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and Lucy Y. Pao

Abstract—Model predictive control (MPC) is a control method
that involves determining the input to a dynamical system as the
solution to an optimization problem that is solved online. In the
wind turbine research literature, MPC has received considerable
attention for its ability to handle both actuator constraints
and preview disturbance information about the oncoming wind,
which can be provided by a lidar scanner. However, while many
studies simulate the wind turbine response under MPC, very
few physical tests have been carried out, likely due in part to
the difficulties associated with solving the MPC problem in real
time. In this work, we implement MPC on an experimental,
scaled wind turbine operating in a wind tunnel testbed, using an
active grid to create reproducible wind sequences and a hot-wire
anemometer to generate upstream wind measurements. To our
knowledge, this work presents the first physical test of MPC for
blade pitch control of a scaled wind turbine. We compare two
MPC strategies: one including preview disturbance information
and one without. Our results provide further evidence that
feedforward control can improve wind turbine performance in
transition and above-rated conditions without increasing ac-
tuation requirements, which we hope will encourage industry
experimentation and uptake of feedforward control methods.
We also provide a high-level analysis and interpretation of the
computational performance of the chosen approach. This work
builds upon the results of an earlier study, which considered
unconstrained optimal blade pitch control.

Index Terms—Feedforward control, real-time model predictive
control, wind turbines, wind energy.

I. INTRODUCTION

RESEARCH into model predictive control of wind tur-
bines began in the late 2000s [1]–[3] and has been

a popular method of utilizing feedforward disturbance mea-
surements since the early 2010s [4]–[8], after Harris et al.
demonstrated in 2005 the possibility of generating measure-
ments of the incoming wind field using a lidar scanner [9].
Many competing model predictive control (MPC) formulations
are to be found in the wind turbine literature, including so-
called ‘linear’ MPC [6], [10], [11], nonlinear MPC [11]–[13],
economic MPC [14], [15], and robust variations [16], [17]
(not all of which are mutually exclusive). Specific to the
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wind turbine control problem, MPC has mostly focused on
rotor speed regulation [18], [19] and load minimization [13],
[20], [21] in above-rated winds (for a brief description of
wind turbine control operation, see Section III-A; for a more
thorough treatment, see Pao & Johnson [22]). While some
studies consider the full operating regime [7], [12], [23]–[25],
the general conclusion is that MPC, and feedforward control
in general [26], appears to be most beneficial in above-rated
conditions. An exception is the recent work of Mulders et al.,
who successfully employ MPC to avoid tower resonances in
below-rated operation [27].

While a substantial body of work exists developing preview-
enabled MPC methods for wind turbines (of which we have
mentioned only a few—many other studies exist in the litera-
ture [28]), practical implementations are scarce. On the other
hand, there have been reports of physical testing of other
feedforward control paradigms, both on full-scale turbines
[29]–[33] and model turbine testbeds [19], [34]. A possible
explanation for this is that MPC demands a relatively high
computational load, since, in general, an optimization problem
must be solved online at each controller time step. To address
this issue, Gros et al. [15], [35] and Bottasso et al. [24]
present work on real-time MPC for wind turbines. Running
simulations on desktop computers, Gros et al. achieve a fast
enough computation to run a controller at 5 Hz [35], and more
recently, Gros & Schild achieve computations that appear to
be fast enough for 100 Hz updates (although the controller
implemented uses a 10 Hz sampling frequency) [15], while
Bottasso et al. achieve speeds compatible with a sampling rate
of over 50 Hz [24]. However, we could not find evidence that
the authors had implemented their proposed methodology on a
physical testbed and, as we discuss in Sections IV & VI, other
considerations must be taken care of in a true implementation
for closed-loop control. We note that the studies of Gros et al.
and Bottasso et al. are not directly comparable as their MPC
formulations differ substantially.

To our knowledge, only one physical test of MPC for
wind turbines has been carried out to date. Verwaal et al.
implemented MPC for torque control on a 1.5 m rotor diameter
scaled wind turbine model in a wind tunnel test facility at
the Delft University of Technology, utilizing preview wind
measurements generated by a pitot tube located upstream of
the turbine [19]. Their study compared MPC and a model-
inverse feedforward technique to a baseline feedback con-
troller for above-rated turbine operation, and found that, for
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deterministic winds, significant improvements could be made
in rotor speed regulation. However, without active blade pitch
control or automated wind profile generation, the authors
were limited to slightly unusual torque-controlled above-rated
operation and relatively slowly-varying winds that did not
activate actuator constraints. The authors mentioned these
shortcomings and pointed to pitch control as a next step in
their recommendations for future work [19]. On the other
hand, Verwaal et al. presented the first study to successfully
test MPC for wind turbines, and we will refer back to their
work at several points throughout this paper. In the present
work, we address the other side of the picture: MPC for blade
pitch control in above-rated and transition operation using
faster gusts and turbulent winds, where actuator constraints
are activated frequently.

In a previous study, we considered a finite-horizon opti-
mization problem utilizing preview disturbance information
for wind turbine blade pitch control [34]. The formulation
was similar to the MPC formulation presented here, with
the critical difference that physical inequality constraints
were not taken into account: this resulted in a linear feed-
back/feedforward control law that can be considered an exten-
sion to the linear-quadratic regulator, which can be computed
largely offline. We tested the controller on a scaled wind
turbine model [36] operating in a wind tunnel with inflow
generated by an active grid [37], as we do in the present
study. Results showed that the addition of preview disturbance
measurements could significantly improve rotor speed regula-
tion performance; however, testing was limited to relatively
slow gust events in strictly above-rated conditions. This was
due, in part, to the lack of constraint handling in the linear
feedback/feedforward law precluding a good way of saturating
the blade pitch angle at its minimum position. The work
we presented in Sinner et al. [34] could be considered as a
stepping-stone towards the full MPC implementation presented
here. As such, we will also refer back to that work frequently
in this paper.

The remainder of this paper is laid out as follows. Section II
describes the test turbine and simplifications made to arrive
at the linear model used for control purposes. Section III
begins with a background on wind turbine control for un-
familiar readers, and then presents the proposed MPC used
for this work. Section IV describes the physical testbed used
for controller evaluation, and Section V presents the test
results. Section VI discusses the computational performance
of the MPC implementation. Concluding remarks are given in
Section VII.

II. MODELING

Testing on a scaled turbine allows us to verify real-time
behavior in a controlled environment, without the significant
expense of a utility-scale turbine. The ForWind Model Wind
Turbine Oldenburg 1.8 (MoWiTO 1.8, which we will refer to
as MoWiTO) is a scaled wind turbine model used for testing
at ForWind – Center for Wind Energy Research at the Uni-
versity of Oldenburg [36]. MoWiTO is a 1.8 m rotor-diameter
turbine designed as an aerodynamically scaled model of the
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Fig. 1. MoWiTO test turbine. Ω is the rotor rotational velocity, τgen is the
electrical torque supplied by the generator, and β is the pitch angle of the
blades.

NREL 5MW reference turbine [38], although the tower and
blades are considerably stiffer than would be representative of
the NREL 5MW turbine. The blade chord Reynolds number is
on the order of 100 times lower than that of the NREL 5MW
reference turbine, so the blades have been designed to attain
a lift distribution similar to the NREL 5MW turbine under
lower Reynolds numbers. See Berger et al. [36] for details.
MoWiTO is fully actuated with generator torque control and
individual blade pitch control (Figure 1). For safety purposes
while testing experimental controllers, the turbine is derated
from its designed rated power of 363 W [36], and for this
study was used with a modified rated power of 140 W and
rated rotor speed of 480 rpm. We use only collective blade
pitch control (i.e., the pitch command sent to each blade is
identical) in this work.

A medium-fidelity simulation model of MoWiTO is used for
controller verification and tuning. The model is implemented
in FAST v8 [39], [40], a wind turbine modeling package
that links the aerodynamic, elastic, mechanical, and electrical
behaviors of the turbine and allows time-domain simulation.
FAST allows for turbulent spatially- and temporally-varying
inflow winds [41], as well as simpler wind cases. We use
FAST embedded in a Simulink model for simulating closed-
loop control as well as low-order model fitting (described in
Section II-A).

We implement model predictive control using a linear
discrete-time state-space model of the plant

x(k + 1) = Ax(k) +Bu(k) +Bdd(k) (1a)
y(k) = Cx(k) , (1b)

which explicitly includes disturbances d(k) ∈ Rmd and the
disturbance input matrix Bd ∈ Rn×md . Vector quantities
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x(k) ∈ Rn, u(k) ∈ Rm, and y(k) ∈ Rp; and matrix quantities
A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n have their usual
meanings from control theory for discrete-time systems, where
(k) denotes the kth time step of the discrete-time system.
The inclusion of the disturbance input d allows us to design
feedforward control laws that explicitly take the effect of
incoming disturbances into account. For simplicity in this
demonstration, we have chosen to use a linear time-invariant
model (1) for MPC that is valid only for a region around a
nominal operating point. Improved results may be seen using
a linear parameter-varying model [42], at the expense of a
slightly more complicated MPC implementation and model
identification procedure.

A. Physics-based Model

Many works (e.g. Pao & Johnson [22]) model the wind
turbine as a nonlinear first-order system (see Figure 1)

JΩ̇ = τaero(v,Ω, β)− τgen. (2)

J is the rotational inertia of the rotor and drivetrain, Ω is the
rotor rotational velocity, and v is the wind speed. The torques
applied to the rotational system, τaero and τgen, refer to the
aerodynamic torque produced by the blades and the electrical
torque produced by the generator, respectively. For the purpose
of this work, we are concerned with regulating the rotor speed
using blade pitch β considering the effects of disturbances in
the wind speed v.

To linearize the system dynamics (2), a standard approach is
to take a first-order Taylor series expansion about an operating
point and arrive at the linearized model

Ω̇ ≈ 1

J

∂τaero

∂Ω

∣∣∣
nom
δΩ +

1

J

∂τaero

∂β

∣∣∣
nom
δβ

+
1

J

∂τaero

∂v

∣∣∣
nom
δv +

1

J
δτgen (3)

where |nom indicates that the derivatives are evaluated at some
nominal equilibrium operating condition (for which Ω̇nom = 0)
and δw def

= w−wnom for some signal w. To find an appropriate
trim condition we use FAST simulations. From previous test
data from MoWiTO [34], setting the blade pitch angle at
β = 4.53◦ and generator torque at rated (τgen,rated = 2.8 Nm)
when the wind speed is v = 7.2 m/s should produce the rated
rotor speed. However, the current FAST model for MoWiTO
does not account for frictional losses, so simulating with these
inputs resulted in a rotor speed considerably higher than rated.
To overcome this issue and provide a linearized model with
accurate aerodynamic properties, we increased the generator
torque in simulation until the rated rotor speed was achieved.
This procedure differs from our previous work [34]. The final
trim condition used for linearization is listed in Table I, where
the nom subscript denotes nominal operation.

Instead of evaluating the derivatives in the linearized model
(3) directly, we use a simple system identification procedure
to fit the linear first-order model to the response from the
nonlinear (higher-order) FAST model. Beginning at the trim
condition, we provided the FAST model with both a step
blade pitch input of 5◦ and a step wind input of 0.5 m/s

TABLE I
ABOVE-RATED TRIM CONDITION IN SIMULATION

Wind speed vnom [m/s] 7.2
Rotor speed Ωrpm,nom [rpm] 480 (rated)

Generator torque τgen,nom [Nm] 4.027
Blade pitch βnom [◦] 4.53

(Figure 2). The degrees of freedom included in simulation
were the turbine rotational degree of freedom and the first
flapwise mode for each blade. The wind input was generated
as uniform across the rotor disk. Since our MPC is designed
for pitch control only, the transfer function from generator
torque to rotor speed is not needed. The resulting data is
enough to fit the two first-order transfer function models: one
from blade pitch to rotor speed and one from wind speed to
rotor speed. The mean time constant of these models can be
chosen to represent the time constant of the system, and the
system can be written in the continuous-frequency domain as
Y (s) = G(s)U(s), where Y (s) is the frequency domain rotor
speed output, U(s) stacks the blade pitch and wind disturbance
inputs in the frequency domain, and G(s) =

[
cb
s−a

cbd
s−a
]

is a
transfer function matrix. According to our model (3), we have
that

a
def
=

1

J

∂τaero

∂Ω

∣∣∣
nom

, b
def
=

1

J

∂τaero

∂β

∣∣∣
nom

, bd
def
=

1

J

∂τaero

∂v

∣∣∣
nom

,

and c def
= 60/2π, so that we can give our system the continuous-

time state-space realization

ẋ = ax+ bu+ bdd (4a)
y = cx . (4b)

B. Mathematical Extensions

Although physically we only model the rotor rotational
degree of freedom, we augment our model (4) to include
the integral of the rotor speed error so that we can perform
integral control action [43, pp. 549–550]. Next, we discretize
the model via zero-order hold at the controller sampling rate
fs = 100 Hz. As a final step, we add a state that accumulates
the system input and reformulate the blade pitch input as
a difference in pitch angle between two time steps. This
allows us to penalize the pitch rate in the MPC formulation,
which is of concern in terms of actuator usage, as opposed
to the absolute pitch position, which is not of concern except
when considering constraint satisfaction (Section III-B2). The
applied pitch angle β is recovered as β(k) = β(k−1)+u(k).

We let ∆ represent a change in a quantity from the
previous time step to the current time (whereas δ de-
notes a deviation from nominal operation). For instance, for
some physical signal w(k), ∆w(k)

def
= w(k)− w(k − 1). Note

that, because the nominal operating point wnom is fixed,
∆w(k) = δw(k)− δw(k − 1). We can now express our model
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(a) Response to step change in wind speed v.
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(b) Response to step blade pitch input β.

Fig. 2. Rotor speed responses (top plots) to step inputs (lower plots). The red
line represents the full nonlinear FAST model, while the black dashed line
represents the linearized model fit.

in the form of (1), with the state, control input, disturbance
input, and output

x(k) =

 δΩ(k)∫
δΩ(k)

δβ(k − 1)

 , u(k) = ∆β(k),

d(k) = δv(k), and y(k) =

[
δΩrpm(k)∫
δΩrpm(k)

]
,

respectively. Ω represents the rotor speed in radians per
second, whereas Ωrpm represents the rotor speed in revolutions
per minute (as measured by an encoder). By

∫
δΩ(k) (resp.∫

δΩrpm(k)), we mean
∫ t(k)
0

δΩ(t)dt (resp.
∫ t(k)
0

δΩrpm(t)dt),
the integral of the rotor speed deviation from nominal in rad/s
(resp. rpm) from the beginning of controller time until the
current time t(k) = k/fs. Note that x(k) has δβ(k − 1) as
the third element. Our final discrete-time model matrices for

cut-in rated cut-out

Wind speed

0

rated

P
o

w
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R1 R2 R3 R4

Fig. 3. Power curve of a modern wind turbine as a function of wind speed
(red curve), with the power in the wind marked in black. Regions of operation
are marked above (R1–R4).

Fig. 4. Power coefficient (CP ) surface for MoWiTO. The black × denotes
the maximum point, which is used for Region 2 operation.

MoWiTO are

A =

 0.98 0 −4.6
0.0099 1 −0.023

0 0 1

 , B =

 −4.6
−0.023

1

 ,
Bd =

 0.37
0.0019

0

 , and C =

[
9.6 0 0
0 9.6 0

]
.

III. CONTROL

A. Background on Wind Turbine Control

The operation of industry-standard horizontal-axis wind
turbines is generally split into four regions according to the
mean wind speed. In Region 1, the wind speed is too low
for economically-viable energy generation, and the turbine is
parked. Once the cut-in wind speed is reached, the turbine
enters Region 2 (also known as ‘below-rated’ or ‘partial
load’ operation), in which the control goal is to extract as
much power as possible from the wind. As the wind speed
increases, the turbine reaches a condition where it is generating
its rated power. From this point on, the goal is to regulate
the turbine at its rated rotor speed, while maintaining rated
torque, to continue to produce rated power. This mitigates
structural loading on the turbine components and electrical
loading on the turbine generator while still producing power,
and is referred to as Region 3, ‘above-rated’ or ‘full load’
operation. Finally, as wind speed increases to the cut-out wind
speed, the turbine can no longer operate safely and is shut
down (Region 4). See Figure 3 for a schematic.

The majority of research focuses on the power-generating
Regions, i.e. 2 and 3. Two main control inputs are used
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Fig. 5. Block diagram of wind turbine control system used in this study.

for actuation: the generator electrical torque τgen and the
collective blade pitch angle β (see Figure 1). In Region 2,
the blades are pitched at a fixed position that maximizes
the power coefficient CP , which represents the ratio between
power produced and the power available in the wind. The
generator torque is then varied to vary the rotor speed and
maintain the CP -maximizing tip-speed ratio λ (Figure 4). In
Region 3, the generator torque is usually held constant at rated
torque while the blades are actively pitched to maintain a
constant aerodynamic torque τaero and regulate the rotor speed
to rated speed. This combination (rated torque and rated speed)
produces the rated turbine power. In addition to the Regions
mentioned above, there is often a transition between Regions
2 and 3 (sometimes referred to as Region 2.5) as the turbine
switches from torque control to blade pitch control.

B. Model Predictive Controller

We present the general form for the linear-quadratic (‘lin-
ear’) MPC problem first, and provide problem specifics in
Sections III-B1 & III-B2. The linear MPC problem is a
quadratic program

minimize
{x(i)},{u(i)}

N−1∑
i=0

{
x(i)TQx(i) + u(i)TRu(i)

}
+ x(N)TPx(N)

(5a)
subject to x(0) = x̂(k) (5b)

x(i+ 1) = Ax(i) +Bu(i) +Bdd(k + i),

i = 0, ..., N − 1 (5c)
Jx(i) + Eu(i) ≤ `,

i = 0, ..., N − 1 (5d)

where x(i) and u(i) are the predicted state and control at
future time step i; Q ∈ Rn×n, R ∈ Rm×m, and P ∈ Rn×n
are the cost function matrices (Section III-B1); and N ∈ N
is the prediction (and preview) horizon length. J ∈ Rr×n,
E ∈ Rr×m, and ` ∈ Rr represent the system constraints
(Section III-B2), where r is the number of scalar affine
constraints for each time step. The inclusion of the disturbance
effect Bdd(k) is non-standard, since for most systems, the
disturbance is unknown. Only the first step u(0) of the optimal

sequence {u(i)}i=0,1,...,N−1 is implemented—afterwards, a
new initial state x̂ becomes available and the problem is solved
again.

Physically, the cost function (5a) represents the objective
to be minimized; constraint (5b) sets the initial condition for
the MPC problem to the current state (here, we have denoted
real time steps by k and predicted time steps by i—various
notations are used for this distinction in the MPC literature);
constraint (5c) enforces the behavior of the linear model (1);
and the inequality constraint (5d) represents physical system
constraints. In general, the current system state x̂(k) would
need to be estimated online based on the feedback measure-
ments y, control input u, and disturbance d if available, by
a state observer. In this study, the state vector x chosen (see
Section II-B) is simple enough that we can reconstruct the
current state x̂(k) from direct measurements of the rotor speed
Ω and blade pitch angle β. We denote this procedure as the
‘State constructor’ in Figure 5, which would be replaced by
an observer in a more complex case.

The MPC problem (5) is commonly written in matrix-vector
form

minimize
x,u

xTQx + uTRu (6a)

subject to x = Ax̂(k) + Bu + Bdd(k) (6b)
Jx + Eu ≤ ` (6c)

(see Appendix A for matrix definitions) and then condensed
by substituting the model (6b) into the cost function (6a) and
constraint (6c) to arrive at

minimize
u

uTHu + 2hTu (7a)

subject to Gu ≤ g (7b)

where

H = BTQB + R ,h = BTQ
[
A Bd

] [x̂(k)
d(k)

]
,

G = JB + E, and g = `− J
[
A Bd

] [x̂(k)
d(k)

]
.

This is the form of the problem that is solved at run-time.
1) Cost Function: The cost function (5a) that we use for

MPC is identical to that used in our previous work looking at
unconstrained optimal control [34]. We again use Q = CTLC
in order to penalize deviations in the plant output y(k), where

L =

[
1 0
0 1

]
,

and set R = 1 × 105. It is likely that improved performance
could be achieved using a more carefully-tuned cost function,
but we found that these weights were adequate for demon-
strative purposes. Following MPC literature on extending
the quadratic cost function to an infinite horizon [44], the
terminal weight P is chosen as the solution to the discrete-time
algebraic Riccati equation

P = ATPA+Q−ATPB(BTPB +R)−1BTPA . (8)

Note that the inclusion of the terminal cost x(N)TPx(N)
is only equivalent to extending the prediction hori-
zon to infinity if both d(k + i) = 0 and the constraint
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(5d) is satisfied under the linear-quadratic regulator law
u(i) = −

(
BTPB +R

)−1
BTPAx(i) for all i ≥ N . In our

case, these conditions do not hold; however, we found that
using a terminal cost relating to the unconstrained (and undis-
turbed) system is still a useful approximation.

2) Constraints: The preliminary study for this work [34]
did not consider constraints in the optimal control prob-
lem; that is, we solved problem (5) without considering the
constraints (5d). However, to better represent the physical
limitations of the turbine and find controls that are optimal
given those limitations, we now add constraints into the
optimization. This is the main extension of this controller over
the previous, as u(k) is now determined by a nonlinear control
law that involves solving the MPC problem online, rather than
the linear control law presented in Sinner et al. [34], which
could be found offline.

Two major constraints are considered: a blade pitch rate
constraint and a blade pitch angle constraint. Since the control
input u is defined as the blade pitch increment (see Sec-
tion II-B), the rate constraint is simply the box constraint

− β̇maxTs ≤ u(i) ≤ β̇maxTs, i = 0, ..., N − 1 (9)

where Ts = 0.01 s is the controller sampling time. On the
other hand, the incremental form for the input means that
the previous blade pitch angle δβ(k − 1) is included when
enforcing the blade pitch angle limit, i.e.

u(k) + δβ(k − 1) ≥ βmin − βnom . (10)

Combining constraints (9) and (10), we have that

J =

0 0 0
0 0 0
0 0 −1

 , E =

 1
−1
−1

 , and ` =

 β̇maxTs
β̇maxTs

βnom − βmin

 .

3) Configurations: We consider both a feedback only (FB
only) and feedback/feedforward (FB/FF) configuration for
MPC. This represents the difference between having preview
disturbance measurements available for feedforward control
and having only standard feedback channels. In the FB/FF
configuration, the vector d of future disturbances is assumed
to be known over the prediction horizon N . For utility-
scale wind turbines, this measurement can be provided by a
lidar [9], but for the present scaled testing, we instead use a
hot-wire anemometer to generate preview measurements. See
Section IV-D for details. The problem is unchanged for the
FB only case, except that we set d(k) ≡ 0 ∀ k (or d(k) ≡ 0),
which is equivalent to saying that the disturbance is completely
unknown. This does not change the problem size, since the
decision variable u ∈ RNm in the condensed problem (7) has
the same dimension whether or not d is set to zero. The full
list of parameters chosen for the MPC problem are provided
in Table II.

C. Torque Control

The model predictive controller described controls only
the blade pitch angle β. To handle Region 2 (below-rated)
operation and transition, we also implement a generator torque
controller (see Figure 5).

TABLE II
MODEL PREDICTIVE CONTROLLER PARAMETERS

Prediction horizon length N 10

Controller sampling rate fs [Hz] 100

Output cost matrix L I2

Input cost matrix R 1 × 105

Blade pitch angle limit βmin [◦] 0

Blade pitch rate limit β̇max [◦/s] 86

Allowable solve time Tsolve [ms] 3

(Ωrated − 10 rpm)
− PI sat(·)

τ?gen(·)

τgen,rated

τgen

Ω

Fig. 6. Simplified diagram of the torque controller used. The saturation has a
lower limit of τ?gen(Ω), the optimal power-producing torque for a given rotor
speed, and an upper limit of the rated torque τgen,rated.

The torque controller enables optimal energy conversion
[22] in Region 2 (below rated wind speed) using a look-up
table, and, in general, holds the torque constant at the rated
value τgen = 2.8 Nm in Region 3 (above rated wind speed,
where pitch control is active). A proportional-integral (PI)
controller with saturation limits is used to handle the transition
between partial and full load operation near the rated wind
speed (Figure 6).

The PI controller aims to keep the rotor speed at 10 rpm
below the rated value by setting the generator torque. When
the rotor speed is much lower than the rated speed, the PI con-
troller is saturated at the optimal torque τ?gen(Ω) (which varies
with rotor speed), ensuring the optimal energy conversion. As
the wind speed increases and the rotor speed approaches its
rated value, the PI controller increases the torque and tries to
keep the rotor speed at 10 rpm below the rated value. Finally,
when the wind speed increases sufficiently, the PI controller
saturates at the rated torque τgen,rated = 2.8 Nm and the blade
pitch controller takes over. This leads to a narrow region that
is suboptimal in terms of energy conversion, but ensures a
smooth transition between partial and full load conditions. An
anti-windup scheme is used to prevent excessive accumulation
of the integral term during saturation (not shown in Figure 6
for simplicity).

Since the transition between the full and partial load con-
ditions is done based only on the rotor speed measurement,
it is possible that the torque controller reacts to sudden drops
in wind speed even when the pitch controller is still active.
In other words, the torque controller will assist the pitch
controller in keeping the rotor speed at the rated value during
strong dips in wind speed, at the expense of an additional loss
of power.

Note that the torque controller implemented is not designed
specifically to work with the model predictive blade pitch
controller and could be used with other pitch controllers.
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D. Integrator Anti-windup for the Model Predictive Controller

Finally, to aid with transitions between the model predictive
blade pitch controller (Section III-B) and the torque controller
(Section III-C), we apply an anti-windup technique to prevent
the integral term x2 from growing unbounded when the blade
pitch is saturated at the lower limit (during Region 2 opera-
tion). Instead of passing the rotor speed error to the integrator,
zero is passed when the ‘Region 2 operation’ condition is met,
as follows:

e(k) =

{
0, β(k − 1) = βmin and Ω(k) < Ωnom

δΩ(k), otherwise ,
(11)

where e(k) is the input to the integrator. We thus replace x̂2 =∫
δΩ(k) with x̂2 =

∫
e(k) when constructing the current state

x̂(k).
Making this change means that the linear model (1) is

no longer accurate for predictions (since it does not account
for the anti-windup behavior). However, we consider this
discrepancy simply as a part of the nonlinear behavior of the
true system that our linearized model does not account for.

IV. TEST SETUP

The controller was tested on MoWiTO (see Section II)
running in a wind tunnel at ForWind – Centre for Wind Energy
Research at the University of Oldenburg. In all test cases, we
compare the FB only configuration (dk ≡ 0 ∀ k) to the FB/FF
case, where disturbance preview is enabled.

A. Controller Implementation

The controller described in Section III is implemented on
a National Instruments CompactRIO-9066 controller (cRIO)
that has a 667 MHz dual-core CPU. It is implemented as
a LabVIEW virtual instrument (VI), which calls a compiled
C++ shared library to run the MPC code. The C++ code
used is essentially a problem-specific wrapper function that
calls qpOASES [45], an open-source quadratic problem solver
tailored towards MPC (see Section VI for details on solving
the MPC problem). The compiled library is called from
LabVIEW using a Call Library Function Node set to the ‘Run
in any thread’ configuration.

B. Hardware-in-the-loop Testing

Following MATLAB/Simulink simulation testing of the
control law (implemented using qpOASES’s MATLAB inter-
face [45]) and prior to full testing on MoWiTO, we carried out
so-called ‘hardware-in-the-loop’ testing. The controller was
implemented on the cRIO in its final form, but the physical
plant is replaced by the FAST simulation model controlled by a
tailor-made dynamic link library that provides communication
between the cRIO and FAST running on a PC, developed by
Syed Muzaher Hussain Shah at the University of Oldenburg.
We use this as a valuable method for checking computational
performance and stability prior to full testing on expensive
equipment. In particular, we at this point determined that we
needed to reduce our prediction horizon length from N = 20,
which was used in our previous study [34], to N = 10 to

Active
grid

Hot-wire
anemometer

Limit of feed-
forward prediction

MoWiTO

Time available for
processing

measurements

Prediction
horizon

Fig. 7. Diagram of wind tunnel test setup. The active grid controls airflow into
the tunnel test section; the hot-wire anemometer measures the wind speed;
and MoWiTO responds to disturbances.

Hot-wire

MoWiTO
Active grid

Fig. 8. Photograph of wind tunnel test setup with various components labelled
(cf. Figure 7)

achieve a solve time that we considered to be fast enough for
our application (see Section VI). In previous work, we saw
little difference in performance using such a reduction [42,
Figure 5].

C. Test Layout

The physical layout of the experiment is shown in Fig-
ures 7 & 8. The experiment was carried out inside a closed-
circuit wind tunnel with a 3 × 3 m2 cross-sectional test
section at ForWind – Center for Wind Energy Research at
the University of Oldenburg. The ‘active grid’, described by
Kröger et al. [37] and designed after Makita [46], [47], is capa-
ble of creating reproducible inflow conditions [48]. Different
flows, from single velocity steps and gusts to atmospheric-like
turbulence driven by stochastic processes, can be tailored [49]
for turbine testing. As described in Section IV-E, gusts and
turbulent inflow are used to test controller performance in this
study.

D. Preview Measurements

In most studies investigating feedforward control of full-
scale wind turbines, preview measurements are assumed to
come from a lidar scanner [9], [26]. Verwaal et al. use a pitot
tube measurement for their wind tunnel campaign [19]. In the
present work, we generate preview wind speed measurements
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using a hot-wire anemometer situated 2.7 m upstream of the
turbine (Figure 7) [34].

Preview wind measurements, whether generated by lidar
or hot-wire, need to be filtered to remove both sensor noise
and certain aspects of the wind disturbance signal before
being used for feedforward control (Figure 5). In particular,
there should be sufficient filtering to remove high-frequency
turbulent eddies that evolve as they move downstream and
have therefore changed by the time they reach the turbine
rotor [50]. In addition, the filter helps to remove the small
transversal components of velocity present in the hot-wire
anemometer wind speed measurement. Finally, the preview
measurement should be delayed to account for the time it
takes for the measured wind field to move downstream to the
turbine location [51]. The disturbance is assumed to advect
downstream from the hot-wire anemometer to the turbine
rotor at the mean wind speed with negligible distortion of the
low-frequency components under Taylor’s frozen turbulence
hypothesis [52], which takes 38 time steps at 100 Hz based
on the test setup and mean wind speed of 7.2 m/s.

Part of this required delay is acheived by filtering, which
imparts a group delay, or lag, on the signal output. We use
a moving average filter with nfilt = 35 samples, consistent
with our previous work [34], since it imparts a frequency-
independent delay of (nfilt−1)/2 = 17 time steps. As a conse-
quence of the MPC prediction horizon, the filtered disturbance
must be available for use N = 10 steps ahead of the turbine
(and thus, as discussed in Sinner & Pao [42], the filter order
nfilt−1 and preview horizon length must be traded off so as not
to exceed the total number of time steps available between the
hot-wire location and the turbine). The remaining 11 time steps
are accounted for by storing the filtered disturbance in a buffer
before it enters the prediction horizon. The filter and buffer
are implemented in LabVIEW. Note that the reduction in
prediction horizon length (from 20 to 10) would have allowed
for a higher filter order, but we decided to keep nfilt = 35 to
be consistent (where possible) with our previous work [34].

A mathematically equivalent approach is to use a non-causal
moving average filter with time-domain equation

d(k) =
1

nfilt

nfilt∑
j=1

draw

(
k +

nfilt + 1

2
− j
)

(12)

and transfer function

H(z) =
D(z)

Draw(z)
=

1

nfilt

z(nfilt−1) + z(nfilt−2) + · · ·+ z + 1

z(nfilt−1)/2
,

(13)
where draw is the raw hot-wire measurement shifted down-
stream to the turbine location, i.e. draw(k) = vmeas(k − 38).
Again, nfilt (which should be a positive, odd integer) is the
number of samples in the moving average. This is the way
we presented the filter in previous work [34], [42]. Examples
comparing d to draw can be seen in Figure 9.

E. Test Conditions

We tested the controller in various wind conditions as
listed in Table III, focusing on Region 3 (above-rated) and

Region 2.5 (transition) winds, where the MPC produces inter-
esting results. Tests T1–T3 use ‘Mexican hat’ gust profiles
based on extreme operating gusts [53, pp. 33–34]. Tests
T4 and T5 use (repeatable) turbulent sequences that show
the behavior of atmospheric wind similar to, although not
designed to precisely match, the normal turbulence model
[53, pp. 31–32], which is considered representative of realistic
turbulence. Each wind profile is generated by the active grid
and has comparatively small fluctuations in the transversal
inflow components. No shear is added to the inflow.

T1 (Figures 9a & 10a) is very similar to the tests used
in Sinner et al. [34], and maintains above-rated operation
throughout (as the blade pitch never reaches the minimum
value βmin = 0◦). This is used primarily to check that
the controller is behaving as expected and producing similar
results to the unconstrained case [34].

T2 (Figures 9b & 10b) is similar to T1, but uses a base wind
speed that results in below-rated operation. As the gust impacts
the turbine, the optimal blade pitch angle (as determined by
the MPC) increases above zero and then reduces back to zero
as the gust passes. The MPC is active for the duration of the
test; however, when the wind speeds are low enough that the
rotor is not reaching its rated speed, the optimal solution of
the MPC is to hold the blades at their lower limit (10) to
produce maximum aerodynamic torque (see Figure 4). In fact,
the base wind speed of 7.2 m/s used in this test was expected to
be an above-rated condition (see Section II-A), with expected
drops into below-rated operation during the gust, but physical
discrepancies resulted in base operation marginally below the
rated rotor speed of 480 rpm.

The gust used for T3 (Figures 9c & 10c) is shorter in
duration than that of T2. Here, we aim to activate the blade
pitch rate constraint (9) by producing a rapid change in the
rotor speed. Note that the predicted disturbance leads the
true disturbance in this test. This is due to the discrepancy
between the nominal wind speed assumed for preview ad-
vancing (7.2 m/s) and the actual (lower) mean wind speed
for the test. This issue would need to be addressed for a full
implementation of feedforward control over a wide range of
wind speeds (see Section VII).

Although single deterministic gusts are useful for verifying
controller performance, they are not particularly representative
of real wind fields. T4 and T5 (Figures 9d & 10d and
9e & 10e, respectively) present more realistic scenarios. T4
uses a series of turbulent gusts of varying magnitudes and
durations, whereas T5 uses a persistent turbulent wind profile,
with turbulence intensities of approximately 18% and 15%,
respectively, at the turbine location. Both require frequent
transition between above- and below-rated operation, testing
the controllers’ ability to solve the MPC problem in the
presence of constraints that are frequently being activated and
deactivated.

V. RESULTS

We consider the main result of this paper to be the success-
ful deployment of MPC for blade pitch control running at the
controller sample rate of a modern utility-scale wind turbine
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TABLE III
DESCRIPTION OF TEST SEQUENCES

Test Type Repetitions Base wind
speed [m/s] Duration [s] Spacing [s] Figure

references
T1 ‘Mexican hat’ gust 10 7.9 4 7 9a, 10a
T2 ‘Mexican hat’ gust 10 7.2 4 7 9b, 10b
T3 ‘Mexican hat’ gust 10 6.3 1 5 9c, 10c
T4 Gusty sequence 10 6.6 20 25 9d, 10d
T5 Persistent turbulence 1 6.1 540 NA 9e, 10e
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(e) 100 s taken from the 9-minute record used for test T5.

Fig. 9. Excerpts of wind speed as measured by the hot-wire anemometer for the various test cases described in Section IV-E. The gray signal is the ‘raw’
signal draw, which is the hot-wire measurement vmeas shifted downstream to the turbine location, while the blue signal is the filtered version d that is eventually
used by the MPC in the FB/FF configuration (see Section IV-D for details).

(the NREL 5MW turbine, for example, uses a sample rate of
80 Hz [38]), in both feedback only and feedback/feedforward
configurations. Figure 10 presents time-series results from tests
T1–T5, and are consistent with the expected behavior of a
wind turbine in transition and above-rated winds.

Statistical results from all tests are presented in Table IV.
Of particular interest in this work are rotor speed regulation
in above-rated winds and the level of blade pitch actuation
required. Because it is difficult to determine, in transition
winds, whether the turbine is operating above- or below-rated,
we consider the root-mean-squared (RMS) value of the rotor

TABLE IV
PERFORMANCE IMPROVEMENTS USING FEEDFORWARD CONTROL

Test RMS
(
δΩ≥0

)
RMS

(
β̇
)

T1 61.4% -2.9%
T2 52.6% 4.6%
T3 5.6% 14.5%
T4 21.0% 2.8%
T5 5.0% 2.3%

speed deviation taken over times when the deviation is positive
(the rotor speed is above its rated value). That is, we remove
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(c) Single gust from test T3. (d) Single gusty wind sequence from test T4.
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(e) 100 s taken from the 9-minute record used for test T5.

Fig. 10. Excerpts of rotor speed (top plots) and blade pitch signals (lower plots) for the various test cases described in Section IV-E. The red signal is the
FB/FF configuration, while the gray signal is the FB only configuration.
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all data from times when the rotor speed is below rated speed
before finding the RMS value of the remaining data, denoted
δΩ≥0. We admit that this does not give the complete picture,
since times when the wind is high enough but the rotor speed is
below rated (for example, 24–25 s in Fig 10a, top) are removed
from analysis, but we consider this a reasonable price to pay to
ensure we are analyzing purely above-rated operation, where
the explicit goal of the controller is to regulate the rotor speed
to rated. When considering blade pitch actuation, on the other
hand, we use the entire time series (including times when
the rotor speed is significantly below rated) when calculating
the RMS blade pitch rate β̇. This is because times when one
controller is pitching and the other is not (for example, 19–
21 s in Fig 10c, bottom) are important to include, and pitching
during below-rated operation (e.g. 20–23 s in Fig 10b, bottom)
should be penalized.

To investigate the improvement (or degradation) in perfor-
mance when utilizing feedforward measurements, the statistics
we present in Table IV are in the form of a percentage
reduction from the FB only to the FB/FF case. Overall, the
availability of feedforward measurements appears to be having
the desired affect: we see moderate to significant reductions
in rotor speed deviation above the rated speed, while, in most
cases, reducing blade pitching.

An interesting aspect of these findings is that, considering
T2–T5 Figures 10b–10e (bottom), most of the reduction in
blade pitching appears to result from the FB/FF controller
maintaining zero pitch at times when the FB only controller
makes small deviations into above-rated operation. This could
be explained by the knowledge of the future disturbance
trajectory for the FB/FF case, which can indicate whether
an increase in wind speed is only temporary (e.g. 19–21 s
in Fig 10c) or sustained. In the latter case, earlier (and less
aggressive) actuation in anticipation of significant future events
(e.g. 18–19 s in Fig 10c) may be achieved. On the other
hand, in T1 (Figure 10a) where the entire test takes place
in above-rated operation, we see a slight increase in blade
pitching from the FB only to the FB/FF case. This can likely
be explained by noise injected into the control signal u by the
disturbance measurement d, and could be less of an issue for
feedforward measurements provided by lidar for a utility-scale
wind turbine [34].

Finally, we point out that the rotor speed and blade pitch
angle for T1 (Figure 10a top and bottom, respectively) follow
very similar trajectories to our previous tests of unconstrained
optimal control [34, Figure 3]. In particular, the FB/FF MPC
achieves a reduction in RMS rotor speed error of 61.4% com-
pared to the FB only MPC across the entire sequence, similar
to the 54.0% reduction in standard deviation seen previously
when comparing unconstrained FB/FF to unconstrained FB
only during the gust event1 [34, Table 2].

VI. ANALYSIS OF COMPUTATIONAL PERFORMANCE

Having demonstrated the viability of MPC for blade pitch
control, we now turn our attention to the computational

1The only mathematical difference between the RMS error and the standard
deviation being that the RMS error takes into account bias in the signal, while
the standard deviation does not.

performance of the implementation, given that MPC is a rela-
tively computationally demanding control approach. While the
analysis provided here is by no means exhaustive, we hope that
it will be of practical benefit to others interested in physical
implementations of MPC for wind turbines and other systems.
As mentioned in Section IV-A, the MPC is implemented as a
compiled C++ library called from a LabVIEW VI. The critical
piece of the compiled library is qpOASES, an open-source
quadratic program solver developed by Ferreau et al. [45].

From a host of possible algorithms and software packages
for solving quadratic programs (again noting that the linear
MPC problems (5), (6), and (7) are quadratic programs), we
chose qpOASES for several reasons. qpOASES is tailored
for MPC applications in that it uses the efficient active set
algorithm, which can be warm started, and has a method for
terminating the algorithm early and providing an intermediary
solution in case the time available for computation expires.
Further, qpOASES is readily implementable: while the primary
distribution is for C++, there is also a MATLAB interface [45],
which we found convenient for proof-of-concept simulation
testing. Finally (likely as a result of the above), qpOASES
has been used for MPC in the wind turbine literature where
real-time behavior was desired [35], and in particular was used
by Verwaal et al. [19].

Roughly speaking, the active set method employed by
qpOASES uses the solution from the previous time step, and
ignores all inactive constraints (that is, rows of the constraint
(7b)) when finding the optimal solution. As the problem pa-
rameters (x̂(k),d(k)) change, constraints may become active
(are added to the active set) or inactive (are removed from the
active set). When this occurs, the algorithm adds (removes) the
constraint from the ‘working set’ before completing another
iteration. It is possible for several iterations—or ‘working
set recalculations’—to occur before the optimal solution, and
corresponding active set, is found. For details on the active set
method, see Ferreau et al. [45], [54].

As a consequence of requiring varying numbers of work-
ing set recalculations per controller time step, the time to
compute the optimal solution can vary significantly. In our
implementation, we required a controller sampling frequency
of 100 Hz—however, we reduced our allowable computation
time to Tsolve = 3 ms to allow time for communication and
other protocols within the 10 ms sampling time. qpOASES
was designed to prevent a further working set recalculation,
and provide a suboptimal solution, in the case that the next
recalculation would violate the allowable computation time.
While sacrificing optimality in the case of significant changes
in the active set, this ensures real-time capabilities. The solu-
tion returned in this case is the solution of a quadratic program
with a parameter (x̂(k),d(k))

′ between the current parameter
(x̂(k),d(k)) and the previous one (x̂(k − 1),d(k − 1)). See
Ferreau et al. [54, Section 3.5] for details.

We demonstrate graphically the computational performance
of the MPC in Figure 11. For the bottom plots, we use ‘C’
to denote that the qpOASES ‘completed’ (successfully found
the optimal solution), ‘T’ to denote that qpOASES timed out
and returned a suboptimal value (as described above), and ‘F’
to denote that qpOASES failed (for example, could not find
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a feasible solution). Note that, by our construction, the MPC
problem (7), with the constraints described in Section III-B2
and parameters in Table II, is always feasible as long as
β(k − 1) ≮ βmin, since u = 0 is always a feasible point. For
completeness, we included logic to set the blade pitch angle
command to the solution of the corresponding unconstrained
problem [34] in the case of a failed optimization. However,
we did not encounter such a failure at any time during our
testing.

Figure 11a shows the time required to return the control
value u(0), the number of working set recalculations required,
and the solve status for a single gust in test T3 (cf. Figure 10c)
for visualization purposes. Qualitatively, we see that there is
an approximate minimum computation time associated with
requiring zero work set recalculations, and that the number
of recalculations appears to be lower in the region from 18–
19 s, where the general affine constraint (10) is inactive but
the simpler box constraint (9) may be (qpOASES has special
handling for simple box constraints).

Figure 11b presents analysis of the computational per-
formance metrics during turbulent inflow in test T5, based
on the frequency of occurrence for each metric. The top
plot (computation time, which is a continuous) has been
binned. The ‘floor’ computation time appears to be between
0.5–0.7 ms, with the FB only case generally requiring less
computation time when no working set recalculations are
made. Interestingly, the FB/FF configuration completes with
zero working set recalculations more often than the FB only
configuration, but also may more often need a higher number
of recalculations—and the completion rate (C) of the FB only
controller is higher, at 98.0%, than that of the FB/FF controller,
which timed out (T) 8.2% of the time for T5.

VII. CONCLUSIONS AND FUTURE WORK

We consider the demonstration of MPC for blade pitch
control on an experimental scaled wind turbine model to be the
main contribution of this work. We now have further evidence
that disturbance measurements can be used to improve turbine
performance while maintaining similar levels of blade pitch
activity. Similar to our previous study, the objective function
(7a) for the optimal control sequence is unchanged between the
feedback only and the feedback/feedforward case [34], such
that the inclusion of feedforward action can be examined while
holding other aspects of the controller constant. However, the
presence of constraints (7b) in the condensed MPC problem
(7) means that the optimal control u(k) is no longer the
sum of a linear feedback term (a gain on x̂(k)) and a linear
feedforward term (a gain on d(k)) [34], but instead a nonlinear
function of the input parameter (x̂(k),d(k)) whose value
depends on solving a quadratic program online.

A major barrier to deployment of MPC in practice is the
computational burden posed. In this study, we were able to run
MPC at a rate of 100 Hz using a 3 ms limit on the time avail-
able to solve the MPC problem. The strict upper limit on solve
time does result in the optimization algorithm terminating
prematurely occasionally, but we did not see any evidence of
detrimental performance as a result. The achievable solve time

for other implementations will depend strongly on the number
of constraints r at each time step, the prediction horizon length
N , and the available hardware. However, we did see anecdotal
evidence that the inclusion of disturbance preview information,
while not changing the problem size (see Section III-B3),
could result in a higher occurrence rate of longer solve times.
The reason for this is unclear, but one possibility is that
the inclusion of (noisy) preview measurements causes the
solution trajectories to move around more than using only
the (relatively clean) state as an input. If this is the case,
then the solution to an approximate quadratic program may
be no worse than the solution to the true one, in the sense
that the difference between the two could be a manifestation
of noise [54]. The work presented here has the potential to
inform future implementations of MPC and other feedforward
control techniques not only for wind turbine applications,
but also in other fields where practical considerations (model
accuracy, measurement noise, computation time, etc.) could
pose barriers. In this work we have not aimed to study closely
the sensitivity of the solve time to various aspects of the MPC
problem, nor spent effort looking for the fastest possible solver.
Rather, we have demonstrated that a readily available solver
for MPC problems, qpOASES [45], provides performance that
is satisfactory for our needs.

A few important issues have not been addressed in this
work. In particular, we have used a linear time-invariant, single
degree-of-freedom model (4) to represent all of above-rated
wind turbine operation, which is a considerable simplification.
The state dimension can be increased to include dynamics such
as tower and blade bending without increasing the size of the
condensed quadratic program (7); however, a more complex
choice of state will likely require an observer to produce
a state estimate x̂(k). This would allow turbine structural
loads to be considered in the MPC cost function. Similarly,
the extension from a linear time-invariant model to a linear
parameter-varying one, used in much of the MPC literature for
wind turbines [42], does not change the size of the problem (7)
but would make the matrices H and G time-varying, which
in turn means that some of the performance-enhancing aspects
of qpOASES cannot be used. In this work, h and g are time-
varying, but qpOASES is designed to handle this situation
[45]. Further, model uncertainty was not considered, and a
physical demonstration of a robust MPC approach for wind
turbines has yet to appear in the literature.

Finally, we assume that disturbances move downstream at a
fixed wind speed of vnom = 7.2 m/s for all tests. To make the
best use of feedforward information, more attention should be
given to the precise delay, which could depend not only on
the mean wind speed but also the induction zone in front of
the turbine rotor [51] and tower bending. Similarly, varying
the amount of filtering applied to the hot-wire measurment
and in turn, the upstream distance of the hot-wire anemometer
(while bearing in mind pitch actuation limitations), has not
been addressed here. We had hoped to investigate some of
these effects during this study, but were unable to complete
testing due to time constraints in the duration of our testing
window in the wind tunnel facility.
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(a) Time series of computational performance metrics for T3. (b) Relative frequency of computational performance metrics over T5.

Fig. 11. Computational performance metrics of the MPC for tests T3 (in time domain) and T5 (relative frequency of occurrences). The red signal is the
FB/FF configuration and the gray signal is the FB only case. The upper limit on allowable computation time is represented by the black dashed line in the
top plots.

APPENDIX
MATRIX DEFINITIONS

The vectors and matrices defined for the matrix-vector form
of the MPC problem (6) follow.

A. Spatial Vectors

x
def
=


x(0)
x(1)

...
x(N)

 , u def
=


u(0)
u(1)

...
u(N − 1)

 , d(k)
def
=


d(k)

d(k + 1)
...

d(k +N − 1)

 .

B. Model

A
def
=


I
A
A2

...
AN

 ,B
def
=



0 · · · 0

B 0
...

AB B
. . .

...
. . . 0

AN−1B AN−2B · · · B


,

Bd
def
=



0 · · · 0

Bd 0
...

ABd Bd
. . .

...
. . . 0

AN−1Bd AN−2Bd · · · Bd


.
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C. Constraints

J
def
=


J 0 · · · 0

0 J
. . .

...
...

. . . 0
0 · · · 0 J 0

 ,E
def
=


E 0 · · · 0

0 E
...

...
. . . 0

0 · · · 0 E

 ,

`
def
=


`
`
...
`

 .

D. Cost Function

Q
def
=


Q 0 · · · 0

0
. . .

...
... Q 0
0 · · · 0 P

 ,R
def
=


R 0 · · · 0

0 R
...

...
. . . 0

0 · · · 0 R

 .
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of frozen turbulence hypothesis for wind turbine applications with a
scanning lidar system,” in Proceedings of the International Symposium
for the Advancement of Boundary Layer Remote Sensing, Paris, France,
2010.

[53] “Wind energy generation systems – Part 1: Design requirements,” In-
ternational Electrotechnical Commission, Geneva, Switzerland, Standard
IEC 61400-1, Edition 4.0, 2019.

[54] H. Ferreau, H. Bock, and M. Diehl, “An online active set strategy to
overcome the limitations of explicit MPC,” International Journal of
Robust and Nonlinear Control, vol. 18, no. 8, pp. 816–830, 2008.


	Introduction
	Modeling
	Physics-based Model
	Mathematical Extensions

	Control
	Background on Wind Turbine Control
	Model Predictive Controller
	Cost Function
	Constraints
	Configurations

	Torque Control
	Integrator Anti-windup for the Model Predictive Controller

	Test Setup
	Controller Implementation
	Hardware-in-the-loop Testing
	Test Layout
	Preview Measurements
	Test Conditions

	Results
	Analysis of Computational Performance
	Conclusions and Future Work
	Appendix: Matrix Definitions
	Spatial Vectors
	Model
	Constraints
	Cost Function

	References

