming a source of
systematic error), depending on the specific transformation. A
salient example is the recent insightful analysis by Inhester
et al. (2021), in which a common angle-free derived measure
of polarized brightness in solar coronal measurements
( º +pB Q U2 2 for Stokes parameters Q and U) is shown
to respond counterintuitively to noise because the measure is
nonlinearly related to the primary brightness values and/or
Stokes parameters that are used in its construction.
In developing the Polarimeter to UNify the Corona and

Heliosphere (PUNCH; DeForest et al. 2019) we sought to
reduce data volume being downlinked from orbit, by square
root coding the data. Square root coding reduces downlink
volume by reducing the number of bits in photometric data,
without significant loss; it does this by matching the digital
transition size to the corresponding photon-counting noise level
across the dynamic range of the instrument (e.g., Gowen &
Smith 2003). It has been used or considered for many data-
constrained instruments on the ground and in space, including
the Soft X-ray Telescope (SXT) on the Yohkoh mission (Acton
et al. 1992), the Michelson Doppler Imager (MDI) on board the
Solar and Heliospheric Observatory (SOHO; Scherrer et al.
1995), the Global Oscillation Network Group (GONG)
observatories (Goodrich et al. 2004), the X-ray Telescope
(XRT) on board the Hinode spacecraft (Golub et al. 2007), the
Sun Watcher using Active pixel sensor and image Processing
(SWAP) instrument on board ESA’s Project for Onboard
Autonomy 2 (PROBA-2) spacecraft (which uses a custom
recoding function similar to the square root; Seaton et al. 2013),
and the James Webb Space telescope (JWST; formerly the
Next Generation Space Telescope, (NGST); Nieto-Santisteban
et al. 1999). The PUNCH application pushes the limits of the
technique, because PUNCH specifically requires averaging
many individual, independent brightness measurements to meet
its driving science requirements for photometric sensitivity.
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As a polarimetric mission to study the extended solar corona
against the much brighter zodiacal light and background stars,
PUNCH has quite stringent requirements of order 10−4

precision in relative photometric sensitivity across patches of
image. This level of precision requires averaging photometric
values across many pixels in both space and time, and therefore
requires reducing any systematic errors well below the noise
level in any one pixel.

In this article, we describe the following: the PUNCH square
root coding system (Section 2); a systematic error intrinsic to
direct arithmetic square root coding/decoding (Section 3); and
a better square root decoder produced via Bayesian analysis
(Section 4). We close by discussing the results, relating them to
other prior work (e.g., Bernstein et al. 2010) and generalizing
to other instruments and applications—including post facto
improvement of existing data from prior instruments or
observations (Section 5).

2. Square Root Coding

Square root coding is a simple lossy digital compression
scheme that works by matching the digital transition scale to
anticipated photon noise level across the dynamic range of an
instrument (Gowen & Smith 2003). Taking the direct square
root of an (unsigned integer) data value reduces the number of
bits by a factor of 2. In a system with one quantum (e.g.,
photon) count per digitizer number (DN), and no detector
offset, this matches the transition step size to the value-
dependent variance of the quantum (“shot”) noise in each
measurement. Gowen & Smith (2003) discuss the development
of a modified square root law that takes offset values into
account: both digitizer gain and digitizer offset in a typical
detector. PUNCH has a digitizer gain of 1 DN per 4.3 detected
photons, dark/read noise that is modeled as normally
distributed with σ= 5 DN, and a programmable camera offset
intended to operate near 100–200 counts out of a digitizer
range of 216 counts. We adopted the in-flight coding scheme

= ( )c aP , 1

where integer (rounded) arithmetic is assumed at each step
(because it takes place on board the spacecraft), P is the pixel

value direct from the camera or summed across multiple
exposures up to 19 bits, and c is the coded pixel value. The
constant a is programmable to generate values of c with
between 9 and 14 bits of dynamic range. In typical single-
exposure operation, 16-bit camera values are square root coded
to 10-bit depth; this is accomplished by setting a= 16. The
values are then decoded on the ground to recover values
approximating P. We began with the simple integer-arithmetic
decoding scheme

= ´( ) ( )B c c a, 2

where the division is rounded to the nearest integer.
Figure 1 shows the distribution of quantization error, versus

Poisson noise, over a typical dynamic range for the PUNCH
camera. The quantization error is always well inside the
Poisson noise envelope, so that quantization is dithered1 by 1–4
steps across the entire dynamic range, retaining smooth
representation of the dynamic range, compared to the square
root step size, when averaged across pixels. Information about
each particular sample of the Poisson noise is lost, reducing the
entropy of the remaining bits and improving the compression
ratio for any subsequent compression.

3. Initial Results

We tested the encoding scheme in Section 2 against existing
data from the STEREO/COR2 instrument (Howard et al.
2008). We summed 32 images of floating-point COR2 data
from a deep-field campaign (DeForest et al. 2018), scaled the
result to PUNCH-like 16-bit values, added normally distributed
photon noise to match the PUNCH single-exposure character-
istics, square root coded the data, and then decoded them.
Figure 2 shows the original data in panel (a) and a reconstituted
version, coded with Equation (1) and decoded with
Equation (2), in panel (b). A difference image between the
original (a) and reconstituted (b) images is also displayed in
panel (c), which is is scaled to a dynamic range of±2 DN.

Figure 1. Square root coding is lossy and therefore induces value-specific error when decoded. Properly tuned coding schemes keep the coding error slightly below
the other existing noise sources, saving bits and reducing unnecessary signal entropy. Coding 16 bits to 10 bits as shown maintains the coding error a factor of 2–3
under the calculated existing noise level, throughout the dynamic range, for a particular noise model that includes both Poisson statistics and camera dark/read noise
(see the text).

1 Readers are reminded that dithering is the act of applying random or
pseudorandom noise to an analog signal before digitizing, to mitigate the
effects of quantization error and related artifacts on the analog signal.
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Despite the fact that the digital transitions are below the
constructed noise floor of the dynamic range, square root
coding produced visible artifacts in the smooth gradient of the
F corona. This is a residual effect that is present under correct
transition levels that are fully dithered by the Poisson noise,
and is distinct from artifacts that are to be expected when the
coded digital steps are comparable to (or larger than) the
Poisson noise variance at a given pixel value. The peak
amplitude of the artifacts can be seen in Figure 4 and is
approximately±0.5 DN, much smaller than the quantization
errors would be in the absence of dithering. (Quantization error
on any one sample is roughly P 4, or 10–80 DN in this
dynamic range.) To further illustrate the artifacts, we generated
10 copies of the source image, each with an individual sample
of the noise field. We averaged all the copies together to “beat
down” the noise after decoding, revealing more clearly the
banding artifacts in panel (d).

To understand the artifacts in Figure 2, we analyzed a simple
horizontal gradient image whose value (in DN) was equal to
the x coordinate (in pixels), over a horizontal range of 0–8192
(0–213), with 100,000 samples of each input value. We added
modeled Poisson and dark noise to the image, to mimic a
modeled PUNCH detector; then we coded and decoded the
noisy gradient image as in Figure 2.
Figure 3 is a difference image between the original clean

gradient and the noisy, processed version. Vertical dark
artifacts in the processed image reveal a value-dependent
systematic error in the square root processed data. Figure 4
plots the column-average difference between the original and
decoded gradient images. The systematic offsets have an rms
amplitude of 0.24 DN; they are therefore strongly statistically
significant toward the lower end of the gradient (left side of
plot), and remain significant at the upper end of the range we
considered. This is true even though the systematic offsets are

Figure 2. A visual comparison of an original data set (a) and the encoded / decoded version (b) yields no immediately perceptible difference. However, when taking a
difference map (c) and scaling to ±2 DN, a visual banding pattern appears. Beating down the noise by averaging 10 copies of the image, each with a different noise
field, reduces the noise and reveals the systematic banding pattern (d).
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small compared to the photometric noise or (smaller) square
root coding error in any one pixel. The imposed coding errors
are only revealed upon deep averaging to reduce noise and
determine the mean value of a large ensemble of pixels—in this
case, 105 pixels for each integer value between 0 and 8192.

We attribute the systematic pattern in the offsets to the fact
that the square root operation is performed with both an integer
domain and integer range. This means that the interval of
photometric values supported by any one coded value varies
slightly from the analytic ideal, yielding local nonlinear
features in the square root mapping. These variations are
larger than the overall nonlinearity of the analytic square root
function, and have a correspondingly larger effect on the mean
of an applied normal distribution of noise.

4. A Bayesian Square Root Decoder

To produce a better square root decoder than directly
squaring coded values, we used a Bayesian inversion to
determine better decoded values.

Each possible coded value i corresponds to a range of ideal
photometric input brightnesses. Taking Bi to be the naïve
decoded value corresponding to c= i, one may calculate the
probability distribution of values for a noisy measurement B̂i of
a pixel with ideal (noise-free) value P that happens to be equal
to Bi. In the presence of noise, the actual pixel value will be

sº +ˆ ( ) ( )P P N , 3i

where N(σi) is a normally distributed random variable with
sigma corresponding to the pixel value Bi. The normal
distribution has mean zero, so that the expected value of P̂,
given the noise-free value of P, is just

á ñ = = ={ ˆ ∣( )} ( )P P B P B . 4i i

However, what is available after coding/decoding is not P̂ but
B̂. For each Bi value (corresponding to coded value i), we
therefore define a Pi≡ Bi, apply noise to determine P̂i, and
consider the noisy value B̂i associated with each value P̂i:

ºˆ ( ( ˆ )) ( )B D C P , 5i i

where C() represents coding and D() represents decoding (in
this case via Equations (1) and (2), respectively). The problem
illustrated in Figure 3 is that decoding and coding are not well

behaved, so that

D º á ñ = - ¹{ ˆ ∣( )} ( )B B P B B 0. 6i i i i

ΔBi is the systematic offset of the expected value á ñB̂i of the

decoded pixel value B̂i, given an a priori “ideal” measurement
of value Bi, the coding scheme, and an a priori known noise
distribution.
One may useΔBi to estimate, via the Bayesian inversion, the

expected value á ñPi of the noise-free photometric brightness,
given a measured brightness value B̂i produced by coding and
then decoding a noisy photometric value. With the assumption
that both the noise characteristics and ΔBi vary slowly with
respect to the coded-value index i (as observed in Figure 3), we
can immediately write a first-order approximation:

á ñ = » - D{ ∣( ˆ )} ( )P B B B B , 7i i i

where again Bi is the naïvely decoded value corresponding to
c= i. Equation (7) follows from Equation (6) using Bayes’
theorem (e.g., Feller 1971) to reverse the roles of measured and
inferred values, as detailed in the Appendix to this article.
The assumption that ΔBi varies slowly with respect to i (or,

equivalently, P) is robust over small changes in P between
values of i, provided that the coded bit count is set correctly for
the a priori known noise width σi. That is because á ñP̂i is an
ensemble average across the entire noise distribution N(σi),
centered on the interval represented by the coded value i. In the
example case shown in Figure 1, σi spans an interval of±4
coded values over nearly all of the original 16-bit dynamic
range; this averaging attenuates variations at the Δi= 1 scale
by a factor of order 10, and smaller variations (e.g., between
adjacent P values) by a factor that grows as the inverse square
of the scale.
With modern computers it is no challenge to assemble a

complete decoding table, explicitly calculating ΔBi for every
possible value of i, for a complete code table as many as 20 bits
deep. We carried out the calculation explicitly for each possible
coded pixel value for a 10-bit-deep square root coding scheme
operating on 16-bit data, using the modeled noise levels and
camera performance used in Figure 3. These camera effects
include modeled dark-current and digitizer offset values, to
simulate the actual noise performance of a typical CCD
camera; but these features of the noise model are negligible
compared to Poisson noise over most of the coded dynamic
range. For each i we calculated Bi and enumerated the
probability distribution for P̂i across± 4σ of the modeled

Figure 3. Difference between original and noisy, square root coded versions of a simple gradient image shows vertical artifacts. The original image is 8192 pixels
wide, and the value of each pixel is the x coordinate. The image was degraded with modeled photon noise based on the CCD model in the text, then square root coded
from 16 to 10 bits and decoded again. The figure shows the difference between the processed image and the original gradient image. Vertical stripes occur at values
that the decoding systematically over- or underestimates, revealing the source of the artifacts in Figures 2(c)–(d).
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Poisson-plus-dark noise for the PUNCH detectors, sampling
the distribution at 10,000 individual points. We then coded and
decoded each of the 10,000 resulting P̂i values and explicitly
evaluated á ñP̂i to determine ΔBi for each value of i and thereby
construct a first-order corrected decoding table.

We used lookup into the corrected decoding table as a first-
order Bayesian square root decoder. Applying that Bayesian
decoder to the same data as used in Figure 3 reduced the
systematic offsets by approximately a factor of 4, as shown in
Figure 5; residual systematic fluctuations in the column
averages in Figure 5 are below, but comparable to, the reduced
noise floor after averaging.

The blue difference curve in Figure 5 retains obvious low-
frequency residuals that follow the slope of the first-order
correction. Fortunately, second-order correction is also avail-
able. Equation (7) relies on the constancy of the slope
d(ΔBi)/d(Pi); including the second-order term of the Taylor
expansion (based on observing Figure 5) yields

á ñ = » - D -
D{ ˆ ∣( )} ( )P c c B B

d B

di

1

2
, 8i i i i

i

where the derivative nomenclature is used to emphasize that
ΔBi and its rate of change are assumed to vary slowly
compared to the (integer) steps in i. The orange curve in
Figure 5 shows this second-order term, calculated from the
discrete numeric derivative of the ΔBi curve in Figure 3.

We used Equation (8) to assemble a second-order correction
table and square root decoder. Figure 6 shows the result of
second-order decoding. The overlain curves show the 49-value
running mean of the offset, further beating down the noise
intrinsic to the image and revealing the systematic variation.
We found the rms value of the uncorrected systematic curve,
between CCD pixel values of 500 and 4000, to be 0.23 DN.
The rms value of the second-order corrected systematic curve
over the same range is 0.012 DN, corresponding to a
20× improvement in systematics; this enables meaningful
averaging of up to roughly 106–107 CCD readout values over
this portion of the dynamic range, provided that other
systematics are eliminated to the same degree of precision.
To test how robust the Bayesian offset estimation might be

against errors in the noise model itself, we regenerated the
analysis of Figures 4–6, using noise models a factor of 2 higher
or lower than the actual simulated CCD noise level, to identify
how sensitive the correction might be to exact determination of
the noise level in the original measurements. Shrinking or
expanding the variance of the table noise model by a factor of 2
yielded rms residuals of 0.014 DN and 0.013 DN respectively
over the 500–4000 DN domain. We conclude that the inversion
method is robust against factor-of-2 discrepancies between the
specific noise model used to calculate the correction table, and
the corresponding noise characteristics of the original measure-
ment, provided that the dithering condition holds for both the
actual and modeled noise level.

Figure 5. Column-averaged values of the image in Figure 3, with the first-order correction applied, reveal greatly reduced systematic error. A second-order correction,
allowing for the rate of change of ΔBi with respect to i, visually matches the residuals from first-order correction.

Figure 4. Column-averaged value of all 100,000 rows of the image in Figure 3 reveals systematic error from naïve square root coding of each possible pixel value, in
the presence of noise. First-order correction via Equation (7) visually matches the offsets.

5

The Astrophysical Journal, 934:179 (8pp), 2022 August 1 DeForest et al.



To return to the initial data set, Figure 7 provides a
comparison similar to Figure 2, but using the second-order
Bayesian decoder. In both the difference map in panel (a) and
the stacked version in panel (b), the visible banding artifacts
have been visually eliminated.

5. Discussion and Conclusions

We have demonstrated an improved method for square root
decoding that greatly reduces systematic coding error com-
pared to direct methods. The algorithm is implemented in a
Jupyter notebook that has been released via Zenodo (DeForest
et al. 2022).

The improved Bayesian square root decoder we describe is
immediately applicable to the PUNCH mission, which requires
averaging over many individual pixels in space and time to
achieve the photometric precision required by that mission; but
it is also applicable to other instruments and other postproces-
sing schemes that require high photometric precision relative to

the photometric noise in a single measurement. Square root
coding is a common technique in data-volume-constrained
applications with photon-limited imaging; Bayesian analysis is
important for this and other coding schemes, to ensure that
photometry is fully preserved in the resultant reconstituted
images.
The method we described uses only post facto analysis to

produce a new decoding table without reference to the actual
data being produced, and only moderate (factor-of-2) agree-
ment is required between the actual noise characteristics of the
instrument and the noise model used to assemble the table.
Consequently, the method is applicable not only to new
instruments but also to existing missions or observatories and
even to archival data from instruments that no longer exist,
provided that the coding scheme is known. Further, because the
method uses direct numerical inversion, rather than analytic
calculation, to determine corrected decoding values, it is
applicable to other nonlinear coding schemes than the scaled

Figure 6. Column-averaged values of the image in Figure 3, with the second-order correction applied, reveal still further reduced systematic error. The blue curve is a
direct column average across all 100,000 samples per value; the orange curve is further averaged across 49 pixel values, beating down noise still further to reveal the
systematic offsets. The uncorrected systematic error is also plotted, for comparison. The second-order corrected systematic decoding error is reduced roughly
20 × compared to the systematic decoding error from the naïve decoding scheme.

Figure 7. Copy of Figure 2 panels (c) and (d), using the second-order Bayesian decoder instead of direct square root decoding, which eliminates the visual artifacts
seen with direct analytic square root decoding.

6

The Astrophysical Journal, 934:179 (8pp), 2022 August 1 DeForest et al.



square root, provided only that the ΔBi from noise-affected
ensembles of measurements varies slowly with respect to the
ideal noise-free pixel value P or, equivalently, the coded-value
index i. In this respect, our method is more general, though
potentially less precise under ideal conditions, than direct
analytic treatments (e.g., Bernstein et al. 2010) optimized to a
particular observing scenario and coding scheme.

In our particular case, the important nonlinearity did not arise
from the square root operator itself, but rather from the
interaction between the integers and the locations, in the
decoded representation, of digital transitions in the coded
values. In other cases, such as the polarimetric measurements
explored by Inhester et al. (2021), a mathematical transforma-
tion itself, even without integer transitions, may produce
counterintuitive behavior in the presence of normally dis-
tributed noise. In both our case and the study by Inhester et al.
(2021), the most important effect is that a zero-mean noise
distribution can produce nonzero-mean distributions in trans-
formed data products. Other higher-order effects on probability
distributions exist, and could in principle cause confusion
between, for example, significant and insignificant features in a
noisy data set.

More generally, careful thought is necessary, in order to
preserve the greatest possible utility of the data, when making
compromises in representation or compression. While first-
order effects (such as direct digital transition errors) are easy to
mitigate (for example, through dithering), careful thought in
advance of implementation can also mitigate or remove
second-order effects (such as the coding error we identified
here), greatly enhancing the data’s utility.

Even more broadly, nonlinear systems interact with noise in
counterintuitive ways. Bayesian analysis is a valuable tool to
understand the interaction between nonlinear analysis steps and
noise properties of any data product (including reconstituted
“raw” data), even if the noise sources in the original data are
well behaved.

This work was funded through PUNCH, a NASA Small
Explorer mission, via NASA Contract No. 80GSFC18C0014.
The work was greatly improved by comments from the
anonymous referee.

Appendix

In stepping from Equations (6) to (7) we breezily invoked
Bayes’ theorem. Here we demonstrate through analysis how
that step follows from the theorem. The inference is ultimately
tested, and even refined, in the main text through numerical
treatment rather than direct analysis (e.g., Figures 5 and 6); but
it is a useful exercise to trace the logic back to the general
theorem.

Bayes’ theorem converts between conditional probabilities.
It is just

  


=( ∣ ) ( ∣ ) ( )
( )

( )A B B A
A

B
, A1

where  represents probability of an outcome. In this case, the
two variables of interest are the true (noise-free) pixel value P
and the coded/decoded, noisy pixel value B̂. P has a uniform
prior distribution; and in the absence of information about P, so
does B̂ (neglecting edge effects at the top and bottom of the
dynamic range and the very small effect of noise level variation

across the width of the noise distribution itself), although the
two quantities are related by the normal random variable N.
Therefore, to very good approximation,

 = = = = =-( ∣ ˆ ) ( ˆ ∣ ) ( )P j B B N B B P j , A2i i i
1

where Ni is the number of discrete values of j that convert to the
coded value i. Multiplying each term of Equation (A2) by j and
summing over all values of j yields
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where k runs over the same values as i, and Nk is the number of
discrete values of j that convert to the coded value k. The
second step involves grouping all values of j that lead to a
single coded value k. The approximation arises from ignoring
variation of  across those values, which is equivalent to
treating  as piecewise linear across each coded interval. That
egregious sin sidesteps integrating the Gaussian for this
approximate analysis. Extracting Bi from the sum gives

⎧
⎨⎩

⎫
⎬⎭

å s

á ñ = »

-
-

-

{ ∣( ˆ )}

( ) (( ) ( )) ( )

P B B B
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N N

N
B B B , A4

i i

k
k

i k

i
k i i

which matches the form of Equation (7). In particular, the
summation term in Equation (A4) is the ΔBi described in
Equation (6), and the (Ni− Nk) coefficient inside the sum
embodies the discrete-step perturbation described in the
main text.
Contrariwise, choosing j= Bk for some k, multiplying by

NkBi, and summing over all values of i yields

⎧
⎨⎩

⎫
⎬⎭

å s

á ñ =

» -

{ ˆ ∣ }

(( ) ( )) ( )

B P B

N

N
B B B B , A5

k

i

k

i
i i k k

where the equation is only approximate because the same
linearization of  is used as in Equation (A3). Extracting Bk

from the sum as above, and then swapping the labels of the i
and k indices, yields

⎧
⎨⎩

⎫
⎬⎭

å s

á ñ =

» +
-

-

{ ˆ ∣ }

( ) (( ) ( )) ( )

B P B

B B
N N

N
B B B , A6

i

i
k

k
i k

i
k i i

which matches the form of Equation (6). The difference
between Equations (A4) and (A6) arises because the sums are
being carried out over different quantities: Equation (A4) is
summed over j while Equation (A6) is summed (with
weighting) over i, although both arise from Equation (A2).
The step from Equations (6) to (7) thus follows analytically
from Bayes’ theorem and the approximation given; this
supports the intuition that, to linear order, small-offset
perturbations can be inverted by merely reversing the direction
of the perturbation. The piecewise-linear approximation used
here is somewhat aggressive, and highlights the importance of
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higher-order correction (described and carried out numerically
in the main text).
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