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ABSTRACT 6 

United States highway agencies use best-value procurement with a fixed price to select design-builders.  This method 7 

enables public agencies to choose the best proposer by assessing several factors in addition to price. Theoretically, 8 

considering cost and non-cost factors in the selection enhances the probability of selecting the proposer that provides 9 

the best value for each dollar spent.  However, bidding results from the last 15 years show that 80% of best-value 10 

procurements are awarded the proposer with the lowest bid.  The selection seems thus to be biased towards price. This 11 

research explores the balance between cost and non-cost components in best-value procurement by identifying how 12 

weights and scores influence the selection. The goal of this analysis is to determine the ranges of weights that better 13 

balance cost and non-cost factors in the weighted criteria best-value procurement. This study characterized a first-of-14 

a-kind dataset of 882 non-cost scores and 1,158 cost scores from 347 best-value highway projects. The study applied 15 

simulation to the weighted criteria award algorithm to explore the balance between cost and non-cost factors and 16 

derive recommendations about how to make non-cost factors more influential. The results show that weight of cost 17 
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higher or equal to 57% will result in a lowest price selection. Highways agencies should be aware of how weights and 18 

scores impact the best-value selection so that they can align these elements with their selection objectives. 19 

 20 
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INTRODUCTION 23 

In design-build project delivery, best-value procurement is a selection method that enables public agencies to choose 24 

the proposer that provides the most advantageous offer for a particular project (AGC of America & NASFA 2008; 25 

Douglas and Michael 1997). In highway projects, the most advantageous offer relates to adding value in regards to 26 

schedule, technical merit, management options, and past performance (Molenaar and Tran 2015). This paper refers 27 

to these aspects as non-cost factors. The importance of including non-cost factors in the selection of project teams 28 

was suggested more than two decades ago. Holt et al. (1995) claimed that clients should select contractors based on 29 

the value for money rather than accepting the lowest bidder; they recommended weighting criteria related to skill, 30 

experience, and past performance. Egan (1998) reinforced this idea by arguing that procuring design and 31 

construction teams entirely based on price was one of the most significant obstacles to meeting project goals. Since 32 

then, several research have empirically demonstrated the benefits of this approach in projects’ cost, schedule, and 33 

quality performance (Scheepbouwer et al. 2017). 34 

Highway agencies have used best-value procurement in the United States (U.S.) for the last two decades (Tran et al. 35 

2017). However, a recent study analyzing 305 projects from 18 Departments of Transportation (DOTs) procured 36 

using best-value between 2005 and 2018 has shown that 80% of the times, projects are awarded to the lowest bidder 37 

(Gaikwad 2019). Thus, U.S. design-build highway best-value procurement is biased toward price, suggesting that 38 

current practices may be missing an opportunity to balance cost and non-cost factors. Actual best-value selection 39 

results are misaligned with the concept of best-value itself, as it fundamentally differs from the lowest bid paradigm 40 

by seeking awards “on the basis of something other than the lowest cost alone” (Gransberg 2020; Ojiako et al. 41 

2014). 42 



Highway agencies award best-value contracts by using evaluation criteria, weights, scores, and award algorithms 43 

(Scott et al. 2006) . The evaluation criteria establish what should be measured in the proposals; this includes cost and 44 

non-cost factors. The weights represent the relevance of each criterion in the proposal’s assessment, whereas the 45 

scores constitute the evaluation results for each criterion. The award algorithm refers to the formula used to combine 46 

evaluation criteria, weights, and scores to obtain an overall score.  47 

Previous research has proposed different award algorithms (or multicriteria decision methods) to select the most 48 

suitable team for developing the contract (Alarcón and Mourgues 2002; Chen et al. 2008; Chua et al. 2001; Dobi et 49 

al. 2010; Nguyen 1986; Paek et al. 1992; San Cristóbal 2011; Scöttle et al. 2015; Seydel and Olson 1991). However, 50 

in practice, highway agencies use simplified approaches such as adjusted score (i.e., multiplying the non-cost score 51 

by the estimated project price and dividing it by the price proposal), adjusted bid (i.e., dividing bid price by the non-52 

cost score) and weighted criteria (i.e., applying weighted sum) award algorithms. From these, the weighted criteria 53 

algorithm is the most intuitive and transparent approach because of how the evaluation criteria are weighted and 54 

scored (Molenaar and Tran 2015). 55 

In weighted-criteria best-value procurement, weights measure the relative importance of cost and non-cost factors. 56 

Usually, these weights are based upon the relevance that each agency gives to the related criteria. General guidelines 57 

on best-value procurement leave open to the highway agency the determination of weights and scores in their best-58 

value procurements (AASHTO 2018; U.S. Federal Goverment 2002). As a result, agencies differ in the weight 59 

ranges they apply, as explained later in this paper.  60 

Previous research have analyzed how to determine evaluation criteria based on project characteristics (Abdelrahman 61 

et al. 2008); how weights and scores can influence the proposers' behavior (Ballesteros-pérez et al. 2016); and how 62 

subjectivity in scoring and weights might be removed using normalization and graphical models (Asmar et al. 2010). 63 

Overall, these studies have helped practitioners and academics to better understand and improve best-value 64 

procurement and have contributed to the increased use and success of this procurement method in the last years. 65 

However, none of the previous studies have analyzed whether best-value selection is balancing cost and non-cost 66 

factors and how score and weighting practices might influence this balance. 67 

This research aims to fill this gap by addressing the question: What ranges of weights and scores can better balance 68 

cost and non-cost evaluation criteria in weighted criteria best-value procurement? To this end, this study: (1) 69 



characterizes current scoring practices and explores their influence in the balance between cost and non-cost factors; 70 

and (2) identifies ranges of weights and scores that enable non-cost factors to be more influential in the selection.  71 

This research constitutes a unique contribution to both scholarly literature and current practice because it presents a 72 

comprehensive analysis of 347 transportation projects procured with best-value procurement in the United States 73 

between 2002 and 2020. The results of this research will help improve existing highway agency practice by 74 

facilitating the selection of weights to use in the procurement. In summary, this research contributes to minimizing 75 

bias toward price in best-value procurement by recommending ranges of weights that help balance cost and non-cost 76 

factors in best-value selection. 77 

The following sections include a literature review on best-value procurement, the research methodology, results, and 78 

discussion. The final section offers conclusions, contributions, recommendations for practical implications, and 79 

needs for future research. 80 

 81 

REVIEW OF RELEVANT WORK ON BEST-VALUE PROCUREMENT 82 

Best-value procurement aims to balance cost and non-cost factors in design-build projects.  This balance provides 83 

for an evaluation of design and other non-cost factors that add value to project proposals. Thus, non-cost factors 84 

should play an essential role in the process of selecting the design-builder (DBIA 2019). However, the analysis of 15 85 

years of best-value bidding results shows that 80% of best-value projects were awarded to the lowest bidder (FMI 86 

2018; Gaikwad 2019). This means that best-value procurement is biased towards price and is almost operating 87 

somewhat as a low bid procurement. 88 

Best-value procurement can be thought of as a multicriteria decision-making process that aims to answer the 89 

question of “given a set of alternatives and a set of decision criteria, what is the best alternative?” (Triantaphyllou 90 

2000). In best-value procurement, the alternatives are the different design-builder proposals, and the decision criteria 91 

are the cost and non-cost factors that highway agencies establish to evaluate those proposals. Best-value selection 92 

requires balancing multiple factors, making it necessary to construct a model that considers the decision-maker’s 93 

preferences and assessments of each evaluation criterion (Belton and Stewart 2002). The next sections summarize 94 

relevant work related to each of the components needed to obtain the overall score of proposals in best-value 95 

procurement: the award algorithm, weights, and scores. 96 



Award algorithm 97 

The weighted criteria is one of the award algorithms used in best-value procurement of highway projects because it 98 

is intuitive and transparent (Molenaar and Tran 2015) and has the advantage of “distinctly communicating the 99 

agency’s perceived requirements for a successful proposal through the weights themselves” (AASHTO (American 100 

Association of State Highway and Transportation Officials) 2018). The weighted criteria algorithm (Equation 1) 101 

considers that having “m” alternatives (i.e., proposers) and “n” evaluation criteria, the best alternative is the one that 102 

satisfies: 103 

𝐹𝐹𝐹𝐹 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖 ∑  𝑊𝑊𝑊𝑊 ∗ 𝐹𝐹𝑖𝑖𝑊𝑊,   𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2,3, … ,𝑚𝑚.   𝑛𝑛
𝑗𝑗=1 , with ∑  𝑤𝑤𝑊𝑊 = 1.   𝑛𝑛

𝑗𝑗=1  (Equation 1) 104 

Where: FS is the Final Score of the best alternative, n is the number of decision criteria, Sij, is the score of criterion j 105 

in the assessment of proposal i, and wj is the weight of importance of the j criterion.  106 

The weighted criteria algorithm works under the implicit assumption that there exists a decision-maker’s cardinal 107 

utility function, which is additive over the criteria. This means that equal FS can be obtained with very different 108 

proposers’ performance regarding the different criteria. In other words, what is lost on one criterion is compensated 109 

by what is gained on the other (Pomerol and Barba-Romero 2000). This might lead to selections based on 110 

unbalanced criteria. To illustrate this, we can consider a best-value procurement with two evaluation criteria (i.e., 111 

cost and non-cost) and two proposers (A and B). In this particular example, let’s consider that the final score of both 112 

proposers A and B is equal to 1. Based on this, both proposals have the same right to win. However, the proposer 113 

A’s final score breakdown is 0.3 for cost and 0.7 for non-cost criteria, while for proposer B, it is 0.7 for cost and 0.3 114 

for non-cost criteria. These results do not lead to a best-value selection.  115 

Previous research on the weighted criteria algorithm has raised this issue and has proposed alternative mathematical 116 

techniques to obtain a more balanced decision (Granat et al. 2006; Pomerol and Barba-Romero 2000; Wierzbicki et 117 

al. 2000). However, these studies are theoretical in nature, and they do not address the limitations of the weighted 118 

criteria algorithm in practical approaches such as best-value procurement. 119 

Weights 120 

Weights should represent the relative importance of the related criterion, according to the decision-maker 121 

preferences. 122 



Agencies adjust the weights of each evaluation criterion to reflect the needs and objectives of a particular project 123 

(Scott et al. 2006). This results in heterogeneous ranges of weights used by different public agencies. For example, a 124 

study developed in the United Kingdom found that public and private construction representatives assigned more 125 

than 60% of importance to price, with authors suggesting that assigning a maximum weight of 70% to price might 126 

help defend decision-makers from public criticism and accountability (Wong et al. 2000). In Sweden, a study 127 

analyzing 386 public bidding documents found that the weight of cost was usually set to 70% (Waara and Brochner 128 

2006). In Australia, the Tasmanian government establishes guidelines on weighted criteria and recommends to use a 129 

weight for cost between 40% and 70% (Department of Treasury and Finance 2019).   130 

In the U.S., general recommendations for best-value suggests a weight of cost over 50% if the cost is more 131 

important than non-cost factors (AGC of America & NASFA 2008). A report elaborated by South Carolina DOT, 132 

which summarizes design-build practices in different states, documents that South Carolina DOT typically sets a 133 

weight of cost between 50% and 70%. In contrast, Virginia DOT considers a weight for the cost of 70%, and 134 

Georgia DOT has commonly used between 50% and 80% (SCDOT 2018). Despite this, highway agencies’ design-135 

build manuals rarely recommend specific ranges to use. Some of them suggest testing the weights against different 136 

scenarios so that decision-makers can feel comfortable in case the lowest bidder is not selected (Colorado DOT 137 

2016; LaDOT 2017).   138 

Overall, these recommendations report the current state of best-value practice in regard to weight determination, and 139 

they show a lack of research-based criteria to set these weights. Therefore, there is a need to determine what ranges 140 

of weight for cost are more adequate to reach a best-value selection that evenly balances cost and non-cost factors. 141 

Scores 142 

Scores measure the level of accomplishment of each proposal towards each evaluation criterion. Public agencies 143 

have used a variety of scoring systems, from the commonly called “go/no go” to direct point assignation (Scott et al. 144 

2006).  Non-cost scores are established by a technical evaluation team. The potential bias in this evaluation might 145 

cause a significant concern (Asmar et al. 2010), leading to public mistrust and protest by bidders (Shane et al. 2006). 146 

Thus, previous research has focused on studying this potential bias—generally through case studies—and proposing 147 

methods and practices to minimize it (Asmar et al. 2010; Molenaar and Tran 2015; Tran et al. 2017). Other studies 148 

have analyzed how score rules might influence the competitiveness of bidders (Ballesteros-pérez et al. 2016), how 149 



the different types of economic scoring formulas can be categorized (Ballesteros-pérez et al. 2015), and what are the 150 

mathematical and statistical relationships between scoring parameters (González-cruz 2012). 151 

Best-value transparency has generally been analyzed using case studies (Asmar et al. 2010; Molenaar and Tran 152 

2015; Tran et al. 2017), while the specific analysis of scoring has been conducted in more theoretical research 153 

(Ballesteros-pérez et al. 2015, 2016; González-cruz 2012). Now that best-value has become an established 154 

procurement method in the U.S.; this study uses the opportunity to collect historical data on these procurements and 155 

analyze how best-value procurement weights and scores influence the design-build highway selection in practice. 156 

RESEARCH METHODOLOGY 157 

The research followed a four-step process (Fig.1). First, the authors collected and normalized historical data from 158 

347 best-value procurements. This data was used to characterize current scoring practices using preliminary 159 

statistical analysis and distribution fitting. Based on current scoring practices, the authors analyzed the balance 160 

between cost and non-cost factors and derived recommendations on the ranges of weights and scores that enable a 161 

better balance between cost and non-cost factors. The ultimate goal of these recommendations is to inform 162 

practitioners on how non-cost factors can become more influential in the selection. 163 

< FIGURE 1> 164 

Data Collection and Normalization 165 

The authors gathered cost and non-cost scores from bidding results of 347 design-build best-value highway projects 166 

procured between 2002 and 2020 by 22 DOTs. Bidding results from these projects were collected from DOTs’ 167 

websites and from direct requests to DOTs’ representatives. Each bid comprised two to seven cost and non-cost 168 

scores from submitted proposals. The number of scores available in each project depended on the number of firms 169 

that placed proposals for that specific project. The data set from the 347 best-value procurements included 822 non-170 

cost scores and 1,158 cost scores.  171 

New graph 172 

All the scores were normalized to a common zero-to-one scale to facilitate the comparison among projects. Cost 173 

scores were normalized on the basis of the lowest bidder (Equation 2), which is a common practice in weighted 174 

criteria best-value procurement. With this normalization, the lowest bid was assigned a normalized cost score of 1, 175 



whereas the other proposers obtained a normalized score between 0 and 1 depending on how their bid compared to 176 

the lowest bid. 177 

 𝐹𝐹𝑆𝑆𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑏𝑏𝑖𝑖𝑏𝑏
𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃 𝑖𝑖 𝑏𝑏𝑖𝑖𝑏𝑏

 (Equation 2) 178 

Where: 179 

Sci is the normalized cost score in a scale 0-1, for the proposer i. 180 

Lowest bid is the minimum price bid among all the proposers in the procurement. 181 

Proposeri bid is the bid price of proposer i. 182 

Non-cost scores were also normalized to a zero-to-one scale. The initial non-cost scores had different scales (e.g., 1-183 

100, 1-1,000, 1-1,200) depending on the scale used in the procurement. The authors normalized each bid’s non-cost 184 

scores to a common 0-1 range using Equation 3, which conserves the proportionally between scales. 185 

 𝐹𝐹𝑆𝑆𝑆𝑆𝑖𝑖 = 𝐼𝐼𝑛𝑛𝑖𝑖𝐿𝐿𝑖𝑖𝐼𝐼𝐼𝐼 𝑛𝑛𝑛𝑛 𝐿𝐿𝑛𝑛𝐿𝐿𝑃𝑃𝐿𝐿𝑖𝑖
𝑀𝑀𝐼𝐼𝑀𝑀 𝑖𝑖𝑛𝑛𝑖𝑖𝐿𝐿𝑖𝑖𝐼𝐼𝐼𝐼 𝑛𝑛𝑛𝑛 𝐿𝐿𝑛𝑛𝐿𝐿𝑃𝑃𝐿𝐿

 (Equation 3) 186 

Where: 187 

Snci is the normalized non-cost score in a scale 0-1 for proposer i. 188 

Initial nc scorei is the non-cost score of proposer i based on the initial procurement scale. 189 

Max initial ns score is the maximum value of non-cost scores based on the initial procurement scale. 190 

Characterization of Current Scoring Practices 191 

The characterization of current scoring practices consisted of a preliminary analysis of normalized scores (including 192 

basic descriptive analysis, outlier detection, and the analysis of scores variability) and the fitting of probability 193 

functions that best represent the score dataset. 194 

Preliminary Analysis 195 

A descriptive analysis was conducted to determine the main statistics for cost and non-cost scores and their 196 

distribution in histogram diagrams. Following this, a variability analysis was performed to ensure that the scoring 197 

data were homogeneous in terms of the project scope and geographic distribution. The projects considered in the 198 

research had varying scopes, including bridges, highways, and interchanges. Therefore, a variability analysis was 199 



performed to determine whether the project scope impacted scoring. A similar analysis was performed to determine 200 

the potential impact of the geographic distribution of data. This analysis was necessary because some DOTs had a 201 

significantly larger experience in best-value than other DOTs and, therefore, contributed to a larger set of data. The 202 

variability analysis sought to identify potential differences in scoring practices among states. Both analysis 203 

(variability based on project scope and state) were based on the Mann-Whitney U test  (Conover 1980). 204 

Finally, an analysis of outliers was conducted to quantify, characterize, and determine how to treat this type of data. 205 

A score data was identified as an outlier if it was outside the range (Q1-1.5IQR, Q3+1.5IQR), where Q1 is the first 206 

quartile, Q3, the third quartile and IQR the interquartile range. Once the outliers were identified, the authors 207 

analyzed the potential reasons why each of these data points were outliers and derived conclusions on whether they 208 

should be removed or not from the analysis on a case-by-case basis. 209 

Goodness-of-fit Analysis 210 

The authors developed a statistical analysis to determine the probability distributions that best fit the cost and non-211 

cost scores. These probability distributions were used in the simulation process to characterize current practices in 212 

scoring and simulate their impact on the final evaluation. To find the probabilistic distributions, goodness-of-fit 213 

techniques were used to measure the fitness of the sample with a set of hypothesis distributions (D’Agostino and 214 

Stephens 1986). Akaike Information Criteria (AIC) and the Bayesian Information Criteria (BIC) were used to 215 

identify the distribution providing the best fit for the data. AIC (Akaike 1974) is a technique based on in-sample fit 216 

to estimate the likelihood of a model to predict future values. BIC (Stone 1979) is another criterion for model 217 

selection that measures the trade-off between the model complexity and fit. These metrics do not have physical 218 

meaning, except in relative terms, with the lower parameter being indicative of a better fit (Yoe 2019).  The 219 

probability distributions selected were those with the lowest parameters for both AIC and BIC methods. 220 

Analysis of the Balance between Cost and Non-Cost Factors 221 

The cost and non-cost probability distributions resulting from the previous analysis were used to analyze the 222 

weighted criteria algorithm (Equation 1) under different weighting scenarios. In each scenario of weight, the balance 223 

between cost and non-cost factors was assessed.   224 



Metric to measure balance 225 

To understand how cost and non-cost factors impact the final score in weighted criteria algorithm, the research 226 

considered a two-component algorithm comprising cost and non-cost criteria (Equation 4). The balance between 227 

cost and non-cost factors was measured in terms of the ratio RC, which represents the proportion of cost over non-228 

cost factors in the final score (Equation 5). 229 

 𝐹𝐹𝐹𝐹 = 𝑊𝑊𝑆𝑆 ∗ 𝐹𝐹𝑆𝑆 + 𝑊𝑊𝑆𝑆𝑆𝑆 ∗ 𝐹𝐹𝑆𝑆𝑆𝑆, with  𝑊𝑊𝑆𝑆 + 𝑊𝑊𝑆𝑆𝑆𝑆 = 1 (Equation 4) 230 

 RC = 𝑊𝑊𝑛𝑛∗𝑆𝑆𝑛𝑛
𝑊𝑊𝑛𝑛𝑛𝑛∗𝑆𝑆𝑛𝑛𝑛𝑛

 (Equation 5) 231 

FS is the final score; 𝑊𝑊𝑆𝑆 and 𝑊𝑊𝑆𝑆𝑆𝑆 represent the weights of cost and non-cost factors and, 𝐹𝐹𝑆𝑆  and 𝐹𝐹𝑆𝑆𝑆𝑆 account for the 232 

score of cost and non-cost factors, respectively. The cost component (Wc*Sc) relates to the weight of cost multiplied 233 

by the cost score. Similarly, the non-cost component (Wnc*Snc) is obtained by multiplying the weight and the score 234 

assigned to the non-cost factors. RC constitutes the ratio between the cost and the non-cost component. 235 

The ratio between cost and non-cost components is relevant because high or low RC values are indicators of 236 

unbalanced selections (Fig.2). High RC values represent cases where the cost component is notably larger than the 237 

non-cost component, leading thus, to a cost-driven selection. On the contrary, low RC values imply that the non-cost 238 

component has more significant importance than cost, which may lead to a non-cost-driven selection. Best-value 239 

procurement aims to select the best contractor on the basis of a balanced evaluation of cost and non-cost factors. 240 

Therefore, extreme RC values should be avoided to ensure a best-value selection.  241 

< FIGURE 2 > 242 

Monte Carlo Simulation 243 

Each procurement might have different values for weights and scores, resulting in a balance that can be 244 

deterministically calculated. However, the analysis of particular cases does not enable researchers to find a fairly 245 

accurate estimate of that balance of cost and non-cost in the best-value practice as a whole. For this reason, this 246 

research used Monte Carlo simulation. By using this technique, it is possible to estimate a deterministic quantity by 247 

using a large and random sample (Brandimarte 2014). In this study, two probability distributions built upon 248 

empirical score data were considered to simulate final project scores and find the balance between cost and non-cost 249 

factors in different weighting scenarios.  250 



According to Johnson (2013), simulation is a “way of forming an educated guess about the most likely outcomes or 251 

the range of possibilities.” Through Monte Carlo simulation, researchers can obtain enough large set of results that 252 

enables them to make statistical inferences (Kroese et al. 2014). In this research, the authors used Monte Carlo 253 

simulation to replicate a large number of weighted criteria best-value procurements using different sets of weights 254 

and scores. In each iteration, the relative contribution of the cost component, and the non-cost component (i.e., RC) 255 

was analyzed. 256 

The authors determined 0.3 and 0.7 as the extreme values for the weight of cost. This range contains 70% of the 257 

dataset weighted criteria cases. Further, this range consider a variation of + 20% in regards 50%. Fifty percent (50%) 258 

is the limit suggested by AGC of America % NASFA (2008) when cost is more important than non-cost factors. 259 

Within this range, the authors performed two analyses. The first one, considering equal weights (Wc = Wt = 0.5), 260 

aimed to better understand the impact of current scoring practices in the overall evaluation. The second analysis 261 

considered 41 scenarios with weights varying in centesimal increments (e.g., in the scenario 1, Wc=0.3; scenario 2, 262 

Wc=0.31: scenario 3, Wc=0.32; etc). For each of these scenarios, the weight of non-cost factors (Wnc) was 263 

determined by considering that Wc+Wt=1 (Equation 4). In each scenario, the simulation run iterations in which the 264 

cost and non-cost scores were obtained from the probability distributions. The Monte Carlo simulations were 265 

performed using @Risk software, considering a seed to guarantee replicability. To reach validity in the results, each 266 

weight scenario comprised 10,000 iterations to ensure the convergence of the output mean and standard deviation 267 

with a 95% confidence level. 268 

Recommendations of Ranges of Weights and Scores 269 

Finally, the simulation results were analyzed to derive recommendations of the ranges of weights and scores that 270 

should be used to make non-cost factors more influential in best-value selection. 271 

 272 



RESULTS 273 

Characterization of Current Scoring Practice 274 

Preliminary Analysis 275 

The original data distribution is characterized by descriptive statistics (Table 1) and histograms (Fig. 3 and Fig. 4).. 276 

When analyzing these results it is important to remember that all the scores were normalized to a common zero-to-277 

one scale (using Equations 2 and 3) to facilitate the comparison among projects. Results from the preliminary 278 

descriptive analysis show that cost scores are slightly more skewed toward “1” than non-cost values (median 0.879 279 

vs. 0.865 in Table 1). The data spread is higher in cost scores (standard deviation of 0.103 vs. 0.079). 280 

< TABLE 1> 281 

To understand the shape and the spread of the sample, the data are displayed using histograms in the form of relative 282 

frequency graphs.  The cost score data pattern is skewed to the left, with 90% of the cost scores ranging from 0.652 283 

and 0.987. Fig.3 shows a gradual variation of the data frequency from the peak (0.88-0.93) to the minimum and 284 

maximum values (0.53 and 0.99).  285 

< FIGURE 3 > 286 

Non-cost scores are slightly skewed to the left, with 90% of the non-cost scores ranging from 0.610 and 0.958. In 287 

contrast with the cost scores, Fig.4 shows a sharp variation of the data frequency from the peak (between 0.77 and 288 

0.93) to both high and low ends. The values lower than 0.77 and higher than 93 are much unlikely.  289 

< FIGURE 4 > 290 

The variability analysis shows that neither project type nor project location have a significant impact on scoring. The 291 

results of the Mann Whitney U test (p-value > 0.2) show that there is no statistically significant difference among 292 

project scopes for both cost and non-cost scores. Concerning the project’s geographic distribution, Florida´s projects 293 

constitute 35% of the whole sample. Given this, it was tested whether there was a statistically significant difference 294 

in the scores of Florida´s projects and the overall sample. The results of the Mann Whitney U test (p-value 0.154) 295 



show that there is not a statistically significant difference. Therefore, the data set is considered consistent and was 296 

not divided based on project type nor location.  297 

Finally, the authors identify the outliers in the score sample. This analysis determines that cost scores have 16 298 

outliers, accounting for roughly 2% of the cost scores’ sample. These data points represent bids with prices 70% 299 

higher or more than the lowest bid (i.e., cost scores lower than 0.579). In this research, the outliers in the cost score 300 

sample correspond to six (6) projects, with three (3) of them having two (2) outliers. Procurements with two (2) or 301 

more outliers indicate that more than 60% of the proposers bid outside the expected range. This suggests a very high 302 

variance in bid prices and may result from specific project-case circumstances that do not represent standard 303 

practices. This might happen, for example, when one company bid with a very low and unrealistic price aiming to 304 

win the contract. As a result, other companies score very low (because they are costly) as compared with the lowest 305 

bidder. The authors considered that having two (2) or more outliers do not reflect the general scoring trend. Thus, 306 

the scores of three (3) projects containing six (6) outliers were removed. 307 

The non-cost scores contain 52 outliers, accounting for 6% of the sample. All the outliers have values lower than 308 

0.66. Outliers in non-cost scores might correspond to specific project-case circumstances. It may be the result of 309 

vague Request for Proposals (RFP) that lead most of the proposers to not adequately prepare their proposals. In this 310 

study, non-cost scores outliers correspond to 17 projects from six (6) DOTs. Twelve (12) of these projects have 311 

more than two (2) outliers, representing a total of 34 outliers. One DOT contributed the most to the outlier set, with 312 

five (5) projects having 17 outliers. In this particular case, projects were delivered between 2014 and 2016, just 313 

when this DOT began using best-value procurement. The second DOT with significant contribution provided three 314 

(3) projects with a total of 7 outliers. These projects were delivered between 2010 and 2012, also in the early years 315 

of using best-value procurement. The remaining four DOTs provided only one project each. These projects were 316 

delivered at different times (2007, 2012, 2015, 2018), suggesting that each specific case’s circumstances might 317 

explain the outliers. 318 

Overall, these cases do not correspond to the general scoring trend, which is what this research aims to simulate. 319 

Therefore, the scores associated with the 12 projects that contained the 34 outliers were removed for further analysis. 320 



Goodness-of-fit analysis 321 

The Beta distribution is the probability distribution that better fit cost scores. They had thus the lowest values for 322 

both AIC and BIC parameters (Table 2). 323 

< TABLE 2 > 324 

The Beta distribution is commonly used to describe variability over a limited range, being naturally defined over 0 325 

and 1 (Yoe 2019). The Beta distribution is widely known as the foundation of the Program Evaluation and Review 326 

Technique (PERT) method. The PERT method is usually adopted to model task duration in construction 327 

management by using three values, the most optimistic (shorter), the most pessimistic (longest), and the most likely 328 

(mode) (Damnjanovic and Reinschmidt 2020). Cost scores could indeed be characterized in this way by considering 329 

a maximum value of 1, a minimum value of approximately 0.65, and a most likely range between 0.87-0.93. 330 

Non-cost scores were fitted to a Gumbel distribution. The Gumbel distribution is a limiting extreme value 331 

distribution that serves to model the maximum and minimum values of any set of data (Gumbel 1955). The Gumbel 332 

distribution is used to model extreme events as well as construction design elements (Mun 2002). The non-cost 333 

scores distribute at the high end of the evaluation scale, with 70% of the data between 0.77 and 0.93. It seems thus 334 

reasonable that non-cost scores are well suited for the Gumbel distribution because they do not normally vary 335 

around one value. 336 

Analysis of the Balance between cost and non-cost factors 337 

The balance between cost and non-cost factors was measured in terms of the RC ratio, which represents the 338 

proportion of cost over non-cost factors in the final score (Equation 5). RC values were obtained using Monte Carlo 339 

simulation and the Beta and Gumbel distributions to characterize current scoring practices and explore different 340 

weighting scenarios. For the simulation, both distributions were truncated in the maximum and minimum value of 341 

“1” and “0”, respectively.  342 

RC with Equal Weights 343 

Intuitively, when setting equal weights to both factors, the decision-maker would expect a balanced contribution of 344 

cost and non-cost factors in the overall score. However, the simulation showed that, based on current scoring 345 

practices, overall scores did not follow this intuition. Although the weights were equal, the cost component had a 346 



more significant contribution to the overall score than the non-cost component. This is shown in the probability 347 

density graph depicted in Fig.5, where RC is higher than “1” in 68.6% of the cases. 348 

< FIGURE 5> 349 

If both components were to contribute evenly to the overall score, the relative frequency graph would be symmetric 350 

and centered in 1 (implying that the cost and non-cost component have equal relative importance). However, the 351 

results show a relative frequency skewed to the right, meaning that when assigning equal weights, the cost 352 

component has a larger contribution to the overall score compared to the non-cost component in 68.6% of the cases. 353 

These results are explained because the cost scores are statistically higher than the non-cost scores (Fig.3 and Fig.4). 354 

Ultimately, this led to a counterintuitive result in which equal weights do not result in the equal importance of cost 355 

and non-cost factors in the overall score. Therefore, there is a need to better understand how current scoring 356 

practices are impacting the relative importance of cost and non-cost factors in best-value procurement. To do so, the 357 

next section analyzes the impact of different weighting scenarios on the relative importance of cost and non-cost 358 

components. 359 

RC with Different Weighting Scenarios  360 

Fig.6 synthesizes the results from the simulation of 41 weighting scenarios. The X-axis represents the weight of cost 361 

considered in each scenario (Wc), whereas the Y-axis represents the proportion of cost over non-cost factors in the 362 

overall score (RC). For each value of weight of cost, a Monte Carlo simulation with 10,000 iterations is run, and the 363 

values of RC for the median and 5th and 95th percentile are recorded. These values, plotted in Fig.6 with solid black 364 

lines, account for 90% of the cases in each scenario of weight. The grey dashed line represents the ratio defined by 365 

the weights of cost (Wc) and non-cost factors (Wnc). In other words, it is the contribution of the weights to the RC 366 

ratio (Wc/Wnc).  If RC is higher than the value defined by the grey dashed line, this means that the cost score is 367 

higher than the non-cost score. The median (percentile 50%) is above this line; therefore, in 50% of the 368 

procurements, cost scores are higher than non-cost scores. 369 

< FIGURE 6 > 370 

The area defined above RC = 1 shows a cost-driven selection, where the cost component is higher than the non-cost 371 

component. On the contrary, the area below RC = 1 represents the non-cost-driven selection, where the non-cost 372 

component is higher than the cost component. Given this consideration and the results obtained in the simulation, 373 



Fig.6 shows that weights of cost lower than 0.43 result in a non-cost-driven selection. On the contrary, weights of 374 

cost higher than 0.57 lead to a cost-driven selection. In the range of weights defined between 0.43 and 0.57, the 375 

result of the selection can be either cost or non-cost driven.  376 

Another interesting result relies on the increasing distance between percentiles 5th and 95th as the weight of cost 377 

increases. This relates to the relative effect of weights and scores on the RC ratio. Low weights of cost (Wc), result 378 

in low ratios between the weights (e.g., for Wc = 0.3, Wc/Wnc is equal to 0.3/07 = 0.43; while for Wc = 0.7, Wc/Wnc 379 

is equal to 2.33). This trend is represented by the grey dashed line in Fig.6. As the weight of cost increases, the ratio 380 

of the scores (Sc/Snc) is therefore multiplied by a higher number, resulting thus in more spread RC values and larger 381 

distance between the 5th and 95th percentile lines. 382 

DISCUSSION 383 

This research aimed to find the ranges of weights that lead to a better balance between cost and non-cost factors in the 384 

weighted criteria best-value procurement. By analyzing historical cost and non-cost scores under different weighting 385 

scenarios, the study provided insight into what ranges might lead to a better balance in best-value selection.  386 

Furthermore, this research raises awareness about how the trade-off between cost and non-cost criteria can vary 387 

depending on the award algorithm, the weights and the scores used. Specifically, the weighted criteria algorithm 388 

(because of the nature of the formula) might lead to selections based on unbalance criteria. Previous research proposed 389 

mathematical techniques to obtain more balance selections when using the weighted criteria algorithm (Granat et al. 390 

2006; Pomerol and Barba-Romero 2000; Wierzbicki et al. 2000). This research contributes to scholarly research on 391 

weighted criteria algorithm by proposing a range of weights that limit the relative variation of cost and non-cost 392 

criteria. Thus, this research addresses the weighted criteria limitation under the practical approach of best-value 393 

procurement selection. 394 

 395 

Weights 396 

The analysis showed that, under current scoring practices, weights lower than 0.43 and higher than 0.57 do not 397 

enable highway agencies to make a best-value selection, as the selection is skewed toward either non-cost or cost 398 

factors. A range of weight of costs between 0.43 and 0.57 allows decision-makers to have chances of having both 399 



cost and non-cost-driven selections. In this range, the scores can determine whether the non-cost component is 400 

higher or lower than the cost component. Further, this range of weights ensures that in 90% of the cases the RC is 401 

between 0.6 and 1.8. This means that the proportion of the cost component regarding the non-cost component is 402 

limited within a range that minimizes selections based on unbalanced criteria 403 

It is relevant to note that the proposed range of weight of cost between 0.43 and 0.57 is due to the existing scoring 404 

tendencies (represented by Fig. 3 and Fig.4). This range could be wider for a specific highway agency if this agency 405 

followed a wider pattern in the scoring of the proposals, as suggested in the following section. 406 

Overall, the range of weights that this research proposes helps to minimize unbalance selections in the weighted sum 407 

algorithm when applied in best-value procurement. Further, previous studies and the current state-of-the-practice 408 

showed a lack of specific criteria to determine the weights to use in weighted criteria best-value procurement (AGC 409 

of America & NASFA 2008; Colorado DOT 2016; LaDOT 2017; SCDOT 2018). This research contributes to this 410 

current state of practice by proposing the use of weights of cost between 0.43 and 0.57 in order to reach an adequate 411 

balance between cost and non-cost factors in the selection. These research-based recommendations might help 412 

highway agencies to overcome the fear suggested by Wong et al. (2000) about using weight for cost lower than 413 

70%. 414 

ScoresAs well as weights, the scores might play an essential role in characterizing the best-value selection. Previous 415 

research analyzed best-value scoring using case studies (Asmar et al. 2010; Molenaar and Tran 2015; Tran et al. 2017), 416 

or theoretical approaches (Ballesteros-pérez et al. 2015, 2016; González-cruz 2012). This research contributes to 417 

scholarly research on best-value scoring by collecting and analyzing a dataset of 882 non-cost scores and 1,158 cost 418 

scores from 347 best-value highway projects.  419 

The cost and non-cost data distributions (represented by Fig. 3 and Fig.4) served to obtain the best-value range of 420 

weight of cost between 0.43 and 0.57. This range could vary for a specific highway agency if this agency had another 421 

scoring pattern. In this regard, this research proposes the following recommendations for non-cost and cost scores. 422 

Non-cost scores.  423 

Widening the range of non-cost scores can help to make the non-cost component more influential. Under a stochastic 424 

approach (such as the one developed in this research), having a more spread non-cost score distribution (similar to the 425 

cost scores’ one) would lead to a balance between cost and non-cost factors comparable to the one established by the 426 



weights. In other words, taking the example of equal weights shown in Fig.5, similar spread in cost and non-cost 427 

distributions would lead to a more symmetric and centered in “1” RC distribution. 428 

Under a deterministic approach, considering a wide range of non-cost scores in each procurement would enable 429 

highway agencies to make a more meaningful differentiation between the technical proposals. In other words, if all 430 

the proposers score equally in the technical evaluation (meaning a narrow range of non-cost scores so that there is no 431 

“technical” distinction among proposers), the differentiator would not be the non-cost component, but solely the cost. 432 

Thus, this research recommends widening the non-cost scores range in best-value technical evaluation in order to 433 

make non-cost factors more influential. 434 

Cost-scores 435 

Expectations on cost scores dispersion can help highway agencies to decide the weight of cost to use in each 436 

procurement. The results of this research are based upon a historic cost dispersion. However, agencies might expect a 437 

very “tight” or a very “wide” range of price proposals depending upon each project’s scope, risks, or innovation. 438 

Expecting ranges of cost scores that are narrow, and close to “1” implies that all the bids are close to the lowest bidder. 439 

Having all cost scores on the upper side of the evaluation scale makes it more likely that non-cost scores are lower 440 

than cost scores. In this case, highway agencies might wish to weight up non-cost factors by using a lower weight of 441 

cost. On the contrary, expecting a wide range of cost scores suggest a more likely trade-off between cost and non-cost 442 

factors in each proposer’s evaluation. In this case, highway agencies should consider the recommendations given for 443 

both weights and non-cost scores in previous sections. 444 

 445 

CONCLUSIONS  446 

The goal of balancing cost and non-cost criteria in best-value selection is not being realized. Highway agencies use 447 

non-cost criteria to evaluate and select design-builders. However, in more than 80% of the cases in our dataset, the 448 

best-value selection award the contract to the lowest bidder. This evidence shows a bias toward price of best-value 449 

selection; in other words, a lack of balance between cost and non-cost factors. This research aimed to solve this 450 

problem by addressing the following research question: What ranges of weights and scores can better balance cost 451 

and non-cost evaluation criteria in the weighted criteria best-value procurement? 452 



The findings showed that the weight of cost and the ranges of scores used in the evaluation play an essential role in 453 

having cost or non-cost-driven selections. Indeed, weights of cost higher than 57% always lead to a cost-driven 454 

selection; that is, a low bid selection. A weight of cost ranging between 43% and 57% strengthens the best-value 455 

selection by enabling highway agencies to reverse the driver of the selection depending on the difference between 456 

cost and non-cost scores. In this range of weight, the selection might be cost or non-cost-driven. Further, by using 457 

this range of weights, highways agencies will prevent selections based on unbalanced criteria. This is because this 458 

range of weights limits the cost component to be bounded into 1.8-0.6 times the non-cost component.  459 

Weights between 43% and 57% not only enable highway agencies to balance cost and non-cost factors in the 460 

selection. Also, they send the message that both cost and non-cost factors are important. This might minimize the 461 

proposers’ tendency to cut bid prices in order to be the lowest bidder. Instead, by using this range of weights, the 462 

idea of providing “the best-value for dollar spent” is encouraged. 463 

It is relevant to note that the proposed range of weight of cost between 43% and 57% is based on the existing 464 

scoring tendency. The historical scoring pattern used in this research showed a skewness toward “1” for both cost 465 

and non-cost scores and a more widespread distribution of cost scores as compared with non-cost scores. This 466 

tendency leads the cost component in the evaluation to be more influential than the non-cost component. 467 

However, the proposed range of weight of cost could vary if the scoring trends were different. Highway agencies 468 

could consider a wider range of weights of cost by using a wider pattern in the scoring of the proposals. Specifically, 469 

non-cost factors could be more influential if the proposals’ evaluation led to non-cost scores within a range wide 470 

enough to enable the differentiation among the proposers. Further, another aspect to consider would be the cost 471 

score dispersion. Non-cost factors could be more influential if highway agencies considered the effect of potential 472 

economic bid dispersion when selecting the weight of cost. Low dispersion of cost scores suggests more probability 473 

of having cost scores higher than non-cost scores. Thus, in these cases, highway agencies might adopt a lower 474 

weight of cost in order to balance cost and non-cost factors. 475 

In summary, this research constitutes a unique contribution to both scholarly literature and current practice by 476 

recommending the weight of cost range that should be used to properly balance cost and non-cost factors in the 477 

weighted criteria best-value procurement. This recommendation is derived from the analysis of 347 highway 478 



projects using best-value procurement over the last two decades, reflecting thus existing trends in current practice. 479 

The use of this range of weights will contribute to minimizing bias toward cost in best-value procurement. 480 

This research establishes the first step to minimize the bias toward cost of best-value practice, which will make more 481 

influential non-cost factors in the selection and, in turn, will increase the likelihood of achieving project goals. This 482 

research, however, did not address all the elements that might influence best-value results and the balance between 483 

cost and non-cost factors. These topics are thus suggested for future research. This includes the analysis of different 484 

award algorithms and scoring systems and how they might impact the balance between cost and non-cost factors. 485 

Further, the evaluation criteria selected to represent the non-cost factors might also influence the scoring trend and, 486 

therefore, the balance between cost and non-cost factors. Another practical and future research will consider case 487 

studies to evaluate the range of weights proposed in this research. 488 

 489 
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TABLES 616 

Table 1 Descriptive statistics 617 

 Mean Mode Median Variance Std. Deviation 

Cost Scores [Sc] 0.857 0.896 0.879 0.011 0.103 

Non-cost Scores [Snc] 0.853 0.820 0.865 0.013 0.079 

 618 

Table 2 Cost and Non-Cost Scores. Goodness-of-fit-parameters 619 
 Cost Scores Non-Cost Scores 
Distributions/parameters AIC BIC AIC BIC 
Beta -1,612 -1,593 n/a n/a 



Gumbel -1,546 -1,537 -1,930 -1,921 
Logistic -1,407 -1,397 -1,858 -1,849 
Normal -1,370 -1,361 -1,727 -1,718 
Laplace -1,347 -1,338 -1,860 -1,851 
Triangular -940 -926 -1,222 -1,209 

 620 
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