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Highly tensioned micromechanical and nanomechanical resonators have enabled novel ex-

periments in quantum optomechanics and numerous applications in the field of precision sensing.

This is in part due to engineering efforts that have allowed for resonator modes with ultrahigh

quality factors. Typically, sensing applications require functionalizing resonators by adding local

mass to them. However, this may dramatically lower the resonator mode quality factor, and hence

its sensitivity. This thesis studies the effect of a local mass load on the shape and quality factor

of a tensioned resonator mode. Through analytical models, finite element analysis, and tabletop

experiments, we show that in the limit of a large mass load, the resonator mode quality factor sat-

urates. This effect paves the way for engineering resonators with improved sensitivity for certain

applications such as magnetic force detection, accelerometry, and gravitational force sensing.
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Chapter 1

Introduction

1.1 Context

Highly tensioned mechanical resonators have been studied for several decades. They have

been used in the context of exploring quantum science [2] – in experiments such as quantum trans-

duction [1, 12, 25], creation of quantum memories [48, 18, 24], and squeezed light generation[30,

36, 6] – and for precision sensing applications – such as microscopy [16], magnetic force detec-

tion [35, 11], accelerometery [56], mass sensing, along with near-term proposals for quantum gravity

experiments involving the detection of gravitational forces on small length scales [23, 39, 29].

In sensing applications employing a resonator mode, it is required to couple a resonator sensor

to a quantity of interest. To acheive this coupling, it is often necessary to functionalize the resonator

with a coupling agent. This results in an additional resonator mass. In certain applications such

as magnetic force detection, gravitational force sensing, and accelerometry, the desired observable

scales linearly with the added mass [43]. This can be written as D = βM , where D, β and M are

the observable, quantity of interest and mass respectively. Typically, there is specific interest in the

fundamental resonator mode since it is one where the mass always moves. The thermal Brownian

force limited sensitivity to measure β in this mode is [19]

Sβ =

√
4kBTω

MQ
, (1.1)

where kB, T , ω, M and Q are the Boltzmann constant, temperature, mechanical mode

resonance frequency, added mass and mode quality factor, respectively. To optimize the sensitivity,
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we wish to minimize Sβ. In general, a higher Q is more favourable for this purpose, however, a

careful understanding of the dependence of Q on M is required [43].

Low optical absorption, high-stress obtainable in fabrication, along with other material prop-

erties make silicon nitride (SiN) a natural material for highQ resonator sensor design [57, 54, 41, 47].

In tensioned SiN resonator modes, typically, Q is limited by two loss mechanisms — bending loss,

which is the energy lost due to the mode bending, and radiation loss, which is the energy lost

from the mode into the surroundings via acoustic radiation. we define individual quality factors,

Qbending and Qradiation, associated with bending loss and radiation loss respectively, such that

1
Q = 1

Qbending
+ 1

Qradiation
. Over the years, multiple resonator engineering efforts have led to res-

onators with modes limited by bending loss where Q ≈ Qbending [32, 46, 52, 49, 27, 50, 33, 5, 22, 14].

Thus, it is of interest to study the dependence of Qbending on M in highly tensioned mass-loaded

SiN resonators.

1.2 Problem Statement

While there have numerous efforts to engineer ultrahigh Q SiN tensioned resonators for

sensing, these have been limited to non-functionalized resonators [32, 46, 52, 49, 27, 50, 33, 5, 22, 14].

However, functionalization is crucial for sensing, and it involves appending a mass-carrying coupling

agent to the resonator [43]. The added mass affects mode structure and Qbending. Typically Qbending

is drastically lowered thereby lowering the sensitivity. However, the exact dependence of Qbending

on M has previously not been studied and there has been no work done to engineer ultrahigh

Qbending in functionalized resonators. This thesis investigates the dependence of Qbending onM and

provides some insight into engineering ultrahigh Qbending functionalized resonators.

1.3 Thesis Organization

Chapter 2 of this thesis discusses mechanical resonators as precision sensors. Specifically, I will

discuss how a mechanical resonator can be modeled mathematically and introduce the mechanical

susceptibility. Then, I will talk about thermal limited force sensitivity and introduce the mechanical
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quality factor Q. After that, I will pivot to resonator functionalization and mass loading. I will end

by talking about the figure of merit for precision sensing and motivating the study of mass-loaded

tensioned resonators. In particular, I will discuss why it is of interest to understand how mass

loading a tensioned resonator affects the Q of its mechanical modes.

Chapter 3 of this thesis begins with a discussion of loss mechanisms in mechanical resonators

since this ultimately decides Q. Then I move the special case of highly tensioned thin film silicon

nitride mechanical resonators. After that, I outline recent efforts to improve the Q of highly

tensioned thin-film silicon nitride mechanical resonators. I will end with a discussion of the current

work in the field of mass-loaded tensioned resonators and outline the focus of the thesis.

Chapter 4 of this thesis discusses an ideal toy model of a highly tensioned mass-loaded string.

We analytically study the effect of mass loading the string on the shape and Q of its fundamental

modes. We show that in the limit of a large mass load, while the frequency continually decreases,

the mode shape and Q both saturate.

Chapter 5 of this thesis outlines the experiment we performed to validate the theory-predicted

Q saturation effect. In particular, I outline details of the resonator choice, mass loading protocol,

and methods used to minimize radiation loss. I also discuss how the Q values were measured using

a Fabry-Perot cavity with a ringdown measurement scheme, and talk about some technical details

involving COMSOL FEM simulations of mechanical resonators. Finally, I discuss the experimental

results which demonstrate Q saturation and talk about additional results which are relevant. Lastly,

I talk about the implications of Q saturation for sensing.

Chapter 6 of this thesis is a conclusion chapter, and it outlines all the work done along with

the results. It also outlines possible future work which might be of interest.



Chapter 2

Mechanical Resonators as Precision Sensors

2.1 Introduction to Mechanical Resonators

2.1.1 Equation of Motion for a Mechanical Resonator

A mechanical resonator is any object that can vibrate. Mechanical resonators are all around

us – common daily life examples include guitar strings, drumheads, and tuning forks. More formally,

if we ignore the trivial example of a single particle, a mechanical resonator can be defined as a multi-

particle system with normal modes. A resonator normal mode is an oscillatory motion where every

part of the resonator moves with the same frequency. Another way to picture normal modes is to

think of them as standing waves. As indicated by their name, normal modes are mathematically

orthogonal, and they form a basis to describe the motion of the resonator. Therefore, the general

motion of a mechanical resonator can always be written as a linear combination of the motion of

its individual normal modes along with a translation motion.

The normal modes of any mechanical system can be found by solving the relevant partial

differential equation arising from the theory of elasticity while imposing appropriate boundary

conditions [21]. Typically, the partial differential equation of interest tends to be a modified version

of the wave equation. Fundamentally, this leads to an eigenvalue problem, and the solution yields

a set of eigenvalues and eigenvectors. The eigenvalues are related to the mode angular frequencies

ωm, where m is the mode index, and ωm = 2πfm where fm is the mode frequency. The normalized

eigenvectors correspond to the mode displacement functions um(r⃗) where r⃗ is a position vector that
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refers to a specific point on the resonator, and um(r⃗) is the mode displacement function at that

point.

Since we are interested in the motion of a resonator mode in time, the more relevant quantity

to look at is the time-dependent mode displacement um(r⃗, t) which is given by um(r⃗, t) = x(t)um(r⃗)

where x(t) is the time-dependent displacement. Assuming no driving force and damping, x(t)

would be a sinusoidal function oscillating at an angular frequency of ωm. If damping is present,

then we expect |x(t)| to decrease with time, and in the underdamped regime, this is often modeled

by multiplying a sinusoidal function oscillating at an angular frequency of ωm with a decaying

exponential. In general, the motion of an individual normal mode can be modeled using the

driven-damped simple harmonic oscillator equation for x(t):

d2x(t)

dt2
+ Γm

dx(t)

dt
+ ω2

mx(t) =
F (t)

meff
. (2.1)

Here, Γm is the mechanical damping rate, F (t) is the time-dependent external driving force, and

meff is the effective mass of the mode. The mechanical damping rate Γm indicates the amount of

damping present, and it is equal to the resonance linewidth of the mechanical mode. The effective

mass meff is a quantity defined to be consistent with energy conservation. It allows us to treat

the entire resonator mode as a single particle that is oscillating at an angular frequency ωm, with

displacement x(t)um(r⃗), and a mass equal tomeff . See references [2, 11, 32] for a detailed discussion

of the effective mass meff .

We can solve Equation (2.1) most easily in frequency space by using the Fourier Transform.

For an arbitrary time-dependent function g(t), the Fourier Transform gives the angular frequency

dependent function g(ω) and is defined as follows:

g(ω) =

∫ ∞

−∞
g(t)eiωtdt. (2.2)

We can apply the Fourier Transform to both sides of Equation (2.1) and use standard properties

of the Fourier Transform to simplify the resulting expression. This yields the following result:

−ω2x(ω) + iΓmωx(ω) + ωmx(ω) =
F (ω)

meff
. (2.3)
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Thus, we obtain the expression for x(ω) as:

x(ω) =
F (ω)

meff (ω2
m − ω2 + iωΓm)

. (2.4)

Now, x(t) can easily be found by computing the inverse Fourier Transform of x(ω):

x(t) =

∫ ∞

−∞

1

2π
x(ω)e−iωtdt. (2.5)

In order to characterize the frequency response of our mechanical system, we define a complex-

valued function called the mechanical susceptibility χ(ω) as follows:

χ(ω) =
x(ω)

F (ω)
. (2.6)

From Equation (2.4) we see that the mechanical susceptibility for our system is given by:

χ(ω) =
1

meff (ω2
m − ω2 + iωΓm)

. (2.7)

Fig. 2.1 shows |χ(ω)|2 as a function of ω for a typical mechanical oscillator mode. Conceptually,

the magnitude of the mechanical susceptibility tells us the steady-state displacement resulting

from a unit magnitude sinusoidal driving force with angular frequency ω. Clearly, the magnitude

of the susceptibility is a maximum when the driving angular frequency ω is equal to the mode

angular frequency ωm. This is characteristic resonance behavior. We note that the mechanical

susceptibility is complex-valued in general because the mechanical response of the oscillator is not

always in phase with the drive. The phase difference between the drive and the response is related

to the ratio between the real and imaginary parts of the mechanical susceptibility. From Fig. 2.1,

as mentioned earlier, we can see that the damping rate Γm is the resonance linewidth (full width

half maximum).
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Figure 2.1: Susceptibility Squared vs Driving Frequency.

A plot of the magnitude squared of the mechanical susceptibility |χ(ω)|2 versus the driving angular

frequency ω for an underdamped resonator with mode angular frequency ωm. In the underdamped

regime, the damping rate Γm is assumed to be small compared to ωm.

2.1.2 Force Sensitivity of a Mechanical Resonator

Now that we have covered the basic mathematical formulation behind mechanical resonators,

we will focus on understanding how the normal modes of these devices can be used for sensing.

Many sensing protocols rely on force detection of some sort [35, 11, 19, 56]

Thus, we wish to understand how the normal modes of mechanical resonators can be used

to detect forces. Going back to Equation (2.1), we can see that when there is no external drive,

F (t) = 0, we expect the oscillations of the resonator should decay to zero and thus, the steady-

state solution should be xss(t) = 0. However, in practice, this never occurs. A resonator with a

non-zero temperature is constantly interacting with a thermal bath, and due to the presence of the

thermal Langevin force, Fth(t), which arises from Brownian motion [2] in this bath, the resonator

is constantly being “kicked” around. Therefore, the motion of the resonator under this thermal

force, which is known as the thermal motion, xth(t), is non-zero in general. The thermal Langevin
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force, Fth(t), is a random time-varying force whose average magnitude depends on the temperature

of the resonator’s thermodynamic bath [2]. Since Fth(t) is random, it has a signed mean of zero.

When detecting a force with a resonator mode, we need to be able to distinguish between the

motional response of the resonator which arises due to the force of interest from the response caused

by the thermal force. In other words, the force sensitivity of a resonator mode is limited by the

effect of the thermal force on the mode motion, and Fth(t) sets the noise floor for force detection.

We will now try to derive a mathematical expression for the force sensitivity of a resonator mode.

In experiments, instead of analyzing the motion x(t) of a resonator in the time domain,

we often look at the motion x(ω) in frequency space since this allows for the separation of the

contribution from different modes. In particular, we look at the motion noise power spectral

density which is loosely defined as:

Sxx(ω) =< |x(ω)|2 > . (2.8)

Overall, Sxx(ω) tells us about the motion of the resonator in frequency space squared, averaged

over multiple experimental runs. Now, plugging in Equation 2.6 into Equation 2.8, we obtain:

SFF (ω) =< |F (ω)|2 >= Sxx(ω)

|χ(ω)|2
. (2.9)

This relates the force noise power spectral density to the motion noise power spectral density.

Assuming thermal equilibrium, we can invoke the fluctuation-dissipation theorem [2] which connects

the noise to the dissipation:

Sxx(ω) =
2kbT

ω
· Im[χ(ω)]. (2.10)

Using Equation 2.10 and Equation 2.9, we obtain an important result:

SFF (ω) = 4kbTmeffΓm. (2.11)

Here, kb is the Boltzmann constant, and T is the resonator’s temperature. As a note to the reader,

there may be some incorrect factors of 2 and π floating around due to the different conventions

used when defining Fourier transforms (see [2] for additional details).
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The force noise power spectral density quantifies the force sensitivity of a resonator mode.

The numerical value of SFF tells us the size of the smallest force we can measure or resolve using

our resonator mode if we average the motional power for unit time. As we can see, the smaller the

value of SFF , the better our resonator is for force sensing. From the above expression, we can see

that there are three ways to improve the force sensitivity: lower the temperature T , lower the mode

effective massmeff , or lower the damping rate Γm. The temperature T can be lowered by cryogenic

cooling, and further, also by laser cooling mechanical modes through feedback damping or sideband

cooling [2]. The effective mass meff is frequently lowered by carefully engineering the geometry of

resonators, however, many sensing applications require appending a mass-carrying coupling agent

to the resonator, and this unavoidably increases meff . Moreover, as will be discussed later, in some

sensing applications, it is beneficial to use a large mass coupling agent. The damping rate Γm can

be lowered through a variety of methods, and this will be the focus of the discussion for the rest of

the paper. However, we will first need to understand the importance of a quantity known as the

quality factor Q of resonator modes since this quantity is closely related to the damping rate Γm.

2.1.3 The Quality Factor (Q) of a Resonator Mode

As discussed in the previous section, a resonator mode that is undergoing free oscillations

can be modeled as a damped harmonic oscillator [45]. When the damping is non-zero, as the

resonator mode oscillates, it continuously loses energy, and as a result, the amplitude of oscillations

decreases. In the underdamped regime where Γm is small, the amplitude of the oscillations decays

exponentially [45]. Fig. 2.2 shows how the displacement x(t) of an underdamped oscillator with

initial amplitude A varies with time t. The envelope shows how the amplitude of the oscillations

dies out exponentially.
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Figure 2.2: Displacement of a Harmonic oscillator vs Time.

Plot of the displacement x(t) of an underdamped harmonic oscillator with initial amplitude A as

a function of time t (solid black line). The amplitude of the oscillations dies out exponentially

(dotted black line). This figure is adapted from [45].

One way to quantify the energy decay of a freely oscillating underdamped resonator mode is

through the mode quality factor Q which is defined as:

Q = 2π
W

∆W
. (2.12)

Here, W is the energy stored in the mode, and ∆W is the energy loss per oscillatory cycle. Math-

ematically, Q/π is roughly equal to the number of resonator mode oscillations that occur before

the mode amplitude decreases by a factor e. Thus, qualitatively, Q is a measure of the number

of coherent mode oscillations that can occur before a significant amount of energy is lost from the

mode to the environment. In the underdamped regime where Γm is small, we can approximate Q

by:

Q ≈ ωm

Γm
. (2.13)

Here, ωm mode angular frequency and Γm is the damping rate. As visible, this relation tells us

that the smaller the damping rate Γm, the larger the Q and the narrower the resonance linewidth.

Since it is connected to Γm, Q is an important figure of merit in precision sensing and quan-

tum science applications that use a mechanical mode. As explained in the previous section, many
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precision sensing applications using a mechanical resonator rely on force detection. Qualitatively, a

higher Q is better for this purpose because it means that the resonator is better at retaining infor-

mation about an external force or perturbation. Mathematically, this can be seen from Equation

(2.11) which can be rewritten in terms of Q as follows:

SFF =
4kbTmeffωm

Q
. (2.14)

Clearly, a higher Q simply leads to better force sensitivity, and this is beneficial for numerous

sensing protocols relying on force detection [35, 11, 19, 56]. As an aside, a higher Q also means the

mode frequency is more well-defined due to the narrow linewidth, and this is helpful for sensing

applications that rely on accurate measurements of frequency shifts [51, 8, 20]. Thus, high Q is of

utmost importance for sensing in multiple contexts. In the next subsection, we take a closer look

at how the force sensitivity applies directly to precision sensing applications.

2.2 Precision Sensing with Mechanical Resonators

2.2.1 Resonator Functionalization and Mass Loading

Mechanical resonators have been studied for many decades for numerous precision sensing

protocols. They have been used for applications such as magnetic force detection [35, 11] and

accelerometer design [19, 56]. Recently, they have been proposed for studying gravitational forces

on small length scales to test different models of quantum gravity [23, 39]. In all these applications,

it is necessary to couple the physical quantity which is to be measured to the mechanical motion

of the resonator. This is often (but not always) achieved through resonator functionalization

which involves appending a coupling agent to the resonator (Fig. 2.3). An interaction between

the physical quantity to be measured and the coupling agent results in a force that drives the

mechanical resonator. The motion can be detected and used to indirectly measure the physical

quantity.
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Figure 2.3: Precision Sensing using a Mechanical Resonator.

A mechanical resonator is functionalized with a coupling agent. The coupling agent mediates an

interaction between the physical quantity to be measured and the resonator which results in a force

that drives the resonator. The resulting resonator motion can be detected and used to indirectly

measure the physical quantity.

As a specific example, for magnetic force detection from a sample of spins in the solid state,

one could append a magnetic particle to the resonator to help mediate an interaction between the

resonator and the spins. This would result in a force, when the spins are precessing for example,

and cause resonator motion which can be read out optically. Similar schemes have been used to

detect a single electron spin [35] as well as an ensemble of spins [11] using functionalized mechanical

resonators.

Resonator functionalization involves appending a coupling agent to the resonator, and this

unavoidably results in additional local mass on the resonator. This added mass can have a variety

of different effects. If we look at a specific mode, we note the added mass can (a) lower the mode

frequency ωm, (b) change the effective mode mass meff , and (c) affect the mode quality factor Q.

Thus, the added mass affects the force sensitivity SFF , and it is therefore important to understand

the details of exactly how this happens since this will ultimately affect the sensing capability of the

resonator. As a note, we mainly focus on the fundamental mode of the resonator as in this mode
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the coupling agent is guaranteed to move and therefore it can effectively be used to drive the mode.

2.2.2 Figure of Merit for Precision Sensing

In this section, we will look more carefully into how a mass load that comes from adding a

coupling agent affects the force sensitivity SFF . We first note that in some applications, the desired

observable scales with the added mass, explicitly D = βM , where D, β, and M are the observable,

quantity of interest, and mass respectively. Examples include magnetic force sensing [35, 11],

accelerometry [19, 56] and detection of gravitational forces [23, 39, 29]. Thus there is an immediate

reason to simply use a larger mass coupling agent. However, we need to carefully analyze how this

affects SFF . Specifically, we define Sβ =
√
SFF
M which gives us the fundamental sensitivity for

measuring β (assuming the sensitivity is limited by thermal force noise). We first note that for a

large mass coupling agent, meff ≈M , that is the effective mode mass is approximately equal to the

coupling agent mass. We can model our mechanical resonator mode as a simple harmonic oscillator

with an effective spring constant k, and then we know ωm =
√

k
M . Note that k is generally not a

function of M . Under these conditions, Sβ is given by:

Sβ =

√√√√4kbTk
1
2

M
3
2Q

. (2.15)

2.2.3 Motivation to Study Mass Loaded Mechanical Resonators

From Equation(2.15), it appears that the fundamental sensitivity can be improved by simply

increasing M. However, we must be aware that in general since adding a local mass load to a

resonator can affect its mode Q, in general, Q is a function of M . Typically, added mass tends to

lower the Q [11]. Thus, it is important to understand how Q depends on M since this will allow

us to quantify precisely how the fundamental sensitivity Sβ scales with M . In this thesis, I will

discuss the problem of the effect of a local mass load on a mechanical resonator. In particular,

I will focus on how the added mass affects the Q of a resonator’s mechanical modes. Since Q is
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ultimately linked to energy loss in a mechanical resonator, I will carefully discuss the sources of

energy loss in a mechanical resonator and use this as a tool to study the effect of mass loading on

Q. For reasons outlined in the next section, I will restrict my attention to highly tensioned thin

film silicon nitride mechanical resonators.



Chapter 3

Tensioned Silicon Nitride Mechanical Resonators

3.1 Loss Mechanisms in Mechanical Resonators

3.1.1 Overview of Loss Channels

Energy loss due to damping in mechanical resonators can be divided into two broad categories

– internal loss and external loss. We indicate this by writing the total energy loss per cycle as

∆W = ∆Winternal + ∆Wexternal, thereby separating the internal and external loss contributions

respectively. We define the internal loss ∆Winternal as the amount of the mode’s mechanical energy

that is converted to heat, and the external loss ∆Wexternal as the amount of the mode’s energy

escaping from the resonator to its environment. Using the definition of mechanical quality factor as

given in Equation (2.12) we can divide the quality factor into its internal and external components:

Q = (Q−1
internal +Q−1

external)
−1 (3.1)

From this equation, we see that Q can be improved by increasing Qinternal or Qexternal or both. In

order to be able to do this, we first need to obtain an in-depth understanding of the reasons for

internal loss ∆Winternal and external loss ∆Wexternal. Generally, both ∆Winternal and ∆Wexternal

are each composed of multiple loss mechanisms [38]. In each case, the dominant loss mechanism

depends on the type of mechanical resonator that is being dealt with. I will restrict my attention to

mechanical resonators made from thin-films of highly tensioned material. Specifically, I will focus

on the out-of-plane mechanical modes of such resonators and analyze the loss mechanisms when

the displacement amplitude is small and the experimental conditions are ideal.
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3.1.2 Internal Losses

Internal loss is defined as mechanical energy in the resonator mode that is converted to heat.

Common internal loss channels include thermoelastic damping loss, surface loss, two-level defect

loss, and material bending loss. In the out-of-plane mechanical modes of highly tensioned thin-film

resonators, internal loss is dominated by material bending loss which we denote by ∆Wbending.

Therefore, for this class of resonators ∆Winternal ≈ ∆Wbending, and therefore, Qinternal ≈ Qbending.

Simply put, material bending loss is the energy loss associated with the bending of the resonator as

it oscillates. Typically, materials are not purely crystalline and there are structural imperfections

in the form of defects. Due to the presence of these defects, as the material bends, energy is lost.

The precise mechanism of energy loss in these defects is extremely complicated [38] and beyond

the scope of this work. Importantly, material bending loss is a function of the mode shape of the

resonator. We can now try to obtain a mathematical formula for Qbending.

Consider a planar resonator with the out-of-plane mode displacement function u(x, y) where

x and y are the in-plane resonator coordinates. Since the resonator is made from a thin-film, the

thickness h of the resonator is assumed to be much smaller than the in-plane resonator dimensions.

Further, since the displacement amplitude is small, we expect |u(x, y)| ≪ h. Finally, since the

resonator has a highly in-plane tension, we can translate this to a large in-plane tensile stress

denoted by σ. Under these assumption, it can be shown that ∆Wbending is approximated by:

∆Wbending ≈
∫
V

πE2

1− ν2
z2
(
∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2

)2

dV. (3.2)

The term in parentheses in Equation (3.2),
(
∂2u(x,y)

∂x2 + ∂2u(x,y)
∂y2

)
, is the mean curvature, and the

volume integral of this quantity over the resonator volume essentially decides ∆Wbending. From this,

we can conclude that regions of the resonator that bend more and have higher curvature contribute

more to the energy loss. This is an important conclusion which will be used later in this thesis.

Next, we can approximate the stored tensile energy W as:

W ≈
∫
V

σ

2

((
∂u(x, y)

∂x

)2

+

(
∂u(x, y)

∂y

)2
)
dV. (3.3)
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In these equations, E2 is the imaginary part of the resonator material’s complex-valued Young’s

modulus, ν is its Poisson ratio, z is the resonator’s coordinate along its thickness, and V is the

volume of the resonator. Applying Equation (2.12) we can see that Qbending is given by:

Qbending ≈


∫
V σ

((
∂u(x,y)

∂x

)2
+
(
∂u(x,y)

∂y

)2)
dV∫

V

(
E2

1−ν2

)
z2
(
∂2u(x,y)

∂x2 + ∂2u(x,y)
∂y2

)2
dV

 . (3.4)

This is a very messy equation, but the key thing to notice is that, for a given resonator mode,

Qbending is purely a function of the mode displacement function u(x, y). In other words, we can

easily see that Qbending = Qbending(u(x, y)). This implies that the mode displacement function or

mode shape decides Qbending.

3.1.3 External Losses

External loss is defined as the energy lost from the resonator mode to its environment.

Common external loss channels are radiation loss and gas damping. Typically, working in high-

vacuum environments eliminates gas damping for thin-film mechanical resonators with a relatively

small surface area. Therefore, the dominant external loss channel is radiation loss and this implies

∆Wexternal ≈ ∆Wradiation and Qexternal ≈ Qradiation. There are two different ways to model

radiation loss. In the first, radiation loss is simply the loss of energy from a mechanical mode

due to the mode sending disturbances or acoustic waves into the surroundings. These waves never

return, so effectively, the resonator has lost energy. In the second, we can think of radiation loss in

term of mode hybridization which describes the coupling between normal modes of the resonator

and its surrounding environment. Radiation loss can be thought of the energy lost due to this

coupling. Simply put, as the resonator mode oscillates, due to mode hybridization, energy leaks

from the resonator mode into modes of the environment and is therefore lost.

Radiation loss is most pronounced in lower order resonator modes such as the fundamental

resonator mode. It is significantly lower in higher order antisymmetric modes where the center

of mass of the resonator does not move. This is because, in higher order antisymmetric modes,
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the acoustic radiation pattern in the external substrate leads to destructive interference (due to

symmetric cancellation) and effectively lowers the net amount of acoustic wave radiation. Radiation

loss is also strongly affected by how a resonator is physically mounted [34, 50, 27, 33]. Typically,

placing a resonator under its own weight leads to the highest Q values. Rigidly clamping or holding

a resonator can lower Q by many orders of magnitude [50]. Overall, radiation loss is a complex

phenomenon which has been historically difficult to model and understand. There is no single well-

known mathematical expression for radiation loss that fits the different scenarios which appear in

experiments.

3.1.4 Combining Internal and External Loss

In the previous two subsections, we discussed the dominant internal and external loss mecha-

nisms in highly tensioned planar thin-film mechanical resonators. We concluded that for this class

of resonators, Qinternal ≈ Qbending and Qexternal ≈ Qradiation. Based on Equation (3.1), we can

conclude that:

Q = (Q−1
bending +Q−1

radiation)
−1 (3.5)

This is a very important equation and I will refer to it frequently. Now that we have under-

stood how the Q of a resonator mode is affected by the different energy loss channels, we can move

to study how higher Q mechanical modes can be engineered. However, before we do that, we need

to discuss the specific case of SiN mechanical resonators.

3.2 Tensioned Silicon Nitride Mechanical Resonators

3.2.1 Tensioned Silicon Nitride

Tension Silicon Nitride (SiN) is frequently used to make mechanical resonators due to its

favorable optical and mechanical properties [57].

SiN is partially reflective and this allows for the detection of mechanical mode motion through
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laser interferometry, often using a Michelson interferometer or a Fabry-Perot interferometer. Fur-

ther, this partial reflectivity is crucial for optomechanics experiments that rely on backaction [2].

SiN also has low optical absorption which enables mode motion to be detected without significant

heating [57]. This is also important for applications that require mechanical resonators to be at

extremely low temperatures.

Highly tensioned thin-films of SiN can be grown chemically. Such films are of interest because

high tension leads to a phenomenon known as dissipation dilution which results in increased Q [10].

Further, tension allows us to access very high frequencies without shrinking the device size. High

tension has enabled millimeter-scale SiN membranes to have mode frequencies in the MHz range.

This is invaluable as it allows for convenient optical detection to be maintained while going to

higher frequencies. It is often useful to work at high frequency as 1/f noise is lower and some

applications require high frequency [2].

Devices made from thin-films have modes with lower effective masses which is beneficial for

applications such as force sensing [32]. Thin films are also of interest, because bulk losses can be

ignored, allowing the possibility of higher Q modes dominated by surface loss [46].

Finally, it is worth mentioning that typically, stoichiometric SiN with the chemical formula

Si3N4 is used, and resonators are made through standard cleanroom micro-fabrication. There are

well-established micro-fabrication techniques that allow SiN to be patterned, and this is crucial to

make devices with ultra high Q modes.

3.2.2 Qbending for High Stress Thin Film Silicon Nitride Resonators

Looking back at Equation (3.2), we see the imaginary part of the material’s complex Young’s

modulus, E2, in the integrand. In general, for thin-films of SiN, E2 is a function of z, which is the

coordinate along the resonator’s thickness axis [46]. In particular, the surface value of E2 is much

higher than the bulk value. This implies that most of the loss ∆W is due to loss at the surface of

the material [46]. As a result, if we assume a thin lossy layer at either surface of the resonator,

the volume integral in Equation (3.2) can be reduced to a surface integral. Thus, Qbending as given
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in Equation (3.4) reduces to:

Qbending =
24(1− ν2)(Qintrinsic(h))W

Eh3

∫
S

(
∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2

)
dS. (3.6)

Here, W is the same as in Equation (3.3), E is the Young’s modulus, h is the resonator thickness, S

is the surface of the resonator, and finally, Qintrinsic(h) is the thickness dependent intrinsic quality

factor. Qintrinsic is a measure of how lossy the material is, and the higher the value of Qintrinsic, the

less lossy the resonator material is. Further, Qintrinsic sets an upper bound on Qbending. For SiN

in particular, Qintrinsic ∝ h and we have that Qintrinsic = E/E2. For reference, 100 nm thick SiN

has Qintrinsic ≈ 6000 at a temperature of 300 K. The value of Qintrinsic increases for SiN as we cool

down to cryogenic temperatures and is roughly 3 times larger at a temperature of 4 K as compared

to 300 K. The key thing to take away from Equation (3.6) is that Qbending is essentially decided

by the surface integral of the mean curvature over the mode shape. As a reminder, the mean

curvature is given by:
(
∂2u(x,y)

∂x2 + ∂2u(x,y)
∂y2

)
. This is a very important conclusion as it essentially

tells us that Qbending is limited by regions of the mode exhibiting high curvature, and therefore,

reducing high curvature is key to improving Qbending. As a note to the reader, deriving Equation 3.6

from Equation 3.4 is somewhat complicated [46, 32].

3.2.3 A General Formula for Qbending

We note that Equation 3.6 is a special case of a general result from the theory of elasticity [21].

In general, can write the Qbending contribution from some physical domain as:

Qbending =

(
2Qintrinsic

E

)
W∫

epoxy

(∑
ij(ϵij)

2
)
dV

(3.7)

This formula is especially useful when studying mass loading because the resonator now has

an additional local mass appended to it, often with some form of epoxy, and it becomes crucial to

calculate the bending loss inside the epoxy. This is because the loss in the epoxy often turns out

to be dominant [43]. The above formula does not assume high-stress or dominant surface loss [21].
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Further, it includes mechanical loss due to three-dimensional deformation. However, it does assume

a spatially uniform intrinsic quality factor.

3.3 Methods to Improve Q in Silicon Nitride Resonators

So far, we have rigorously analyzed the relevant loss mechanism for highly tensioned thin-film

SiN mechanical resonators. I will now discuss the variety of ways in which SiN resonators have

been engineered to produce modes with ultra-high Q. I will refer to are Equations (2.12), (3.5)

,and (3.6) which are key to understand the basis of these techniques. Looking at the definition of

Q as given in Equation (2.12), it is clear that the Q of a resonator mode can be improved by either

increasing the energy W of the mode or lowering the energy loss per cycle ∆W . In this section I

will review methods which both use these approaches to improve Q.

3.3.1 Dissipation Dilution

3.3.1.1 High Stress Suspensions

The Q of a resonator mode can be improved by increasing the energyW of the mode without

a similar increase in the loss per cycle ∆W . From Equation (3.3), we see that this can be achieved

by increasing the film-stress σ. This technique is known as dissipation dilution and it is a direct

method to improve the Q of modes [10]. Since SiN can be grown with a tunable film-stress σ, this

is a natural way to create resonators with high Q modes. SiN has a yield stress of σyield = 7 GPa

and it is common for resonators to be made from films with stresses as high as σ = 1 GPa [57].

This technique has allowed for devices such as membranes to have mode Q values as high as 108 [54]

at cryogenic temperatures.

3.3.2 Mode Shape Engineering

A different way to improve the Q of a resonator mode is to decrease the energy loss per cycle

∆W . We recall that ∆W = ∆Wbending + ∆Wradiation. Mode shape engineering is a widely used

technique to improve Q and it relies on lowering ∆Wbending. To understand the fundamental guiding
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principle behind mode shape engineering, we can study the mode profile of a square membrane

mode. Fig. 3.1 shows how the mean curvature of a square membrane mode varies along a line-cut

across the mode. In particular we have the (2,2) mode of a square membrane which is clamped

on all 4 sides. The dotted black line shows the line-cut, and the solid black curve is the mean

curvature evaluated on this line-cut.

Figure 3.1: Curvature Along Diagonal Line Cut for 2,2 Mode of a Membrane.

Plot of the curvature (solid black curve) evaluated on a line-cut (dotted line on inset) on the (2,2)

mode of a square membrane (see inset) which is clamped on all 4 sides. The curvature is significantly

larger at the mode edges due to the clamped boundary conditions.

We notice that the curvature is significantly larger at the mode edges due to the clamped

boundary conditions. In fact it turns out that in this scenario ∆Wbending is completely dominated

by curvature at the mode edges. This motivates resonator designs which try to alleviate this high

curvature at the mode edge by patterning the resonator. I will now review some of these designs

and explain how they work.

3.3.2.1 Trampoline Resonators

To minimize the effects of clamping on the curvature at the mode edges in membranes, these

devices can be efficiently patterned. This has been done in multiple groups across the world to

create trampoline resonators [34, 26]. Fig. 3.2 shows a microscope image of a SiN trampoline
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resonator. Compared to membranes, a lot of the SiN has been removed in trampolines. The device

consists of a central pad suspended by 4 narrow tethers. The pad allows for convenient optical

readout. At the corners where the tethers connect to the frame of the device, fileting is used to

lower clamping losses. Filets help re-distribute the stress near the edges of the mode and nearly

eliminate the kink in the mode shape. Thus the high curvature region is no longer present near the

mode edges. As a result, compared to membranes at the same frequency, trampolines have much

higher Q. These devices have measured Q values close to 109 and have shown quantum coherent

oscillations at room temperature [34, 26, 17].

Figure 3.2: Microscope Image of a Trampoline Resonator.

A microscope image of a silicon nitride trampoline resonator (shown in orange). The trampoline

consists of a central pad for optical detection which is suspended by four tethers. The tethers

connect to the frame of the resonator via filets, which help reduce clamping losses. This figure is

adapted from [43, 42].

3.3.2.2 Soft Clamped Resonators

Another form of mode shape engineering involves a technique known as soft-clamping. As

discussed previously, typically, at the boundary of resonators such as membranes, due to clamped

boundary conditions, bending loss is enhanced. A way to lower this bending loss is to employ soft

clamping. In the 3.3, we can see a patterned resonator (on the left) which is known as a phononic
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crystal (PnC) [46, 32]. At the center of the PnC, we can see the presence of a defect, and this is

because the central region breaks the crystalline pattern. Looking closely at the crystal bulk, we see

that each unit cell is composed of a pad surrounded by tethers. In general, the stress, and hence the

speed of sound in the tethers is higher as compared to the pad. Thus, as we move across the crystal,

the speed of sound alternates between high and low. By Bragg scattering theory, this leads to the

formation of an acoustic bandgap – a range of frequencies where mechanical disturbances cannot

pass through the crystal structure [32]. Thus, the crystal structure has no mechanical modes at

these frequencies. However, the central defect is designed such that it has modes with frequencies

within the acoustic bandgap of the crystal. Thus, the motion of the defect can in essence be

“trapped” within the crystal.

Figure 3.3: Silicon Nitride Phononic Crystal with Defect.

An image of phononic crystal with a defect (left). The soft-clamped defect (right) shows how the

crystal pattern is broken to help create a spatially isolated mode. This figure is adapted from [32].

The result of this is design soft clamping. We can think of the defect as our resonator of

interest. Unlike a standard membrane, the edges of the defect are not rigidly clamped since they

simply attach to the crystal which is free to move. However, due to the acoustic bandgap, the

motion of the defect decays evanescently into the crystal. If there are enough crystal unit cells, the

defect mode motion decays enough such that, by the time the end of crystal structure is reached,

the motion is so low that the clamped boundary conditions at the resonator edge do not influence
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bending loss. This ensures that the overall bending loss is minimized. This is visualized from the

defect mode shape in Fig. 3.3 (on the right) where the mode displacement decays exponentially

into the surrounding crystal. PnCs with defects have been pioneered by multiple mechanics groups

across the world [46, 32], and they have allowed access to ultra-high Q mechanical modes which

are of interest for sensing.

3.3.3 Acoustic Isolation

While mode shape engineering is one method to improve the Q of resonator modes, other

methods exist. In particular, acoustic isolation is a well-known technique to improve Qradiation

which is the Q associated with radiation loss. Lowering radiation loss is one avenue to improve the

Q of resonator modes.

3.3.3.1 Mounting

The method by which resonators are physically mounted can significantly affect their mode

quality factors due to radiation loss. This is especially true for the fundamental mode and other

lower-order symmetric modes. Antisymmetric modes are somewhat “protected” against radiation

loss. Membranes are especially susceptible to radiation loss. There are certain techniques to mount

mechanical resonators to minimize radiation loss [50, 27, 33]. Typically, rigidly holding/fixing a

resonator in any way can significantly lower the mode quality factor due to radiation loss. In

general, it is widely accepted within the mechanics community that placing resonators under their

own weight is the best way to minimize radiation loss. However, this area of research has almost

no concrete work that has been published. In Sec. (5.1.3) of this thesis, we highlight some new

work on mounting trampolines.

3.3.3.2 Phononic Crystal Defects

An example of an acoustically isolated resonator is a PnC with a defect, which we discussed

earlier in the context of soft clamping. A PnC contains an acoustic bandgap, and as a consequence,
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a defect mode in the bandgap has lower radiation loss than a mode outside the bandgap [46, 32].

This can be understood qualitatively using a simple picture. We can think of an oscillating mode

as a source of acoustic waves. When a defect mode is in the bandgap of a PnC, the acoustic waves

it radiates are not allowed to propagate through the PnC. This is because the PnC contains no

modes at the bandgap frequencies. Thus an in-bandgap defect mode is acoustically isolated and

has lower radiation loss. Moreover, these types of modes are robust to mounting, and the Q does

not depend on how the device is mounted. Acoustically isolated in-bandgap defect modes in a PnC

have been shown to have ultra-high Q [46, 32].

3.4 Mass Loading and Qbending

In the previous chapter, we saw why it is important to study the effect of mass loading on

the Q of a resonator for precision sensing applications. In this chapter, we took a closer look at

what decided the Q of a mechanical resonator. In particular, we narrowed down to high-stress

thin film SiN membranes and studied the different approaches that have been taken to improve

the Q of mechanical resonator modes. However, this was entirely for resonators without a mass

load. Experiments have shown, although essential for sensing, that mass loading typically lowers

the Q by enhancing the local curvature significantly, which in turn lowers the sensitivity. Little to

no work has been done on the effect of Q on mass loading, and further, on optimizing the Q of

mass-loaded resonators. As outlined in this chapter here are methods by which radiation loss can

be lowered to enter a regime where Q ≈ Qbending, thus, what we really care about is how Qbending

is affected by mass loading. The rest of this thesis will focus on exactly this question.



Chapter 4

Theoretical Analysis of Mass Loaded Mechanical Resonators

4.0.1 Mass Loaded String

To gain insight into how the shape and Qbending of the mechanical modes of a resonator are

affected by mass loading, we begin by studying the simplest possible scenario that can be dealt

with analytically – a mass loaded string [43]. Consider a string of length L, thickness h, and width

w (Fig 4.1(a)). Let the spatial coordinate along the string’s length be x where 0 ≤ x ≤ L. Further,

let the string’s density vary along its length and be denoted by ρ(x). We can define the value of

ρ(x) to be equal to ρm in the unloaded regions (0 ≤ x < a and b < x ≤ L for a < b), and equal to

ρm + ρM in the mass loaded region (a ≤ x ≤ b). Notice if ρM = 0 then we are simply looking at

a string without a mass load and total unloaded resonator mass is Munloaded = hwLρm. However,

if ρM > 0 then the string has an added mass Mload = hw(b − a)ρM which is equally distributed

over the region where a ≤ x ≤ b. Thus, by varying the value of ρM , we can emulate a mass load.

Finally, let the string be doubly clamped, have a Young’s Modulus E, and an in-plane tensile stress

equal to σ0.

We can study the modes of the string and begin to understand how the mode shape and

Qbending change as we vary the mass load Mload. For simplicity, we stick to analyzing the funda-

mental out-of-plane mode of the string, however, the same analysis will apply to other out-of-plane

modes. We denote the mode displacement function by u(x). The equation governing the string’s
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behavior is given by the stressed Euler-Bernoulli beam equation [38]

Eh2

12σ0

d4u(x)

dx4
− d2u(x)

dx2
− ρ(x)(2πf)2

σ0
u(x) = 0, (4.1)

which is essentially a form of the wave-equation with an additional fourth derivative term to accu-

rately capture the bending of the string’s mode at the clamped edges. The width w is absent from

the equation because the string is of uniform width. For clarification, the above equation is purely

spatial, that is, the time dependence contained in the full partial differential equation has been

removed by using the separation of variables technique. This is done because we are only interested

in the mode shape. First, we will try to find the frequencies of the string’s fundamental mode. If

the in-plane tensile stress σ0 is large and satisfies the length scale inequality l = 2π
√

Eh2

12σ0
≪ L,

then the fourth derivative term can be ignored when calculating the mode frequencies [38]. Thus,

the string equation simplifies to

d2u(x)

dx2
+K (x)2 u = 0, (4.2)

where we know that

K2(x) =


ρm
σ0

(2πf)2 for 0 ≤ x < a, b < x ≤ L

ρm+ρM
σ0

(2πf)2 for a ≤ x ≤ b

. (4.3)

Since the string is doubly clamped and the mass loaded region connects smoothly to the unloaded

regions, the boundary conditions are

BC:



u(0) = u(L) = 0

u(x) is continuous at x = a, b

du(x)
dx is continuous at x = a, b

.

We notice that the general solution to Eq (4.2) in each of the three regions of the string is simply

given by Aregion ·sin(
√
Kregionx)+Bregion ·cos(

√
Kregionx) where Aregion and Bregion are arbitrary

constants. We can now define the density ratio χ = ρM
ρm

and introduce the mass loaded region

wavenumber α = 2πf
vload

= 2πf
√

ρm+ρM
σ0

where vload =
√

σ0
ρm+ρM

is the speed of sound in the mass
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loaded region of the string. Similarly, the wavenumber in the unloaded regions is β = 2πf
vunloaded

=

2πf
√

ρm
σ0

where vunloaded =
√

σ0
ρm

is the speed of sound in the unloaded regions of the string.

Using the first boundary condition along with trigonometric identities can help eliminate the

cosine dependence in the unloaded regions, and it can be shown that

u (x) =

A1 sin
(

α√
1+χ

x
)

0 ≤ x < a

A2 sin
(
α
(
x− a+b

2

))
+B2 cos

(
α
(
x− a+b

2

))
a ≤ x ≤ b

A3 sin
(

α√
1+χ

(L− x)
)

b ≤ x < L

. (4.4)

To find α, we write the remaining boundary conditions as a matrix vector equation in the unknown

coefficients A1, A2, B2, A3:



sin
(

α√
1+χ

a
)

− sin
(
α
(
a−b
2

))
− cos

(
α
(
a−b
2

))
0

α√
1+χ

cos
(

α√
1+χ

a
)

−α cos
(
α
(
a−b
2

))
α sin

(
α
(
a−b
2

))
0

0 sin
(
α
(
b−a
2

))
cos
(
α
(
b−a
2

))
− sin

(
α√
1+χ

(L− b)
)

0 α cos
(
α
(
b−a
2

))
−α sin

(
α
(
b−a
2

))
α√
1+χ

cos
(

α√
1+χ

(L− b)
)





A1

A2

B2

A3


=



0

0

0

0


. (4.5)

Since there is more than one solution to Eq(4.5), the matrix on the left side must be non-invertible.

Therefore, we can set its determinant equal to zero and obtain a transcendental equation for α:

det



sin
(

α√
1+χ

a
)

− sin
(
α
(
a−b
2

))
− cos

(
α
(
a−b
2

))
0

α√
1+χ

cos
(

α√
1+χ

a
)

−α cos
(
α
(
a−b
2

))
α sin

(
α
(
a−b
2

))
0

0 sin
(
α
(
b−a
2

))
cos
(
α
(
b−a
2

))
− sin

(
α√
1+χ

(L− b)
)

0 α cos
(
α
(
b−a
2

))
−α sin

(
α
(
b−a
2

))
α√
1+χ

cos
(

α√
1+χ

(L− b)
)


= 0. (4.6)

Given L, a, b, ρm, this equation can be numerically solved to obtain α. In general, more than

one solution will exist, but the smallest α is chosen since it corresponds to the fundamental mode.

Then, f for the fundamental mode can be easily calculated using the expression for α.

To test our model, we numerically computed α and f for different mass loads and compared

the results to those obtained from COMSOL Multiphysics FEM simulations. We defined R =
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Mload
Munloaded

and studied how α and f vary with this. This allowed us to study the behavior between

no load (R = 0) and a load significantly larger than the unloaded resonator mass (R ≫ 1). For

our calculation, we chose a string with length L = 1 mm, width w = 5 µm, thickness h = 110 nm,

and in-plane tensile stress σ0 = 0.700 GPa. The mass-loaded region was located symmetrically at

the center of the string with b− a = 10 µm. Finally, the material properties were chosen to match

stoichiometric SiN with density ρm = 3100 kg/m3, Young’s modulus E = 250 GPa, and Poisson’s

ratio ν = 0.23. On COMSOL, the film pre-patterning stress was set to a uniform value σp = 1 GPa

such that the re-distributed stress after the stationary step was σ0 = 0.700 GPa. The geometry

was partitioned into the loaded and unloaded regions. We changed the density of the loaded region

to be ρm + ρM and swept the value of ρM over a wide range to change the mass load. We then

computed the mode shapes and frequencies from our FEM simulation which involved a stationary

stress redistribution study followed by an eigenfrequency study. Fig 4.1(c) shows how α (blue), and

f (black), which we obtained by both numerical solution of our mass-loaded string model (solid

lines) and through FEM simulations (solid circles), vary as a function of R. As visible, there is

strong agreement between the two, thereby verifying our model and analysis. Interestingly, we note

that as R increases, f continually decreases, but α appears to plateau.

To understand the implications of this α plateauing behavior, we can now try to analytically

study the behavior of α in the limit of a large mass load. When
√
1 + χ is very large, sin

(
α√
1+χ

x
)
≈

α√
1+χ

x, and cos
(

α√
1+χ

x
)

≈ 1 for all 0 ≤ x ≤ L. Using these approximations to simplify the

matrix in Eq(4.5), and additionally, performing relevant row and column operations, we obtain the

determinant equation

det



αa − sin
(
α
(
a−b
2

))
− cos

(
α
(
a−b
2

))
0

1 − cos
(
α
(
a−b
2

))
sin
(
α
(
a−b
2

))
0

0 sin
(
α
(
b−a
2

))
cos
(
α
(
b−a
2

))
−α (L− b)

0 cos
(
α
(
b−a
2

))
− sin

(
α
(
b−a
2

))
1


= 0. (4.7)
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Simplifying this gives,

cos (α (a− b))
[
− (L− (b− a))α+

(
1− a (L− b)α2

)
tan ((a− b)α)

]
= 0, (4.8)

which has the following two solutions:

cos (α (a− b)) = 0 (4.9)

tan ((a− b)α) =
(L− (b− a))α

(1− a (L− b)α2)
. (4.10)

Eq(4.9) corresponds to higher order modes, while Eq(4.10) is for the fundamental mode. In the

limit where the mass loaded region is small, we know (b− a)α ≪ 1. Using this Eq(4.10) can be

solved for α which we shall now denote by αlim to indicate it is the value of α for a very large mass

load. We obtain

αlim =

√
L

a (b− a) (L− b)
. (4.11)

Thus, αlim is in general a non-zero constant that depends on the geometric details of the mass-

loaded string. This is possible because, as the mass load increases, the mode frequency f continually

decreases while ρM increases. However, βlim, which is the value of β in the limit of a large mass

load, goes to zero because ρm is a constant. Fig 4.1(c) shows how α calculated from the numerical

solution of our mass-loaded string model (solid blue line) and through FEM simulations (solid blue

circles) both asymptote to the expected αlim value (blue dotted line) which is given by Eq(4.11).

In this high mass load regime, the pre-stressed Euler-Bernoulli beam equation simplifies to

l2

(2π)2
d4u

dx4
− d2u

dx2
−K2 (x)u = 0, (4.12)

where now,

K2(x) ≈


0 for 0 ≤ x < a, b < x ≤ L

α2
lim for a ≤ x ≤ b

. (4.13)

Since this equation is independent of the mass load, the solution must also be independent of the

mass load. This means in the limit of a large mass load, the mode shape must saturate to a

constant shape. Fig 4.1(b) shows the mass-loaded string’s fundamental mode shape normalized to
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its maximum displacement for different mass loads (lighter color indicates smaller mass load) as

a function of the spatial coordinate along the string normalized to its length. The inset shows a

magnified image of the mode shapes at the loaded region (shaded green). As visible, for a small

mass load, the mode is approximately sinusodial, and as the mass increases the mode saturates

to an approximately triangular shape as expected. The mode shapes for Fig 4.1(b) were obtained

through COMSOL simulations. It worth mentioning that it is possible to analytically solve for

the mode shape of a mass-loaded string [43, 42]. Since Qbending is purely a function of the mode

shape for high-stress thin-film SiN resonators (see subection 2.2.3), this implies that with the mode

shape, Qbending must also saturate. Fig 4.1(d) shows how Qbending for the string normalized to

Q0 which is its value when there is no mass load, varies as a function of R. As expected, we see

that Qbending saturates. The Qbending values for this figure were calculated using the mode shapes

obtained through COMSOL simulations, and to focus on the effect of the mass load, clamping

losses were neglected.
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Figure 4.1: Mass loaded string theoretical model.

(a) String parameters: A string of length L, thickness h, with tensile stress σ0 is fixed at the edges

x = 0 and x = L, and has linear density ρm everywhere except for the region a ≤ x ≤ b, where

the density is ρM + ρm. (b) Mode shape visualization: FEA simulations of the mass-loaded string

fundamental mode normalized to its maximum displacement (lighter color corresponds to lighter

mass load). Inset: mode shape at the loaded region (shaded green). (c) String frequency and

inner region wavenumber: FEA simulated (solid circles) and analytically calculated (solid lines)

fundamental mode frequency (black) and inner region wavenumber (blue) are shown as a function

of R, the ratio between load mass total mass of the unloaded resonator, scanned by varying ρM

while keeping a and b constant. Simulation points correspond to the mode shapes in (b). Dashed

blue line is the analytically calculated large mass limit inner region wavenumber αlim. (d) String

quality factor: fundamental mode Qbending normalized to Q0, the Qbending of an unloaded resonator,

as a function of R. To focus on mass loading effects, Qbending is calculated neglecting edge clamping

loss. (c) and (d) share the horizontal coordinate, and results shown correspond to specific choice

of parameters [42]. This figure is adapted from [43, 42].
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4.1 Generalizing Qbending Saturation

While we have analytically demonstrated why mode shape and Qbending saturation occurs

for the mass-loaded string, there is a more intuitive picture which will help us generalize Qbending

saturation. There are two equivalent ways in which we can understand things. The first explanation

is spatial: in the limit of a large load mass, the mode wavelength in the unloaded region vunloaded/f ,

is much longer than the resonator’s length scale. As a result, the mode shape in the outer regions

does not curve, and for a string, the resulting limit shape is linear. Since the inner region has

to match with the outer regions at the boundaries, the overall mode approaches a limit shape

that is approximately triangular. The second explanation is temporal: for an unloaded resonator,

the fundamental mode period is Tunloaded = 2L
unloaded , which is the time it takes an out-of-plane

disturbance to make a roundtrip across the resonator length L, with speed of sound vunloaded. As

the load mass increases, the mode period increases to Tloaded = 2(L−(b−a)))
vunloaded

+ 2(b−a)
vload

. In the limit of

a large load mass, since vload is very small, the overall mode period is much larger than time taken

for a disturbance to propogate in the unloaded regions. Therefore, the mode shape in the unloaded

regions approximate a quasi-static displacement, with the limit shape being a static displacement

at any moment. This leads to mode shape saturation which in turn implies Qbending saturation.

Although we have focused on the case of a mass loaded string, the key points of the temporal

argument above apply to highly tensioned resonators of arbitrary geometry and imply Qbending

saturation for a high enough mass load. While it is possible to obtain analytical solutions for simple

resonator geometries such as mass loaded strings, or mass loaded circular membranes [43, 42], in

general analytical solutions may not exist, and we must resort ot FEM simulations.

In conclusion, we have investigated the simple toy model of a mass-loaded string. We have

studied the dependence of the inner region wavenumber α, the fundamental mode’s frequency f ,

shape, and Qbending of the on the mass load. In particular, we have shown that in the limit of a

large mass load, α saturates, thereby leading to mode shape and Qbending saturation. Finally, we

have compared the results from our analysis to FEM simulations and obtained strong agreement
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between the two. Although our analysis was specific the fundamental mode, the same approach

can be applied to other modes. Further, we have provided an intuitive explanation of why mode

shape and Qbending saturation occur, and we have generalized it to highly tensioned resonators of

arbitrary geometry. In the next chapter, we will discuss an experiment we conducted to try and

demonstrate Qbending saturation.



Chapter 5

Experimental Demonstration of Qbending Saturation

In order to validate the model predicted Qbending saturation effect, we designed a table-top

experiment to study the effect of mass loading on the Qbending of a tensioned SiN mechanical

resonator.

5.1 Experimental Plan

5.1.1 Resonator Choice - Trampoline

There exists a zoo of tensioned SiN mechanical resonator designs such as strings [14, 3],

membranes [57, 54, 41], trampolines [26, 34], Silicon PnCs with a SiN membrane [52], and SiN

PnCs with a defect [46, 32]. In general, any of these devices could be employed for a mass-loading

experiment. Since the goal is to investigate the effect of mass loading on the Qbending of a resonator’s

modes, the obvious choice of a resonator is a PnC because the bandgap-confined modes of these

devices are internal bending loss limited (Q ≈ Qbending). However, for practical chip-scale devices

(not very large), the size of the bandgap is relatively small, and this means the mass loading studies

must remain restricted to relatively small masses. In other words, the mode frequency decrease

associated with using a large mass load will cause the modes to fall out of the bandgap where they

are no longer protected from radiation loss. Since the goal is to understand how Qbending varies

as we tune the mass load from a small value to something large (relative to the effective mode

mass of the device), PnCs are an unsuitable platform to study the effect of mass loading on the

Qbending of a tensioned mechanical resonator. Membranes are very sensitive to radiation loss [57]
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and we found through COMSOL FEM simulations that, as compared to devices like strings and

trampolines, the reduction in Qbending is very large when membranes are mass loaded. In the case

of strings, although they would be the appropriate device for our experiment, especially since our

theoretical model is for that of a string, they are challenging to detect optically [14]. For these

reasons, ultimately, we chose to use a trampoline resonator [26, 34] for our experiment. Trampolines

are less prone to radiation loss than membranes, have a large pad for convenient optical detection,

and are partially soft-clamped due to the fileted corners which results in high Q mechanical modes.

Moreover, our initial COMSOL FEM simulations indicated that trampoline modes could have a

large Qbending even when the mass load was large [43].

Our microfabricated fabricated trampoline resonators had a side length of 1 mm, a tether

width of 5 µm, and a pad area of approximately 86 µm2 (Fig 5.1). An unloaded fundamental mode

frequency of ≈ 143 kHz was measured and agreed with COMSOL FEM simulations.

Figure 5.1: Microscope image of device: SiN trampoline resonator. This figure is

adapted from [43, 42].

The orange regions represent SiN while the dark brown regions are empty space. The pad, tethers,

filets, and frame of the trampoline device are seen. The silicon chip on which the device is suspended

is not pictured.
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The trampolines were microfabricated in the JILA cleanroom. A 375 µm thick, 3 inch

diameter silicon wafer with 110 nm of stoichiometric LPCVD SiN on both sides was used. The SiN

film was grown with a tensile stress of approximately 1 GPa. Direct write photolithography was

used to pattern the resonator geometry and backside windows. A CF4 reactive ion etch was used to

complete patterning the SiN. O2 plasma along with ultrasound sonication in an acetone bath were

then used to clean the wafer. Finally, isopropyl alcohol and water were used for further cleaning.

To release the SiN, the window side of the wafer was etched using a 80 C KOH bath.After the KOH

weth etch, the wafer was cleaned using Nanostrip, followed by a solvent clean. Lastly, the devices

were air dried.

5.1.2 Mass Loading - Magnetic Stacking

In order to study the effect of mass loading on the fundamental mode Qbending of a SiN

trampoline resonator, we had to come up with a systematic method of mass loading a trampoline.

Further, we had to be able to vary the mass over a wide range starting with a value much less

than the effective mode mass, and going to a mass much larger than the same. We decided to

use epoxy to affix a load mass to our device. Since epoxy is a very mechanically lossy substance,

and different amounts of epoxy could lead to different amounts of loss, we decided to use a single

trampoline device for the experiment with a single application of epoxy. For our mass load, we

used magnetic grains. This was done because, once the first magnet is epoxied to the device, it

can be magnetized, and additional magnets can be made to stick to the first, thereby providing

an effective way to tune the mass load without the use of any additional epoxy. We called this

technique Magnetic Stacking. Using a single trampoline device is also a good option since the Q

of a trampoline can be significantly affected by dust particles, and the substrate silicon chip shape

and size (due to coupling to substrate modes), both of which can vary from device to device. We

worked in the JILA cleanroom to deposit magnets onto our trampoline resonator. We did this

under a microscope using a 50x objective lens. Using tapered glass micropipettes (Product ID:

Origio MAH-SM-0) attached to a micromanipulator, we applied ultra-violet (UV) epoxy (Product
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ID: NEA 123SHGA) and deposited NeFeB magnets (Product ID: Neo Magnequech MQFP-B+

(D50=25m)) onto our devices. We used a UV flashlight to cure the epoxy. In order to perform

magnetic stacking, we magnetized the grain(s) on our trampoline using a strong electromagnet

(B > 1 T ). Although this field does not magnetically-saturate the grain(s), it is strong enough so

as to allow us to perform magnetic stacking successfully. Between each addition of mass, the Q

was measured. Fig 5.2 shows a trampoline device with a single magnetic grain, and Fig 5.3 shows

a magnetic stack containing 4 magnets.

Figure 5.2: SiN trampoline device with a magnetic grain.

The images shows a trampoline resonator with a single magnetic grain. The inset shows a close up

of the trampoline tether with the magnetic grain. This figure is adapted from [43, 42].
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Figure 5.3: SiN trampoline device with a magnetic stack.

The images shows a trampoline resonator with magnetic stack containing 4 magnetic grains. Each

image is taken in a different plane and depicts a different magnet. The cartoon indicates which

magnetic in the stack is being seen. This figure is adapted from [43, 42].

5.1.3 Controlling Radiation Loss - Fixed Mounting

Although trampoline resonators are less susceptible to radiation loss than membranes [34, 26],

they are still affected by it. Based on previously done experiments by research groups across the

world, the method by which trampolines are mounted can significantly affect the fundamental mode

Q [50, 27, 33]. In particular, the fundamental mode Q can decrease by orders of magnitude from its

internal loss limited value when the device is rigidly held on a surface using any form of epoxy. As

discussed previously, the highest Q values are obtained when the chip is placed under its own weight

(see Sec. (2.3.3)). We tried a variety of different mounting experiments to find a suitable setup

for the mass loading experiment. First, we tried using a silicon cross (Fig 5.4(a)) and mounted a

silicon chip with a SiN trampoline (Fig 5.4(b)) on it either under its own weight (5.4(f))), or using

a variable number of pieces of Kapton tape placed at different locations (Figs 5.4(c),(d),(e)).
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Figure 5.4: SiN trampoline device mounting schemes on silicon cross.

(a) Silicon cross for mounting. (b) Silicon chip with SiN trampoline at the center. The trampoline

is not clearly visible. (c) Mounting of trampoline with Kapton tape at 3 corners. (d) Mounting

of trampoline with Kapton tape at 2 opposite corners. (e) Mounting of trampoline with Kapton

tape at 2 opposite sides. (f) Mounting of trampoline under its own weight.

The number of Kapton pieces were varied in order to understand if there was any obvious

connection between radiation loss and the number of contact points where the chip was secured.

Further, the location of the Kapton pieces were varied in order to check if securing the chip at

mechanical nodes of hybridized trampoline-chip modes helped mitigate radiation loss. We also

tried mounting a trampoline on a curved mirror to minimize the contact area (5.5(a))). Further,
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we tried mounting a trampoline on a low frequency beryllium copper spring which we hoped would

act as a mechanical filter and reduce coupling between the trampoline mode and the environment

(5.5(b))). Finally, we also tried epoxying a trampoline to a silicon chip mount at 1 corner using a

small amount of silver epoxy (5.5(c))).

Figure 5.5: Alternative SiN trampoline mounting schemes.

(a) Mounting of trampoline on a curved mirror. (b) Mounting of trampoline on a low frequency

beryllium copper spring. (c) Mounting of trampoline on a silicon frame with silver epoxy at 1

corner.

For each mounting scheme, we measured the fundamental mode Q of a trampoline resonator

multiple times. The results are summarized in Fig 5.6. In each case, the highest measured Q is

quoted since it corresponds to the lowest radiation loss. Further, the consistency of each mounting

scheme is given and this indicates how repeatable the measurement is. Assuming reasonable pa-

rameters, the expected internal loss limited Q for our device was Q = 30 · 106. Note that different

mounting experiments used different trampoline devices, and it is therefore hard to draw strong

conclusions because the presence of dirt and variable silicon chip shapes can significantly affect the

fundamental mode Q.
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Figure 5.6: Trampoline fundamental mode Q for different mounting schemes.

(a) Mounting of trampoline on a curved mirror. (b) Mounting of trampoline on a low frequency

beryllium copper spring. (c) Mounting of trampoline on a silicon frame with silver epoxy at 1

corner.

In general we notice that reducing the number of contact points seems to increase the Q.

However, the curved mirror result deviates from this trend. The low frequency spring does not

appear to help in any way. When the chip is placed under its own weight on the silicon cross,

the Q is quite high, and close to the expected Q. However, we found that in this setting, small

changes in the position of the chip due to external vibrations (tapping on the vacuum chamber for

example) could cause the Q to drop by an order of magnitude. Thus, placing the chip under its own

weight turned out to be unsuitable for our experiment. This is because we need to be able to place

the device in the same exact manner after a mass-loading sequence in the cleanroom, and this is

impossible. We found that epoxying the chip to a silicon frame at 1 corner using silver epoxy gave a

high Q close to the internal loss limited value. Moreover, we found that this mounting scheme was

consistent in that multiple different trampolines mounted this way gave similar results. We named

this mounting technique Fixed Mounting and decided to use it for the mass loading experiment.
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5.2 Details of Implementation

5.2.1 Q Measurement

Fig. 5.7 shows the experimental setup which we used to measure the Q of our trampoline

resonator. To read out the mechanical motion, we used an etalon interferometer with infra-red laser

light of wavelength λ = 1064 nm. The etalon, which consists of two partially reflective surfaces,

used the SiN as the first surface, and a Thorlabs beamsplitter as the second surface (BSS11 -

Ø1” 30:70 (R:T) UVFS Plate Beamsplitter, Coating: 700 - 1100 nm, t = 5 mm). The reflection

coefficient of the beamsplitter was chosen to match the reflection coefficient of SiN (roughly 30%

for 100 nm), thereby maximizing the reflected optical power (this is a property of the etalon which

can be mathematically proven). The distance between the SiN trampoline and the beamsplitter

surface was roughly 3 cm. The mode frequencies were found by identifying peaks on the measured

power spectrum. To find the mode Q values, we performed ringdown measurements by driving

the resonator at the mode frequencies using a piezo-electric drive. The entire experiment was

conducted inside a vacuum chamber. The chamber was pumped down initially using a roughing

pump, followed by the use of an ion pump. The vacumm levels as read by the ion pump was

P < 10−7 Torr. Q measurements were conducted in this high-vacuum environment to prevent gas

damping.
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Figure 5.7: Q Measurement Setup.

A trampoline resonator is expoxied to a silicon mount and placed on a piezo. Under the piezo is

a Thorlabs mirror/beamsplitter whcih has been glued to a Thorlabs post. The entire setup is in a

vacuum chamber with optical access.

5.2.2 COMSOL Simulations

We used the Finite Element Method (FEM) Software COMSOL Multiphysics to calculate

the trampoline mode frequencies and Q values. References [43, 42] contain all the required details

on how to set up and carry out the simulations and process the relevant data. For additional

guidance, the simulation files which were used in [43, 42] can be found at the following loca-
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tion: S:\regal\common\LabData\Optomechanics \Manuscripts\Mass Loading Paper\Final COM-

SOL simulations for mass-loading paper figures.

In this subsection, I will provide some important guidelines to obtain accurate results in

terms of meshing and plugging in relevant parameters on COMSOL. Without a doubt, meshing is

the most important factor. Assuming the simulation is set up correctly, inadequate meshing is the

most common reason for simulation results that do not converge and/or disagree with theory. We

can refer back to Equations (3.6) to gain some insight. The key is to notice that the loss depends

sensitively on the integrated mean curvature over the mode shape. Thus, the more the curvature,

the more the loss, and the lower the Qbending. Therefore, we must accurately capture the curvature

in regions where it is high.

For “hard-clamped” resonators such as membranes, strings, and trampolines, there is a very

sharp kink in the mode shape near the clamped boundary edge (due to a fourth-order term which

arises from Euler-Bernoulli beam theory and Kirchhoff–Love plate theory, see Fig. 3.1). If the edges

are not meshed very carefully, it becomes impossible to reproduce Qbending values that make sense.

The standard approach is to carefully partition the COMSOL CAD geometry into regions where

the curvature is expected to be low and high and then mesh each separately. The low-curvature

regions can be meshed coarsely, and the high-curvature regions need to be meshed finely. A foolproof

method to check the reliability of the Qbending numbers is to perform a mesh convergence study -

repeatedly refine the mesh over ALL parts of the resonator geometry until Qbending stops varying

by a significant amount. Figs. 5.8 and 5.9 below show how to efficiently partition and mesh a

trampoline resonator. Notice that the partitioning is done to isolate the low and high curvature

regions. The meshing at the edge gets progressively finer in order to accurately capture the bending.

Note that the length scale of the high curvature region can be calculated analytically [14] and it

is typically around 3 µm for a 500 µm membrane device but varies from device to device.

Similar partitioning and meshing strategies can be used for strings, membranes, and other

devices. For mass-loaded devices, the meshing needs to be fine inside the epoxy and the regions of

the resonator surrounding the epoxy, but not necessarily inside the mass load itself. Once again, a
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mesh convergence needs to be performed to ensure reliability.

Figure 5.8: Trampoline Geometry Partitioning on COMSOL.

Figure 5.9: Trampoline Geometry Meshing on COMSOL.
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As a final note to the future COMSOLer who may find this useful, a lot of old COMSOL

simulation files use a volume integral of the kinetic energy density “Solid.Wk” to find the energy

W of the mode. However, this is incorrect as it gives the average energy (over one motional cycle

I think), so you should actually use 2 times this result for W !

5.3 Experimental Results and Additional Simulations

The results of our experiment along with relevant FEM simulations are shown in Fig 5.10.

We see Qfund and f , which are the trampoline resonator fundamental mode Q and frequency

respectively, as a function of the load mass.
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(a)

(b)

Figure 5.10: Experimental results and FEM simulations.

(a) Qfund as a function of magnet mass: Measured Qfund at 300 K (circles) unloaded (open black

circle) and with a varying load (solid black circles). Corresponding FEA simulated Qbending results

disregarding (green dotted line) and including (black dotted line) epoxy loss. The shaded area

accounts for other possible losses, e.g. radiation loss. Measured Qfund for additional two devices

(triangle and square) are shown at both 300 K (light pink) and 8 K (sky blue). Measured Qfund for a

third device with a large load mass at 8 K is also shown (sky blue diamond). (b) Fundamental mode

frequency as a function of magnet mass: Frequency measurements at 300 K (circles) corresponding

to data points in (a). This figure is adapted from [43, 42].

We performed the magnetic stacking experiment described in the previous chapter and used

that to measure the trampoline’s Qfund and frequency as a function of the mass.

Fig. 5.10(b) shows how the resonator frequency varies with the added mass at 300 K (circles).

The frequencies were found by looking for peaks on the motional noise power spectral density. The

added mass was back-calulated by using the frequency shifts from the unloaded resonator frequency

(open black circle) This allowed us to calibrate the rest of the measurements.

Fig. 5.10(a) shows how the resonator Qfund varies with the added mass. Open black circle and
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solid black circles relate to the Qfund values for a trampoline at 300 K, without and with a variable

mass load. Qfund decreases as the mass increases, but plateaus for masses larger than ∼ 10 ng

(which is much larger than the effective mass (∼ 4 ng) of the unloaded resonator). This indicates

the theory predicted Qbending saturation effect. This saturated Qfund value is approximately four

orders of magnitude lower than the unloaded Qfund.

We used FEM simulations to model these results. We accounted for bending loss in both the

SiN and the epoxy, while disregarding radiation loss (black dotted line). The epoxy length scale

and loss tangent were scanned to choose realistic model parameters to obtain reasonable agreement

between our simulation measured data, while also setting an upper bound on Qfund [42]. Our

simulation is used as an upper bound for the results as, irrespective of device mounting, at higher

mass (lower frequency), the resonator is more susceptible to radiation loss.

To validate that the large reduction in Qfund originates primarily from epoxy loss rather than

spurious radiation loss, we performed additional measurements on two different devices (triangle

and square) both at 300 K and 8 K (light pink and sky blue markers respectively). The measured

Qfund rises by two orders of magnitude for resonators cooled to 8 K. Although SiN resonators

are expected to have reduced bending loss at 8 K compared to 300 K, it is by a factor of ∼ 3,

which cannot explain these observations [32]. We therefore conclude that when cold, the epoxy loss

reduces significantly, affirming the reduction in Qfund is primarily due to loss in the epoxy. This is

true for small masses, however, the situation is a bit more complicated at large masses where we

expect radiation loss to be more dominant. Thus, a fourth device (sky blue diamond) measured

at 8 K provides evidence that a fairly high quality factor (Qfund ≈ 3.7 × 105) can be achieved

in the saturated regime. Once again, (although we are comparing different devices) this is orders

of magnitude larger than the room temperature measurements at similar masses, thus confirming

that even at large masses, epoxy loss is the dominant form of loss and radiation loss can be mostly

ignored. Moreover, this is in agreement with measurements from [23], presented as blue stars in

Fig. 5.10.

In order to set a theoretical limit on the saturated Qfund at 300 K, we performed FEM
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simulations that include only SiN bending loss and disregard all other forms of loss (green dotted

line). The results show Qbending as high as 107 is possible in the limit of a large load mass. The

saturated Qbending for trampolines can be improved with mass load location optimization [42] and

possibly by using trampoline resonators with carefully engineered geometries [26, 34, 17].

In Fig. 5.11, we see how varying the position of the mass load on the trampoline affects the

saturated Qfund value. We find that the Qbending saturates to a higher value when the mass load

is on a tether rather than the trampoline pad. Further, we find the optimal location for mass

loading to be the tether region near the trampoline pad. As a clarification, when calculating these

results, we disregarded loss inside the epoxy and only considered loss in the SiN. This can be used

to optimize the functionalized resonator for sensing applications.
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Figure 5.11: Trampoline Qbending as a function of magnet mass and location.

The plots show Qbending for trampolines as a function of the magnet mass and location (solid black

circles with black lines). The insets (small trampolines marked with a black circle) indicate the

location of the mass load in each case. For each of the three curves, the solid black circles represent

FEA simulation data, and we have drawn a line joining them to indicate the general trend with

increasing mass load. This figure is adapted from [43, 42].

It is also interesting to study the effect of varying the nitride thickness. For soft clamped

resonators Qbending ∝ h−1 [46, 32] and because trampolines can be considered as partially soft-

clamped resonators, we expect that Qbending reduces with increasing thickness. However, when a

mass load is present we find the situation is more complicated. For small masses, the mode shape

barely changes, and in this situation, as expected, thinner SiN offers the best Qbending values. But as

the mass increases, we observe a transition in the trend, and surprisingly, for intermediate masses,

thicker SiN leads to the highest Qbending values. However, in the limit of a large mass load, thinner

SiN leads to the highest Qbending values. But in this regime, it appears that Qbending saturates to

approximately the same value irrespective of the SiN thickness. Once again, when calculating these

results, to clarify, we disregarded loss inside the epoxy and only included bending loss in the SiN.
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The results are illustrated in Fig. 5.12

Figure 5.12: Qbending as a function of magnet mass for different SiN thicknesses.

The plots show Qbending as a function of magnet mass for different SiN thicknesses (colored green

circles with colored green lines). The legend (top right) indicates the nitride thickness (the lightest

shade of green corresponds to the thinnest SiN while the darkest corresponds to the thickest). For

each of the curves, the solid points represent simulation data, and we have drawn a line joining

them to indicate the general trend with increasing mass load. This figure is adapted from [43, 42].

Besides trampolines, there is interest to study the effect of mass-loading on soft clamped

devices such as defect containing phononic crystals. There are advantages because these devices

are radiation loss protected (Q ≈ Qbending) due to the presence of an acoustic bandgap, and further,

they are soft clamped. Thus they do not need to be mounted in any special manner [32, 46], and

they have ultrahigh Q modes to begin with. Although studies must be limited to relatively small

masses, this is relevant in certain applications such as microscopy [16] where there is no need to put

a large mass on the resonator (for instance one could put the sample on the resonator rather than

the magnet). We performed COMSOL simulations to find the effect of mass-loading on the Q of the
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defect mode of the “flower” style defect phononic crystal [32]. We varied the location of the mass

load to learn how to optimize the Q, but we did not change the size of the mass since this could

easily cause the defect mode to fall out of the bandgap. We used a fixed mass of 0.25 ng which is the

largest mass one can use without making the defect mode to fall out of the bandgap. The overall

device size was such that the fundamental defect mode frequency was 0.5 MHz. Fig. 5.13 shows a

SIN phononic crystal with a “flower” style defect [32]. Fig. 5.14 shows the shape of fundamental

defect mode when there is no mass load (no kinks).

Figure 5.13: SiN Phononic Crystal with a “Flower” Style Defect.

The image shows the SiN phononic crystal (left) with a “flower” style defect (right).

Figure 5.14: Mass-Free Fundamental Defect Mode of a SiN Phononic Crystal with a

“Flower” Style Defect.

The image shows the fundamental mode of a SiN phononic crystal with a “flower” style defect when

there is no mass load.
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When a mass-load is added to the center of the “flower” pad, Fig. 5.15 shows how the mode

shape changes. As visible, there is now a sharp kink in the mode shape near the pad, and based

on Equation 3.6, we know the Q must drop.

Figure 5.15: Mass-Loaded Fundamental Defect Mode of a SiN Phononic Crystal with a

“Flower” Style Defect.

The image shows the fundamental mode of a SiN phononic crystal with a “flower” style defect when

there is a mass load at the pad center.

Figure 5.16: Locations of Mass Loading on Defect.

The image shows the locations on the defect (colored dots) at which the effect of mass-loading was

studied.

Next, as depicted in Fig. 5.17, we placed a fixed size mass of 0.25 ng at different locations on

the defect of the phononic crystal and computed the Q (Fig. ??).
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Figure 5.17: Q as a Function of Mass Loading on Defect.

The image shows how the location of mass loading (colored dots corresponding to specific locations

shown on Fig. 5.17) on the phononic crystal defect affects the Q of the fundamental mode. The

topmost row corresponds to the situation without a mass load.

In general, as expected, no matter where the mass load is placed the Q seems to drop.

However, we notice the Q decreases by a lot when the defect tether has a mass load on it and

less so when the pad has a mass load on it. This is rather unintuitive because the trend appears

to be the opposite in the trampoline. In general the effect of mass loading is complicated since

a mass-load significantly distorts the mode shape, and the Q is inversely related to the overall

integrated curvature. However, it should also be noted that this set of results may have something

to do with the fact that the phononic crystal is strongly soft-clamped while the trampoline is only

slightly soft-clamped. A further study would be required to draw meaningful conclusions.

5.4 Implications of Qbending Saturation

As seen, we have shown through analytic, computational and experimental methods that in

the limit of a large mass load, Qbending saturates. Looking back at Equation (2.15), we see this
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implies something very interesting:

Sβ =

√√√√4kbTk
1
2

M
3
2Q

= ψM− 3
4 . (5.1)

Here, ψ is just a constant. Thus, Sβ, which is the thermal limited sensitivity for measuring

β scales as M− 3
4 . This means that using a larger mass can enhance sensitivity by lowering the

thermal noise! This is particularly relevant for applications such as chip scale accelerometry, and

fundamental physics experiments such as quantum gravity measurements [56, 23].



Chapter 6

Conclusion

In this work, we study the effect of a localized mass load on the Qbending of highly tensioned

SiN resonators. We show through analytical calculations and finite element analysis (FEM) that

as the load mass increases, the modes of the resonator change in frequency and shape. Further, we

show that for a large enough mass, each mode shape becomes independent of the mass, which leads

to mass-independent Qbending. We refer to this phenomenon as Qbending saturation. We validate this

saturation experimentally by measuring the Q of a tensioned SiN trampoline resonator as a function

of the load mass. By carefully controlling loss channels besides bending loss, we enable comparisons

between Q measurements for different load masses on a single device. To vary the load mass, we

use magnetic grains for the load mass, and we sequentially stack the grains using their mutual

magnetic attraction. We use a low-finesse Fabry-Perot interferometer and perform ringdowns in

a high vacuum environment to measure the Q of the resonators. We compare our experimental

results to finite element method (FEM) simulations performed on COMSOL Multiphysics and see

good agreement. Through our experiment, we successfully demonstrate Qbending saturation.

A direct result of Qbending saturation is the scaling Sβ ∝ M− 3
4 , suggesting that at the large

mass limit, the sensitivity Sβ scales favorably with mass. This could enable improved sensing

capabilities in resonators for magnetic force detection, accelerometer, and future-term gravitational

sensors.

Future work could involve more in-depth studies on how to obtain ultrahigh Q resonators

with a large mass load. This could be approached by developing new fabrication methods which
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allow for mass deposition without the use of a lossy intermediate like epoxy, and combining it with

newly emerging design methods such as inverse design [17] or physics-informed neural networks [31].
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[36] Amir H Safavi-Naeini, Simon Gröblacher, Jeff T Hill, Jasper Chan, Markus Aspelmeyer,
and Oskar Painter. Squeezed light from a silicon micromechanical resonator. Nature,
500(7461):185–189, 2013.

[37] SW Schediwy, Slawomir Gras, Li Ju, and DG Blair. High q factor bonding using natural resin
for reduced thermal noise of test masses. Review of scientific instruments, 76(2):026117, 2005.

[38] Silvan Schmid, Luis Guillermo Villanueva, and Michael Lee Roukes. Fundamentals of
nanomechanical resonators, volume 49. Springer, Berlin, 2016.
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