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Abstract. This paper investigates the utility of the weighted Birkhoff average (WBA) for distin-
guishing between regular and chaotic orbits of flows, extending previous results that applied the
WBA to maps. It is shown that the WBA can be super-convergent for flows when the dynamics
and phase space function are smooth, and the dynamics is conjugate to a rigid rotation with Dio-
phantine rotation vector. The dependence of the accuracy of the average on orbit length and width
of the weight function width are investigated. In practice, the average achieves machine precision
of the rotation frequency of quasiperiodic orbits for an integration time of O(103) periods. The
contrasting, relatively slow convergence for chaotic trajectories allows an efficient discrimination
criterion. Three example systems are studied: a two-wave Hamiltonian system, a quasiperiodically
forced, dissipative system that has a strange attractor with no positive Lyapunov exponents, and
a model for magnetic field line flow.
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1. Introduction

Integrability is associated with quasiperiodic dynamics and chaos with sensitive dependence on
initial conditions. This contradistinction is especially relevant for smooth Hamiltonian systems:
when such a flow is integrable the orbits are confined to tori on which the dynamics is conjugate to
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2 WEIGHTED BIRKHOFF AVERAGING

a rigid rotation. When a Hamiltonian system is smoothly perturbed away from integrability, some
of these tori persist—according to KAM theory—and some are replaced by isolated periodic orbits,
islands, or chaotic regions [Arn78]. Typically as a perturbation grows the proportion of chaotic
orbits increases and more of the tori are destroyed.

Motivated by broad applications to dynamical systems, including fluid flow, the n-body problem,
and toroidal magnetic confinement, there has been a concentrated effort to distinguish between
chaotic regions of phase space and those with regular dynamics. Invariant tori in Hamiltonian
systems can be computed as limits of periodic orbits [Gre79, Mac83] or by the iterative, parame-
terization method [HdlL06]. In these methods, one fixes a frequency vector and attempts to find
an invariant set on which the dynamics has this frequency.

More generally—even when the system is not Hamiltonian—one may try to detect when a given
orbit is chaotic. By definition, a dynamical system is chaotic on a compact invariant set when it
is transitive and exhibits “sensitive dependence on initial conditions” [AY80, Mei17]. Often such
dynamics are (nonuniformly) hyperbolic, meaning that the maximal Lyapunov exponent is positive
[Rob99]. For a flow

(1) xt = φt(x0),

on a phase space X, the exponent is

(2) λ(x0, v0) = lim sup
T→∞

1

T
log ∥Dφt(x0)v0∥

Here Dφt(x0) is the Jacobian matrix—the derivative of the flow map at time t with respect to x0,
an initial condition—and v0 is the initial deviation vector. A positive Lyapunov exponent implies
that the length of the infinitesimal deviation grows exponentially in T , at least asymptotically.
The most common approach for distinguishing chaos from regularity is to numerically compute
(2); however, accurate computation of λ is difficult because convergence is typically as slow as
log(T )

T [CG16]. Computation of (2) is also expensive because it is necessary to integrate both the
trajectory and the linearized dynamics to obtain the Jacobian Dφt(x0).

There are a number of techniques that have been used to improve the efficiency of estimates for
exponential divergence. These include methods based on (2) such as the Fast Lyapunov Indicator
(FLI) [FGL97, LGF16], which uses a large value of

(3) FLI(x0, v0) = sup
t<T

log ∥Dφt(x0)v0∥

as an indicator for chaos, where one normalizes the initial deviation, ∥v0∥ = 1. A related idea,
the Mean Exponential Growth factor of Nearby Orbits (MEGNO) [GC04, CG16], uses—instead
of the supremum in (3)—the average of this log-length along an orbit. Further techniques include
computing Greene’s residue [Gre79], Slater’s method [AC15], the 0-1 test [GM16], SALI and GALI
[SM16], expansion entropy [HO15], and converse KAM theory [MP85, DM21]. Unlike directly
computing the Lyapunov spectrum, we remark that several of these methods do not require the
integration of the full linearized dynamics, but only of a single vector. Consequently, it can be more
efficient to use “jet transport” techniques to propagate a neighborhood of an initial condition.

In this paper, we explore an alternative technique to distinguish between chaotic and regular
orbits of a flow based on the Weighted Birkhoff Average (WBA) [DSSY16, DDS+16, DSSY17]. This
method permits one to accurately and efficiently compute the average of a function h : X → R,
when the orbit is regular. In particular, h can be chosen to give the rotation vector for a regular orbit
on an invariant torus, so that it can also provide a distinction between resonant and quasiperiodic
dynamics. The technique is analogous to “frequency analysis” [LFC92, BBGT96], which uses a
windowed Fourier transform to compute rotation numbers. However, for the WBA, the choice
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of a smooth window or weight function allows for more rapid convergence. There are several
other techniques specifically for maps that enable accurate computation of rotation numbers. For
1D invariant circles, an order-based technique such as Slater’s method [AC15], or the topological
method of [SNS10, MSV13] can be used. More generally, an averaging technique, that is distinct
from WBA, was demonstrated in [LV09, SV06]. These techniques are specific to maps and yield
theoretical convergence results that are slower than those for weighted Birkhoff averaging.

Indeed, as we recall in §2, the method proposed in [DSSY16] uses a C∞ weight function, which
has been shown by [DY18] to lead to super-polynomial convergence of the average for maps. We will
generalize these results for flows in §3. In Th. 3, we establish the super-polynomial convergence
of the WBA to the space average provided that the flow is quasiperiodic on an n-torus with
Diophantine rotation vector. Theorem 4 extends this, using the results of [KPS21], to give a
weaker criteria for super-polynomial convergence.

In §4 we use the distinction between convergence rates for regular and chaotic orbits to give a
criterion for detecting chaos. The method is analogous to that used in [SM20, MS21] for maps. In
that paper, the WBA was shown to be a more efficient test for chaos than the FLI and 0-1 test for
Chirikov’s area-preserving standard map. Finally, in §5, we apply this test to three examples.

The first application, in §5.1, is to the two-wave model, perhaps the simplest nonintegrable,
11
2 degree-of-freedom Hamiltonian system. The model was also studied in [Mac89, DM21] using

converse KAM theory to detect chaos, and consequently gives a contrast between the two methods.
We also investigate the dependence of the accuracy of the WBA on the choice of orbit length and
weight function width.

In §5.2 we investigate the properties of the WBA for a quasiperiodically forced pendulum that
can have geometrically strange attractors with no positive Lyapunov exponents [RO87]. Since the
general definition of chaos requires only the topological form of sensitive dependence on initial
conditions and not exponential divergence [HO15], orbits of this quasiperiodic system with zero
exponents may still be chaotic [GJK06]. As we will show, even though methods based on Lyapunov
exponents would fail, the WBA can still provide an efficient indicator of chaos.

The final application, in §5.3, is to magnetic field line flow. Integrable magnetic field-line con-
figurations are desirable in the design of plasma confinement devices. For example, the tokamak is
designed to have a set of nested, axisymmetric tori that are tangent to the magnetic field and cor-
respond to iso-pressure surfaces [HM03]. However, integrability can be destroyed by instabilities or
non-axisymmetric perturbations that can give rise to magnetic islands and chaotic regions [Hel14].
Using a model introduced by [PHH22], we will show that the weighted Birkhoff average can rapidly
and accurately measure the extent of these regions. Moreover, in the study of plasma stability it
is important to know the rotation number, or rotational transform, on each magnetic surface. We
will demonstrate that the weighted Birkhoff average efficiently computes the rotational transform.

2. Weighted Birkhoff Averaging for Flows

2.1. Birkhoff Average. Suppose that (X,B, µ) is a compact probability space with Borel σ-
algebra B [Wal82], and that the probability measure µ is invariant under a flow (1). The flow is
ergodic with respect to µ if, whenever S ∈ B is invariant, i.e., φt(S) = S, ∀t ∈ R, then µ(S) = 0
or 1. Thus invariant sets are either of zero measure, such as periodic orbits, or of full measure,
such as chaotic orbits. Birkhoff’s ergodic theorem [Bir31b], states that if a flow is ergodic then for
µ-almost every x ∈ X, the time average of a function h,

(4) BT (h)(x) =
1

T

∫ T

0
h(φt(x))dt,
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converges to its space average

(5) ⟨h⟩ ≡
∫
X
hdµ

as T → ∞.

Theorem 1 (Birkhoff Ergodic Theorem [Bir31a, Bir31b]). Suppose (X,B, µ) is a probability space,
φt : X → X is a measure-preserving, ergodic flow, and h ∈ L1(X,µ). Then the time average exists
and

lim
T→∞

BT (h)(x) = ⟨h⟩

for µ-almost every x ∈ X.

The Birkhoff ergodic theorem for a map F : X → X can be obtained upon replacing the
integration in (4) by a sum,

BN (h)(x) =
1

N

N−1∑
j=0

h(F j(x)).

Indeed, in the literature, Th. 1 is almost exclusively stated and proven for maps [Bil65, CFS82,
Bre92]. However, as pointed out in [BLM12], there is a neat trick to obtain the continuous case
from the map case.

This is based on the result that if φt(x) is an ergodic flow then for each τ ∈ R, except for

a countable subset, the map, φτ , is also ergodic [PS71]. For such a value of τ , define h̃(x) =∫ τ
0 h(φt(x))dt and the iterated time-τ map φj

τ = φjτ for each j ∈ N. Then∫ T

0
h(φt(x))dt =

⌊T/τ⌋∑
j=0

h̃(φj
τ (x)) +

∫ T

⌊T/τ⌋
h(φt(x))dt,

since φ0
τ (x) = x. Since h is assumed to be L1(X,µ), then limT→∞

1
T

∫ T
⌊T/τ⌋ h(φt(x))dt = 0. By the

Birkhoff ergodic theorem for maps, it then follows that

lim
T→∞

1

T

∫ T

0
h(φt(x))dt =

1

τ
lim
T→∞

1

T/τ

⌊T/τ⌋∑
j=1

h̃(φj
τ (x))

=
1

τ

∫
X
h̃dµ =

1

τ

∫
X

∫ τ

0
h(φt(x))dµ

=
1

τ

∫ τ

0

∫
X
h(x)dµ

=

∫
X
hdµ.

Here the penultimate equality is a consequence of Fubini’s theorem and the fact that µ is invariant
under φt.

Even though the convergence in Th. 1 is guaranteed, it can be arbitrarily slow depending on
the choice of h [Kre78]. Furthermore for almost all h ∈ L1(X,µ), it has been demonstrated that
for maps the convergence is at most O(1/N) [Kac96], and for flows on a Lebesgue space is at
most O(1/T ) for almost all x ∈ X [KPS21]. The only exceptions are when h is almost everywhere
constant.
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2.2. Weighted Birkhoff Average. A weighted Birkhoff average is analogous to (4), with the
addition of a weight function g : [0, 1] → [0,∞), that is normalized:

(6) ||g||1 ≡
∫ 1

0
g(s)ds = 1.

For any g ∈ G, the weighted Birkhoff average is defined by

(7) WBT (h)(x) =
1

T

∫ T

0
g( t

T )h(φt(x))dt.

In particular, choosing g(s) = 1 gives the Birkhoff average (4).
By a judicious choice of the weight g, the convergence of WBT (h) to the space average can

be accelerated, for certain orbits; i.e., as we demonstrate below in Th. 3, when the dynamics is
conjugate to a sufficiently incommensurable rotation. In particular, we will consider the space of
bump functions whose value and first m− 1 derivatives vanish on the boundary,

(8) Gm =
{
g ∈ Cm([0, 1],R+)

∣∣ ∥g∥1 = 1, g(i)(0) = g(i)(1) = 0, i = 0, 1, . . . ,m− 1
}
.

For example, the smooth bump function

(9) g(s) =

{
Ce−[s(1−s)]−1

s ∈ (0, 1)

0 s = 0, 1
,

is in G∞ and was adopted by [DDS+16, DSSY17, DSSY19] in their studies of maps. Here, we set
the normalization constant C ≈ 142.2503758 to satisfy (6).

Whenever g ∈ G1 it can be shown, using a result of [Sil16], that the weighted Birkhoff average
WBT (h)(x) converges to the space average ⟨h⟩ for any h ∈ L1(X,µ). Of course this applies to the
case (9) as well.

Proposition 2. Under the hypotheses of Th. 1, then whenever g ∈ G1

lim
T→∞

WBT (h) = ⟨h⟩,

for µ-almost every x ∈ X.

Proof. The proof relies on the summation criteria due to Silverman [Sil16]. Specifically, suppose
that k(T, t) is a function defined for T ∈ R+ and 0 ≤ t ≤ T , that is integrable for fixed T and
satisfies the three criteria:

lim
T→∞

∫ T

0
k(T, t)dt = 1;(10a)

lim
T→∞

k(T, t) = 0 uniformly in t on [0, q] for each q ∈ R+;(10b) ∫ T

0
|k(T, t)|dt < A for some A > 0 whenever T ∈ R+.(10c)

Then Silverman [Sil16, Thm. 1] shows that whenever u : R+ → R satisfies lim
T→∞

u(T ) = ū <∞

lim
T→∞

∫ T

0
k(T, t)u(t)dt = ū.
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We will take u(T ) = BT (h)(x) given by (4). Using integration by parts on (7), and the assump-
tions that g ∈ C1([0, 1],R+) and g(0) = 0 = g(1), then gives

(11)

WBT (h)(x) =
1

T

∫ T

0
g( t

T )h(φt(x)) dt

=
1

T

[
g( t

T )

∫ t

0
h(φs(x)) ds

]T
0

− 1

T 2

∫ T

0
g′( t

T )

∫ t

0
h(φs(x)) ds dt

=

∫ T

0
k(T, t)Bt(h)(x) dt.

where we set

(12) k(T, t) = − t

T 2
g′( t

T ).

We will check Silverman’s criteria for (12). Again using integration by parts we have

−
∫ T

0

t

T 2
g′( t

T ) dt = −
[
t

T
g( t

T )

]T
0

+
1

T

∫ T

0
g( t

T )dt = 1,

since ∥g∥1 = 1. It follows that k is integrable for each T ∈ R+ and that (10a) holds.
Now, for any q > 0, 0 ≤ t ≤ q < T we have that

|k(T, t)| = t

T 2
|g′( t

T )| ≤
q

T 2
||g′||∞,

where ||g′||∞ < ∞ because g is continuously differentiable on a compact interval. It follows that
limT→∞ k(T, t) = 0 and thus Eq. (10b) holds.

Finally, for all T ∈ R+, (12) gives∫ T

0
|k(T, t)|dt ≤ ||g′||∞T−2

∫ T

0
t dt = 1

2 ||g
′||∞.

Thus (10c) holds with A = 1
2 ||g

′||∞.
Hence, the choice (12) satisfies the criteria (10). Since by Birkhoff’s ergodic theorem, BT (h)(x) →

⟨h⟩ for µ-almost all x, then [Sil16, Thm. 1] applied to (11), gives WBT (h)(x) → ⟨h⟩. □

3. Super-Convergence for Flows

It was shown in [DSSY17, DY18] that if a smooth map F has a quasiperiodic orbit {F t(x)} with
Diophantine rotation vector and h and g are C∞, then the weighted average (7) is super-polynomial
convergent : WBT (h) converges to ⟨h⟩ faster than any power of T . Super-convergence is especially
useful for the case of Hamiltonian flows or symplectic maps, where regular orbits lie on invariant
tori, and KAM theory implies the structural stability of those with Diophantine rotation vectors.

In this section we will extend the map result to the case of flows. In addition, following [KPS21],
we will show that super-polynomial convergence also holds under weaker hypotheses on the ergodic
flow and h.

Note that if the weight function g has only finitely many vanishing derivatives at the endpoints,
(8), then the convergence rate is T−m. For example the weight g(t) ∝ sin2(πt) for t ∈ (0, 1), is first

order smooth, but not second order, since g(2)(0+) ̸= g(2)(0−), and this implies that the convergence
is O(T−2).

By contrast, the weighted average appears to converge only as T−1/2 for chaotic orbits [LM10,
SM20]. Thus, as we will discuss in §4, the convergence rate of the weighted average can provide a
useful distinction between regular and chaotic orbits [SM20, MS21].
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Definition 1 (Super-Convergent). A function f : [0,∞) → R with limT→∞ f(T ) = f∗ < ∞ is
super-polynomial convergent if, for each m ∈ N, there is a constant cm > 0 such that

|f(T )− f∗| ≤ cmT
−m,

for all T > 0.

In particular the weighted Birkhoff average super-converges to the space average for flows that
are conjugate to a rigid rotation with a sufficiently irrational vector, e.g., one that satisfies a
Diophantine property.

Definition 2 (Diophantine [Loc92]). A vector ω ∈ Rd is Diophantine if there is a c > 0 and
τ ≥ d− 1 such that

(13) ω ∈ Dc,τ :=
{
ω ∈ Rd | |k · ω| > c∥k∥−τ

∞ , ∀k ∈ Zd
0

}
where Zd

0 = Zd \ 0, and ∥k∥∞ is the sup-norm of k.

Thus, for example, the vector ω = (ϕ, 1) ∈ R2, where ϕ = 1
2(
√
5−1) is the (inverse of) the golden

mean, is in D1/
√
5,1. More generally, there are bounds for the Diophantine constants for integral

bases of an algebraic field of degree d [Cus74, Cas97].1

With these definitions, we can restate the result of [DY18] for quasiperiodic flows.

Theorem 3. Let M ≃ Td be a smooth manifold and φt : M → M be a smooth, quasiperiodic
flow with invariant probability measure µ. Assume φt is C∞ conjugate to a rigid rotation with a
Diophantine rotation vector ω ∈ Dc,τ . Suppose that h ∈ C∞(M,R) and g ∈ G∞. Then for each
x ∈ M , the weighted Birkhoff average (7) is super-polynomial convergent to the space average.
Moreover, the convergence is uniform in x.

More generally, if g ∈ Gm then the convergence of (7) is as T−m provided that h ∈ C l(M,R) for
some l > d+mτ .

Proof. The proof follows the arguments of [DY18] with some minor alterations for the flow case.
By assumption φ is diffeomorphic to the flow φω

t (θ) = θ + tω on Td. Hence, it can be assumed
that we have taken coordinates θ ∈ Td on M so that φt is simply φω

t and the invariant measure µ
becomes the constant measure dθ, which is preserved by φω

t . Then

h(φt(θ)) = h(θ + tω).

The weighted Birkhoff average (7) then becomes

WBT (h)(θ) =
1

T

∫ T

0
g( t

T )h(θ + tω)dt.

Since h is L2, it has a Fourier series

h =
∑
k∈Zd

ake
2πik·θ.

1Note that for the discrete time case, a k-dimensional rotation vector α is Diophantine if the vector ω = (α, 1) ∈
Rk+1 is Diophantine in the sense of (13).
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that is almost everywhere convergent [Gra15]. Note that a0 =
∫
M hdθ and that a0 =WBT (a0)(θ0)

for any θ0 and T since a0 is constant. It follows that∣∣∣∣WBT (h)(θ0)−
∫
M
hdθ

∣∣∣∣ =
∣∣∣∣∣∣
∑
k∈Zd

0

akWBT

(
e2πik·θ

)
(θ0)

∣∣∣∣∣∣
=

1

T

∣∣∣∣∣∣
∑
k∈Zd

0

ake
2πik·θ0

∫ T

0
g( t

T )e
2πitk·ωdt

∣∣∣∣∣∣
≤ 1

T

∑
k∈Zd

0

|ak|
∣∣∣∣∫ T

0
g( t

T )e
2πitk·ωdt

∣∣∣∣
Set s = t/T so that Tds = dt and define Ωk = 2πTk · ω. Then∣∣∣∣WBT (h)(θ0)−

∫
M
hdθ

∣∣∣∣ ≤ ∑
k∈Zd

0

|ak|
∣∣∣∣∫ 1

0
g(s)eiΩksds

∣∣∣∣ .
Integrating by parts m ≤ l times and noting that the boundary terms vanish by (8), it follows

that ∣∣∣∣∫ 1

0
g(s)eiΩksds

∣∣∣∣ = |Ωk|−m

∣∣∣∣∫ 1

0
g(m)(s)eiΩksds

∣∣∣∣
≤ |Ωk|−m||g(m)||1,

where || ||1 is the L1 norm.
Now, if h ∈ C l(Td,R) then |ak| = O(∥k∥−l), so that there is a constant cl > 0, independent of

k, such that

|ak| ≤
cl

∥k∥l
,

for each k ∈ Zd
0 [Gra15, Thm 3.3.9]. Thus,∣∣∣∣WBT (h)(θ0)−

∫
M
hdθ

∣∣∣∣ ≤ cl(2πT )
−m

∑
k∈Zd

0

∥k∥−l|k · ω|−m||g(m)||1

= C∗T−m
∑
k∈Zd

0

∥k∥−l|k · ω|−m,

where we defined C∗ = cl(2π)
−m||g(m)||1, which depends on m. The theorem will follow provided

we can show that
∑

k∈Zd
0
∥k∥−l|k · ω|−m is bounded. Since ω ∈ Dc,τ (13) it follows that∑

k∈Zd
0

∥k∥−l|k · ω|−m < c−m
∑
k∈Zd

0

∥k∥mτ−l.

Finally, noting that whenever l −mτ > d, the sum above converges, we have the desired bound.
That is, the weighted Birkhoff average converges as T−m provided that h ∈ C l with l > d+mτ . □

Remark 1. The weight function, g(t) ∝ sin2(πt) on [0, 1], is in G1 but not G2 since then its second
derivative is not continuous on the boundary. Nevertheless, the integration-by-parts in the proof of
the theorem can proceed up to m = 2, since the boundary terms vanish for g and g′ and g(2) ∈ L1.
Thus in this case when h ∈ C l and l > d + 2τ , the convergence is as T−2. So for example, in
[DSSY17], d = 2, and the rotation vector ω = (

√
2 − 1, 1) is Diophantine with τ = 1. So the
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convergence is m = 2 whenever l > 4. They consider a case with h ∈ C∞ and numerically observe
a bit faster convergence, as T−2.5.

An alternative super-polynomial convergence result was obtained by [KPS21], we review it in
Appendix A. This result follows under weaker hypothesis on the flow than those in Th. 3, however,
it requires that h has a particular structure.

4. Weighted Birkhoff Average as a Test for Chaos

The Weighted Birkhoff average can be used as a test for chaos by examining the convergence
rate of WBT (h)(x) to ⟨h⟩ as T → ∞, for a given function h. As discussed in §3, if an orbit is
quasiperiodic with Diophantine rotation vector, the weighted Birkhoff average is super-convergent.
By contrast, it is observed that the convergence rate for chaotic orbits is much slower.

Following [SM20, MS21] we estimate the convergence rate by comparing the values of (7) for
successive time intervals of a fixed length. That is, an estimate for the accuracy of (7) for a time T
is found by first computingWBT (h)(x0), and thenWBT (h)(xT ), the average along a second time T
segment that begins at xT = φT (x0). A comparison of these values gives an estimate of the ‘error’
in the time T average relative to the true average for the initial point x0.

We consider two primary options to quantify this error. The first,

(14) absdigT (h)(x0) ≡ − log10 |WBT (h)(x0)−WBT (h)(xT )|,

we call the absolute digit accuracy. This is the measure proposed in [SM20, MS21], where it was
denoted simply by digT . Equation (14) is the number of decimal digits that two segments of the
average have in common. It should be useful when the expected averages are of the same magnitude.
A second error quantification is the relative digit accuracy,

(15) reldigT (h)(x0) ≡ − log10
|WBT (h)(x0)−WBT (h)(xT )|

1
2(|WBT (h)(x0)|+ |WBT (h)(xT )|)

.

This measures the number of digits relative to an expected value, estimated as the mean absolute
value of the two partial averages, hence the factor of 1

2 in the denominator. This should be useful
when the average of h varies widely in magnitude as x0 varies. Note, however, that it is not a good
quantification if the average is expected to be zero, in which case (14) is more appropriate. Finally,
we define the maximum digit accuracy

(16) digT ≡ max{absdigT , reldigT }.

By comparing the values of these measures for different initial conditions, we can differentiate
between orbits for which the averages converge more rapidly than others and hence, classify which
orbits are chaotic and which are regular.

5. Applications

In this section we apply the method outlined above to three example flows: the two-wave model
[ED81], a quasiperiodically forced vector field with a strange attractor [RO87], and a model for
magnetic fields investigated in [PHH22].

To numerically integrate these examples, we use the algorithm Vern9, in the Julia package
DifferentialEquation.jl [RN17, Ver78]. Each integration is computed in double precision,
choosing absolute and relative tolerances between 10−10 and 10−15, depending on the differential
equation. The WBA in (7) was calculated by numerically solving the differential equation

(17)
d

dt
W (t) = g

(
t
T

)
h(φt(x0)),
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where g is the bump function (9). Integration of (17) is simply done by adding it to the set of
differential equations defining the flow φt. Thus (17) is integrated with the same algorithm as the
trajectory. Finally we compute the time-T weighted Birkhoff average as 1

TW (T ). This allows us to
adjust the accuracy of the integrator so that the computation of (7) has an accuracy comparable
to the trajectory itself; indeed, the Vern9 algorithm will adjust its step-size to attempt to attain
the requested accuracy. All computations were run on a laptop with an Intel i7 processor running
at 2.8 GHz using 32 GiB of RAM, running Linux version 5.19. Execution time for each produced
data set was less than 12 hours.

5.1. Two-Wave Model. Our first example corresponds to the 1D motion of a charged particle
in the electric field two longitudinal electrostatic waves [ED81]. This two-wave model was used in
[Mac89, DM21] to illustrate the so-called converse KAM method that detects the breakup of tori.
Since the destruction of tori is a signal of the onset of chaos, we can use this model to compare the
efficiency of the weighted Birkhoff and converse KAM methods as chaos detectors.

Following [ED81], the two-wave system has the nonautonomous Hamiltonian

(18) H(q, p, t) = 1
2p

2 − µ cos(2πq)− µ cos(2π(q − t)),

for the position q and momentum p of the particle. Here, without loss of generality, we choose the
mass of the particle to be one, the phase velocities of the two waves to be zero and one, respectively,
and the wavenumber of the first wave to be one. For simplicity, we follow [Mac89, DM21] to assume
that the wavenumber of the second wave is also one and that the two waves have the same amplitude,
µ. Thus this simplified model has only one parameter. By taking q and t mod 1, the extended
phase space can be thought of as (q, p, t) ∈ T× R× T.

A Poincaré section at t = 0 mod 1 is shown in Fig. 1 for µ = 0.03. When µ≪ 1, most orbits lie
on rotational, invariant 2D tori (i.e., tori that are homotopic to the set p = 0). For small positive µ,
there are two primary elliptic periodic orbits that cross the Poincaré section near (0, 0) and (0, 1)
and two hyperbolic periodic orbits crossing the section near (12 , 0), (

1
2 , 1). Each of these four orbits

correspond to fixed points of the Poincaré map. The section for the range p ∈ [−0.2, 0.5] shown
in Fig. 1 shows only orbits trapped in the stationary wave, near p = 0. The 2D tori encircling
the primary elliptic orbits are librational ; they correspond to particles trapped in one of the two
electrostatic waves. Also shown in Fig. 1 are other resonant islands; these correspond to orbits
trapped near elliptic periodic orbits with rational winding numbers on T2. The largest seen in the
figure is a pair of islands surrounding a period-two orbit near p = 0.5 on the section.

5.1.1. Distinguishing Regular and Chaotic Orbits. To demonstrate the difference in convergence
of the WBA between chaotic and regular orbits we consider the weighted Birkhoff average of the
function h(q, p, t) = p. Note that the average of this function for any quasiperiodic orbit will be ρ,
the rotation number of the orbit.

(19) ρ = lim
T→∞

q(T )− q(0)

T
= lim

T→∞

1

T

∫ T

0
p(τ)dτ = ⟨p⟩,

taking the lift of the coordinate q to R.
Figure 2 shows the maximum digit accuracy (16) as a function of T for two initial conditions,

(q0, p0) = (0, 0.45) and (0, 0.3). As can be seen in Fig. 1, the first orbit lies on a librational torus
in a period-two island, while the second appears to be chaotic. For the regular orbit, the WBA
appears to converge to ten digits by T = 1000, and digT indicates double precision accuracy of ⟨p⟩
by T = 2000. Since the lower bound of digT increases linearly with T , the convergence appears
to be exponential. By contrast, digT fluctuates around 2 for the second, chaotic orbit. A similar
dichotomy was also seen for maps in [SM20].
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Figure 1. Poincaré section for (18) at t = 0 mod 1 µ = 0.03.

Figure 2. The maximum digit accuracy digT vs T using the function h(q, p, t) = p for two orbits
of (18) with µ = 0.03. The orbit with initial condition (q, p) = (0, 0.45) is regular and that with
initial condition (q, p) = (0, 0.3) is chaotic.

To reinforce the distinction between convergence rates for chaotic and regular orbits, Fig. 3 shows
a heat map of the maximum digit accuracy for T = 1000 for 501 equally spaced initial conditions
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(0, p0, 0), 0 ≤ p0 ≤ 0.5 on the Poincaré section of Fig. 1. Note that the regular orbits in the low-
period islands have digT ≳ 10, while the strongly chaotic orbits outside these islands have digT ≲ 3.
Hence, the colors show that there is a clear distinction between the regular and chaotic orbits in
Fig. 1.

0.2 0.4 0.6 0.8 1.0

Figure 3. A Poincaré section of (18) for µ = 0.03. The 500 orbits have initial conditions
(0, p0, 0), p0 ∈ [0, 0.5]. The colors, as shown in the color bar, represent digT for T = 1000 and
h = p. The white regions correspond to points that are not reached by the 500 orbits shown.

5.1.2. Comparisons of Relative and Absolute Accuracy. Fig. 4 shows the results of computations of
the criteria (14) and (15) for the same set of initial conditions as Fig. 3. Panel (a) shows that reldigT
performs poorly for the regular, librational tori around (0, 0). This is expected since ⟨p⟩ = 0 for
these orbits, so that the denominator of (15) is near zero. However, reldigT nears machine precision
for the orbits that are trapped in the period-two island chain, near p = 0.5.

Panel(b) shows that absdigT clearly distinguishes between the regular, island-trapped orbits
and the chaotic orbits that were seen in Fig. 1. The initial momenta corresponding to chaotic
orbits have absdigT ≲ 3, while the regular orbits have absdigT ≳ 7, and there are only five orbits
with 4 < digT < 6. A plot of digT , not shown would be identical to panel (b): for this case
digT = absdigT for all orbits.

For the two-wave model, the results in Fig. 4 indicate a threshold for distinguishing chaotic and
regular orbits

(20) dig1000 < 5, (chaos criterion),

for the function h = p.
A curiosity of Fig. 4(b) is the decrease in absdigT near p0 = 0.1, even though most orbits trapped

in the period-one island appear to be regular. As can be seen in Fig. 3, this dip corresponds to
the region near a hyperbolic period-six orbit on the section that starts near (0, 0.1). These regular
orbits lie just outside the separatrix of this island chain and thus take a long time to complete
a full rotation—indeed this time would go to infinity for the integrable case as the orbit nears
the separatrix. Moreover, the librational rotation number of these orbits around the elliptic point
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Figure 4. Relative and absolute digit accuracy as a function of p0 for initial conditions along

the line q0 = 0. In each case T = 1000 and h = p.

approaches the rational that corresponds to that of the hyperbolic orbit. Consequently such orbits
will explore a smaller fraction of an invariant torus over some finite time than those with initial
condition further away. The result is a less-accurate, finite-time approximation of the space average
of h.

Since there are typically arbitrarily thin chaotic layers between any pair of KAM tori in generic
Hamiltonian systems, it can be very difficult to distinguish orbits in such layers from those that
are regular. For example, for the two-wave model shown in Fig. 1, there is a chaotic layer near
the separatrix of the period seven island chain that intersects the Poincare section near (0, 0.2137).
This layer has thickness at most 2 × 10−3. The WBA of the function h = p for the initial point
(0.001, 0.2138) has digT ≈ 7 for times up to 5000. By the criterion we use, this orbit would not
be classified as chaotic. Nevertheless, this value of digT is still distinct from that of the invariant
circle through the point (0.001, 0.2134), which has dig5000 ≈ 13.

Figure 5. The computed rotation number ρ ≈ WBT (p) for initial conditions (0, p0, 0) as a

function of p0. As above this is for (18) with µ = 0.03.
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The computed rotation number (19) as a function of p0 is shown in Fig. 5. In the region of
librational tori near (0, 0), ρ = 0. Since most of these orbits are regular ρ is computed with high
accuracy. Indeed, as we saw in Fig. 4, absdigT > 5 for all p0 ∈ [0, 0.251]. The rapid fluctuations
in ρ as a function of initial condition near p0 = 0.3 reflect the poor convergence of the WBA for
these chaotic orbits. Additional regular regions appear for higher period islands around elliptic
periodic orbits; these have constant, rational rotation number. The chaotic regions between pairs
of neighboring islands give the scattered values between the flat intervals.

5.1.3. Varying the Width of the Bump Function. Another choice worth investigating is that of the
weight function g : R → [0,∞) in (7). Th. 3 implies that super-convergence follows whenever g is
C∞ and flat at 0 and 1. In this section we continue to use (9), but vary it slightly by adding a
width parameter, w > 0:

(21) gw(s) =

{
C exp

(
−w

s(1−s)

)
, s ∈ (0, 1)

0, s ≤ 0 or s ≥ 1.

Again, C is chosen so that gw has the normalization (6). The resulting function is shown for several
values of w in Fig. 6. If w ≪ 1 then gw is near its maximum over a large fraction of [0, 1], and the
average limits to the unweighted, time-T average. If w ≫ 1 then gw is essentially zero except for a
small interval. Neither of these cases would seem to be desirable. But what intermediate value of
w is best?

s

gw

0.2

w = 5

2

1

0.5

Figure 6. The weighted bump function (21) for five values of w

Figure 7, shows how digT depends on w for two different T , for a regular trajectory of the
two-wave model. Interestingly, these curves have local spikes indicating improved convergence for
nearly isolated values of w. Since, as seen in the figure, the value of w for these spikes changes with
T , and calculations (not shown) indicate that they also vary as the orbit is varied, consequently
it is hard to argue that any specific choice for w would be optimal. Moreover, w = 1 seems to
be a reasonable choice, since—if we ignore the spikes—neither large or small w offers a uniform
improvement

5.2. A Quasiperiodically Forced System. As Th. 3 showed, the weighted Birkhoff average is
super-convergent for a quasiperiodic orbit with a Diophantine rotation vector. When the dynamics
is a conjugate to rigid rotation, then there is an invariant measure on the torus. More generally,
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Figure 7. The variation of digT (h)(z) with w, the width parameter of (21). The system is (18)

with µ = 0.03, h = p, and initial condition (q0, p0) = (0, 0.1). (a) w ∈ [0, 1] and (b) w ∈ [0.5, 50].

if there is no invariant measure, then the Birkhoff ergodic theorem does not apply. In this case it
is not clear whether the accuracy of the weighted Birkhoff average can distinguish between regular
and non-regular orbits.

In this subsection we study the quasiperiodically forced and damped pendulummodel of [GOPY84,
RO87]:

(22)

θ̇ = p,

ψ̇1 = γ,

ψ̇2 = 1,

ṗ = −νp+ a cos(2πθ) + b+ c(cos(2πψ1) + cos(2πψ2)).

Here γ ∈ R \ Q is irrational and a, b, c, ν ∈ R are parameters. Grebogi et al. [GOPY84] observed
that this system can have a geometrically strange attractor with no positive Lyapunov exponents,
a situation that they call a strange, nonchaotic attractor. Even though such a system may be
thought of as nonchaotic because nearby orbits do not separate exponentially, the dynamics may
still exhibit the weaker, topological form of sensitive dependence [GJK06].

Formally the phase space for (22) is T3×R, with coordinates (θ, ψ1, ψ2, p). A natural 3D Poincaré
section is ψ2 = 0 mod 1. Following [RO87] we take

(23) ν = a = 6π, c = 0.55ν, γ = 1
2(−1 +

√
5)

leaving one free parameter, b.2

Six examples of attractors for (22) are shown in Fig. 8. These figures are projections onto (θ, p)
of the Poincaré section ψ2 = 0 mod 1. On the 3D section the attractor is sometimes a two-torus,
sometimes geometrically strange with dimension between two and three, and sometimes fully 3D.
For example, when b = 1.33ν the system has a geometrically strange attractor with a box-counting
dimension larger than 1, but no positive Lyapunov exponents: in the (θ, p) subspace the maximal
exponent is λ = −0.45 [RO87]. The maximal Lyapunov exponent reaches 0 at about b = 1.66ν
where the attractor in the Poincaré section appears to be 3D, see the final panel of Fig. 8. The
attractor collapses back to a two-torus as b nears 1.8ν (not shown).

2In [RO87] the parameters are ν = a = 2πp, b = 2πKp, and c = 2πV p, where p is a damping parameter. The case
p = 3, K = 1.33, and V = 0.55 of [RO87, Fig. 5] corresponds to (23) with b = 1.33ν.
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Figure 8. Projections onto (θ, p) of 5× 104 points on the 3D Poincaré section ψ2 = 0 mod 1 of

the system (22) using (23). The six panels show b = [0.8, 0.829, 1.1, 1.33, 1.34, 1.77]ν, respectively.

The maximal Lyapunov exponent in the (q, p) subspace is negative, except for the last case, where

attractor appears to be 3D on the Poincaré section.

5.2.1. Distinguishing Strange Attractors. The different geometric structures shown in Fig. 8 make
this system a prime candidate for investigating whether weighted Birkhoff averaging can be used to
distinguish between regular and strange nonchaotic attractors. Figure 9 shows digT as a function
of T for values of b that correspond two-torus, strange, and 3D attractors, respectively.

When b = 1.1ν, the WBA appears to be super-convergent. The maximum digit accuracy reaches
13 by T = 1200 and then remains nearly constant; this is consistent with the accuracy of the
numerical integration, which was set to 10−13 for both absolute and relative error. This suggests
that the dynamics of this orbit are conjugate to a Diophantine rigid rotation. When b = 1.33ν,
where the attractor is strange but nonchaotic, the convergence of the WBA in Fig. 9 is observed to
be poor: it only reaches 3 by T = 1200. The convergence is also poor when b = 1.77ν, where the
attractor is 3D. Even though digT is larger than the previous case, it only reaches 5 when T = 1200,
and in both cases the WBA appears to converge—at best—at a polynomial rate in T . Even if this



WEIGHTED BIRKHOFF AVERAGING 17

Figure 9. The digit accuracy for the system (22) with parameters (23) and b = 1.1ν, 1.33ν, and
1.77ν as a function of T using h = p. The initial condition is (θ, ψ1, ψ2, p) = (0, 0, 0, 2).

attractor is simply a three-torus, the relatively poor convergence suggests that its dynamics are
more complex than rigid rotation. Thus the weighted Birkhoff average effectively distinguishes
between a two-torus attractor, and more complex or higher dimensional attractors.

5.2.2. Finding Two-Tori. We now look at how the accuracy of the WBA varies with b in order to
distinguish between two-torus and strange or 3D attractors. Figure 10 shows digT as a function of
b ∈ [0.6, 1.8]ν. The figure shows a clear stratification into three levels; the highest corresponds to
13 < digT < 18. This high accuracy occurs, for example, for the case b = 1.1ν and 1.34ν shown
in Fig. 8 that are clearly two-tori; these are the blue points in Fig. 10. The highest accuracy,
digT ∼ 17, occurs near b = 0.6ν. The attractors in this case (not shown) are even simpler: they
resemble librating orbits of the pendulum in (θ, p) that are simply extended in the ψ1 direction.

The lowest level in Fig. 10 are those b values with digT ∼ 4. The two red points correspond to
the values b = 0.8ν, and 1.33ν, the strange attractors shown in Fig. 8.

The mid-level range, digT ∼ 8, for Fig. 10 corresponds to geometrically more complex attractors
that are nevertheless, not strange. For example, the green points in the figure, represent the values
b = 0.829ν and 1.77ν shown in Fig. 8. The first appears to be the projection of a two-torus, however,
it is geometrically more complex than those tori that have higher values of digT . The second green
point corresponds to the 3D attractor in Fig. 8. The rapid increase in digT as b increases beyond
1.77ν in Fig. 9 signals the collapse of this structure; by b = 1.8ν, it has become a two-torus similar
to that at 1.1ν though without the loop seen in Fig. 8.

The rotation number of θ:

ρ = lim
n→∞

θ(n)− θ(0)

n
,

is shown in Fig. 11. The figure is similar to the Devil’s staircase shown in [RO87, Fig. 8b], however
the weighted Birkhoff average for the function h = p provides a much more accurate computation.
The flat sections in ρ correspond to the two-torus attractors with digT ∼ 14, the highest level
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Figure 10. The maximum digit accuracy for the system (22) with parameters (23) for a grid

of 1200 values of b ∈ [0.6, 1.8]ν. Here T = 1500 and h = p. The red points correspond to b = 0.8ν

and 1.33ν, blue to b = 1.1ν, 1.34ν, and green to 0.829ν and 1.77ν. The attractors for these b values

were shown in Fig. 8.

in Fig. 10. This figure shows almost no scatter when compared with the corresponding plot for
two-wave model, Fig. 5.

Figure 11. The rotation number of θ for (22) for the same parameters as Fig. 10 computed

using the WBA for h = p.

5.3. Magnetic Field Line Flow. As a final example we consider a family of model magnetic
fields studied in [PHH22]. Here the domain is the solid torus D2× S1, where (ψ, θ) ∈ [0, 1]× S1 are
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polar coordinates on the disk D2 and ζ is the toroidal angle on S1. The fields are generated from
the vector potential A = ψ∇θ − χ∇ζ with

χ(ψ, θ, ζ) = 1
2ψ

2 −
∑

m,n∈Z
εm,nψ(ψ − 1) cos (2π(mθ − nζ)) ,

This gives the magnetic field

(24) B = ∇×A = ∇ψ ×∇θ −∇χ(ψ, θ, ζ)×∇ζ.

The field line of B for this case can also be thought of as the flow of χ as a nonautonomous
Hamiltonian using (θ, ψ) as canonical variables and ζ as “time”. These are the solutions to

(25)

ψ̇ = −2π
∑
m,n

mεm,nψ(ψ − 1) sin(2π(mθ − nζ)),

θ̇ = ψ −
∑
m,n

εm,n(2ψ − 1) cos(2π(mθ − nζ)),

ζ̇ = 1.

Note that this system has invariant two-tori at ψ = 0 and ψ = 1. Moreover, when all the amplitudes
εm,n = 0 the system is completely integrable, since ψ is then invariant. More generally, each m,n
Fourier mode creates a resonant magnetic island near ψ = n

m with amplitude εm,n.
In [PHH22], a set of resonances with fixed m and a range of n values are studied. To emphasize

the creation of higher-order islands by resonant beating, we instead use a set of Fourier modes that
correspond to resonances up to a given level on the Farey tree [Mei92]. In particular, we take (m,n)
corresponding to the resonances up to level three on the Farey tree with root (01 ,

1
1), namely,

(26) (m,n) ∈ {(4, 1), (3, 1), (5, 2), (2, 1), (5, 3), (3, 2), (4, 3)}.

Note that the Farey tree naturally generates a set of coprime (m,n) pairs.
We will choose a one-parameter family of the amplitudes so that there is a critical value at which

the Chirikov overlap criterion [Mei92] is simultaneously satisfied for each neighboring pair. The
approximate island half-width in ψ for a single Fourier mode in (25) can be obtained by neglecting

the O(ε) term in the θ̇ equation. Thus if εm,n ≪ 1 the system is effectively a pendulum in the
variables (mθ − nζ,mψ − n). This gives a resonance at ψ = n

m with the half-width

∆m,n = 2
√
εm,n

n
m

(
1− n

m

)
.

Two neighboring resonant islands on the Farey tree then overlap when

∆m1,n1 +∆m2,n2 =

∣∣∣∣ n1m1
− n2
m2

∣∣∣∣ = 1

m1m2
.

Here the last equality above follows because the two modes are Farey neighbors. If we scale the
amplitudes as

(27) (ε4,1, ε3,1, ε5,2, ε2,1, ε5,3, ε3,2, ε4,3) =
ε

21600
(72, 27, 25, 96, 25, 27, 72)

then the resonances simultaneously overlap at ε = 1. For this value the system should be chaotic,
in the sense that the rotational tori between each pair of islands are destroyed. Of course, as is
well known, the overlap criterion overestimates the critical value for the destruction of the KAM
tori [Mei17].



20 WEIGHTED BIRKHOFF AVERAGING

5.3.1. Detecting Chaos. A Poincaré section at ζ = 0 for the system (25) is shown in Fig. 12 for four
values of ε. This figure shows only the range ψ ∈ [0, 12 ], but for the symmetric amplitudes (27),
εm,n = εm,m−n, the phase portrait has the reflection symmetry ψ → 1− ψ. Thus the dynamics in
the interval ψ ∈ [12 , 1] can be inferred.

When ε = 0.05, Fig. 12(A) shows that almost all orbits lie on tori, though there will invariably
be small chaotic regions not observed at this scale near the separatrices of the island chains. When
ε = 0.25, a small amount of chaos is visible near the separatrices of the period four and five islands.
When ε = 0.5 these chaotic regions grow; however, there are still rotational tori that act as barriers
to transport between each of the primary island chains in the set (26). For ε = 1.0, Fig. 12(D)
shows that all of the rotational tori for ψ in the interval (0.2, 0.8) have been destroyed, though
some low-period islands persist in the sea of chaos.

The true critical value of ε can be estimated numerically by looking for an orbit that “crosses” all
the resonances. Starting at (θ0, ψ0, ζ0) = (0.375, 0.27, 0), close to the hyperbolic-point of the (4, 1)
island, we found that the smallest ε for which ψ(t) > 0.45 for some time t ∈ [0, 104] is εcr = 0.665.
This is certainly consistent with the phase portraits in Fig. 12.

Note that the regions of regular tori around ψ = 0 and around ψ = 1 persist as ε grows. This is
because the tori ψ = 0 and ψ = 1 are invariant, and the Farey island set (26) does not include any
terms below 1

4 and above 3
4 .

To study the onset of chaos using the weighted Birkhoff average, we computed the maximum
digit accuracy, digT , for initial conditions (ψ0, 0, 0) with ψ0 ∈ [0, 0.5]. We choose h = ψ so that ⟨ψ⟩
is a first approximation of the rotation number of a regular torus. The results for the same four
values of ε in Fig. 12 are shown in Fig. 13.

As can be seen in the figure, the distinction between digT for chaotic and regular orbits becomes
clearer as ε increases. The criterion (20) suggests that chaotic orbits have digT ≲ 5. Note that
some of the regular orbits have digT up to 15, and that the nearly horizontal, rotational tori in the
range 0 < ψ0 < 0.2 have digT ≃ 13. When ε = 0.05, there are only 4 initial conditions on the 501
point grid that would be designated as chaotic; though since 4 ≤ digT ≤ 5 for each of these, they
are near the threshold. As ε increases, chaotic regions surrounding the islands appear and grow.
By ε = 0.25, there are small intervals of low-digit accuracy around the 1

4 and 2
5 islands; however,

only 14 initial conditions have digT ≤ 5. As ε increases, the chaotic regions around the low-period
islands grow, and for ε = 0.5, initial conditions with low digT are seen near ψ0 = 0.2, 0.3, 0.4 and
0.5. Finally, when ε = 1.0 the chaotic regions around the low period islands merge, though the
line of initial conditions with θ0 = ζ0 = 0 goes through the elliptic center of each of the forced
resonances in the set (26). This gives rise to the peaks in digT near the low-order islands that are
visible in Fig. 12(D). Of course, the orbits for ψ0 < 0.18, where regular tori seen in Fig. 12(D)
persist, have a maximum digit accuracy that remains high.

To conclude, it is clear by comparing Fig. 12 and Fig. 13, that the weighted Birkhoff average
accurately detects the onset of chaos for this family of Farey magnetic fields.

5.3.2. A Measure of Non-integrability. In [PHH22], the authors developed a measure of the “effec-
tive volume of parallel diffusion” as a proxy for measuring the nonintegrable region. To do this,
they first solve the steady-state temperature using the anisotropic diffusion equation,

(28) ∇ · (κ∥∇∥T + κ⊥∇⊥T ) = 0.

Here T is the temperature, κ∥, κ⊥ are the parallel, perpendicular diffusion coefficients, respectively,

and ∇∥ = b̂b̂ ·∇ and ∇⊥ are the gradients parallel and perpendicular to the unit vector b̂ = B/∥B∥,
respectively. Equation (28) is solved with the Dirichlet boundary conditions that fix T on the
boundary tori, ψ = 0 and 1. The measure they use is the fraction of the volume Ω in which the
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(a) ε = 0.05. (b) ε = 0.25.

(c) ε = 0.5 (d) ε = 1.0

Figure 12. Poincaré sections for (25) with parameters (27) at ζ = 0 mod 1 for for four values
of ε.

local parallel heat transport is larger than the perpendicular transport:

(29) VPD =
1

Vol(Ω)

∫
Ω
Θ
(
κ∥|∇∥T |2 − κ⊥|∇⊥T |2

)
dx3.

Here Θ is the Heaviside step function.
In order that (29) be an effective measure of integrability, Paul et. al. [PHH22] argue that when

κ⊥ ≪ κ∥, T is approximately constant along field lines of B. It follows, for a region foliated by
invariant tori, |∇∥T | will be relatively small, and thus the measure VPD will be essentially zero.
Conversely, they argue that regions of phase-space with chaotic field lines will have relatively large
parallel diffusion. This second claim is shown by first proving that surfaces of constant temperature
must have the same topology as the boundary surfaces. Consequently, these isotherms will not be
able to completely align to the structure of the field in chaotic regions, increasing the value of
|∇∥T |. However, as the authors remark, the effective parallel diffusion will also be high within
islands, even if they are not chaotic. Thus regions where the invariant surfaces do not have the
same topology as the boundary will also contribute to (29). In this regard, the measure of parallel
diffusion is analogous to converse KAM theory [Mac89, DM21].

Regardless of what (29) precisely measures, such a measure may in fact be more useful for the
original purpose of [PHH22] in optimizing the structure of magnetic fields for plasma confinement.
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(a) ε = 0.05 (b) ε = 0.25

(c) ε = 0.5 (d) ε = 1.0

Figure 13. The maximum digit accuracy, digT (h), as a function of initial condition ψ0 on a
grid with steps of 0.001, for four ε values. Here T = 1000 and h(ψ, θ, ζ) = ψ.

However, the weighted Birkhoff averaging may provide a reasonable alternative measure of chaos,
if that is desired.

A simple measure of integrability is the relative fraction of initial conditions deemed chaotic by
weighted Birkhoff averaging. For the model (25), we first used the same initial initial conditions
as Fig. 13: (ψ0, θ0, ζ0) = (ψ0, 0, 0). For each ε ∈ [0, 1.0] in steps of 0.01, we computed digT for
T = 1000 and h = ψ. An orbit was deemed chaotic if digT < 5 and regular otherwise. The relative
fraction of chaotic initial conditions for each ε is shown using the symbol ‘+’ in Fig. 14. A similar
computation was performed along the line θ0 = 0.15. The result points are shown in Fig. 14 using
the symbol •.

For both sets of initial conditions, the fraction of chaotic initial conditions is observed to vanish
when ε = 0, and increase—though not always monotonically— with ε. This is consistent with
Fig. 12. For small ε (e.g., ε < 0.2) we see the fraction of chaotic initial conditions is very small.
This is consistent with the expected exponentially small splitting of separatrices. For larger ε, the
rate of increase of the chaotic fraction slows. This is most prominent for θ0 = 0.15 near ε = 0.6,
just below εcr = 0.665 where the last rotational tori in the interval ψ0 ∈ [0.18, 0.5] are destroyed.

An issue with the use of the fraction of chaotic orbits along a line of initial conditions in the 3D
phase space is evident in the difference between the two cases in Fig. 12. The line θ0 = 0 is special
because it intersects the rotational periodic orbits at their elliptic points; this is evidently due to a
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Figure 14. The fraction of initial conditions that are chaotic for (25) with ε ∈ [0, 1.0], and
initial conditions (ψ0, θ0, 0) with ψ0 ∈ [0, 0.5] in steps of 0.001.

time-reversal symmetry of the system (25) under the involution

(ψ, θ, ζ) → (ψ,−θ,−ζ).

A similar time-reversal symmetry of the Chirikov standard map results in the so-called “dominant
symmetry line” that contains all the minimax rotational periodic orbits [Mei92]—these are the
orbits that are elliptic for small perturbations. The result is that the sample of initial conditions
along the line θ0 = ζ0 = 0 includes more regular orbits, the elliptic islands around each of these
periodic orbits. In contrast, the line θ0 = 0.15 intersects fewer of the elliptic regions around the
islands. Hence, the fraction of chaotic orbits for θ0 = 0 is less than that for θ0 = 0.15.

Of course, a more general system than (25), e.g., one with added phases in each Fourier term,
would not have this symmetry and would thus be less susceptible to this problem. In any case,
this issue could be ameliorated by sampling initial conditions on a 2D grid in the Poincaré section;
of course, this would add the computational expense. One could keep track of which grid cells are
visited by each orbit, so as to reduce the number that need to be considered.

6. Discussion

We have investigated the utility of the WBA for distinguishing between regular and chaotic
orbits for the two-wave Hamiltonian system, a quasiperiodically forced, dissipative system that
has a strange attractor with no positive Lyapunov exponents, and a model for magnetic field line
flow. It was shown that the WBA is super-convergent when the dynamical system and phase space
function are smooth and the dynamics is either conjugate to a rigid rotation with Diophantine
rotation vector or more generally satisfies (30). The contrasting, relatively slow convergence of
chaotic trajectories provides an efficient discrimination criterion. However, there remain some open
questions and interesting further directions.

A first theoretical question is that of the convergence of the weighted Birkhoff average for general
ergodic flows. In each application it was observed that the WBA for chaotic orbits converged
relatively slowly in comparison to the regular orbits. This formed the basis for the WBA as a
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method to detect chaos. However, this slow convergence does not yet have a theoretical foundation.
It may be possible to show that (30) is not only sufficient for super-polynomial convergence, but
also necessary. If this is true, then it may provide a path forward to theoretically confirming the
slow convergence for chaotic orbits observed in this paper and for the case of maps in [SM20, MS21].

One of the benefits of the WBA is that it can provide an accurate computation of the average
of a phase space function. Indeed, when the average converges, one gets—for free—a good approx-
imation to ⟨h⟩. Consequently, given a physically important h, such as rotation number, its value
is computed as a free by-product of the method. Conversely, if the main goal is to compute an
orbit average of some smooth function, then super-convergence of the WBA on regular orbits, also
gives—for free—a criterion distinguishing between regular and chaotic behavior.

This poses the question: which h is optimal for chaos detection? This appears to be a difficult
question. It is clear that some choices are poor, and this is supported by the convergence theorems
for the Birkhoff average in [Kre78, Kac96]. Moreover, an everywhere constant function is also obvi-
ously a poor choice for a different reason: its average over any orbit is the same for any T . In some
sense, an ideal function for distinguishing chaos would be constant on regular orbits, but vary on
chaotic ones. In this case the average along the latter should still exhibit the characteristically slow
convergence that we observed above. Of course, if one were able to construct such a function, then
one would already know the orbital structure of the flow, obviating the necessity of a computation.

This argument suggests that an approximate integral of the system might be a good choice for
h. Such a choice would ensure that h has little variation on regular orbits, still leaving room
to see the distinction between convergence for regular and chaotic orbits. We obtained several
such approximate integral functions for the two-wave system in [DM21]. However, our preliminary
studies using these approximate integrals as h in the two-wave system did not appear to produce a
stronger contrast in digT between chaotic and regular orbits. In the future, we hope to investigate
the choice of h in the weighted Birkhoff average as a means of detecting chaos.

A further line of future study is that of an effective measure of (non)-integrability. This was
one of the primary aims of the work in [PHH22]. Such a measure would help in optimizing field
configurations by minimize chaos. There are several improvements of the crude measure of Fig. 14
that one could implement and use to understand chaos in magnetic confinement devices.

Finally, it was evident in Section 5.2 that the WBA can distinguish between regular and strange
“non-chaotic attractors”. Thus, the convergence rate distinction for the WBA does not rely on
exponential divergence of orbits. Future investigation is needed to understand precisely which
types of dynamics this method can accurately discern.

Appendix A. Kachurovskii’s Convergence Result

Following the work of [Kac96, KPS21], super-polynomial convergence can be guaranteed under
weaker hypothesis on the flow than those in Th. 3, provided h has a particular structure.

Theorem 4. Let (M,B, µ) be a probability space and φt : X → Xbe a smooth, ergodic flow with
invariant probability measure µ. Suppose that h ∈ L1(X,µ) and there exists bounded function
H ∈ Cm(X,R) such that

(30) h(x) = ⟨h⟩ − dm

dtm
H(φt(x))

∣∣∣∣
t=0

,

for all x ∈ S where S is an invariant set of full measure. Moreover, suppose the bump function
g ∈ G∞. Then, there exists a constant cm such that,

|WBT (h)(x)− ⟨h⟩| ≤ cm
Tm

for all x ∈ S.
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Proof. As S is invariant, the group property of φt guarantees, for all x ∈ S, τ ∈ R,

h(φτ (x)) = ⟨h⟩ − dm

dtm
H(φt+τ (x))

∣∣∣∣
t=0

= ⟨h⟩ − dm

dtm
H(φt(x))

∣∣∣∣
t=τ

.

Using this relation we can rewrite the difference between weighted Birkhoff average and the phase
space average as

|WBT (h)(x)− ⟨h⟩| =
∣∣∣∣ 1T

∫ T

0
g

(
t

T

)
h(φt(x)) dt− ⟨h⟩

∣∣∣∣
=

∣∣∣∣∫ 1

0
g(s)h(φTs(x)) ds− ⟨h⟩

∣∣∣∣
=

∣∣∣∣∫ 1

0
g(s)

dm

dtm
H(φt)(x)

∣∣∣∣
t=sT

ds

∣∣∣∣ .
Finally, integrating by parts m times and noting that the boundary terms vanish by (8) shows that,
for all x ∈ S,

|WBT (h)(x)− ⟨h⟩| = 1

Tm

∣∣∣∣∫ 1

0
g(m)(s)H(φsT (x)) ds

∣∣∣∣
≤ 1

Tm
||g(m)||1||H||∞.

Since ||g(m)||1 < ∞ and ||H||∞ < ∞ by assumption, we can take cm = ||g(m)||1||H||∞ to give the
result. □

Remark 2. The condition (30) is equivalent to a function being ‘cohomologous’ to its average
[Kac96], with some further regularity assumed. It is difficult to ascertain whether, for a given
function h, there exists a function H. This is due to the fact that finding H in (30) requires
knowledge of both the function h and the flow φt. The numerical observations that were given
in Section 5 imply that for a chaotic orbit super-polynomial convergence is not observed. This
indicates it is impossible to find the desired H for a chaotic orbit.

Remark 3. Th. 3 can be obtained as a corollary of Th. 4. As in the proof of Th. 3, assume
h ∈ L2(Td) and assume coordinates θ ∈ Td is taken so that φt(θ) = θ + tω. Denoting the Fourier
series for h by h =

∑
k∈Zd ake

2πik·θ, we can then set

H = −
∑
k∈Zd

ak
(2πik · ω)m

e2πik·θ.

Then, for each m, h is of the form (30). Note that as m grows, H is bounded provided ω is
Diophantine.

Acknowledgements

The authors acknowledge support of the Simons Foundation through grant #601972 “Hidden
Symmetries and Fusion Energy.” Useful conversations with E. Sander are gratefully acknowledged.

Data Availability

The data that support the findings of this study are available within the article.



26 WEIGHTED BIRKHOFF AVERAGING

References

[AC15] C. V. Abud and I. L. Caldas. On Slater’s criterion for the breakup of invariant curves. Physica D, 308:34–
39, July 2015. https://doi.org/10.1016/j.physd.2015.06.005.

[Arn78] V.I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, 1978. https:
//www.springer.com/us/book/9780387968902.

[AY80] J. Auslander and J.A. Yorke. Interval maps, factors of maps, and chaos. Tôhoku Math. J., 32(2):177–188,
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[MSV13] N. Miguel, C. Simó, and A. Vieiro. From the hénon conservative map to the chirikov standard map for
large parameter values. Reg. Chaotic Dyn., 20:469–489, 2013.

[PHH22] E.J. Paul, S.R. Hudson, and P. Helander. Heat conduction in an irregular magnetic field. Part 2. Heat
transport as a measure of the effective non-integrable volume. Journal of Plasma Physics, 88(1), February
2022. https://doi.org/10.1017/S0022377821001306.

[PS71] C.C. Pugh and M. Shub. Ergodic elements of ergodic actions. Compositio Mathematica, 23(1):115–122,
1971. http://www.numdam.org/item/CM_1971__23_1_115_0/.

[RN17] C. Rackauckas and Q. Nie. Differentialequations.jl–a performant and feature-rich ecosystem for solving
differential equations in Julia. Journal of Open Research Software, 5(1), 2017. https://doi.org/10.5334/
jors.151.

[RO87] F.J. Romeiras and E. Ott. Strange nonchaotic attractors of the damped pendulum with quasiperiodic
forcing. Phys. Rev. A, 35(10):4404–4412, 1987. https://doi.org/10.1103/PhysRevA.35.4404.

https://doi.org/10.1007/978-1-4939-1194-3
https://doi.org/10.1063/1.524170
https://doi.org/10.3934/dcdsb.2006.6.1261
https://doi.org/10.1088/0034-4885/77/8/087001
https://store.doverpublications.com/0486151034.html
https://doi.org/10.1063/1.4922973
https://doi.org/10.1063/1.4922973
https://doi.org/10.1070/RM1996v051n04ABEH002964
https://doi.org/10.1007/s10958-021-05354-x
https://doi.org/10.1007/s10958-021-05354-x
https://doi.org/10.1007/BF01300052
https://doi.org/10.1016/0167-2789(92)90028-L
https://doi.org/10.1016/0167-2789(92)90028-L
https://doi.org/10.1007/978-3-662-48410-4
https://doi.org/10.1007/978-3-662-48410-4
https://doi.org/10.1063/1.3458896
https://doi.org/10.1070/RM1992v047n06ABEH000965
https://doi.org/10.1016/0167-2789(83)90131-8
https://doi.org/10.1016/0167-2789(89)90248-0
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1137/1.9781611974645
https://doi.org/10.1007/BF01209326
https://doi.org/10.1016/j.physd.2021.133048
https://doi.org/10.1017/S0022377821001306
http://www.numdam.org/item/CM_1971__23_1_115_0/
https://doi.org/10.5334/jors.151
https://doi.org/10.5334/jors.151
https://doi.org/10.1103/PhysRevA.35.4404


28 WEIGHTED BIRKHOFF AVERAGING

[Rob99] C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. Studies in Advanced Math-
ematics. CRC Press, Boca Raton, Fla., 2nd edition, 1999. https://doi.org/10.1201/9781482227871.

[Sil16] L. L. Silverman. On the Notion of Summability for the Limit of a Function of a Continuous Variable.
Transactions of the American Mathematical Society, 17(3):284–294, 1916. https://doi.org/10.1090/
S0002-9947-1916-1501042-8.

[SM16] C.) Skokos and T. Manos. The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient
Methods of Chaos Detection. In C. Skokos, G.A. Gottwald, and J. Laskar, editors, Chaos Detection and
Predictability, Lecture Notes in Physics, pages 129–181. Springer, Berlin, 2016. https://doi.org/10.
1007/978-3-662-48410-4_5.

[SM20] E. Sander and J.D. Meiss. Birkhoff averages and rotational invariant circles for area-preserving maps.
Physica D, 411:132569, 2020. https://doi.org/10.1016/j.physd.2020.132569.
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