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Scaling regions—intervals on a graph where the dependent variable depends linearly on
the independent variable—abound in dynamical systems, notably in calculations of in-
variants like the correlation dimension or a Lyapunov exponent. In these applications,
scaling regions are generally selected by hand, a process that is subjective and often chal-
lenging due to noise, algorithmic effects, and confirmation bias. In this paper, we pro-
pose an automated technique for extracting and characterizing such regions. Starting with
a two-dimensional plot—e.g., the values of the correlation integral, calculated using the
Grassberger-Procaccia algorithm over a range of scales—we create an ensemble of inter-
vals by considering all possible combinations of endpoints, generating a distribution of
slopes from least-squares fits weighted by the length of the fitting line and the inverse
square of the fit error. The mode of this distribution gives an estimate of the slope of the
scaling region (if it exists). The endpoints of the intervals that correspond to the mode
provide an estimate for the extent of that region. When there is no scaling region, the
distributions will be wide and the resulting error estimates for the slope will be large. We
demonstrate this method for computations of dimension and Lyapunov exponent for sev-
eral dynamical systems, and show that it can be useful in selecting values for the parameters
in time-delay reconstructions.
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Lead Paragraph: Many problems in nonlinear dynamics involve identification of regions of
constant slope in plots of some quantity as a function of a length or time scale. The slopes of these
scaling regions, if they exist, allow one to estimate quantities such as a fractal dimension or a
Lyapunov exponent. In practice, identifying scaling regions is not always straightforward. Issues
with the data and/or the algorithms often cause the linear relationship to be valid only for a limited
range in such a plot, if it exists at all. Noise, geometry and data quality can disturb its shape in
various ways, and even create multiple scaling regions. Often the presence of a scaling region, and
the endpoints of its range, are determined by eye,1,2 a process that is subjective and not immune
to confirmation bias.3–6 Worse yet, we know of no formal results about the relationship between
the width of the scaling region and the validity of the resulting estimate; often practitioners simply
use the heuristic notion that “wider is better.” In this work, we propose an ensemble-based method
to objectively identify and quantify scaling regions, thereby addressing some of the issues raised
above.

I. INTRODUCTION

To identify a scaling region in a plot, our method begins by generating multiple fits using
intervals of different lengths and positions along the entire range of the data set. Penalizing the
lower-quality fits—those that are shorter or have higher error— we obtain a weighted distribution
of the slopes across all possible intervals on the curve. As we will demonstrate by example, the
slope of a scaling region that is broad and straight manifests as a dominant mode in the weighted
distribution, allowing easy identification of an optimal slope. Moreover, the extent of the scaling
region is represented by the modes of similar distributions that assess the fit as a function of the
interval endpoints. As we will show, for a long, straight scaling region, markers closer to the
endpoints of the scaling region are more frequently sampled (due to the combinatorial nature of
sampling) and have a higher weighting (due to longer lengths of the fits). Thus, the method gives
the largest reasonable scaling interval for the optimal fit along with error bounds on the estimate
as computed from the distributions.

Section II covers the details of this ensemble-based method and illustrates its application with
three examples. In §III, we demonstrate the approach on several dynamical systems problems,
starting in §III A with the estimation of correlation dimension for two canonical examples. We
show that our method can accurately detect spurious scaling regions due to noise and other effects,
and that it can be useful in systematically estimating the embedding dimension for delay recon-
struction. We then demonstrate that this method is also useful for calculating other dynamical
invariants, such as the Lyapunov exponent (§III B). We present the conclusions in §IV.

II. CHARACTERIZING SCALING REGIONS

A scaling law “...describe[s] the functional relationship between two physical quantities that
scale with each other over a significant interval.”a Such a scaling law manifests as a straight
segment on a two-dimensional graph of these physical quantities, known as a scaling region. In
practical situations, the data will typically not lie exactly on a line or may do so only over a limited
interval, see e.g., the synthetic example in Fig. 1(a). These data are obtained from a function

a https://www.nature.com/subjects/scaling-laws
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(a) y(x) = s(x)+d(x) (b) Weighted slope histogram with the KD estimator

(c) Weighted distributions of interval endpoints

FIG. 1: Extracting a scaling region using an ensemble-based approach. (a) A synthetic example
with a linear range that is bounded below by oscillations and above by a flat interval. (b)
Weighted distribution of slopes (orange histogram) generated from an ensemble of fits in different
intervals of this plot. A kernel density estimation for the probability density is shown in blue,
with its mode marked by the black line. The horizontal axis is clipped to [4,6]. (c) Probability
distributions of the interval endpoints [xl,xr] from the ensemble, with the same weighting as (b).

y(x) = s(x)+d(x), where s(x) is piecewise linear, with slope 5 in the region 1≤ x≤ 9:

s(x) =


0, x < 1
5x−5, 1≤ x≤ 9
40, 9 < x

.

This function exhibits a scaling region in the range [1,9] that is bounded by intervals with zero
slope: a shape that is similar to what is often seen in computations of dynamical invariants even
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for well-sampled, noise-free data. To make the problem less trivial, we add a damped oscillation,

d(x) = 10 e−0.5x sin(5x),

to s(x). The data set for this example is taken to be y(x) on [0,10) with a sampling interval
∆x = 0.1.

To find a scaling region in a diagram like Fig. 1(a), one would normally choose two points—
markers xl and xr for the bounds of the linear region—then fit a line to the interval [xl,xr]. A
primary challenge is to identify the appropriate interval. For Fig. 1(a), the range 7≤ x≤ 9 appears
to be linear, but should this range extend to smaller x? One could certainly argue that the lower
boundary could be xl = 6 instead of 7, but it would be harder to defend a choice of xl ≤ 4 because
of the growing oscillations.

Several approaches have been proposed for formalizing this procedure in the context of the
largest Lyapunov exponent (LLE) problem. These include what Ref. [6] calls the “small data
method”—used, for example, in Ref. [7]—which is efficient but suffers from the subjectivity
problem described above; an object-searching method of the “maximum nonfluctuant," which
often reports a local optimal solution;8 and a fuzzy C-means clustering approach,9 which also has
limitations since the number of clusters must be pre-specified by the user.

Our approach formalizes the selection of a scaling interval by first choosing all possible “sensi-
ble” combinations of left- and right-hand-side marker pairs. Specifically, given a sequence of data
points at {x j, j = 1..N}, we choose xl and xr such that

r− l > n, (1)

so that the left marker xl must be below the right one (xr) and there must also be at least n+1 data
points on which to perform the linear fit. For each pair [xl,xr], we perform a least-squares fit using
the data bounded by the pair to compute both the slope and the least-squares fit error. To suppress
the influence of intervals with poor fits, we construct a histogram of their slopes, weighting the
frequency of each directly by the length of the fit and inversely by the square of the associated
fitting error. Finally, we use a kernel density estimator to fit a smooth probability density function
(PDF) to the histogram. The details are presented in Appendix A, along with a discussion of the
choices for n and the exponents associated with the fit width and the fitting error (which are set to
1 and 2, respectively, in the experiments reported here).

A central claim in this paper is that the resulting distribution contains useful information about
the existence, extent, and slope of the scaling region. The slopes for which the PDF is large
represent estimates that not only occur for more intervals in the graph, but also that are longer and
have lower fit errors. In particular, we conjecture that the mode of this distribution gives the best
estimate of the slope of the scaling region: i.e., a value with low error that persists across multiple
choices for the position of the interval. More formally, most intervals [xl,xr] that result in slopes
near the mode of the PDF (within full width half maximum10) correspond to high-quality fits of
regions in the graph whose bounds lie within the interval of the scaling region. If the graph has
a single scaling region, the PDF will be unimodal; a narrower peak indicates that the majority of
high quality fits lie closer to the mode. Broad peaks and multimodal distributions can arise for
multiple reasons, including noise; we address these issues in §III.

For the example in Fig. 1, there are N = 100 data points and we set n = 10 so the ensemble of
endpoints has 4005 elements. The resulting weighted slope distribution is unimodal, as shown in
panel (b), with mode 4.97—not too far from the expected slope of 5.0. To provide a confidence
interval around this estimate, we compute three quantities:

4



(a) the full width half maximum (FWHM) of the PDF around the mode;

(b) the fraction, pFWHM, of ensemble members that are within the FWHM;

(c) the standard deviation, σ , for the slopes of the ensemble members within the FWHM.

For the example in Fig. 1, we obtain

FWHM = 0.36, pFWHM = 0.67, and σ = 0.11.

That is, we estimate the slope of the scaling region as 4.97 ± 0.11, noting that fully 67% of the
estimated values are within ±0.18. These error estimates quantify the shape of the peak, and give
assurance that the diagram does indeed contain a scaling region.

This method also can estimate the boundaries of the scaling region. To do this, we compute
secondary distributions using the positions of the left-hand and right-hand side markers. Since
we choose all possible pairs, subject to the constraint (1), the probability densities of the resulting
histograms will decrease linearly for xl and grow linearly for xr from left to right. To penalize
poor fits, we again scale the frequency for each point in these secondary histograms directly by the
length and inversely by the square of the error of the corresponding fit. The resulting PDFs for the
synthetic example of Fig. 1(a) are shown in panel (c). The modes of the LHS and RHS histograms
fall at xl = 6.45 and xr = 8.92, respectively. These align neatly with what an observer might choose
as the endpoints of the putative scaling region in Fig. 1(a). Note that the xl distribution is wider
with a relatively lower peak, whereas the xr distribution is narrower and taller. This indicates that
we can be more certain about the position of the right endpoint than we are about the left one.
There is more flexibility in choosing xl than xr.

To test our ensemble method on a dataset without an obvious scaling region, consider the
quadratic function

y(x) = x2.

We choose the range x ∈ [0,2] and a sampling interval ∆x = 0.05. A graph of resulting function,
Fig. 2(a), of course has no straight regions, but one might imagine that the curve becomes nearly
linear near the top of the range even though the actual slope grows linearly with x. The slope
distribution, shown in Fig. 2(b), has mode

2.51±0.63 (FWHM = 2.18 and pFWHM = 0.89),

and as the endpoint distributions in panel (c) show, this corresponds to the interval [xl,xr] =
[0.90,1.70]. However, the large width of the slope distribution and the correspondingly high mag-
nitude of σ convey little confidence as to the existence of a scaling region. This shows that the
error statistics and the FWHM can be useful indicators as to whether or not a scaling region is
present. A high error estimate and/or a high FWHM contraindicates a scaling region.

In the case of the two simple examples above, scaling regions imply simple linear relationships
between the independent and dependent variables. Our technique can just as well be applied to
plots with suitably transformed axes—like the log-linear or log-log axes involved in the compu-
tation of many dynamical invariants—as we demonstrate next by computing the dimension of a
fractal.

The box-counting dimension, dbox, is the growth rate of the number N(ε) of boxes of size ε

that cover a set:

N(ε) ∝ ε
−dbox . (2)
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(a) y(x) = x2 (b) Weighted slope histogram with the KD estimator

(c) Weighted distributions of interval endpoints

FIG. 2: Estimating the scaling region of a quadratic function.

In practice, dbox is estimated by computing the slope of the graph of ln N(ε) versus ln 1
ε
. As an

example, we consider the equilateral Sierpinski triangle of side one, generating a set of 105 points
using an iterated function system11 to obtain Fig. 3(a). A log-log plot of N(ε) for this data set
is shown in Fig. 3(b) and the resulting slope distribution is shown in Fig. 3(c). The mode of this
distribution falls at 1.585 ± 0.020, where—as before—the error is the estimate σ . This is close to
the true dimension ln3

ln2 ≈ 1.585. This peak is narrow, with FWHM = 0.07, though pFWHM = 0.68,
similar to the first example. Thus about 70% of the weighted fits lie within±0.035 of the estimated
slope, strengthening confidence in the estimate. The small periodic oscillations in the curve in
Fig. 3(b) are due to the self-similarity of the fractal. Note that the linear growth saturates when
ln 1

ε
< 0.5, the point at which the box size becomes comparable to the diameter of the set. Neither

of these effects significantly influences the mode of the slope distribution. For this example, the
LHS and RHS distributions in panel (b) have similar widths, with modes xl = 1.64 and xr = 5.59,
respectively.

The examples of this section show that the ensemble-based method effectively selects an ap-
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(a) 100,000 points on the Sierpinski Triangle

(b) Log-log plot of N(ε) (c) Weighted slope distribution

FIG. 3: Estimating the box-counting dimension of the Sierpinski Triangle.

propriate scaling region—if one exists—and is able to exclude artifacts near the edges of the data.

III. APPLICATIONS TO DYNAMICAL SYSTEMS

In this section, we apply this scaling region identification and characterization method to cal-
culations of two dynamical invariants—the correlation dimension (§III A) and the Lyapunov ex-
ponent (§III B)—for two well-known examples, the Lorenz system and the driven, damped pen-
dulum. We also explore the effects of noise (§III A 3) and the selection of embedding parameters
for delay reconstructions (§III A 4).

A. Correlation Dimension

Correlation dimension, one of the most common and useful dynamical invariants, can be calcu-
lated using the Grassberger-Procaccia algorithm.12,13 Given a set of points that sample an object,
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such as an attractor of a dynamical system, this algorithm estimates the average number of points
in an ε-neighborhood of a given point, C(ε). For an attractor of correlation dimension d2, this
scales with ε as

C(ε) ∝ ε
d2. (3)

Estimating d2 is therefore equivalent to finding a scaling region in the log-log plot of C(ε) versus
ε .14

In this section, we use d2, the TISEAN1 implementation, which outputs estimates of C(ε) for
a range of ε values. We apply our ensemble-based method to a graph of log C(ε) versus log ε

and identify the mode of the resulting slope distribution to obtain an estimate of the correlation
dimension of the data set. When the slope distribution is multi-modal, our method can also reveal
the existence of potential scaling regions for different ranges of ε , some of which may not be
obvious on first observation. This analysis, then, not only yields values for the slope and extent
of the scaling region; it also provides insight into the geometry of the dynamics, the details of the
Grassberger-Procaccia algorithm, and the interactions between the two.

1. Lorenz

We start with the canonical Lorenz system:

ẋ = σ(y− x),
ẏ = x(ρ− z)− y,
ż = xy−β z,

with σ = 10, β = 8
3 , and ρ = 28.15 We generate a trajectory from the initial condition (0,1,1.05)

using a fourth-order Runge-Kutta algorithm for 105 points with a fixed time step ∆t = 0.01, dis-
carding the first 104 points to remove the transient, to get a total trajectory length of 90,000 points,
see Fig. 10 in Appendix B. The chosen initial condition lies in the basin of the chaotic attractor
and the discarded length is sufficient to remove any transient effects. Figure 4(a) shows a log-log
plot of C(ε) versus ε produced by the d2 algorithm. To the eye, this graph appears to contain a
scaling region in the approximate range [lnεl, lnεr] = [−3,2]. As in the box-counting dimension
example in §II, the curve flattens when ε is larger than the diameter of the attractor, since C(ε)
will not change when ε increases beyond this point. Since the diameter of the Lorenz attractor is
25.5, this flattening occurs for lnε > ln(25.5)≈ 3.2.

Figures 4(b) and (c) show the results of our ensemble-based approach. The mode of the slope
PDF is

2.09±0.02 (FWHM = 0.06 and pFWHM = 0.69);

this gives an estimate for the correlation dimension for the Lorenz attractor that agrees with the
accepted range, 2.06−2.16.16,17 The PDFs of the LHS and RHS markers in Fig. 4(c) have modes
lnεl =−2.6 and lnεr = 1.5, respectively. Estimates of both endpoints by our algorithm are close
to the informal ones, although slightly on the conservative side. In other words, our method can
indeed effectively formalize the task of identifying both the existence and the extent of scaling
regions.

The endpoint distributions can be broken down further in the heatmap-style scatter plot of
Fig. 4(d) to reveal additional details. Each dot represents a single element of the ensemble: i.e.,
a fit for a particular interval [lnεl, lnεr]. Its color encodes the slope and its radius is scaled by the
fitting weight. If samples come from intervals that are close, the associated dots will be nearby; if
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(a) Correlation sum calculations (b) Weighted slope distribution

(c) Weighted distributions of interval endpoints (d) Heatmap of the endpoint ensemble

FIG. 4: Estimating the correlation dimension of the Lorenz attractor

these have low error, the dots will be large and their effective density will be high. Note that the
domain of panel (d) is a triangle since εl < εr by (1).

This visualization provides an effective way to identify scaling region ranges that produce sim-
ilar slope estimates: long scaling regions will manifest as large regions of similarly colored points.
Fig. 4(d) shows such a triangular high-density region in blue (slope ≈ 2.0), above the diagonal,
bounded from the left by lnεl ≈−4, and from above by lnεr ≈ 2. This clearly corresponds to the
primary scaling region in Fig. 4(a) and the corresponding mode in panel (b). This heatmap can
reveal other, shorter scaling regions. Indeed, panel (d) shows other clusters of similarly colored
dots that are somewhat larger than the dots from neighboring regions: e.g., the green cluster for
lnεl ≈ 2 and lnεr ≈ 3, with a slope near 1.5. Close examination of the original curve in Fig. 4(a)
reveals a small straight segment in the interval [2,3]. This feature, not immediately apparent from
the original curve, stands out quite clearly in the distribution visualization. Two much smaller
scaling regions at the two ends of panel (a) are also brought out by this representation: the interval
of slope ≈ 3.0 for small ε (the dark blue cluster at the lower left corner of the scatter plot) and the
zero slope for large ε (the red cluster at the upper right corner).
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2. Pendulum

As a second example, we study the driven, damped pendulum:

θ̇ = ω,

ω̇ =−βω−ν
2
0 sin(θ)+Acos(α t),

(4)

where the natural frequency is ν0 = 98, the damping coefficient is β = 2.5, and the driving force
has amplitude A = 91 and frequency α = 0.75ν0. The coordinates of the three-dimensional ex-
tended phase space T2×R are the angle θ , the time t, and the angular velocity ω . We gener-
ate a trajectory for this system using a fourth-order Runge-Kutta algorithm with initial condition
(3.14,0,50) for 1.1× 106 points with fixed time step 0.001, discarding the first 105 points to re-
move the transient, resulting in a final time series of length one million. To avoid issues with
periodicity in θ and t, we project the time series from T2×R onto (sin(θ),sin(αt),ω) ∈ R3. The
resulting trajectory is shown in Fig. 5. Note that the attractor has the bound |ω| ≤ 24.88, but that
the range of the other two variables is [−1,1] due to the sinusoidal transformation.

FIG. 5: A trajectory of the driven, damped pendulum (4).

To the eye, results of a d2 calculation on this trajectory, shown in Fig. 6(a), exhibit two apparent
scaling regions above and below lnε ≈ 1. The slope distributions produced by our method not only
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confirm, but also formalize, this observation. The larger peak of the distribution in panel (b) of
the figure falls at d2 = 2.19± 0.09 (FWHM = 0.32 and pFWHM = 0.53), which is equivalent to
the correlation dimension of the attractor as reported in Ref. [18]. Note that, to account for the
fact that the distribution is clipped on the right before the density falls below half the peak value,
the computation of FWHM uses this as the upper bound. The interval endpoint distributions in
panel (c) indicate that the extent of this scaling region is −2.6 < lnε < 0. To the eye, εr ∼ 0.8
would seem a more-appropriate choice for the RHS endpoint of the scaling region; however, minor
oscillations in the interval ε ∈ [0,1] cause the ensemble-based algorithm to be more conservative
and choose εr = 0. The presence of a second scaling region in panel (a) for lnε > 1 gives a second
mode at the slope 0.94±0.10 (FWHM = 0.35 and pFWHM = 0.26). The secondary peaks in the
endpoint distributions in panel (c) suggest an extent of 0.8 < lnε < 2.8 for this second scaling
region, which is consistent with visual inspection of panel (a).

This second scaling region is an artifact of the large aspect ratio of the attractor: only one of the
variables, ω , has a range larger than 1, so when ε > 1, the effective dimension is one. To test this
hypothesis, we rescaled the components of the phase space vectors so that the attractor has equal
extent of [0,1] in all three directions (using the -E flag in the TISEAN d2 command) and repeated
the d2 calculations. This leads to rescaling of the axis of the d2 plot (not shown)—lnε now has the
range [−7,0]—and causes the second scaling region in the previous results to disappear, leaving a
single scaling region −7 < lnε <−2 with slope

d2 = 2.22±0.02 (FWHM = 0.05, and pFWHM = 0.70).

Note that, in addition to resolving the artifact of the second scaling region, this rescaling also
reduces the width of the mode and gives a much tighter error bound.

By revealing the existence, the endpoints, and the slopes of different scaling regions in the
data, our ensemble-based approach has not only produced an objective estimate for the correlation
dimension, but also yielded some insight into the interaction between the d2 algorithm and the
attractor geometry.

3. Noise

Noise is a key challenge for any practical nonlinear time-series analysis method. We explore
the effects of measurement noise on our method using the Lorenz trajectory of §III A 1 by adding
uniform noise post facto to each of the three state variables. The noise amplitude in each dimension
is proportional to the radius of the attractor in that dimension. The correlation sum C(ε) for a
noise amplitude δ = 0.01—i.e., 1% of the radius of the attractor in each dimension—is shown in
Fig. 7(a). There appear to be two distinct scaling regions in this plot, above and below a slight
knee at lnε ≈ −1. The slope distribution produced by our method is shown in Fig. 7(b). As in
the pendulum example, this distribution is bimodal, indicating the presence of two scaling regions
with slopes

2.94±0.09 (FWHM = 0.33 and pFWHM = 0.42), and
2.08±0.15 (FWHM = 0.51 and pFWHM = 0.30),

respectively. We claim that these results are consistent with the geometry of the noise and of the
dynamics, respectively. The taller peak corresponds to the interval lnε ∈ [−4.60,−1], delineated
by red markers in panel (a). Note that the right endpoint of this region is close to εr ≈ 0.01×26, the
maximum extent of the noise. The computed slope of 2.94 in this interval captures the geometry
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(a) Correlation sum calculations

(b) Weighted slope distribution (c) Weighted distributions of interval endpoints with the
correlation sum graph from (a) superimposed

FIG. 6: Estimating the correlation dimension of the driven, damped pendulum trajectory shown
in Fig. 5.

of a noise cloud in three-dimensional state space. The smaller, secondary peak at 2.08 reflects
the dimension of the attractor for scales larger than the noise, the interval lnε ∈ [−1,2.2] that is
bounded by green markers in panel (a).

As the noise level increases, the geometry of the attractor is increasingly obscured (see Fig. 10
in Appendix B). Figures 7(c) and (d) show results for δ = 0.1. As one would expect, the right-
hand boundary of the lower scaling region is increased, shown as the red markers in panel (c).
We observe that ln εr ≈ 0.16, near the noise cloud radius of 1.3. With this noise level, the slope
distribution is nearly unimodal with mode

3.02±0.05 (FWHM = 0.18 and pFWHM = 0.65),

again reflecting the geometry of the noise. While there appears to be a secondary peak in the slope
distribution in panel (d), it is nearly obscured.

Interestingly, the identification of the scaling region due to the noise can be used to refine
the calculation and retrieve some information about the dynamical scaling: one simply repeats the
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(a) δ = 0.01 (b) Weighted slope distribution for (a)

(c) δ = 0.1 (d) Weighted slope distribution for (c)

(e) δ = 0.1 (f) Weighted slope distribution for (e)

FIG. 7: Correlation dimension of the Lorenz attractor with added noise δ = 0.01 for (a)-(b), and
δ = 0.1 for (c)-(f). Panels (e)-(f) exclude lnε <−1. The red markers in (a), (c) and (e) denote
scaling regions corresponding to noise while the green markers indicate that for the dynamics.

slope-distribution calculations using only the data for larger ε values—that is, discarding the values
below the noise. Restricting to the interval [−1.0,4.0], gives the curve and the slope distribution
shown in panels (e) and (f). In addition to the noise peak near 3.0, this reveals two additional
peaks. The first,

2.59±0.20 (FWHM = 0.68 and pFWHM = 0.67),
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was hinted at by the tail of the distribution in panel (d). This, we conjecture, corresponds to the
correlation dimension of the noisy dynamics. The final peak, near 1.8, corresponds to the smaller
scaling region [2.0,3.0] that can be seen in a heatmap-style scatter plot (not shown). The validity of
this region can be easily confirmed by further limiting the ensemble to the interval lnε ∈ [1.0,4.0]
which then gives a single mode at 1.83. Note that this region corresponds to a smaller scaling
region that was also seen in the noiseless case: the small green cluster in Fig. 4(d).

The ability of the ensemble-based slope distribution method to reveal secondary scaling regions
and suggest refinements allows one to identify noise scales and even extract information that might
be hidden by the noise.

4. Time Series Reconstructions

The previous examples assumed that all of the state variables are known. This is rarely the case
in practice; rather, one often has data only from a single sensor. Delay-coordinate embedding,19,20

the foundation of nonlinear time-series analysis, allows one to reconstruct a diffeomorphic repre-
sentation of the actual dynamics from observations of a scalar time series x(t) provided that a few
requirements are met: x(t) must represent a smooth, generic observation function of the dynami-
cal variables19,21 and the measurements should be evenly spaced in time. This method embeds the
time series x(t) into Rm as a set of delay vectors of the form [x(t),x(t− τ), . . . ,x(t− (m− 1)τ)]
given a time delay τ . Theoretically the only requirements are τ > 0 and m > 2dcap, where dcap
is the capacity dimension of the attractor on which the orbit is dense.19,22 Many heuristics have
been developed for estimating these two free parameters,1,18,23–37 notably the first minimum of the
average mutual information for selecting τ25 and the false near neighbors algorithm for selecting
m.37 See Refs. [2 and 38] for more details.

Since the correlation dimension is preserved under a diffeomorphism, it can be computed with
the d2 algorithm on properly reconstructed dynamics. Moreover, the calculations of the correla-
tion dimension for different values of m can help diagnose the correctness of an embedding. To
explore how our method can contribute in this context, we embed the x(t) time series of the Lorenz
trajectory from §III A 1 using τ = 18, which was chosen using the curvature heuristic described
in Ref. [18] and corroborated using the first minimum of the average mutual information. Using
TISEAN, we then create a series of embeddings for a range of m values and apply the Grassberger-
Procaccia algorithm to each one. The results are shown in Fig. 8(a) for m ∈ [1,10].

As is well known, we can assess the convergence of d2 by reasoning about such a sequence of
curves. When m is too small, the reconstructed attractor is improperly unfolded, giving an incorrect
dimension, while for large enough m, d2 typically converges—modulo data limitation issues39—to
the nominally correct value. Since our ensemble methodology automates the calculation of scaling
regions, it can simplify this calculation for multiple curves. To determine the value of m for which
the slopes converge, one simply computes the modes of each slope distribution and looks for the
m value at which the positions of those modes stabilize. For Fig. 8(b), the mode for m = 1 is, of
course, d2 = 1, but when m reaches 3, the distributions begin to overlap and for 3 ≤ m ≤ 5 the
modes are 2.09± 0.01, essentially the estimate from the full dynamics in §III A 1. [newtext] This
finding nicely corroborates the rigorous results of Ding et al.39 which show—in the noise free
case—that the correlation dimension can be correctly recovered using m = dd2e: i.e., the smallest
integer not less than d2.

To formalize this procedure, we use the Wasserstein metric MW to compare pairs of distributions.40

Informally, this metric—called the “earth mover’s distance”—treats each distribution as a pile of
soil, with the distance between the two distributions defined as the minimum “effort” required to
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(a) Correlation sum calculations (b) Weighted slope distributions

(c) Wasserstein distance

FIG. 8: Correlation dimension from time-delay reconstructions of the Lorenz system for x(t),
τ = 18 and m ∈ [1,10]. Each m from (a) gives a slope distribution (b), and these are pairwise
compared in (c) using the Wasserstein distance. The slope distribution plot in (b) is clipped from
above at 50 for the sake of clarity.

turn one pile into another. Thus MW = 0 only when the distributions are identical. We use the
python scipy.stats.wasserstein_distance package to compute this metric.b

Given slope distributions Pm and Pm−1 for successive embedding dimensions from Fig. 8(b),
the distance MW (Pm,Pm−1) is shown in panel (c) of the figure. Note that MW (Pm,Pm−1) initially
decreases rapidly with increasing m, approaching zero at m = 4. Up to fluctuations, MW (Pm,Pm−1)
remains approximately constant thereafter. After experimenting, we propose the heuristic thresh-
old MW (Pm,Pm−1) ∼ 0.1 to estimate convergence of d2 as m grows. Such a threshold has two
benefits, giving both an estimate of the embedding dimension and of d2.

To assess the generality of these ideas, we applied the ensemble-based method to four addi-
tional scalar time series: the noisy Lorenz data of §III A 3 with δ = 0.1 using x(t), the pendulum

b https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
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System Full Dynamics Reconstructed
d2 d2 τ m

Lorenz (III A 1) 2.09±0.02 2.09±0.01 18 4
Noisy Lorenz (δ = 0.1) 2.59±0.20 2.27±0.14 21 7
Pendulum (III A 2) 2.22±0.02 2.16±0.02 120 4
Truncated Pendulum 2.23±0.07 2.20±0.03 120 4
Lorenz-96 5.63±0.09 5.80±0.07 24 10

TABLE I: Correlation dimensions calculated using the ensemble-based method with Wasserstein
distance for five cases. The histograms for each are shown in Appendix C.

trajectory of §III A 2 using ω(t), a shorter, 200,000 point segment of this orbit, and finally, a tra-
jectory from the Lorenz-96 model41 with a phase space dimension d = 14. In each case, we again
used the curvature-based heuristic of Ref. [18] to estimate τ . This set of examples represents a
range of problems that can arise in practice: measurements affected by noise, and a trajectory that
is too short to fully cover an attractor, and a high-dimensional attractor. The results, presented in
Table I show that d2 for the reconstructed dynamics is close to that of the full dynamics as well as
that given previously by manually fitting scaling regions.18 However, the embedding dimensions
are often significantly smaller that those suggested by other work. For the first four examples in
Table I, for example, Ref. [18] used m= 7= 2d+1, the dimension required by the Takens theorem
for a three-dimensional state space;19 for the Lorenz-96 example, that paper used m= 12, obtained
from the heuristic m> 2dcap.22 Both m≥ 2d+1 and m> 2dcap are sufficient conditions, of course.
The Wasserstein test used in Table I shows that accurate estimates of d2 can often be obtained with
a lower embedding dimension and without prior knowledge of the original dynamics.

B. Lyapunov Exponent

Computing a Lyapunov exponent also often involves identification and characterization of scal-
ing regions. Here we use the Kantz algorithm42 to estimate the maximal Lyapunov exponent λ1
for reconstructed trajectories of the Lorenz and chaotic pendulum examples from §III A 4. We
embed the scalar data using a delay τ found by standard heuristics, and experiment with various
embedding dimensions. The Kantz algorithm starts by finding all of the points in a ball of radius
εs (also called the “scale”) around randomly chosen reference points on an attractor. By march-
ing through time, the algorithm then computes the divergence between the forward image of the
reference points and the forward images of the other points in the εs ball. The average divergence
across all reference points at a given time is the stretching factor. To estimate λ1, one identifies a
scaling region in the log-linear plot of the stretching factor as a function of time.

Note that this procedure involves three free parameters: the embedding parameters τ and m and
the scale of the balls used in the algorithm.c To obtain accurate results, one is confronted by an
onerous multivariate parameter tuning problem: a situation in which an automated approach can
be extremely advantageous. If, for example, one embeds the x coordinate of the Lorenz data from
§III A 1 with m ranging from 2 to 9 and chooses 10 values of εs (e.g., on a logarithmic grid with
10 values between 0.038 and 0.381), then there will be 80 different curves, as seen in Fig. 9(a).
Manually fitting scaling regions to each curve would be a demanding task.

c Other parameters—the number of reference points, Theiler window, and length of the temporal march, etc.—were
set to TISEAN’s default values.
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(a) Stretching factor calculations (Lorenz) (b) λ1 estimate (Lorenz)

(c) Stretching factor calculations (pendulum) (d) λ1 estimate (pendulum)

FIG. 9: Estimating the largest Lyapunov exponent λ1 of the Lorenz and driven, damped
pendulum examples. Panels (a) and (c) show stretching-factor calculations for the eight
embedding dimensions m and ten search scales εs. The estimated exponents for all the
dimensions and scales are shown in grid form in panels (b) and (d). The gray scale in each grid
cell represents the magnitude of the exponent.

The ensemble method gives the automated results shown in panel (b) of the figure. Each row of
this 2D grid corresponds to fixed m and each column to fixed εs. The estimated λ1—the location of
the mode in the slope PDF—is the value shown in the cell. To help detect convergence, each cell
is shaded according to the corresponding λ1 value. Note that the majority of the configurations (48
out of 80, colored in intermediate gray) give an estimate of λ1 = 0.89±0.02, which is consistent
with the known value.43

The pattern in the grid makes sense. The cells in its center correspond to midrange combina-
tions of the free parameters: m ∈ [5,9] and εs ∈ [0.064,0.177]. Values outside these ranges create
well-known issues for the Kantz algorithm in the context of finite data. If εs is too small, the ball
will not contain enough trajectory points to allow the algorithm to effectively track the divergence;
if εs is too large, the ball will straddle a large portion of the attractor, thereby conflating state-space
deformation with divergence. For m too small, the attractor is insufficiently unfolded, so the values
in the top few rows of the grid are suspect. In the upper right corner, these two effects combine;
moreover, for these cases, the zero slope segments on the right ends of the stretching factor curves
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becomes dominant (since the εs ball reaches the edge of a flattened attractor more quickly) thus
causing the ensemble-based algorithm to return a slope close to zero. Finally, we see a slightly
higher estimate of λ1 = 1.17 for m = 9 and εs = 0.038. On inspection, the stretching factor plot
for this case exhibits significant oscillations, distorting most of the curve. Though a relatively
straighter section of this curve is chosen by the algorithm as a scaling region, the distortion shows
that this parameter combination should be avoided for estimating λ1.

The process is repeated for the driven damped pendulum example in Fig. 9(c,d). Here, we use
a slightly different trajectory than in section III A 2: 500,000 points (after removing a transient
of 50,000 points) with a time step 0.01. For this trajectory, the heuristic of Ref. [18] suggests an
embedding delay τ = 21. From the grid, we observe similar patterns as in the Lorenz example:
46 out of 80 combinations give λ = 0.93±0.04 (for m ∈ [4,9] and εs ∈ [0.083,0.3]). We observe
significantly lower estimates when the embedding dimension is low and εs is high. Additionally, an
anomaly, similar to the Lorenz example, is observed for higher embedding dimensions (m ∈ [8,9])
and smaller scales (εs ∈ [0.05,0.065]) that gives λ1 = 0.60± 0.02. This is due to low frequency
oscillations in the stretching factor plots, with a relatively straight region towards the right end
of the plots where they start to flatten. As for the Lorenz example, these parameter combinations
should be avoided.

The ensemble approach allows easy automation of the computation of scaling regions for var-
ious values of the hyperparameters, thus sparing significant manual labor. Moreover, the grid
visualization shows the “sweet spot” in the (m,εs)-parameter space. Of course, this is only a rel-
atively crude convergence criterion, and one could instead use a more-rigorous test such as the
Wasserstein distance of § III A 4.

IV. CONCLUSIONS

The technique described above is intended to formalize a subjective task that arises in the cal-
culation of dynamical invariants: the identification and characterization of a scaling region, an
interval in which one quantity grows linearly with respect to another. By manipulating the axes,
one can extend this to detect exponential or power-law relationships: e.g., using log-log plots
for fractal dimensions and log-linear plots for Lyapunov exponents, as shown in Sections III A
and III B. Moreover, linearity is not a limitation in the applicability of this approach: our method-
ology could be used to identify regions in a dataset with any hypothesized functional relationship
(e.g., higher order polynomial, logarithmic, exponential, etc.). One would simply compute the
least squares fit over the data using the hypothesized function instead.

A strength of our method is that the scaling region is chosen automatically, as the optimal
family of intervals over which the fits have similar slopes with small errors. To do this, we create
an ensemble of fits over different intervals, building PDFs to identify the boundaries and slopes of
any scaling regions and to obtain error estimates. When the scaling region is clear, our ensemble-
based approach computes a slope similar to that which would be manually determined. [newtext]

Another strength of this method is its robustness: while the examples in this paper involve scaling
regions containing hundreds of points, the method works surprisingly well even when the number
of input points is relatively small and the responses are fairly noisy, albeit with a higher error
estimate. Finally, we showed that a convergence test for the slope distributions helps choose
the delay reconstruction dimension. This is a challenging task: even though there are rigorous
theoretical guidelines, the information needed to apply them is not known in advance from a given
scalar time-series. [newtext] As a next step, we are investigating how this approach compares
with existing methods for estimating the correct embedding dimension (such as by false nearest
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neighbors) for delay embedding.
This kind of objective, formalized method is useful not only because it reveals scaling regions

that may not be visible, but also because it provides confidence in their existence by providing error
estimates. Moreover, since computing a dynamical invariant, such as the Lyapunov exponent, can
involve finding scaling regions in many curves, an automated method provides a clear advantage
over hand selection. Our method could be potentially useful in areas outside dynamical systems as
well: e.g., estimating the scaling exponent for data drawn from a power-law distribution. This is an
active area of research.5,44 Standard techniques involve inferring which power-law distribution (if
any) the data is most likely drawn from, and—if so—which exponent is most likely. Our method
could potentially help narrow the range of exponents to begin such a search. [newtext] There
are other potential applications as well, e.g., detection of scaling regions in fluctuation functions
that arise in detrended fluctuation analysis (DFA),45 as well as in wavelet or rescaled range (R/S)
analysis46,47 for the determination of the Hurst exponent48 in stochastic processes with long-range
temporal correlations.

There are a number of interesting avenues for further work, beginning with how to further
refine the confidence intervals for slope estimates. We have used the standard deviation of the
slopes within the FWHM around the mode of the distribution. Alternatively, one could use the
average of the least squares fit error for the samples within the FWHM as the confidence interval.
Another possibility is to first extract a single scaling region (by determining the modes for the
left- and right-hand side markers) and then compute the error statistics over all the sub-intervals
of this scaling region (e.g., standard deviation of the slopes or the average of the fit errors). We
used the Wasserstein distance to assess the convergence of a sequence of slope distributions to
help choose an embedding dimension. This may be too strict since it requires that the entire
distributions are close. One could instead target the positions of the modes, quantifying closeness
using some relevant summary statistic like their confidence intervals. Of course, for multimodal
distributions, the Wasserstein distance test is more appropriate since we cannot choose a single
mode for computing the intervals.
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Appendix A: Algorithm

The pseudocode for the proposed ensemble-based approach is described in Algorithm 1. There
are four important choices in this algorithm. The first is the parameter n, the minimum spacing be-
tween the left-hand and right-hand side markers LHS and RHS. This choice limits what is deemed
to be a “significant interval” for a scaling region. We set n= 10 in this paper, which we chose using
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a persistence analysis: that is, varying n and seeing if the results change. One could increase n for
larger data sets. The second is the choice of a kernel density estimator (KDE) for the histograms.
We used the Gaussian KDE with the python implementation, scipy.stats.gaussian_kde,49

of Scott’s method50 to automatically select the kernel bandwidth. Alternatively, one might choose
other bandwidth selection methods, such as Silverman’s method,51 or simply manually specify the
bandwidth. Scott’s method, which is the default method used by the package, worked well for all
our examples.

Algorithm 1 Ensemble approach for estimating the slope of scaling regions
1: Assume a plot (x[0 : N−1],y[0 : N−1]) that potentially contains a scaling region.
2: Initialize empty arrays slopes, lengths, errors, xl and xr.
3: for lhs = 0,1,2, . . . ,N−1 do
4: for rhs = 0,1,2, . . . ,N−1 do
5: if rhs− lhs > n then
6: Fit a line using least squares to data x[lhs : rhs],y[lhs : rhs].
7: Obtain an estimate for slope m and intercept c.
8: Compute the least squares fit length and fitting error,

fit length =
√

1+m2 |x[rhs]− x[lhs]| , (A1)

fit error =

√
∑

rhs
i=lhs(y[i]−mx[i]− c)2

rhs− lhs
. (A2)

9: Append the slope, fit length and error to the arrays slopes, lengths and errors, respectively.
10: Append x[lhs] and x[rhs] to endpoint arrays xl and xr, respectively.

11: Generate a histogram H from the slopes array, weighting each point by

weight[i] ∝
(fit length[i])p

(fit error[i])q , (A3)

for suitable powers p and q.
12: Using a kernel density estimator, generate a probability distribution function P, from H (see e.g.

Fig. 1(b)).
13: Compute the mode(s) of P and the error estimates as described in Sec. II.
14: Generate histograms Hl and Hr for xl and xr from Step 10, weighting the frequency with (A3). Generate

PDFs, as in Step 12, to generate distributions Pl and Pr (see e.g. Fig. 1(c)).

The two other important parameters are the powers p and q used for the weights of the fit length
and fit error in (A3). We explored ranges for these parameters, constraining p and q to nonnegative
integers, and determined suitable values that worked well for all of the examples considered here.
Some interesting patterns emerged in these explorations. Firstly, we found that p > 0 helps to
reduce the error estimate for the slope σ and improve pFWHM. Note that p> 0 penalizes the shorter
fits near the edges of the FWHM, suppressing their influence on the histogram. The FWHM
therefore narrows, in turn reducing the error estimate σ . Secondly, setting p≤ q was found to be
advantageous in all cases, ensuring that the algorithm does not prioritize unnecessarily longer fits
of poor quality. Enforcing these two conditions, we experimented with a few choices for p and
q in the context of Fig. 1, and found that lower p,q values generally work better. Higher powers
tend to magnify effects of small errors and small lengths, making the algorithm very conservative
in terms of what constitutes a good fit. With this in mind, we settled on p = 1 and q = 2 for all of
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the correlation dimension estimations. For the Lyapunov exponent examples, on the other hand,
we found that p = 1 and q = 1 does better, generating tighter confidence interval bounds around
the estimate across the various parameter combinations.

This algorithm always uses the full data set to compute the ensemble but note that it does not
require even spacing of the data. Given a much larger data set, it might make sense to downsample
to speed up the algorithm. In its current implementation, the run-time complexity of the algorithm
is O(N2), for a relationship curve with N points. In the future, it might be useful to develop faster
algorithms for sampling and generating the slope distributions.

Appendix B: Effects of noise on the Lorenz attractor

Fig. 10 shows the effects of noise on the Lorenz attractor (viz., the examples in Section III A 3).
As we increase the noise level (as a fraction of the attractor radius) δ from 0.0 to 0.1, the dynamics
of the attractor are progressively distorted. As discussed in Section III A 3, the effects of this
distortion on the correlation dimension plots, and hence the slope distributions, are clearly visible;
see Fig. 7.

Appendix C: Additional Plots for Time Series Reconstruction

Here we present figures to support the results of Table I.

• For the noisy Lorenz data, Fig. 11 shows the slope distributions and Wasserstein distance
between slope distributions of consecutive embedding dimensions, MW (Pm,Pm−1). Panels
(a) and (b) use τ = 21 as in Table I. Note that MW (Pm,Pm−1) converges more slowly for the
noisy data than it did for the deterministic case in Fig. 8. The distance MW (Pm,Pm−1)< 0.1
at m = 7, giving d2 = 2.27± 0.14. Figures 11(c) and (d) show the reconstruction results
for τ = 60, the embedding delay given by the average mutual information (AMI) method.25

Here MW (Pm,Pm−1) does not reach 0.1 for m ≤ 10. The implication is that the embedding
dimension should be larger than 10, contrary to the theoretical requirement m = 7. Indeed,
panel (c) shows that the mode grows monotonically with m, reaching values much higher
than the expected d2 = 2.59 for the full dynamics.

• Figures 12 and 13 show the results for the pendulum trajectories of length 106 and 2×105,
respectively, generated using a delay of τ = 120. In both cases, the Wasserstein distance
threshold is reached at m = 4, resulting in the values in Table I.

• Finally, Fig. 14 shows the delay reconstruction of the Lorenz-96 trajectory using τ = 24.
Convergence occurs at m = 10, giving d2 = 5.80±0.07.
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(a) Noiseless Lorenz trajectory

(b) Noisy Lorenz trajectory (δ = 0.01) (c) Noisy Lorenz trajectory (δ = 0.1)

FIG. 10: Effects of noise on the Lorenz attractor with different magnitudes of noise level δ .
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(a) Weighted slope distributions (τ = 21) (b) Wasserstein distance (τ = 21)

(c) Weighted slope distributions (τ = 60) (d) Wasserstein distance (τ = 60)

FIG. 11: Estimating the correlation dimension for the reconstructed noisy Lorenz example for
two values of τ . The top row shows the slope distributions and the Wasserstein distance profiles
for τ = 21, estimated using the heuristic of Ref. [18], while the bottom row presents the same
plots for τ = 60, the estimate produced using AMI.
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(a) Weighted slope distributions (b) Wasserstein distance

FIG. 12: Estimating the correlation dimension for the reconstructed pendulum trajectory of 106

points using τ = 120. The slope distribution plot in (a) is clipped from above at 35 for the sake of
clarity.

(a) Weighted slope distributions (b) Wasserstein distance

FIG. 13: Estimating the correlation dimension for the reconstructed pendulum trajectory
truncated to 200,000 points using τ = 120. The slope distribution plot in (a) is clipped from
above at 20 for the sake of clarity.
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(a) Weighted slope distributions (b) Wasserstein distance

FIG. 14: Estimating the correlation dimension for the reconstructed Lorenz-96 example using
τ = 24. The slope distribution plot in (a) is clipped from above at 10 for the sake of clarity.

25



REFERENCES

1H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cam-
bridge, 1997).

2E. Bradley and H. Kantz, Chaos 25, 097610 (2015).
3C. Ji, H. Zhu, and W. Jiang, Chinese Science Bulletin 56, 925 (2011).
4Z. Chen, Y. Liu, and P. Zhou, Fractals 27, 1950011 (2019).
5A. Clauset, C. Shalizi, and M. Newman, SIAM Review 51, 661 (2009).
6S. Zhou and X. Wang, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 123118
(2018).

7M. Rosenstein, J. Collins, and C. J. De Luca, Physica D: Nonlinear Phenomena 65, 117 (1993).
8Y. Yongfeng, W. Minjuan, G. Zhe, W. Yafeng, and R. Xingmin, Vibration, Testing and Diagnosis
32, 371 (2012).

9Z. Shuang, F. Yong, W. Wenyuan, and W. Weihua, Acta Phys 65, 020502 (2016).
10M. H. Weik, “full-width at half-maximum,” in Computer Science and Communications Dictio-

nary (Springer US, Boston, MA, 2001) pp. 661–661.
11H. Peitgen, H. Juergens, and D. Saupe, Chaos and Fractals (Spinger-Verlag, New York, 1992).
12P. Grassberger and I. Procaccia, in The Theory of Chaotic Attractors (Springer, 2004) pp. 170–

189.
13P. Grassberger and I. Procaccia, Physical Review Letters 50, 346 (1983).
14P. Grassberger and I. Procaccia, Physica D 9, 189 (1983).
15E. Lorenz, J. Atmos. Sci. 20, 130 (1963).
16D. Viswanath, Physica D 190, 115 (2004).
17V. Martínez, R. Domínguez-Tenreiro, and L. Roy, Phys. Rev. E 4, 735 (1993).
18V. Deshmukh, E. Bradley, J. Garland, and J. D. Meiss, Chaos: An Interdisciplinary Journal of

Nonlinear Science 30, 063143 (2020).
19F. Takens, in Dynamical systems and turbulence (Springer, Berlin, 1981) pp. 366–381.
20N. Packard, J. P. Crutchfield, J. Farmer, and R. Shaw, Phys. Rev. Lett. 45, 712 (1980).
21H. Whitney, Ann. Math. 37, 645 (1936).
22T. Sauer, J. Yorke, and M. Casdagli, J. Statistical Physics 65, 579 (1991).
23E. Olbrich and H. Kantz, Phys. Lett. A 232, 63 (1997).
24J. Garland, R. G. James, and E. Bradley, Phys. Rev. E 93, 022221 (2016).
25A. Fraser and H. Swinney, Phys. Rev. A 33, 1134 (1986).
26T. Buzug and G. Pfister, Physica D 58, 127 (1992).
27W. Liebert, K. Pawelzik, and H. Schuster, Europhysics Letters 14, 521 (1991).
28J. Gibson, J. Farmer, M. Casdagli, and S. Eubank, Physica D 57, 1 (1992).
29T. Buzug and G. Pfister, Phys. Rev. A 45, 7073 (1992).
30W. Liebert and H. Schuster, Physics Letters A 142, 107 (1989).
31J. Garland and E. Bradley, Chaos 25, 123108 (2015).
32M. Rosenstein, J. Collins, and C. De Luca, Physica D 73, 82 (1994).
33L. Cao, Physica D 110, 43 (1997).
34D. Kugiumtzis, Physica D 95, 13 (1996).
35M. Kennel, R. Brown, and H. Abarbanel, Phys. Rev. A 45, 3403 (1992).
36R. Hegger, H. Kantz, and T. Schreiber, Chaos 9, 413 (1999).
37M. Kennel and S. Isabelle, Phys. Rev. A 46, 3111 (1992).
38R. Hegger, H. Kantz, and T. Schreiber, “Tisean 3.0.1 nonlinear time series analysis,” (2007).
39M. Ding, C. Grebogi, E. Ott, T. Sauer, and J. Yorke, Physica D 69, 404 (1993), https://doi.

26

https://doi.org/10.1017/CBO9780511755798
https://doi.org/10.1063/1.4917289
http://dx.doi.org/10.1007/s11434-010-4180-6
http://dx.doi.org/ 10.1142/S0218348X19500117
https://doi.org/10.1137/070710111
http://dx.doi.org/10.1063/1.5065373
http://dx.doi.org/10.1063/1.5065373
http://dx.doi.org/https://doi.org/10.1016/0167-2789(93)90009-P
https:/doi.org/10.7498/aps.65.020502
http://dx.doi.org/10.1007/1-4020-0613-6_7770
http://dx.doi.org/10.1007/1-4020-0613-6_7770
https://doi.org/10.1007/b97624
https://doi.org/10.1016/0167-2789(83)90298-1
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1016/0167-2789(83)90298-1
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1016/j.physd.2003.10.006
https://doi.org/10.1103/PhysRevE.47.735
http://dx.doi.org/10.1063/5.0005890
http://dx.doi.org/10.1063/5.0005890
https://doi.org/10.1007/BFb0091924
https://doi.org/10.1103/PhysRevLett.45.712
https://doi.org/10.2307/1968482
https://doi.org/10.1007/BF01053745
https://doi.org/10.1016/S0375-9601(97)00351-4
https://doi.org/10.1103/PhysRevE.93.022221
https://doi.org/10.1103/PhysRevA.33.1134
http://dx.doi.org/https://doi.org/10.1016/0167-2789(92)90104-U
https://doi.org/10.1209/0295-5075/14/6/004
https://doi.org/10.1016/0167-2789(92)90085-2
https://doi.org/10.1103/PhysRevA.45.7073
https://doi.org/10.1016/0375-9601(89)90169-2
https://doi.org/10.1063/1.4936242
https://doi.org/10.1016/0167-2789(94)90226-7
https://doi.org/10.1016/S0167-2789(97)00118-8
http://dx.doi.org/ https://doi.org/10.1016/0167-2789(96)00054-1
https://doi.org/10.1103/PhysRevA.45.3403
http://dx.doi.org/10.1063/1.166424
https://ui.adsabs.harvard.edu/link_gateway/1992PhRvA..46.3111K/doi:10.1103/PhysRevA.46.3111
https://www.pks.mpg.de/~tisean/Tisean_3.0.1/index.html
https://doi.org/10.1016/0167-2789(93)90103-8
https://doi.org/10.1016/0167-2789(93)90103-8


org/10.1016/0167-2789(93)90103-8.
40S. S. Vallender, Theory of Probability & Its Applications 18, 784 (1974).
41E. Lorenz, in Predictability of Weather and Climate (Cambridge University Press, 2006) pp.

40–58.
42H. Kantz, Physics Letters A 185, 77 (1994).
43I. Grigorenko and E. Grigorenko, Phys. Rev. Lett. 91, 034101 (2003).
44J. Alstott, E. Bullmore, and D. Plenz, PloS one 9, e85777 (2014).
45C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Physical

review e 49, 1685 (1994).
46J. Feder, Fractals (Springer Science & Business Media, 2013).
47B. B. Mandelbrot and J. R. Wallis, Water resources research 4, 909 (1968).
48H. E. Hurst, Transactions of the American society of civil engineers 116, 770 (1951).
49P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
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