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Intelligent agents are rapidly evolving from assistants into teammates as they perform

increasingly complex tasks. Successful human-agent teams leverage the computational

power and sensory capabilities of automated agents while keeping the human operator’s

expectation consistent with the agent’s ability. This helps prevent over-reliance on and

under-utilization of the agent to optimize its effectiveness. Research at the intersection

of human-computer interaction, social psychology, and neuroergonomics has identified

trust as a governing factor of human-agent interactions that can be modulated to

maintain an appropriate expectation. To achieve this calibration, trust can be monitored

continuously and unobtrusively using neurophysiological sensors. While prior studies

have demonstrated the potential of functional near-infrared spectroscopy (fNIRS), a

lightweight neuroimaging technology, in the prediction of social, cognitive, and affective

states, few have successfully used it to measure complex social constructs like trust

in artificial agents. Even fewer studies have examined the dynamics of hybrid teams of

more than 1 human or 1 agent. We address this gap by developing a highly collaborative

task that requires knowledge sharing within teams of 2 humans and 1 agent. Using

brain data obtained with fNIRS sensors, we aim to identify brain regions sensitive to

changes in agent behavior on a long- and short-term scale. We manipulated agent

reliability and transparency while measuring trust, mental demand, team processes,

and affect. Transparency and reliability levels are found to significantly affect trust in the

agent, while transparency explanations do not impact mental demand. Reducing agent

communication is shown to disrupt interpersonal trust and team cohesion, suggesting

similar dynamics as human-human teams. Contrasts of General Linear Model analyses

identify dorsal medial prefrontal cortex activation specific to assessing the agent’s

transparency explanations and characterize increases in mental demand as signaled by

dorsal lateral prefrontal cortex and frontopolar activation. Short scale event-level data is
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analyzed to show that predicting whether an individual will trust the agent, with data from

15 s before their decision, is feasible with fNIRS data. Discussing our results, we identify

targets and directions for future neuroergonomics research as a step toward building an

intelligent trust-modulation system to optimize human-agent collaborations in real time.

Keywords: fNIRS (functional near-infrared spectroscopy), human-agent teaming, human-agent trust, agent

transparency, trust prediction, neural correlates of trust, agent reliability, mental demand

INTRODUCTION

Trust and Human-Agent Teams
With rapid advances in the human-agent teaming (HAT)
research domain, intelligent agent systems are expected to
improve the quality of human-agent collaborations in almost all
domains (e.g., military, business, medical, educational, etc.). In a
recent white paper on HATs in the military, DeCostanza et al.
(2018, p. 2) state “The concept of technology being a tool for
humans will be superseded by technology as mentored actors
in the environment, teammates with unique non-human skills,
and technology that augments fundamental human capabilities.”
Following this philosophy, we adopt a multi-person HAT
framework to investigate the neuroergonomics of hybrid human-
agent teams in a naturalistic, open-ended task.

As human and AI agents increasingly become interdependent
and interactive teammates (e.g., Chiou and Lee, 2021), successful
HAT systems must leverage the computational power and
sensory capabilities of computer agents to support the human
operator(s)’ decision making, allowing them to offload tasks
onto the agent when appropriate to increase team efficiency
and performance. Trust, generally defined as a willingness to
accept vulnerability based on positive expectations of others
(Rousseau et al., 1998), drives human decision-making when
offloading collaborative tasks (Lee and See, 2004; Mouloua
and Hancock, 2019). Thus, it has become the target variable
of much HAT research seeking to dynamically tune an
agent’s characteristics and behavior to encourage proper trust
calibration. Trust calibration refers to a human operator
maintaining an appropriate level of trust to think systematically
and rationally about the capabilities of the agent (Lee and See,
2004). Other factors like the operator’s own level of workload and
ability must also be considered when calibrating trust. Indeed,
“overtrust” can result in automation-induced complacency which
causes overreliance on an assistive agent in situations the agent is
not equipped to handle (Parasuraman et al., 1993). On the other
hand, “undertrust” induces an operator to reject useful assistance,
thus failing to take advantage of the agent’s computational
potential and increasing their own task load. Consequently,
trust must be dynamically tuned to accurately reflect the agent’s
capability at a given task.

Influencing Trust in Agents: Transparency and

Reliability
In extending trust research and theory to adaptive systems,
several reviews (Lee and See, 2004; Madhavan and Wiegmann,
2007; Parasuraman et al., 2008; Hoff and Bashir, 2015; Glikson
and Woolley, 2020) have identified factors that influence human

trust in an agent, largely based on Lee and See’s (Lee and
See, 2004) “purpose, process, & performance” model of trust
in automation. The more recent of these reviews (Hoff and
Bashir, 2015; Glikson andWoolley, 2020), focuses individually on
trust in robotic, virtual, and embedded AI systems, emphasizing
(i) transparency and (ii) reliability as important trust-building
factors. Transparency refers to the extent to which an agent’s
underlying operation and decision-making is made apparent to
the operator, often through an explanation or rationale (Hoff and
Bashir, 2015). Reliability, or the level to which an automation’s
behavior is accurate and consistent, will always be subject to
“real-world” factors outside of experimental contexts; changes
in reliability are an inevitable consequence of imperfect AI. A
recent study (Hussein et al., 2020) examined the specific effects
of transparency and reliability on trust, finding that trust built
primarily from reliability increased participant reliance on the
agent (in this case, a simulated swarm of drones) compared
to trust built from transparency. Transparency-based trust,
however, increased the number of correct rejections of the agent’s
recommendation (and thereby human performance on the task),
whereas reliability-based trust led to fewer rejections overall
(potentially leading to over-trust or complacency). This finding
aligns partially with other studies concluding that reliability
without transparency can lead to human overreliance on an agent
during a task (Chancey et al., 2015; Wang et al., 2016; Hussein
et al., 2020). Indeed, the goal of transparency is to appropriately
calibrate a human operator’s trust and reliance on the agent
depending on the agent’s level of certainty in the task (see also
Kunze et al., 2019; Bhaskara et al., 2020; Hussein et al., 2020 for
a review). This calibration— e.g., decreasing trust in situations of
low certainty and increasing trust in situations of high certainty—
makes human-agent teams more effective. For example (Kunze
et al., 2019), used a simulated heartbeat to display an autonomous
driving system’s level of certainty which, compared to the control
group, resulted in drivers taking over significantly faster before a
collision event. We note here that there are a number of ways
for an agent to leverage its internal algorithms and output a
confidence level for each recommendation or action given by the
agent (Hagras, 2018; Zhang et al., 2020).

Considering the specific effects of transparency, if the actual
transparency communication is complex to interpret (e.g.,
comprehensive visualizations) prior evidence intuitively suggests
an increase in workload due to a higher demand in information
processing (Helldin, 2014; Kunze et al., 2019; Akash et al.,
2020). However, if the transparency manipulation is quick and
relatively easy to interpret, a measurable increase in workload
may be avoided. This is thoroughly discussed in recent work
by Miller on the lifecycle of trust in HATs, which suggests
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that agent transparency while teams are “in action” should be
designed to eliminate unnecessary workload and allow teams to
focus their efforts on the task at hand (Miller notes that other
times in a team’s lifecycle, such as in a post-action review, are
better times to build trust and show agent transparency in more
complex, information-rich ways) (Miller, 2021). We outline our
investigation of these transparency effects in hypothesis 1 below.

Measuring Trust With Neurophysiological
Sensors
To study and develop trust-calibration systems, most efforts
rely on periodic surveys and behavioral measures of latent
trust such as task compliance (willingness to accept an agent’s
recommendation). While this is a necessary characteristic of
experimental paradigms, further applied development of human-
agent teaming systems in naturalistic settings requires a constant,
undisruptive measure of human trust in the agent independent
of the task itself. One challenging but promising direction is
the use of neurophysiological sensor data and machine learning
to predict levels of trust and other relevant latent variables.
Although fMRI remains the standard for precise measurements
of the functioning human brain, it is not feasible for real-time
measurement during human-agent teaming due to the cost and
physical restrictions (participants must be inside the scanner).
Less invasive technologies have become an attractive alternative
as their lightweight sensors, usually consisting of a headcap with
probes, allow studies in a much wider variety of environments.

In particular, we note that functional near-infrared
spectroscopy (fNIRS) holds great potential for measurement
of trust and other cognitive, social, and affective states in
ecologically valid contexts (Curtin and Ayaz, 2018; Hirshfield
et al., 2019). While the high temporal resolution of EEG
allows for precise measurement of neural events in a non-
invasive package, fNIRS is a more spatially robust technology
that shows future promise with rapidly advancing usage and
analysis techniques. In a recent review, Curtin and Ayaz
identify fNIRS as one of the most promising technologies for
applications of continuous brain monitoring, highlighting the
technology’s ecological advantages and suitability for applied
neuroergonomics (Curtin and Ayaz, 2018). fNIRS uses infrared
light to measure hemodynamic responses that occur in the brain
following neuronal activation— specifically, 1oxyhemoglobin
(HbO) and 1deoxyhemoglobin (HbR)—and thus boasts higher
spatial resolution than EEG and temporal resolution comparable
to fMRI. Furthermore, fNIRS devices are easily configurable,
do not require any gel or special preparation, and can function
wirelessly allowing for virtually no movement restriction while
in use.

Neurophysiological Markers of Trust: Prior Evidence
Since fNIRS remains in its nascent stage when compared EEG
and fMRI, few studies have used the device to measure complex
social constructs, such as trust and suspicion, in the brain. fMRI,
on the other hand, has been used to measure the neural correlates
of trust and distrust in countless studies; this body of literature
is often used by fNIRS researchers as a roadmap in this domain
(Krueger et al., 2007; Dimoka, 2010; Bhatt et al., 2012; Fett et al.,

2014). Results from these studies can be difficult to collate due to
differences in experimental tasks and in the operationalization of
trust. See Hirshfield et al. (2019) for a summary of the primary
functional brain regions implicated in trust and social reasoning
across a wide swath of trust fMRI studies. More specifically, brain
regions including the frontopolar area (FPA), medial prefrontal
cortex (MPFC), dorsolateral prefrontal cortex (DLPFC), and the
bilateral temporoparietal junction (TPJ) have often been linked
to trust, decision making, and interpersonal reasoning (Watabe
et al., 2011; Aimone et al., 2014; Fett et al., 2014; Mahy et al.,
2014; Pushkarskaya et al., 2015; Filkowski et al., 2016; Nozawa
et al., 2016; Hirshfield et al., 2019; Salazar et al., 2021).

Activity in MPFC and TPJ has been specifically linked to
Theory of Mind reasoning, a paradigm that involves perceiving
the intentions of others in relation to one’s own thoughts
and actions (Sebastian et al., 2012; Mahy et al., 2014). Dorsal
MPFC (DMPFC) in particular has been linked to reasoning
and making social judgements about others (vs. oneself) during
decision-making (Mitchell et al., 2005), a process crucial to
evaluating one’s intent when deciding to trust (recall Mayer
et al.’s ability, benevolence, and integrity model of trust). A
large meta-analysis of neuroimaging studies confirmed evidence
for DMPFC’s specificity toward reasoning and judgement about
others, also implicating TPJ in similar social reasoning and
decision-making processes (Denny et al., 2012). Tang et al. (2016)
used fNIRS to measure brain activation of two individuals during
a face-to-face economic exchange and found the right TPJ to
be more active during increased intentionality and collaborative
interactions (Tang et al., 2016).

DLPFC has often been implicated in executive processes,
such as task supervision and affect regulation, and as a
marker of mental demand. Bunce et al. used fNIRS to
investigate hemodynamic responses in the DLPFC in relation
to workload and development of expertise, finding that DLPFC
activation increased with mental demand only to the extent that
participants are able to perform in the task (Bunce et al., 2011).
Subsequent studies have consistently validated and improved
implementations of continuous workload monitoring using
optical neuroimaging (Ayaz et al., 2012; Durantin et al., 2014; Liu
et al., 2017; Curtin and Ayaz, 2018). More recently, McKendrick
et al. used a robust exploratory modeling procedure to specify
a nonlinear (cubic polynomial) relationship between working
memory load and HbO changes in left DLPFC as measured
by fNIRS (McKendrick and Harwood, 2019). Their findings
characterize this complex relationship, suggesting that a change
in workload states (as opposed to just the state itself) can disrupt
cognitive processes and performance.

In line with the findings above, Hirshfield et al. (2019)
conducted a computer-mediated interpersonal survival task in
which participants made survival decisions based on information
from a confederate. They used a General Linear Model analysis
on fNIRS recordings and found the frontopolar area (FPA),
TPJ, and DLPFC significantly more activated during a suspicion
condition than during a trustworthiness condition (Hirshfield
et al., 2019). Furthermore, those authors trained an LSTM
classifier to predict suspicion with an average of 76% accuracy,
using leave-one-participant-out cross validation, highlighting the
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predictive power of these regions-of-interest (ROIs) for future
applications of adaptive trust-modulation systems. These regions
reside in the outer cortex, making them prime targets for fNIRS
research as the NIRS signal cannot penetrate deeper into the
brain. We therefore selected fNIRS optode locations to maximize
coverage of these areas in the present study; Figure 3 depicts this
montage of NIRS source-detector pairs.

Objectives and Hypotheses
Few studies have attempted to classify trust in automated agents
using neurophysiological signals in naturalistic settings. Those
that do exist employ very controlled but hyper-specific tasks
that reduce the participants’ potential decisions and freedom in
approaching the task (Akash et al., 2018;Wang et al., 2018; Gupta
et al., 2019). While promising, these studies are largely unable
to draw any clear functional neuroergonomic conclusions from
their results, highlighting the need for more robust, ecologically
valid, and generalizable studies of neurophysiological modeling
of human-agent trust. Furthermore, much prior work is limited
by its use of HATs with only one human operator. To the
authors’ knowledge at the time of writing, no studies involving
neurophysiological sensing of trust in multi-human HATs exist.
However, this existing literature provides a clear direction and set
of unanswered questions to build upon.

The present study seeks to begin addressing this gap with
an open-ended, highly collaborative, and asymmetrical triadic
HAT task. We aim to investigate the social, cognitive, and
affective hemodynamics of trust in teams of two human
participants and one assistive agent. To accomplish this goal,
we developed a geospatial allocation task in which human and
agent teammates are tasked with exploring real historical crime
data to decide on placements of crime-prevention resources in
a metropolitan area. Drawing from previous research outlined
above, we manipulate transparency and reliability of the agent to
assess the effects on trust, reliance, mental demand, affect, and
team dynamics. We further investigate patterns of activation in
brain ROIs to identify functional correlates of trust that show
promise for future research on detection and calibration of
human-agent trust.

Although the research described above can be complicated
to synthesize, at times using different constructs and
operationalizations of trust, and a myriad of experimental
designs ranging in task complexity, some general trends to
emerge. We examine these trends to formulate and present our
research goals and hypotheses:

Hypothesis 1: When easy-to-interpret transparency yields
calibrated trust, we expect to see high transparency yield lower
mental effort as compared to low transparency—that is, the
decision to trust or distrust an agent action is made with
relative ease when transparency is high. This is opposed to
the case of low transparency, where the operator must devote
mental energy while in a state of suspended judgement, not
yet trusting or distrusting the agent’s recommendation. In line
with prior work (Chen et al., 2011; Hu et al., 2016; Hirshfield
et al., 2019) we expect to see an increase in mental demand
(accompanied by increased arousal) following this state of
suspended judgement, until the participant decides to accept or

reject an agent recommendation. We posit that behavioral, self-
report, and neuroimaging measurements, assessed via fNIRS,
will triangulate to the expected responses above between
transparency conditions. Specifically, we expect response time
and mental demand self-report scores to increase and agent
trust scores to decrease in low transparency conditions as
participants must make a credibility assessment for each of the
agent’s recommendations.

Hypothesis 2: Regarding agent reliability, many articles note
(as is logically expected) that increased automation reliability
is associated with increased levels of trust and reliance (e.g.,
Parasuraman and Riley, 1997; Lee and See, 2004; Wright et al.,
2019). Subsequently, high reliability can lead to a decrease in
mental demand as participants are more inclined to offload
effort onto the agent. We expect agent trust survey scores
and our behavioral measure of reliance (number of agent
recommendations accepted) to be lower when reliability is low.
Following the effects outlined above, we also expect an increase
in mental demand reflected in survey scores and response time.

Hypothesis 3: Toward our eventual goal of real-time trust
measurement and adaptation, we seek to evaluate the predictive
power of neuroimaging features by focusing on short-term
moments of trust. Based on prior fNIRS research, we expect to see
significant increases in activation across brain ROIs leading up to
non-trusting decisions. We postulate that activation in DLPFC,
FPA, and TPJ will be identified as useful moment-level predictors
of trust in the agent.

METHODS

Data Collection
Participants
Participants were N = 38 students (average age 21, 53% male)
from a large public university. Students completed the task
in teams of 2 participants and 1 agent, for a total of 19
teams/sessions. Participants were compensated monetarily for
their time ($15/h) along with a variable cash bonus based on task
score. Recruitment and experimental procedures were approved
by the university’s Institutional Review Boards. Participants
completed informed consent forms upon arriving at the lab.

Testbed Environment
The experimental task was conducted using the Computer-
Human Allocation of Resources Testbed (CHART, depicted
in Figure 1), developed by the researchers for the present
study. CHART allows a human-agent team to collaborate on
a crime mapping task, in which participants search through
past spatiotemporal crime data in Denver, CO and allocate a
limited number of crime prevention resources throughout the
city. Each team’s shared goal is to “catch” as many crimes as
possible through resource allocation. The interface consists of
two displays, shown in Figure 1.

The right display is an interactive crime map that allows
participants to select a range of past dates and category(s) of
crimes (e.g., traffic incidents, assault, theft) to overlay on a map
of Denver. Each user can explore their crime map independently.
All crime data included is publicly available via the Denver
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FIGURE 1 | Screenshot of each participant’s dual monitor screen. The right side monitor has each participant’s map for searching crime data. The left side monitor is

a shared map where each teammate (human and AI) dynamically places, moves, or deletes pins (their own or teammates’ pins).

Police Department. The left display consists of a shared map (i.e.,
changes on this map are reflected across all teammates’ screens)
on which participants place their resources (represented as pins),
as well as a sidebar detailing the team’s current cash bonus as well
as each individual’s contribution, based on their performance on
prior rounds. Participants allocate resources by placing pins on
the shared map, as well as moving and deleting pins.

Two kinds of resources, differentiated by pin color, are
available and each correspond to a unique set of crimes. Green
pins, labeled as “surveillance/monitoring” resources, are able
to prevent non-violent crimes; red pins, or “first responder”
resources, address violent crimes. To simulate expertise in a
“real-world” collaboration, each team member is given access to
different categories of historical crime data and must therefore
share knowledge with other teammates to perform well. Table 1
contains a complete list of crimes in each category and which
user can access them. The crime layers available to each user are
selected to ensure that both participants have roughly equivalent
amounts of information (i.e., a similar number of total crime
events). Participants have an allotment of 6 green pins and 6 red
pins (shared between the two) to place during each round. The
rest of the pins are placed by the “AI” agent (detailed below) and
can be moved by either participant.

AI Agent and Manipulations
CHART also allows for the use of a pre-programmed (wizard-
of-oz-style) “AI” agent, which was used in the present study
to simulate a multiparty human-agent team. Throughout each
round, the agent places 6 green pins and 6 red pins in
alternating order. Participants are told that the agent is one
of their team members and its pin placements do contribute
to their cumulative cash bonus. When the agent places a pin,
an alert tone is emitted through the computer speakers, and
a textbox appears in which the agent announces its placement
and, depending on the experimental (transparency) condition,
provides a justification. Pins placed by the agent can be moved by
either participant, but not deleted. In this study, we manipulated
the reliability (high/low) and transparency (high/low) of the
agent teammate.

Given that transparency also includes an indication of
certainty (see Bhaskara et al., 2020’s review), participants could

also view the agent’s certainty by hovering over the pin with their
mouse. In high transparency conditions, a pop-up text message
indicated that certainty levels were either “high or “medium.” In
low transparency conditions, certainty levels were always listed as
“unknown.” Sincemachine learning algorithms have several ways
for a model to provide information about its level of certainty for
a given prediction, this information is deemed a useful way for
agents to provide information about their confidence in a given
prediction (Zhang et al., 2020). In high reliability conditions the
agent’s internal representation for each of 12 pin placements was
“high” for 9 days and “medium” for 3 days. Conversely, certainty
levels for low reliability conditions were “medium” on 9 days and
“high” on 3 days. Participants are told in their instructions that
“some dates are easier than others for the AI to find patterns
and trends (for example, sometimes there’s not enough past crime
data to make a clear prediction).” Figure 2 shows an example of
the AI’s pin placements under each condition.

Experimental Procedure
Upon arriving at the lab, participants completed informed
consent forms and were then led to separate rooms each with
a desk and desktop computer on which they completed the
task. They were first instructed to complete a pre-survey on
the computer, after which the experimenter opened a slideshow
presentation containing instructions on how to complete the
task (with text descriptions and short animations of possible
actions). Participants were instructed to read through the
slideshow at their own pace. After reviewing the instructions
each participant independently completed a CHART training
session consisting of two shortened (2min) rounds, during which
the agent places only 2 pins, in order to learn how to use the
CHART interface.

Once both participants completed their training sessions,
they were each outfitted with a NIRx NIRSport2 headcap, a
Shimmer GSR+ sensor, and calibrated a Tobii 4c mounted eye-
tracker. Next, a Zoom call between the two participants was
initiated to facilitate communication. Participants were then
directed to click “I’m Ready” on the testbed when they were
ready to begin, and they were left alone in their respective
rooms. The first round began once both participants select “I’m
Ready” and ended when the 6-min timer reached 0. After each
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TABLE 1 | Type of crime, associated crime layers in the testbed per user, and corresponding color of resource pin.

Crime category Layers Color of resource pin

Violent crime • User 1: aggravated assault, burglary, larceny Red

• User 2: murder, robbery, arson

Non-violent crime • User 1: theft from motor vehicle, drug/alcohol Green

• User 2: traffic accident, auto theft

Participants could filter the crime map by selecting which categories of crime to display.

FIGURE 2 | Example of transparency (high/low) and reliability (high/low) manipulations in experiment.

round, a score table presented each individual’s and the team’s
total bonus earned. Participants then selected a “start survey”
button which opened a Qualtrics window with a short post-
round survey (average survey completion time = 106 s). Once
both participants completed their surveys, they were able to select
“I’m Ready” once again to begin the next round. This procedure
was repeated until the conclusion of the 8th round, after which
a final post-round survey was completed and the experimenters
removed the sensors and paid participants for their time plus
bonus earned.

Measures
Self-report surveys, administered after each experimental round,
were selected as dependent measures of emergent individual and
team states, including affect, trust, mental demand, and team
processes. Due to the length of the study, we chose only the items
with the highest factor loadings to be able to assess constructs
of interest while minimizing time spent on surveys. Behavioral
measures were extracted after data collection by a script using
CHART’s comprehensive event logs. Timestamps were used
to sync neurophysiological time series data with experimental
rounds and events.

Surveys

Trust in the Agent
Trust was assessed using four items from Merritt’s (2011) six-
item scale of trust in automation. These items were selected to
be straightforward and adaptable tominimize surveys’ disruption
of the task. Example items include “I trust the AI agent on my
team” and “I have confidence in the advice given by the AI agent”
(Merritt, 2011). The final “trust in the agent” score was computed
as an average of the four items. Cronbach’s alpha for these items
was α = 0.88.

Trust in Teammate
To keep post-round surveys concise, trust in teammates was
assessed simultaneously with trust in the agent by modifying
items from the above scale to refer to the human teammate.
Example items therefore read “I trust the other person on my
team” and “I have confidence in the advice given by the other
person on my team.” Responses were averaged across the four
items. Cronbach’s alpha for these items was α = 0.91.

Team Processes
We assessed team processes under the framework proposed by
Marks et al. (2001) by selecting the top factor loading items from
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each section of Mathieu’s team for brevity. We included items
to measure coordination, conflict management, goal monitoring
(taken from “Monitoring” items), strategy formulation, and
cohesion (from “Affect Management” items) (Mathieu et al.,
2020). Responses were averaged across the five items. Cronbach’s
alpha for these items was α = 0.93.

Mental Demand
Mental demand was assessed using the corresponding item from
the NASA-TLX using an on-screen slider. Scale scores ranged
from 0 (“very low”) to 20 (“very high”). Previous work has
shown this subscale to be most closely linked to task demand
(McKendrick and Cherry, 2018).

Perceived Performance
Similarly, perceived performance was assessed using the
performance item from theNASA-TLX using an on-screen slider.
Scale scores ranged from 0 (“very low”) to 20 (“very high”).

Valence and Arousal
Russell (1980) provides a classic, circumplex model of affective
states which is defined by two coordinate dimensions of valence
and arousal (Russell, 1980). We used measurement scales that
were based on this work and found in more recent studies in
information technology (Hussain et al., 2011; Eloy et al., 2019).
Using Likert scales, participants rated their emotional valence on
a scale from 1 (“very negative”) to 5 (“very positive”); they also
rated their emotional arousal on a scale from 1 (“very sleepy”) to
5 (“very active”).

Behavioral Measures

Reliance
Reliance on the agent was measured behaviorally— by
counting the number of pins placed by the agent that each
individual subsequently moved during a round. In other
words, we measured how often individuals rejected the agent’s
recommendation. Given that the agent was programmed to
place 12 pins in each round, we subtracted the number of pin
movements from 12, so that higher scores were associated with
higher reliance.

Response Time
Response time was chosen as a measurable correlate of mental
demand (Gvozdenko and Chambers, 2007; Akash et al., 2020) by
calculating the average time lapse (for each individual) between
the agent placing a pin and the individual moving the pin. Only
cases where the pin was moved were taken into consideration,
which resulted in the few individuals who never moved a pin
missing a reaction time value.

Neurophysiological Sensors
Data were recorded on 38 participants using 2 NirSport 16x16
machines (NIRx, Berlin, Germany) with a sampling rate of
5.0863Hz. The montage of 42 channels was divided into 4
regions-of-interest (ROIs): frontopolar, DLPFC, MPFC, and TPJ
regions using fOLDToolbox (Morais et al., 2018). Figure 3 shows
placement of channels and their assigned ROIs.

RESULTS

Experimental Results
First, a manipulation check was performed by regressing several
outcome variables on transparency and reliability to see if the
manipulations had direct effects on human teammates’ social,
cognitive, and affective states. We used linear mixed-effects
modeling using the R package lme4 (Bates et al., 2015) to
account for the repeated measures (multiple rounds) and nested
(individual participants within teams) structure of the data.
In addition to transparency and reliability conditions, round
number (recall there were 8 rounds for each team) was included
as a covariate to control for effects of time. Nested random effects
took the form (1|team/participant) as similarities are expected
between members of the same team and measures from the same
individual. Table 2 presents results across dependent measures.

Do Agent Transparency and Reliability Manipulations

Affect Trust and Outcome Measures?

Transparency
Following H1, trust in the agent was lower (B=−0.30, p < 0.01)
in low transparency compared to high transparency conditions.
However, no effect of transparency was seen on mental demand
(B=−0.37, p < 0.128).

Low transparency also corresponded to decreased teammate
trust (B = −0.13, p = 0.01) and team processes (B = −0.15, p
< 0.01). Valence and arousal were not affected by transparency
as we expected. These results suggest that omission of agent
communication disrupted the cohesion of both human-human
and human-agent dynamics.

Reliability
Average response time in seconds (B = 13.88, p = 0.02)
significantly increased and mental demand scores (B = 0.09, p
= 0.06) showed a marginal effect when agent reliability was low,
while perceived performance decreased (B = −1.07, p < 0.01).
Results indicate that lower agent performance also increased
perceived difficulty and participant mental demand, but did not
significantly influence teammate trust (B = −0.04, p = 0.41)
or team processes (B = 0.01, p = 0.80). Lastly, we found lower
agent reliability negatively proportional to emotional valence (B
= −0.29, p < 0.01) but not arousal (B = −0.13, p = 0.12).
Reliance on the AI (measured by the number of pins accepted),
however, did not vary significantly between conditions as we
predicted in H2 (B=−0.32, p= 0.12).

Analysis of interaction effects between transparency and
reliability manipulations did not return any significant results
across outcome measures.

fNIRS Results
To examine the neural markers of trust-relevant agent
manipulations, we first analyzed fNIRS data for each entire round
to match the granularity of our experimental manipulations and
the survey measures administered at the end of each round.
Our goal was to identify specific differences in brain activity to
better understand the neural processes involved in human-agent
teaming under different conditions. We then investigate the
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potential for brain activation features to states of trust under
varying agent behaviors.

fNIRS data were processed in NirsLAB (V2019.04, NIRx).
All rounds were truncated to 1896 timeframes (373s) to reduce
variability among participants as performed by other researchers
(Hawkins et al., 2018). Each time series was truncated to only
include 5 s before the first round and 32 s following the last round
to include the full hemodynamic response. Data quality was
checked for coefficient of variation (CV), a signal-to-noise ratio
measure, and channels with higher CV were visually examined
(visual inspection clearly reveals whether a single motion artifact
is skewing CV or the optode did not have adequate contact with
the scalp); if too much noise was detected, they were excluded
from analysis. CV is a widely used procedure for the filtering
of raw light intensity measurements by fNIRS (Schmitz et al.,
2005; Schneider et al., 2011). We chose a CV cutoff of 15% and
therefore channels with a CV equal or >15% were more closely
inspected, as used by other researchers (Piper et al., 2014; Pfeifer
et al., 2018).Three participants were excluded from analysis:
two participants had missing data due crashing of the NirSport
and one other participant had all 42 channels marked as “bad”
with CV equal or higher than 15%. We followed pre-processing
guidelines outlined by leaders in the fNIRS community in
their 2021 publication (Yücel et al., 2021). A pre-whitening
autoregressive model-based algorithm (Barker et al., 2013) was
applied to the data to correct for motion and serially correlated
errors, as recommended by Yücel et al. Prewhitening the signal

before analysis removes confounding signals like motion artifacts
and physiological oscillations (such as the Mayer wave). This
specific prewhitening algorithm requires that no prior traditional
filtering is applied (low-pass, high-pass, bandpass, etc.), therefore
we applied no filter beforehand.

A General Linear Model (GLM) analysis performed on
round-level fNIRS HbO and HbR data obtained ‘beta’ values,
describing the goodness-of-fit of observed brain activity to an
expected hemodynamic response function (HRF). For detailed
information about fNIRS analyses using the GLM, please see
Barker et al. (2013), Tak and Ye (2014), and Yücel et al.
(2021). The GLM was fit to each NIRS channel individually
per participant, resulting in one beta value for each round-
participant-channel combination. HbO beta values have a
positive relationship with brain activity, while HbR values have
a negative relationship with brain activity. When both values are
anti-correlated (e.g., positive HbO beta values and concurrent
negative HbR beta values), there can be high confidence in the
direction of effect on brain activity. Contrast analysis performed
in NirsLAB reveals which brain areas significantly differed in
activation across multiple conditions.

Do Agent Transparency and Reliability Link to

Changes in Activation Across ROIs?
Main effect comparisons were performed to evaluate the effects
of transparency and reliability on HbO and HbR (Figures 4–7
and Tables 3–5). Contrasts identify the difference in activation

FIGURE 3 | fNIRS Montage and ROI Mappings. Each channel consists of a source-detector (S#-D#) pair, represented by colored lines.
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between conditions, with positive HbO values indicating greater
activation during low transparency or reliability compared to
high transparency/reliability conditions. Conversely, positive
values in HbR contrasts denote decreased activation in low vs.
high conditions.

Transparency Contrasts
HbO: As shown in Figure 4, the contrast of [transparencylow-
transparencyhigh] resulted in significant HbO increases,
suggestive of increased brain activation, in two channels located
in the frontopolar region (see Table 3 for specific statistical
values). The contrast also resulted in one channel of deactivation
(e.g., decreased HbO) in the DMPFC.

HbR: HbR signaled increased activation in DLPFC during
low transparency conditions, consistent with HbO results and
supporting H1 (Figure 5 and Table 4). FPA channels primarily
showed greater activity in low transparency conditions, with HbR
indicating deactivation of one channel. Consistent deactivation
of DMPFC channels was revealed by both HbO and HbR during
low transparency.

From these results, omission of agent explanations caused
increases in DLPFC and some FPA channels. HbO and HbR
both indicate that dMPFC was more active when transparency
explanations were present.

Reliability Contrasts
HbO: Reliability was found to significantly affect only 1 channel
(Figure 6, Table 5). HbO contrasts showed increased DLPFC
activity under low reliability, consistent with the expected
increase in mental demand in H2.

HbR: No significant difference in HbR was detected between
reliability conditions, as seen in Figure 7.

Can Short Term Measures of Brain Activation Be

Used to Predict Event-Level Trust in the Agent?
Our next research question pertained to whether we can identify
neural correlates of participant trust in the agent on a shorter
timescale. In other words, can fNIRS data be used in real-time
machine learning models to predict whether or not a human
is likely to rely on an AI suggestion? If an intelligent system
knows with high confidence that a human user is likely (or
unlikely) to rely on an agent’s recent decision, then it may be
desirable to prompt the human accordingly (e.g., “Don’t forget!
The agent is not very confident in this most recent decision, but
it was confident last time.”). To address this, we extracted fNIRS
data from the window of time between the agent placing a pin
and a participant moving the pin (rejecting its placement) of
75 timeframes (∼15 s). As a reminder, after the agent placed a
pin, the humans were able to decide whether to accept the pin
placement. Our behavioral logs of reliance and response time
provided behavioral measures of whether the participants moved
(or did not move) the most recent pin placement, and how long
it took them to move a pin (if they elected to move the pin),
respectively. For a proper baseline comparison, we restricted our
data to instances of two possible events: (1) the agent places a
pin and a participant moves that pin before the agent places its
next pin; (2) the agent places a pin, no pin is moved before the
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FIGURE 4 | HbO contrasts between low transparency and high transparency conditions: (TLowRLow
+TlowRHigh)–(THighRLow+THighRHigh). Left image displays all

t-values, right image displays t-values that are statistically significant (p < 0.05). Red coloration indicates more activation (higher HbO) during low transparency

conditions compared to high transparency. Conversely, blue indicates more activation (lower HbO) during high transparency conditions.

FIGURE 5 | HbR contrasts between low transparency and high transparency conditions: (TLowRLow
+TlowRHigh)–(THighRLow+THighRHigh). Left image displays all

t-values, right image displays t-values that are statistically significant (p < 0.05). Red coloration indicates less activation (higher HbR) during low transparency

conditions. Blue coloration indicates more activation (lower HbR) during high transparency conditions.

agent places its next pin, and the agent’s pin is never moved
during that round. In other words, we directly compared brain
activity between cases where participants rejected and accepted
the agent’s placement.

Brain data from 15 s leading up to but not including the
participant moving a pin (distrust case) were compared with
data from equivalent intervals where the pin was accepted and
never moved (trust case). Trust events for each participant were

matched with an equal number of distrust events from the same
individual. As not every participant exhibited the same number of
events fitting these constraints, we first averaged each individual’s
trust and distrust time series to ensure that individuals were
not disproportionately represented in analyses. For each ROI,
paired sample t-tests between trust and distrust events were then
performed for HbO/HbR averaged across the 15 s of each event
(resulting in one data point per participant per event).
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FIGURE 6 | HbO contrasts between low reliability and high reliability conditions: (TLowRLow
+THighRLow)–(TLowRHigh+THighRHigh). Left image displays all t-values, right

image displays t-values that are statistically significant (p < 0.05). Red coloration indicates more activation (higher HbO) during low reliability conditions compared to

high reliability. Conversely, blue indicates more activation (lower HbO) during high reliability conditions.

FIGURE 7 | HbR contrasts between low reliability and high reliability conditions: (TLowRLow
+THighRLow)–(TLowRHigh+THighRHigh). This image displays all t-values as there

were no channels that were statistically significant (p < 0.05). Red coloration indicates less activation (higher HbR) during low reliability conditions. Blue coloration

indicates more activation (lower HbR) during high reliability conditions.

Figure 8 presents averaged oxy- and deoxyhemoglobin time
series across all participant’s trust and distrust cases per ROI,
along with results of paired sample t-tests for significant or
marginally significant ROIs. Significant differences are seen
under high transparency for DMPFC HbO (t = 2.75, p = 0.01)
and marginally for HbR (t = −1.97, p = 0.06), under low
reliability for FPA HbR (t = 2.04, p = 0.05), and under high
reliability for DMPFC HbO (t = 3.10, p < 0.01).

Graphs of average HbO and HbR time series show generally
higher levels of DMPFC activation leading up to the pin
movement in low trust scenarios. Specifically, mean HbO was
significantly higher in distrust cases under high transparency and
high reliability conditions. Mean HbR supports this trend with
a marginally significant effect under high transparency. Lastly,
HbR indicated lower FPA activation associated with distrust in
low reliability conditions.
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TABLE 3 | Oxyhemoglobin contrast results between GLM output of low

transparency and high transparency conditions

(TLowRLow
+TlowRHigh)-(THighRLow+THighRHigh).

Channels (p < 0.05) ROI T-stat value

4 DLPFC 3.2763

13 DMPFC −2.7420

25 Frontopolar 2.0744

49 Frontopolar 2.6822

Significant channel number, assigned region of interest, and t-statistic as reported by

NirsLab GLM contrast analyses.

TABLE 4 | Deoxyhemoglobin contrast results between GLM output of low

transparency and high transparency conditions

(TLowRLow
+TlowRHigh)-(THighRLow+THighRHigh).

Channels (p < 0.05) ROI T-stat value

1 Frontopolar 2.3522

2 Frontopolar −2.2729

4 DLPFC −2.1098

7 DLPFC −2.3038

11 DMPFC 2.2722

Significant channel number, assigned region of interest, and t-statistic as reported by

NirsLab GLM contrast analyses.

TABLE 5 | Oxyhemoglobin contrast results between GLM output of low reliability

and high reliability conditions (TLowRLow
+THighRLow)-(TLowRHigh+THighRHigh).

Channels (p < 0.05) ROI T-stat value

9 DLPFC 2.1534

Significant channel number, assigned region of interest, and t-statistic as reported by

NirsLab GLM contrast analyses.

DISCUSSION

We presented initial results validating and investigating the
behavioral and neural outcomes of an ongoing novel, open-
ended, multi-human agent teaming study. Our aim is to
understand howHATs can be improved by uncovering how agent
transparency and reliability affect human teammates’ trust and its
neural correlates.

Findings
Experimental and Behavioral Findings
We used linear mixed-effects modeling to reveal the main
effects of transparency and reliability and self-reported and
behavioral measures of trust, reliance, mental demand, perceived
performance, and affect. Controlling for time (round) and
individual differences with random intercepts for teams and
participants, both the transparency and reliability manipulations
were found to have a nearly equivalent impact on trust. As
expected, regression results indicate that the agent’s performance
and explanations both played a role in fostering humans’
trust. However, the non-significant effect on reliance (number

of agent pins accepted) suggests that the transparency and
reliability manipulations affected users’ internal (self-reported)
trust perceptions but did not have a strong effect on their trusting
actions (accepting the agent’s pin) during the task. This could
be due to the added interpersonal dynamics of our study vs.
previous HAT experiments. In teams consisting of two humans
and one agent, individuals have more sources of information
and communication than when they are working solely with the
agent. Having multiple humans working toward a shared reward
requires a shared judgement process, as both participants must
generally agree on their decision to accept or reject the agent’s
pins. Thus, it must be considered when interpreting these results
that effects depend on one’s human and agent teammates. This
dependence may reduce the sensitivity of our reliance metric,
which could also explain the lack of effect on reliance.

Notably, we found that agent transparency did influence
interpersonal measures, with participants reporting lower
trust in their human teammate and lower team cohesion
when transparency was low. We hypothesize that this effect
results from a team-level degradation of communication.
Low transparency removes much of the agent’s ability to
communicate, which seems to weaken the team’s sense of
cohesion and ability to coordinate (both items assessed in
the team processes survey). Based on collaborative problem
solving and dynamical systems literature, this effect is to be
expected in a team of three humans: in a highly collaborative
task like the present study, effective teaming requires parties
to share their individual knowledge to establish a common
ground, monitor progress, and develop joint solutions (Roschelle
and Teasley, 1995; Eloy et al., 2019; Sun et al., 2020; Stewart
et al., 2021). Disrupting necessary communication dampens
these emergent team-level processes, hindering performance
outcomes (Eloy et al., 2019; Stewart et al., 2019). This
phenomenon, however, had not yet been shown to carry over
in hybrid HAT contexts. Our results provide evidence that
similar dynamic processes may arise in HATs, as changes in the
agent’s communication behavior impacted human teammates’
perceptions of each other and the team as a whole. Further
work confirming this effect may be key to development of
effective assistive agents that maintain team cohesion in hybrid
multiparty HATs.

Low reliability conditions alone resulted in significantly
slower response time, a behavioral sign linked to higher mental
demand during the task. Survey scores support this finding,
showing a marginally significant trend of increased mental
demand in low reliability conditions. Subjects also perceived
their team as less successful in accomplishing their goal
in this condition. These results intuitively indicate increased
task difficulty and mental demand when the agent behaves
unreliably. Additionally, they confirm our expectation that the
agent’s delivery of transparency information does not increase
mental demand as has been reported when transparency
explanations are complex to interpret. Lastly, low reliability
significantly degraded emotional valence. This rise in negative
feelings may be linked to the increase in task difficulty and
mental demand caused by an unreliable agent. We also note
that we did not see an increase in arousal often associated
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FIGURE 8 | Average HbO and HbR time series after agent pin placement and before the pin was moved (distrust). Dashed lines represent trust (pin never moved)

cases, solid lines represent distrust (pin moved) cases, and ribbons represent standard error range. The gray vertical line marks the moment at which the pin was

moved (for distrust cases) at 15 s. Results of paired-sample t-test are given for significant or marginally significant ROIs.

with an increase in mental demand during trust judgements
(Chen et al., 2011, p. 211; Hu et al., 2016; Hirshfield et al.,
2019).

Further analysis did not reveal any significant interaction
effects between transparency and reliability; the data shows
that transparency and reliability had a similar, additive
effect on reported trust when manipulated together. More
extensive modeling procedures are required to piece apart
the linear and non-linear effects of time and its potential
interaction with the manipulations. Effects of manipulations
in HAT studies are generally very context-dependent due to
task differences, emphasizing the importance of considering
these initial trends when interpreting the following analyses
and comparing with other studies. With this in mind, we
examine fNIRS results with an understanding of the saliency

of transparency and reliability manipulations on agent trust,
mental demand, affective valence, interpersonal trust, and
team processes.

Block-Level fNIRS Contrasts
Block-level Oxyhemoglobin contrast analyses highlighted brain
regions sensitive to agent transparency and reliability. Contrasts
between transparency conditions revealed significant DLPFC
and FPA activation and significant DMPFC deactivation in low
transparency conditions. Deoxyhemoglobin contrasts provide
mixed results with no consistent trend across the 2 significant
FPA channels. However, HbR does show activation in DLPFC
and deactivation in DMPFC congruent with HbO results. While
HbR is generally less understood and relied on in fNIRS
literature, it is noteworthy to acknowledge that low transparency
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results in greater activation for both HbO andHbR in the DLPFC
and part of the FPA regions, suggesting an interconnectivity
between the two regions when transparency is low.

FPA and DLPFC activity is associated with high-workload
task processing, which aligns with consistent activation during
low transparency as participants had to independently process
information for credibility assessments due to the lack of agent
explanations. This is also consistent with prior fNIRS research
implicating FPA and DLPFC in a state of suspended judgement
and increased mental demand when trying to determine veracity
of a teammate’s recommendation (Hirshfield et al., 2019; Palmer
et al., 2019).

Based on existing functional research, less activation of
DMPFC in low transparency compared to high transparency
conditions, as seen in Oxy- and HbR contrasts, implies a
reduction in social reasoning and judgements about others. The
lack of information in low transparency conditions could explain
this effect, suggesting DMPFC was recruited specifically when
processing information given by the agent to judge its intent
and credibility. When transparency information is missing,
individuals in a state of suspended judgement rely more heavily
on their own knowledge as opposed to the agent’s. Thus, when
transparency information was present, participants may have
needed greater DMPFC activity to process and reason about
information provided by the agent.

Contrasts of reliability conditions only identified one
significant channel, corresponding to DLPFC HbO. This effect is
no surprise given the evidence of DLPFC activation in periods
of higher cognitive load (McKendrick and Harwood, 2019)
and increased suspicion (Hirshfield et al., 2019). As discussed
under Experimental and Behavioral Findings, low reliability
corresponded to decreased trust and increased response time,
self-reportedmental demand, and perceived task difficulty.When
the agent is unreliable and is performing poorly, participants
must perform trustworthiness assessments of the AI pin
placements. This could be responsible for increased DLPFC
activation as reliability was manipulated. Increased activation
also points to the DLPFC’s role in regulation of negative emotion
(Yang et al., 2016), as survey results linked low reliability
conditions to negative valence. However, further work is needed
to specify these effects and better characterize this pattern of
DLPFC activation.

Regarding the lack of reliability-sensitive channels compared
to transparency contrasts, we note that participants were only
presented with their team’s and the agent’s scores at the end
of each round. As a result, gauging reliability requires more
careful evaluation of the agent’s recommendations during each
round. This may explain why we observe a less salient difference
in block-level brain activation between reliability conditions
compared to transparency. This might also explain why reliability
effects are more noticeable in survey results, as fNIRS data is
recorded during each round as opposed to surveys taken after
receiving performance scores.

These contrasts allow us to begin piecing apart the large-
scale effects of transparency and reliability on neural activity.
Based on our results, it appears that decreasing the agent’s
trustworthiness and subsequently increasing mental demand

through transparency and reliability manipulations successfully
recruited DLPFC activation. While both manipulations were
linked to neural activations, transparency contrasts suggest a
nuanced role of DMPFC in judging information provided by
the agent. These results identify potential neural correlates
of human-agent trust under different conditions, simulating
a realistic collaboration scenario that could benefit from
applications in neuroergonomics of intelligent trust sensing and
modulation. As we discuss potential functional explanations for
our fNIRS results, we reiterate that more studies are needed to
confirm and further specify these effects.

Event-Level Neural Correlates for
Real-Time Trust Prediction
We dissected event-level instances of trust to narrow in
on the large-scale effects seen in round-level analyses. We
believe our initial results are compelling, showing that activity
in DMPFC varied between high and low trust decisions in
some conditions. Notably, mean HbO and HbR (marginally
significant) in DMPFC indicated higher activity before low trust
events in high transparency conditions. This increased activation
may be a signal of increased skepticism as the participant
makes a judgement about the agent’s trustworthiness based
on information provided. In our block-level contrast results
HbO and HbR also showed increased DMPFC activity in high
transparency conditions as it was recruited to process the agent’s
explanations when making trust decisions. Event-level results
support this claim by suggesting that if the agent gives an
explanation, the DMPFC is more active when the individual
ultimately decides the agent’s placement is not trustworthy.
The same significant effect was also seen under high reliability
conditions. A potential interpretation of this effect is that under
high reliability, individuals are aware that the agent might be
trustworthy and must more carefully consider the details of the
agent’s suggestion. Because teams work toward a shared reward,
accepting the agent’s pin placements could seem riskier to an
individual than moving the pin to another location of their
choosing. In this case, the reliability of the agent’s previous pin
placements (as opposed to explanations in the high transparency
case) is the information that must be considered when deciding
to accept or reject the current pin.

FPA HbR was also a significant predictor of trust in low
reliability conditions, with less FPA activation in low trust cases.
Although block-level results showed no significant FPA channels,
this effect does appear to contradict what we might expect given
that low trust generally equated to higher mental demand. The
difference in event-level activation suggests that when the agent
clearly performed poorly, FPA was significantly less active in
making trust decisions when the pin was rejected. Considering
the expected increase in cognitive load from low reliability
conditions, this could indicate task overload, where a drop in
activity, accompanied by a drop in performance, is observed
following a high mental demand threshold (Bunce et al., 2011).

A trust-sensitive adaptive system must be able to assess the
state of the environment while processing neurophysiological
sensor data to choose the most appropriate action. If the operator
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of a self-driving vehicle is manually driving on an unfamiliar
road in a state of low trust and high mental demand, any
communication or suggestion from the vehicle might overload
the driver, hindering performance and damaging future trust
even if the vehicle has high confidence. A system’s reliability,
transparency, and certainty level, among other factors, not only
determine the driver’s current state of trust, but also determine
how the system’s next action will be received.

Applications and Considerations in
Neuroergonomics
The findings presented in this paper begin to detangle the neural
dynamics of trust and teaming in an open-ended collaborative
task of 2 humans with 1 agent. fNIRS devices are particularly
suited for ambulatory applications and online analysis, and we
believe real-time data at both the block-level and event-level
can realistically be used to predict states of human trust and
mental demand. As HATs become more common and accessible,
we will begin to see more hybrid teams of multiple humans
with one agent, or multiple humans with multiple agents. These
systems will therefore need to adapt to monitor states of multiple
individuals along with emergent team-level states under different
environmental constraints. Identifying significant markers of
trust and team processes, such as DLPFC and DMPFC, in
different agent behavior contexts is a vital step to building
adaptive systems to improve efficiency performance of human-
agent collaborations.

As our results demonstrated, changes in agent behavior
can invert or suppress an expected effect. To generalize
across individuals and their ever-changing environments, trust-
sensitive systems must monitor and adapt to these shifting
contexts to maximize team performance. For example (in the
context of this study), an adaptive extension of the CHART
assistive agent might sense increased DLPFC activation in its
teammates, recognize this as high mental demand, and begin
suggesting pin placements with explanations to encourage its
teammates to offload tasks onto it. If the agent subsequently
detects a spike in DMPFC HbO following pin placements,
the agent might predict that its teammates are in a low trust
state and are performing taxing trustworthiness assessments
of each pin, prompting the agent to reconsider its method of
explanation. Indeed, actions and interventions must be carefully
considered in HAT implementations to optimize cognitive load
while maintaining performance, engagement, and comfort. To
that end, we direct readers to a recent paper (Dehais et al.,
2020) proposing a dynamic model of human workload and
performance, as determined by arousal and task engagement. We
believe adaptive systems designed to work toward a “comfort
zone” of workload will more effectively promote productive,
extended collaborations by avoiding human overload or
disengagement over time. Coupling this model with an awareness
of trust will result in a flexible system capable of adapting to and
appropriately tuning the social, cognitive, and affective states of a
team to fully utilize the computational power and contribution of
assistive agents.

We aim (and encourage others) to extend the foundation
of results in this article to begin implementation of a
real-time adaptive trust-modulation system built on a
reinforcement learning framework. While beyond the scope
of this initial paper, we want to highlight the potential of
existing mathematical frameworks in complex decision-
making applications. Specifically, partially-observable Markov
decision process (POMDP) models are well-equipped to
deal with the inherent uncertainty of human behavior, and
are thus gaining traction in human-computer interaction
research. POMDPs assume underlying states are not
directly measurable, instead considering probabilities of
state transitions given the agent’s actions as well as a history
of states. The model is given a reward function, rewarding
or penalizing certain state transitions, and learns to choose
the action at a given state that maximizes expected rewards.
The CHART agent in the example above might then be
rewarded when human teammates are in the “comfort zone”
of workload and trust levels are calibrated to match the agent’s
certainty level.

With any process attempting to classify human states with
sensor observations, inherent ambiguities arise due to individual
differences, histories, high-dimensional interpersonal social
dynamics, the multi-faceted nature of trust, and our incomplete
understanding of the human brain and neural circuitry. For
this reason, POMDPs and similar models are gaining increasing
attention for their built-in assumptions of uncertainty. We
highlight this general approach because individually accounting
for these countless complexities would be intractable and
may reduce generalizability. As collaborative HAT systems
become more sophisticated, it is increasingly important for
researchers and designers to account for these uncertainties
to improve effectiveness and appropriately interpret effects. As
we continue collecting data and identifying neurophysiological
markers of trust, mental demand, and other states, we aim
to develop a robustly adaptive agent that can learn to
promote effective human-agent collaborations across a variety
of contexts.

Limitations and Future Work
Our work has six main limitations to be addressed in the future.
First, we address experimental limitations that arise due to the
length of the study. The NIRx sensors, while non-invasive, can
cause discomfort over long periods due to the tightness of the
headcap and pressure from the optode probes against the scalp.
During initial pilot studies we found 2 h to be the maximum
amount of time participants could comfortably perform the task.
Due to the tradeoff between time spent in the task with fNIRS
sensors and time spent on post-task surveys, we used only the
top factor loading items to assess constructs of interest across
8 full rounds. We acknowledge that paring down surveys can
reduce interpretability, and that future work should leverage
a more robust set of surveys measures to better disentangle
observed effects. Similarly, behavioral measures of reliance and
response time indirectly measure latent variables like trust and
workload, which limits what conclusions can be drawn. Next,
our study is an ongoing multimodal data collection effort at a
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single university, so results presented in this article are limited in
sample size and demographic representation. Third, processing
large data sets from multiple sensors (galvanic skin response,
eye-tracking, and speech data are recorded along with NIRS
data during the task) is time-consuming and computationally
demanding, so we constrained the scope of this article to main
effects of one modality to allow time for analysis. In particular,
we note that event-level paired sample t-tests were performed
on a restricted (undersampled majority class) dataset, and future
efforts to apply machine learning will better deal with this
class imbalance for a more robust dataset. Fourth, we have
yet to investigate the rich dynamics of trust development over
time. Results of mixed-effects models of behavioral and survey
measures are limited to presenting high-level trends, as no
model selection procedure or further modeling of the effects
of time are presented in this article. Fifth, although changes
in agent behavior manipulated human-agent trust, only one
task is examined, which limits generalizability claims. Lastly,
our analyses focus primarily on the individual and therefore do
not fully capture the rich, high-dimensional dynamics that arise
when considering teams as a single system. Implementing team-
level analyses is a clear next step in our investigation of trust
and the social dynamics of HATs. These limitations combined
with the complex, open-ended task introduce many uncertainties
inherent to the ambitious fields of neuroergonomics and human-
computer interaction. We hope that with further research we can
address these uncertainties and narrow in on the specific effects
presented in this article.

Given this ambition and complexity, we believe our results
are compelling and provide an exciting direction for future
studies. We are continuing to process data to begin multimodal
team-level analyses to further identify markers of trust and
mental demand throughout the collaboration. Training machine
learning models to predict trust/distrust events from fNIRS
recordings is a concrete next step toward real-time trust
monitoring. Future work should also strive to model human-
agent teams across a variety of open-ended tasks and settings.
Additionally, developing effective trust modulation systems will
require a rich understanding of trust degradation and trust
repair over time (De Visser et al., 2018). As this literature
grows, the research community will gain an increasingly detailed
understanding of neural processes that govern complex social

interactions with agents, as well as the nuanced effects that arise
in different contexts.
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