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ii

Agrawal, Piyush (Ph.D., Astrophysics)

Inverting Solar Spectroscopic Data using the OLA Helioseismic Inversion Method

Thesis directed by Mark P. Rast

One relies on inversion methods to infer the vertical structure of the solar atmosphere. Given

the ill-posed nature of the inverse problems, combined with error sources from spectral noise and

neglected higher-order terms, the inverted solutions are unrealistically highly oscillatory in nature.

Regularization is required to produce physically meaningful solutions. In SIR inversions, one reg-

ularizes by inverting at a few user-defined depth locations (nodes). These nodes set the vertical

resolution limit of the inverted atmosphere and do not correspond to the ’true resolution limit’

achievable using the data that will be provided by DKIST. It is critical to determine the true

resolution limit achievable and invert at that resolution to use the telescope at its full potential.

In this thesis, we, for the first time, apply the Optimally Localized Averages (OLA) inversion

method, developed for helioseismology and geoseismology applications, to spectroscopic data to in-

vert for solar photospheric thermodynamic parameters. The method aims to find the ’best possible’

solution for a given variable at each depth. We discuss the OLA methodology and advancements

we have made to allow inversion for non-linear (large amplitude) perturbations by iteration. ’Edge-

effects’ caused by non-localized large-scale perturbations are the most challenging aspect in this

iterative approach. A hybrid SIR (large-scale, low-resolution) + OLA (small-scale, high-resolution)

approach successfully addresses this issue. We discuss inversion results using MURaM atmospheres

and make comparisons with SIR inversions. The results are promising, though some limitations

remain, and we propose future improvements to address those.

The results of this thesis have broader importance and suggest ways to improve overall

inversion capabilities. We show that using response function amplification can improve inherent

spectral sensitivity to sub-dominant variables and allow electronic pressure inversion in the presence

of unknown temperature perturbations. Additionally, removing redundancies from the response
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function matrix can significantly improve its inversion capability. Finally, we demonstrate that

the slope of the response function singular value curve can be used as a quantitative metric for

assessment of line combinations and their inversion capability. Once line combinations are identified,

OLA averaging kernel widths can be used to gain insight into the corresponding inversion quality

achievable.
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Chapter 1

General Introduction

Our Sun is a G-type main-sequence star. It fuses hydrogen into helium in its core, releasing

energy in process. This energy can take over a hundred thousand years to reach the solar surface

[38], and then just a little over 8 minutes to make its way to the Earth. The solar radiation is

undoubtedly the most important source of energy that drives the biological and physical processes

on earth. Without it, our earth would be an inhospitable wasteland.

In addition to radiation, Sun also releases a stream of highly energetic charged particles that

make up the solar wind. This wind significantly influences the region of space encompassing the

solar system and drives the ’space weather’. Space weather is the variable space environment that

can directly or indirectly endanger life on Earth by impacting the functioning and reliability of

both space-based and ground-based technological systems. Even though Earth’s magnetic field

acts as a shield [12] and protects surface technology, from all but the most powerful, by deflecting

most of the solar wind particles (see Figure 1.1), understanding it is critical to extending human

activity into space. Solar wind particles can cause damage to the satellites and communications

systems, cause health risk for astronauts during a solar storm or during future manned missions to

Moon or Mars, and in the most extreme cases, cause damage to electrical power grids on Earth.

It is very important to understand the behavior of the Sun to be able to predict the occurrence of

these events well in advance, so that necessary measures can be taken to protect our technological

society.

Further, Sun exhibits striking physical structures such as plages, sunspots, coronal holes, etc.,
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Figure 1.1: Artist render showing the Sun-Earth connection. The bright yellow blob corresponds
to the CME traveling towards the Earth, while the Earth’s protective magnetic shield is shown in
blue. Image credit: ESA.

and its close proximity to us allows us to resolve these structures at great detail e.g. in Figure 1.2

we shows the resolved photospheric granular structures. This means that we can study the Sun in

ways which is not possible with any other star. Physical processes such as the operation of solar

dynamo [8], which aims to explain the cause for the 11-year solar magnetic cycle, and heating of the

solar corona [43], which aims to explain why the corona (uppermost layer of the solar atmosphere)

is at about 1 MK while the photosphere (deepest layer of the solar atmosphere) is only at about

6000 K, can be studied in detail. In understanding its workings of the Sun we can learn about

processes on other stars and test our theories of stellar evolution.

1.1 Ingredients required to study the Sun

In order to study the Sun in detail, we require a model of its atmospheric structure, its physical

properties such as temperature, gas pressure, magnetic flux etc., with height. This structure is

highly non-uniform with position. Ideally, we would want to make direct measurements. But
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Figure 1.2: First light image of photospheric granulation obtained using DKIST, with resolved
features as small as 30 km. Each ’cell’ corresponds to a granule where hotter (brighter) material rises
in the center and cooler (darker) material sinks in the dark lanes. Image credit: NSO/AURA/NSF,
https://nso.edu/telescopes/dkist/first-light-full-image/

given the harsh physical conditions on the Sun, it is impossible to do so. Parker Solar Probe [33]

aims to get within 10 solar radii (0.046 AU) of the Sun but direct measurements of the deep solar

atmosphere, such as the lower corona, chromosphere and photosphere, are not possible. One thus

has to rely on indirect methods to infer Sun’s physical properties. A general class of such problems

is called an ’inverse problem’ where one aims to indirectly infer the properties of a system from its

measured response (or observations obtained from the system). For example, in helioseismology

one aims to infer the internal structure of the Sun using the oscillations seen on the solar surface,

in geoseismology one aims to infer the properties of the interior of the Earth using surface wave

observations, etc. The opposite of an inverse problem is called the ’forward problem’ where one

aims to determine the physical output signal given a known model that describes the working of

the physical system (see Figure 1.3). The focus of this thesis is to infer the atmospheric parameters

corresponding to the deepest layer of the solar atmosphere (solar photosphere) from measurements

of electromagnetic spectra.

Solar photosphere is about 500 km thick and corresponds to the ’visible surface’ of the Sun,

https://nso.edu/telescopes/dkist/first-light-full-image/
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Figure 1.3: Graphical representation of the forward and inverse problem.

where the atmospheric conditions allow the visible light to escape from the solar interior. In this

layer, temperature (and density) decreases with height. A one-dimensional, semi-empirical VAL

atmospheric model [1, 49] is shown in Figure 1.4, where we plot the temperature (and density) as

a function of height. The model corresponds to an average stratification and does not capture the

in-homogeneous, dynamic and intermittent nature of the solar atmosphere. We use solar spectropo-

larimetric measurements to infer the atmospheric properties. This is possible because as radiation

travels through the solar atmosphere, it interacts with the medium and is subject to absorption,

emission and scattering processes. These interactions leave signatures in the spectra, which we can

invert for the physical properties of the atmosphere. Further, different parts (wavelengths) of a

spectral line are sensitive to different layers of the solar atmosphere (line-core region of a spectral

line is more sensitive to the upper layers of the solar atmosphere, while the line-wing (continuum)

is more sensitive to the deeper layers), and, different spectral lines themselves can be sensitive to

different regions of the solar atmosphere. This is demonstrated in Figure 1.5 where we plot the

spectra for visible and infrared lines (≈ 1.5 µm). The continuum wavelengths near the 1.5 µm lines

are sensitive to deeper, hotter layers, and thus have relatively larger intensities, as compared to

the visible spectra. This variable sensitivity of different spectral regions to different atmospheric

depths is also demonstrated in Figure 1.6 which shows how Sun ’appears’ in different wavelength



5

Figure 1.4: The temperature and mass density stratification for the 1-D semi-empirical quiet-Sun
VAL model. The model corresponds to an average stratification of the given parameters and do
not capture the dynamic and intermittent nature of the solar atmosphere.

channels on the Solar Dynamics Observatory [45]. Here the atmosphere above the photosphere is

being observed rather than the deep photosphere, as was the case for 1.5 µm.

In summary, we usually require a combination of multiple spectral lines with differential

sensitivity to variables and depths in order to achieve a ’good’ inversion result. The quality of

inversion depends on the quality of the spectral data, assessed based on the noise level, spectral,

spatial and temporal resolution, and the ’amount’ of orthogonal sensitivity to different variables

and depths.

1.2 DKIST - A new era of solar physics measurements

The Daniel K. Inouye Solar Telescope (DKIST) [53] is the upcoming 4-meter solar telescope,

nearing completion on Haleakala, Maui, which will allow us to make multi-line observations at

unprecedented spectral, spatial and temporal resolution. It has an off-axis, clear aperture design
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Figure 1.5: Synthetic spectra (Stokes I, normalized to HSRA intensity [18]) through the mean
MURaM atmosphere, synthesized using SIR forward solver, for the spectral lines mentioned in
Table A.1.

which prevents the secondary optical elements from obstructing the primary aperture, thus min-

imizing scattered light in the process. The aperture size of 4-meters is the world’s largest for a

solar telescope and will allow us to resolve features smaller than ≈ 25 km (at 500 nm) in the

solar photosphere. An example first light image of the solar granulation from DKIST is shown in

Figure 1.2. The large aperture size means that a short integration time is required to achieve a

high signal-to-noise, high resolution measurements at high cadences. The telescope will have a po-

larization accuracy of 10−4 allowing precise measurements of the weak magnetic fields in the solar

photosphere. The telescope’s five instrument suite will allow observations of the Sun over a wide

wavelength range, 300 nm to 35 µm, giving us the diagnostic ability to constrain the atmospheric

properties from the photosphere to corona.

This multi-line, multi-height observational capability at unprecedented spatial resolution (and

high signal-to-noise) will allow us to answer many outstanding questions in the community e.g. how

small-scale photospheric magnetic fields are created and destroyed, what leads to the heating of

the outer layers of the solar atmosphere to over 1 MK temperatures, etc. For a more exhaustive

list of projects possible with DKIST, see [50].



7

Figure 1.6: Sun as it appears in different SDO wavelength channels (false colors). The wavelengths
sample drastically different atmospheric layers. Image credit: SDO/NASA.

1.3 Relevance of this work and thesis structure

While great effort has been put into improving the quality of observations, the quality of

inverse solutions are dictated by the inversion method employed. In particular, the horizontal

resolution of inversions is determined by the observational resolution while the vertical resolution

is determined by the inversion method itself. Given the inherent underdetermined nature of the

inverse problems, inverse solutions are often unrealistically oscillatory with depth. In order to

achieve physically meaningful solutions, current state of the art inversion methods (e.g. SIR)

manually force a globally smooth solution, putting a limit to its vertical resolution, i.e. SIR

inversions typically have a vertical resolution of ≈ 50 km at best. In MURaM simulations of the

solar photosphere, we find sharp gradients with depth in the atmospheric variables at spatial scales

much smaller than that could be resolved using the SIR method. Moreover, SIR solutions likely

do not capture the ’true resolution limit’ achievable given the spectral data. To use the DKIST

telescope at its full potential and to recover these gradients as best as possible, it is critical to

obtain the solutions that are at resolution limit achievable given the spectral data available.

In this work, for the first time, we apply the Optimally Localized Averages (OLA) method
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to invert solar spectroscopic data to achieve this goal. The method was previously developed

for geoseismology and helioseismology to invert for the internal properties of the Earth and Sun,

respectively. It is fundamentally different from SIR as it aims to find the most vertically localized

solution possible at each depth. This inversion resolution limit achievable is mostly determined by

the sensitivity of spectra to different variables and depths, and the observational noise.

In spite of the several advantages over the SIR method, the original OLA method has its own

set of disadvantages and limitations when applied to spectroscopic data. In the next Chapter 2,

we discuss those challenges faced and develop methods needed to obtain reliable inversions. We

limit ourselves to inverting only for the thermodynamic properties of the solar photosphere i.e.

temperature T, electronic pressure Pe and line-of-sight velocity Vlos. Inverting for magnetic field

vector remains for the future.

In Chapter 2 we briefly describe the fundamental ingredients and equations involved when

carrying out inversions in general. We further discuss inversions within the SIR framework and

those used in helioseismology. We describe the basic methodology of OLA, challenges faced when

applying it to spectroscopic data, and changes made to mitigate those issue. For simplicity, here

we limit ourselves to single variable inversions for artificial test cases. In Chapter 3, we apply

the modified single variable OLA approach to invert MURaM atmospheres, statistically assess its

inversion capability and compare it to the results obtained from SIR. In Chapter 4, we extend the

modified OLA method to multivariable inversion of thermodynamic parameters. In Chapter 5 we

discuss the caveats of having redundant response functions in the response function matrix and

improvement in the quality of inversion solution when these redundancies are removed. We also

discuss a potential way to quantitatively assess the inversion potential of different line combinations

using the slope of the singular value curve. We finally conclude this thesis with Chapter 6 where we

summarize the work and discuss the unresolved issues pertaining to the modified OLA approach

and possible ways to mitigate them in the future.

In Appendix A we briefly discuss the theory of radiative transfer which describes the light-
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matter interaction and the theory behind the formation of spectral lines. In Appendix B we mention

the SIR node values employed for different cases.



Chapter 2

OLA single variable inversion

In this chapter, we start with a brief discussion of the general approach to spectroscopic

inversions and later discuss the application of the OLA method and meeting the challenges faced

when applying it in the spectroscopic context. Here, to introduce the concept, and for simplicity,

the discussions would be limited to inverting temperature T only, using the ’observed’ spectroscopic

intensity data (Stokes I). More realistic multivariable inversions will be discussed in Chapter 4.

Here bold letters correspond to mathematical vectors (or matrices) e.g. I represents a vector of

intensity spectra over multiple wavelengths, and T represents a vector of temperature over multiple

optical depths.

2.1 Brief introduction to inversions

In general, spectropolarimetric inversions are carried out by starting with an initial guess for

T (depth dependent quantity) and solving for the underlying difference ∆T between the actual

and guess T that accounts for the spectral difference ∆I between the observed spectra and that

derived from the guess model. When inversion is complete, the spectra from the updated (inverted)

model, given by guess T+∆T, is ’as close as possible’ to the observed spectra I. An example test

case is shown in the top plot in Figure 2.1, where the actual (underlying, observed) T is shown

as gray-dashed curve, guess T as red-dashed curve and the difference ∆T between them as red

solid curve. In reality, actual T, and thus the difference ∆T, are unknown. This ∆T is what the

inversion aims to capture.
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Figure 2.1: (Top plot) Mean MURaM guess T is shown in red-dashed, actual T is shown in
gray-dashed and is artificially constructed by adding Gaussian-shaped perturbation ∆T (red-solid)
peaked at log τ = −0.50 (width = 0.40 ∆log τ , perturbation amplitude = 10%) to the mean
MURaM guess T. Note that τ here corresponds to optical depth at 500 nm. (Bottom plot) Spectra
synthesized using SIR for the mean MURaM model is shown by red-dashed curve, for artificial T
is shown by gray-dashed curve and the difference between the two i.e. ∆I = actual - guess I, is
shown in red-solid curve. Overplotted in yellow is the error from the higher order terms (∆I −
RT
>• ∆T

T ).

2.1.1 Response functions and the 1st order linear system of equations

The relationship between ∆I and ∆T is described by linear response functions which define

the sensitivity (response) of spectra to a small change in the variable at a given optical depth. These

response functions depend on the underlying atmosphere being perturbed. The linear response of

the spectrum at a given wavelength δI(λ) to a small amplitude temperature perturbation at an
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optical depth τ defines the temperature response function,

R′T(τ, λ) =
δI(λ)

δT(τ)
(2.1)

In integral form, it can be rewritten as

R′>T (λ) • δT = δI(λ) (2.2)

which states that the total change in intensity δI at a given wavelength λ is equal to the sum of the

change in temperature δT at each depth location weighted by the corresponding response function

(or sensitivity factors) at that wavelength.

Response functions are computed analytically ([16, 35, 54, 55]) for all optical depths τ and

all wavelengths λ under consideration, given the underlying atmosphere. For a set of wavelengths,

Equation 2.2 can be written in the matrix form as

R′>T • δT = δI (2.3)

We note that, unlike the most other inversion methods we employ fractional response functions RT

which are equal to the ratio of change in intensity at a given wavelength to the fractional change

in temperature at a given depth location. With this definition, Equation 2.3 becomes

R>T •
δT

T
= δI (2.4)

This use of fractional response functions removes the dimensional dependency of the spectral

sensitivity to change in a given variable, facilitating comparison of the response function magnitudes

between variables. Note that for T (and Vlos), fractional and dimensional response functions

are quite similar (see Figure 2.2) and produce very similar inversion results. This is because

these variables don’t vary significantly over photospheric depths (variation is of the order of a few

multiples, see T in Figure 2.1) and given that RT(τ, λ) = T(τ)× R′T(τ, λ), RT is approximately a

constant factor re-scaled version of R′T. However, this is not the case with Pe which varies by a

few orders of magnitude over the relevant depths resulting in a significant difference in the shape
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Figure 2.2: (top-plot) Fractional response functions RT computed using SIR (for mean MURaM
model), for spectral lines mentioned in Table A.1. Each line curve corresponds to the response
function for a given wavelength. (bottom-plot) Corresponding dimensional response functions R′T.
The dimensional and fractional response functions are related by RT(τ, λ) = T(τ)× R′T(τ, λ).

of the dimensional and fractional response functions (see Figure 3.6). Because of this, it is very

difficult to invert for Pe using dimensional response functions (see Section 3.3.3 for details).

The fractional response functions for temperature RT establishes the linear relationship be-

tween the observed ∆I and the desired ∆T
T that inversion aims to determine. Discretized in optical

depth and wavelength, the relationship can be written as a system of linear equations (the 1st order

equation),

∆I = R>T •
∆T

T
+ ε (2.5)
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This system of equations can be derived by minimizing a merit function which is the sum of

the squared differences between the observed and the guess-model spectra (see [16, page 201]).

Here ε indicates error, resulting from the observational and instrumental errors, such as noise

in observed intensities (real world scenario), as well as the higher order terms omitted by the

linear approximation to the response function. When the guess-model is not close to the observed

atmosphere, ∆T
T is not small, and the relationship between ∆I and ∆T

T is no longer linear. Under

these conditions the missing higher order terms (order
(

∆T
T

)2
and higher) contribute significantly to

ε. The ’observed’ spectra (gray-dashed) and their differences ∆I (red) as a function of wavelength

for the test case mentioned above is plotted in Figure 2.1 (bottom plot). Also depicted with the

yellow curve is the value of the higher order response function truncation error, given by ∆I −

RT
>• ∆T

T , as observed I has no spectral noise contribution. Additional errors such as that due to

discretization (from solving the radiative transfer equation on a grid) or numerical round-off are

usually much smaller. In this section, error ε represents the missing higher order sensitivities only.

The effect of observational errors on the inversion quality is discussed in Section 2.2.7.

2.1.2 Solving 1st order system of equations

Solving Equation 2.5, a linear system of equations, requires computing the inverse of the

R>T matrix. This is a non-trivial task as the system of equations belongs to the ill-posed category,

as evident from the exponential decay of the singular values of the R>T matrix to smaller values

(see Section 2.2.1 for more details). This combined with the fact that the system of equations is

not perfect (non-zero error ε), means that the upper limit to the number of linearly independent

equations ’that can be employed’ (when computing matrix inverse) is much smaller than the total

number of variables in Equation 2.5. Thus the system of equations is ’effectively’ underdetermined

and one ’cannot’ uniquely solve for ∆T
T . Physically, this is due to redundancy in the spectral line

formation. Different wavelengths within different spectral lines have ’similarly shaped’ response

functions. Further, given that radiative transfer is an averaging (smoothing) process, detailed

information about the atmosphere (sharp gradients in model properties) is lost in the process of
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line formation. Thus, there is a limit to how well the underlying atmosphere can be recovered.

Mathematically, the ill-posed nature of the equations means that the numerical rank of the

R>T matrix is ill-determined. Naively computing its pseudo-inverse (e.g. using normal equations

approach) will likely result in an inverse matrix with large amplitude terms which can amplify

error ε and result in an error dominated solution. Error dominated solutions are generally highly

oscillatory with depth and lack physical significance (see Section 2.2.3 for further details).

In order to obtain a physically meaningful solution that is not dominated by error, some sort

of regularization (smoothing) is employed. Mathematically, regularization removes the contribution

of smaller singular values when computing pseudo-inverse matrix, as it is these smaller singular

values that appear in the denominator and result in high amplitude terms in the pseudo-inverse

matrix. The inversion solution depends heavily on the ’amount’ of regularization. A strongly regu-

larized solution corresponds to a smoother solution which might fail to capture the gradients in the

underlying ∆T
T . Weak regularization can result in an inversion solution that is closer to the actual

∆T
T , but has a higher chance of being error dominated. Determining how to ’effectively’ regularize

(balance resolution and error amplification) is one of the hardest problems when doing inversions.

In the next section, we briefly discuss inversion methods currently used in spectropolarimetry (SIR)

and helioseismology (RLS) and how they obtain physically meaningful solutions, before moving on

to the application of the helioseismic OLA method to spectroscopic data.

2.1.3 SIR inversion method

Current state of the art spectropolarimetric inversion code, SIR [15, 16, 17, 54], obtains a

smooth solution by solving for ∆T at a limited number of user-defined locations called ’nodes’.

The ∆T value for other depth points are then interpolated from these nodal values. Thus, by

design, this method ensures that the inverted solution is non-oscillatory over nodal scales. Please

note that, for consistency, we use the notation ∆T
T , though in reality SIR directly inverts for ∆T.

Conceptually, SIR method can be understood in terms of solving a modified version of Equa-
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tion 2.5:

∆I = R>T • F • F−1 •
∆T

T
+ ε (2.6)

where, matrix F contains the interpolation factors and is used to compute the response function

values to node locations (R>T •F). SIR inverts R>T •F, and given that the number of depth points is

reduced to the number of nodes, is essentially solving an overdetermined version of Equation 2.5.

This indirectly removes the smaller singular values inherent in RT matrix and, by design, doesn’t

allow solutions to have spatial frequency larger than that allowed by the number of nodes. While

(R>T •F)−1 •∆I correspond to the inversion values at node locations, the final inversion solution at

all depths is given by F • (R>T • F)−1 • ∆I.

2.1.4 Regularized Least Squares (RLS) inversion method

In Regularized Least Squares method (RLS) of helioseismology [9, 10, 11, 27, 31], as applied

to spectropolarimetry, ∆T
T is determined at all depths to best satisfy Equation 2.5, along with an

additional constraint that acts as a smoothing/regularization term. Mathematically, RLS inverted

solution is obtained by minimizing

χ2
reg =

∥∥∥∥∆I−R>T •
∆T

T

∥∥∥∥2

2

+ ξ2

∥∥∥∥∆T

T

∥∥∥∥2

2

(2.7)

where, ξ is a user-defined ’trade-off’ parameter. The first term on the right hand side corresponds

to the square of the residual, while the second term is the added constraint, which in this example

is taken to be the square of the L2 norm of the obtained solution (one of many possible constraint

choices). Note that unlike Equation 2.5, error ε here is not explicitly mentioned, but is implicit.

Minimizing χ2
reg in Equation 2.7, with respect to ∆T

T , yields the following linear system of equations:∆I

0

 =

∆R>T

ξ I

 •
∆T

T
(2.8)

where, I is an identity matrix.

The idea behind adding a smoothing constraint is to improve the overall ill-posedness of

the system of equations. The trade-off parameter ξ determines the relative sensitivity with which
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∆I = R>T • ∆T
T and I • ∆T

T = 0 are solved. A larger value for ξ results in solutions which satisfies

I • ∆T
T = 0 (a well-posed system) more strongly than ∆I = R>T • ∆T

T . Mathematically, this removes

contributions of smaller singular values when computing the pseudo-inverse matrix and thus results

in a smoother inversion solution. A smaller value for ξ, on the other hand, results in solutions more

prone to satisfying the ill-posed system ∆I = R>T • ∆T
T , with the pseudo-inverse matrix having

contributions from smaller singular values. If ξ is taken too small this results in an error dominated

oscillatory solution.

2.1.5 Need for OLA inversion method

SIR and RLS methods are similar in the sense that they both intend to obtain a globally

smooth solution. Their limitation is that the inverted solutions may not be the best localized

solution that can be obtained at each depth given the spectra. It is very hard for these approaches

to recover steep gradients in the underlying ∆T
T (or ∆T), or a priori know what gradients are

recoverable. The depth resolution of the inversion depends on the user choice of the number

of nodes (or the value of ξ), and may not be representative of the ’true’ resolution achievable

given the data. Determining what the maximum achievable depth resolution is and inverting at

that resolution is critical to using the upcoming DKIST telescope at its full potential. Further,

solutions obtained using SIR/RLS method suffer from cross-talk error from ∆T
T corresponding to

other depths (and other variables, in a multivariable system), especially in the region with lesser

orthogonal sensitivities in the RT matrix.

Goal of this thesis is to employ the OLA inversion method to invert spectroscopic data. The

method is fundamentally different from SIR/RLS. It aims to obtain inversion solutions that are

’optimally’ localized at each depth, given the spectra, with minimal cross-talk error contribution

from perturbations from other depths (within the same variable) and from other variables. The

method has origins in geoseismology [2, 3, 4] and was later adopted by helioseismologists [5, 10, 11,

20, 21, 29, 46, 47] to infer the internal properties of the Sun. In the next section, we describe this

inversion method in context of spectroscopic inversions.
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2.2 OLA inversion: Methodology

In this section we describe the OLA inversion method in the context of inverting tempera-

ture T using spectroscopic intensity data (Stokes I). To introduce the method, we first examine

single-variable inversions for artificial temperature perturbations. For these test cases, we use the

horizontal mean state of a MURaM simulation (see Section 3.1 for details) as the initial guess-model

atmosphere and add a height dependent temperature perturbations to mimic possible variations.

We can then, starting with the mean model as the initial guess, conduct OLA inversion for T

and compare the results with those of the perturbed (actual, underlying, observed) atmosphere,

which in these test cases, but not in real observations, is known. This allows the assessment of the

capabilities and limits of the method and the presentation of the advancements to the OLA method

that are necessary in the spectropolarimetric context compared to its application in helioseismic

inversions.

An example test case is shown in the top-panel in Figure 2.1. In that figure, the red-dashed

curve corresponds to the initial guess model (the mean MURaM simulation), the gray-dashed curve

corresponds to the artificially constructed observed atmosphere and red-solid line corresponds to

the difference between observed and guess-model, ∆T. Since this discussion is focused on inverting

the spectral data for T in the absence of cross-term variables, no perturbations are added to Pe

and Vlos, i.e., ∆Pe and ∆Vlos are taken to be zero.

Test of the OLA spectral-inversion technique proceeds as follows: Using the forward spectral

synthesis capabilities of SIR, we compute the synthetic spectra (see Figure 2.1, bottom plot) for

the observed and the guess-model, and at the same time the fractional spectral response function

matrix RT at these observed wavelengths for the initial guess-model (see Figure 2.2, top plot).

The computed response functions, along with the spectral difference between observed and guess

spectra ∆I, define the 1st order linear system of Equations 2.5, which must be solved for ∆T
T , and

from this the inverted temperature profile is determined. It can then be compared to the input

(underlying) atmosphere for accuracy and reliability.
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Figure 2.3: Graphical representation of Equation 2.9. RT is shown in the left plot, while G (pink)
and AT (blue) are shown on the right plot. Here we aim to compute coefficients C such that RT•

C = AT ≈ G. We computed pseudo-inverse of RT matrix with rank k = 5 (based on dominant
singular values that add up to 95% of the total sum).

2.2.1 OLA method: Averaging kernels

As already mentioned in Section 2.1.2, inversion problems are inherently ill-posed and some

sort of regularization is required to obtain a physically meaningful solution. Techniques such as

SIR/RLS aim to find an overall smooth solution that best fits the observed spectra by solving for

∆T at all depths (or nodes) simultaneously. The OLA method, on the other hand, aims to invert

for ∆T at one depth location τi at a time. The intention is to find the ’best possible’ inversion at

each location, with inversion regularization criteria not based on a global smoothness measure, but

on how well localized (spatially/depth averaged) the solution is at each depth (minimal cross-talk

error from other depths).

A localized inversion solution at a target depth τi is obtained by linearly combining the

response functions vectors to form an averaging kernel AT(τi) with the help of linear coefficient

vector C ([cλ1 , cλ2 , cλ3 , ...]>). These coefficients are then used with ∆I to obtain an inverted

solution at depth τi. The averaging kernel AT(τi) = RT • C is obtained by solving the following

linear system of equations:

RT • C = G(τi, σ) , (2.9)

where G is a user-defined target function localized around the inversion target depth τi. It is usually
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taken to be a normalized Gaussian, with peak at τi and standard deviation (width) σ. An example

is shown in Figure 2.3. Plotted on the left side of the figure are individual response functions for

all observed wavelengths, and on the right, the target function (pink) and averaging kernel (blue)

obtained by their linear combination. As will be explained further below, since Equation 2.9 can

only be approximately solved, AT only approximates G.

Once computed, the coefficients C can be used to obtain the inverted solution. Taking the

dot product of Equation 2.5 with C> and recognizing RT • C as the averaging kernel yields

C> • ∆I = A>T(τi) •
∆T

T
+ C> • ε (2.10)

Here, C> • ∆I is the inversion solution at τi which, if the error contribution (C>• ε) is small,

corresponds to an optical depth averaged value of ∆T
T , defined as

〈
∆T
T (τi)

〉
≡ A>T(τi) • ∆T

T .

Finally, inverted ∆T(τi) at location τi is given by T(τi) × (C> • ∆I) ≈ T(τi) ×
〈

∆T
T (τi)

〉
. A

narrower width averaging kernel yields less averaging with
〈

∆T
T (τi)

〉
closer to the underlying ∆T

T (τi);

if a δ-function averaging kernel could be constructed, then
〈

∆T
T (τi)

〉
≡ ∆T

T (τi). This is typically

not possible. For a given finite set of response functions, the inherent ill-posed nature of the

Equation 2.9 limits the minimum target function width that can be reasonably fit by the averaging

kernel. Additionally, ’successfully’ constructing narrower averaging kernels comes with the cost of

larger coefficient amplitudes which amplify the error ε through C> • ε in Equation 2.10 and can

lead to an inverted solution C> • ∆I that is error dominated.

To understand this further, it helps to see how Equation 2.9 is solved for coefficients C. Lets

say we want to construct an averaging kernel at depth log τi = −0.5, with a width of 0.4 (in ∆ log τ

units), and we define the target function G accordingly. To solve for C, we first need to compute

the inverse of the response function matrix RT. That matrix is usually non-invertible, and we have

to computed a generalized inverse (pseudo-inverse or approximate inverse, [6, 19, 27, 48]) of the

matrix. One approach is to utilize the singular value decomposition (SVD, [27, 28, 48, 61, 62]) of

the RT matrix, given by

RT = U S V> =
r∑
i=1

(ui ⊗ v>i )× si (2.11)
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Here, U and V are the left and right orthogonal matrices and S is a diagonal matrix with the

singular values (s1, s2, ..., sr) as the diagonal elements. These are usually ordered s1 ≥ s2 ≥ s3 ≥

... ≥ sr . The orthogonal matrix U is composed of individual unitary orthogonal modes/vectors ui

i.e. [u1, u2, ..., ur] with u>i • uj = 1 for i = j and zero otherwise. Similarly, V = [v1, v2, ..., vr].

Physically, one can think of SVD as decomposing the matrix into individual orthogonal eigenmaps

of the response function ’map’ RT (in λ and τ), given by (ui ⊗ v>i )× si, where si corresponds to

individual map’s contribution in making up the matrix and ’⊗’ denotes the outer product of the

vectors. Given that the RT matrix is oriented such that individual rows correspond to sensitivity

at a given depth τ while individual columns correspond to sensitivity for a given wavelength λ, we

can interpret individual ui and vi vectors as the eigenmodes for the depth and wavelength space,

respectively.

When computing the pseudo-inverse of the matrix, it is important to know its rank r, which

signifies the maximum number of linearly independent/non-degenerate rows (or columns) of the

matrix. The matrix is said to be full rank when r = min (n,m), where size of the matrix is n×m.

If there are degeneracies within the matrix, then rank r < min (n,m) and is equal to the number

of singular values si that are non-zero. Once we identify the rank r of the matrix (the number of

non-zero si), then we can compute its pseudo-inverse which is given by

R−1
T = Vr • S

−1
r

• U>r =

r∑
i=1

vi ⊗ u>i
si

, (2.12)

from which the coefficients, from Equation 2.9, follow

C =
(
Vr • S

−1
r

• U>r

)
• G =

r∑
i=1

vi ×
(

u>i • G

si

)
(2.13)

Here, Ur (and similarly Vr, Sr) corresponds to the matrix constructed by keeping the or-

thogonal eigenvectors (ui) corresponding to r largest singular values, i.e. Ur = [u1, u2, ..., ur].

The central issue with spectropolarimetric inversions in general, and with the formulation

of the OLA averaging kernel in particular, is that they involve solving a discrete ill-posed system

of equations for which the numerical rank r is ill-determined. The ordered singular values si
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of the response function matrix RT quickly decay to smaller values with increasing i, with the

corresponding eigenvectors ui and vi becoming more oscillatory. This is shown in Figure 2.4.

Those modes that are potentially more useful in localizing the contribution to the spectral response

have smaller singular values. The exponential decay of si with increasing index i (upper panel

in Figure 2.4) indicates that the response function matrix is severely ill-posed, with only a few

orthogonal modes capturing most of the information in the matrix. For RT corresponding to the

mean MURaM model being considered (with 121 depth points and more than 400 wavelength

points), over 100 orthogonal modes have nonzero singular values, but only the largest 11 of them

contribute to 99.9% of the total singular value sum (si to the left of vertical dashed line in the top

plot in Figure 2.4). Unfortunately, the ill-posedness changes only very slowly with the additional

spectral response functions (additional observations at other wavelengths) because of the underlying

inherent degeneracy in the formation of spectra.

The severe ill-posedness (exponential decay rate of si) of the RT matrix is the central issue

when computing C using Equation 2.13. Ideally, u>i • G should decrease faster than si with

increasing i, so that the ratio
(

u>i • G
si

)
remains less than one. This is called the Discrete Picard

Condition [24, 25, 26, 27, 65] and ensures the stability of the solution. When the system is severely

ill-posed, this condition is usually not met, and leads to coefficients that are uncontrollably larger

and a solution dominated by the highly oscillatory modes which are not dominant in the original

RT matrix, as their corresponding singular value si contributions are negligible. When these

larger amplitude coefficients are used in Equation 2.10, the inversion solution C> • ∆I is typically

dominated by the error term C> • ε, and does not correspond to the desired A>T(τi) •
∆T
T .

As already mentioned, to successfully solve an ill-posed system (the core of many inverse

problems including those of spectropolarimetry), regularization is needed. In the context of av-

eraging kernel construction (solving Equation 2.9) regularization means dampening or removing

the contribution of smaller si. The truncated SVD method (TSVD, [24, 25, 27]), achieves this by

simply inverting a lower-rank version of the matrix, i.e. by using only the k (� r) most dominant

singular modes to compute the inversion. Employing this technique, we compute coefficients from
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Figure 2.5: Parameters obtained when inverting at log τ = −0.25, for the perturbation in Figure 2.1

using OLA, for different rank k. L1 norm of C (
∑
i
|cλi |) is shown in blue, minimum target function

width achievable in pink and the % error contribution in the inverted solution
(∣∣∣ C>• ε

C>• ∆I

∣∣∣× 100
)

in yellow.

Equation 2.13, by replacing rank r with a lower rank k so that Uk = [u1, u2, ..., uk], with Vk

and Sk truncated similarly. The biggest challenge then is determining what rank k to employ.

This would not be as big a problem if we had the error estimates ε, as we could then determine

if our solution is error dominated or not. In addition, we could also incorporate ε in Equation 2.9

and solve for coefficients that simultaneously minimize the error contribution in the solution i.e.

RT• C = AT, and C>• ε = 0. Unfortunately, ε is not available because, while estimates of the

spectral noise in the observational data can be made, we do not in general know how far away the

guess-model is from the real atmosphere, and we do not thus know the magnitude of the truncated

non-linear contributions to ε.

Typically, the lower the approximated rank k, the smaller are the coefficient amplitudes and

smaller the relative error magnitude compared to the idealized solution, i.e. C> •ε is small compared

to A>T •
∆T
T . This is illustrated by Figure 2.5, where we plot for our test problem ‖C‖1 (L1 norm

of the coefficients i.e.
∑
i
|cλi |) in blue and the fractional error

(∣∣∣ C>• ε
C>• ∆I

∣∣∣× 100
)

in yellow. The

two follow similar trends with k. At the same time, the larger the rank k the closer the averaging
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kernel AT is to the target function G of a given width. This is because the coefficient vector C

from Equation 2.13, corresponds to the minimum residual solution of the approximated matrix

i.e. min
∥∥Rk

T
• C−G

∥∥
2
, where Rk

T is the k-rank approximated version of the original matrix RT.

The averaging kernel AT, given by Rk
T
• C (= RT• C), can be rewritten as

(
Uk ⊗U>k

)
• G. The

larger the rank k, the closer Uk ⊗U>k is to the identity matrix I and thus the closer is AT to G.

Physically, AT is given by the linear combination of the ui vectors i.e. AT =
k∑
i=1

ui ×
(
u>i • G

)
,

and a larger value of k means including more ui modes, those which are more oscillatory. This

makes it easier to construct an averaging kernel that is a close fit to a narrower target function,

but at the cost of larger coefficient amplitudes which amplify ε. The pink curve in Figure 2.5 plots

the minimum target function width within a fixed value of the L1 norm of the difference between

AT and G. With a larger rank k we can construct narrower averaging kernels at a given depth

location.

To summarize, there are two opposing aims. We want to use smaller rank k so that the

coefficient amplitudes are smaller and prevent potential error amplification. At the same time, a

larger rank k allows us to construct narrower averaging kernels that lead to inversion solutions

that are more localized, with lesser spatially averaged inverted
〈

∆T
T (τi)

〉
, making it closer to the

underlying ∆T
T (τi). Without accurate error estimates, it is a non-trivial challenge to determine

what k leads to an optimal inversion, the one that is the best balance between these opposing aims.

In Section 2.2.4, we follow up with an iterative scheme to determine the ’optimal’ rank k for the

near optimal OLA inversion. In the next section we more generally discuss how OLA inversions

are carried out for a given depth τi assuming that rank k is known.

2.2.2 OLA inversion at a given depth location

To obtain the most localized inversion at τi, we need to find the minimum width target

function G at that depth, that can be reasonably fit by an averaging kernel. To do this, we define

a range of target function widths (on the log τ grid), which span from 0.05 to 0.5, in steps of

0.05 ∆log τ (model grid spacing). Starting with the minimum width target function, we solve for
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coefficients (Equation 2.13) and the averaging kernel (RT • C) and check if the averaging kernel

fits this target function within a specified limit. We chose the fit measure based on the L1 norm of

the difference between the two. Given that the area under the target functions is normalized to 1,

this fit measure can be approximately interpreted as a % difference. If the difference norm is below

a specified upper-limit, we conclude that the averaging kernel approximately represents the target

function and use the coefficients to compute the inverted
〈

∆T
T (τi)

〉
= C> • ∆I, and further ∆T(τi)

=
〈

∆T
T (τi)

〉
× T(τi). The inversion is then complete at that location.

When deciding on the fitting parameter, it is important to not make it too stringent (value

is too small) so that it becomes impossible (for a given rank k) to construct the averaging kernel

at all, while also not making the condition too relaxed (value is too large) so that the averaging

kernel does not resemble target function at all. Empirically, we find that 0.2 (20% error) works well

in general. It is possible that none of the target functions within the width range examined can be

reasonably approximated using the given spectral response functions, in which case we conclude

that, for given rank k, OLA inversion can not be achieved at that location. Because spectral

sensitivity is not uniformly distributed with depth, failure often occurs above and below a limit

range of depths. These non-invertible regions pose a particular challenge when iteration (multiple

inversion cycles) is required for the final solution, even in the regions where we can construct kernels

and do inversions (see Section 2.2.5).

The averaging kernel construction scheme outlined gives the OLA scheme an advantage as an

inversion method. The width of the averaging kernel achieved represents the spatial resolution of the

inverted solution, and that resolution depends on the response function set employed. Even before

performing an inversion, kernel construction allows direct quantitative assessment of spectral line

combinations and their potential utility in inversions for a given variable at a given depth. While

that assessment also depends on the starting guess-model (via the response functions) and the rank

k used, it serves as a starting point for line-combination determination. This is discussed in more

detail in Chapter 5.
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2.2.3 OLA inversion at multiple depth locations

So far we discussed how OLA inversion is carried out at a given depth location (assuming

rank k is known). In order to invert at ’all possible’ depths, we repeat the process in last section

at each depth. We use the same rank pseudo-inverse matrix at all depths. The depth dependent

inversion solution obtained corresponds to an ’inversion cycle’. Figures 2.6 show the results from

our test case (Figure 2.1) after one inversion cycle for two different rank choices: k = 5 (top plot)

and k = 10 (middle plot). These demonstrate the effect of using too small and too large a rank

value. In each plot, the red curve corresponds to the difference between the actual and guess T,

that the inversion aims to recover. The green curve corresponds to the inverted ∆T (inverted −

guess T) and the yellow curve corresponds to the error contribution of the higher order truncation

error to the solution.

A lower rank k = 5 can only achieve wider AT averaged inversion solution (orange curve in the

bottom plot of Figure 2.6). The solution corresponds to an ’average’ of the underlying perturbation

and has smaller error contribution, but it is achieved only over a smaller depth range (the inversion

window). With higher rank k = 10, inversion is achieved over a wider range of depths with narrower

averaging kernels (blue curve in the bottom plot of Figure 2.6), but the corresponding inversion

solution does not resemble the underlying perturbation and is error dominated. It is important to

emphasize that the solution (C>• ∆I) at each depth is a sum of desired solution (A>T • ∆T
T ) and

the ’unknown’ error contribution (C>• ε). While the desired solution (A>T • ∆T
T ) is bounded and

depends on the magnitude of the underlying perturbation (∆T
T ), the error contribution is not and

can overwhelm the solution when the solution becomes error dominated.

It is evident from these figures that the error contribution is oscillatory with depth. This

reflects the oscillatory behavior of the magnitude of the coefficients with depth. This is depicted

by the blue-dashed curve in top and middle plot in Figure 2.6 which corresponds to the L1 norm

of the coefficients (
∑
i
|cλi |) with depth. The coefficient vector C, computed using Equation 2.13

at a given depth, is a linear combination of the eigenvectors vi with
u>i • G
si

as the multiplier. The
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Figure 2.6: OLA inversion result of the test case in Figure 2.1 after 1 inversion cycle for rank k = 5
(top-plot), and k = 10 (middle-plot). In both panels, red curve corresponds to the underlying
perturbation, green curve corresponds to OLA inverted ∆T, yellow curve corresponds to the error
contribution in those inversions (C>•ε)×T and black curve corresponds to the ’desired’ inversion
solution (OLA solution without error contribution) i.e. (AT

>•∆T
T )×T = (C> •∆I − C>•ε)×T. In

blue-dashed we plot the L1 norm of the C. (Bottom-plot) Corresponding target function width as
a function of depth for rank k = 5 (orange) and k = 10 (blue).
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vectors vi are orthonormal and the linear multipliers determine the overall contribution of vi to

the coefficients. For illustration, assume that a single eigenmode, that for which the multiplier has

the largest magnitude, ultimately dictates the coefficient magnitude. Since the linear multiplier

depends on G and ui, with G a positive Gaussian and ui oscillatory, as the target function peak

location is moved from one depth to another (to invert at multiple depths) the magnitude of the

multiplier
(

u>i • G
si

)
oscillates in sign. The real variation of coefficient norms ‖C‖1 with depth is

more complex than this simple illustration. The target function width varies with depth and there

are contributions from multiple eigenmodes, but the error contribution none-the-less reflects their

oscillatory nature with higher spatial frequency (and higher amplitude) for higher k.

The above example illustrates the importance of determining the ’optimal’ pseudo-inverse

matrix rank to employ. The rank determines the spatial resolution of the solution, the range

of depths over which the OLA inversion can be successfully undertaken, and the overall error

contribution to those inversions. Determining the ’optimal’ rank is one of the hardest tasks when

doing OLA inversions (and any inversion problem in general). In the next section we discuss how

we tackled this issue.

2.2.4 Iterative OLA method

As mentioned in Section 2.2.1, it is non-trivial to find the rank that would lead to an inversion

solution that is an optimal balance between the inversion resolution, inversion depth range, and

the error contribution to the solution after an inversion cycle. This is due to the inherent flaw in

the spectral difference measure (∆I) which is employed to assess the quality of our inversion, i.e.

how close is the inverted model to the observed model. The difference between the observed and

the guess-model spectra (∆I) does not uniquely determine the solution. That flaw is a combined

result of the fact that the problem is ill-posed (steep decay rate of singular values) and that there

is non-zero error ε in the linear system of equations that are being solved. These two properties

limit the largest rank k that can be used when solving the 1st order system of equations 2.5 (or
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Figure 2.7: Parameters obtained from the OLA inversion of the test case in Figure 2.1 (after
1 inversion cycle) for different ranks to demonstrate the underdetermined nature of the inverse
problems. Green curve corresponds to L1 norm of the difference between the underlying and
inverted T and red curve corresponds to the L1 norm of the corresponding spectral differences
from these models.

when solving for coefficients in Equation 2.9) and convert even a ’seemingly’ overdetermined system

(number of equations larger than the number of unknowns i.e. when solving Equation 2.5, number

of rows > number of columns), into an ’effectively’ underdetermined one (’actual’ number of linearly

independent equations � number of unknowns). The system of equations is poorly constrained

and multiple solutions ∆T
T exist that could account for ∆I. The OLA inversion method keeps the

inversion solution stable by finding solutions only at those locations where a ’localized’ averaging

kernel can be constructed, but it does not eliminate the underlying non-uniqueness issue.

We illustrate this mismatch between solutions that achieve best spectral fitting and those

which yield best model matching with Figure 2.7. There we plot the L1 norm of the difference

between the observed spectra and that derived from the inverted model (red), and L1 norm of

the difference between the actual (observed) and inverted T (green) as a function of rank k. The

solution where inverted T is closest to actual T (lowest model difference) corresponds to k = 5,

while that which we would pick based on the least spectral difference measure corresponds to
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k = 10. Note that outside these test cases (in the real world) only the latter measure is available.

The underlying inversion solutions after 1 cycle for these two ranks are those shown in Figure 2.6.

It is evident from these plots that the inversion solutions are drastically different, and that that

based on the best spectral fit are strongly error dominated. This is a consequence of the inherent

underdetermined nature of the problem, and illustrates that the ’best’ spectral fit solution doesn’t

necessarily corresponds to the ’best’ model fit solution.

When inverting spectropolarimetric data, the ∆T
T obtained by inversion usually does not

match the underlying ∆T
T after a single inversion cycle. This is because underlying perturbation

magnitudes are usually large i.e. the actual solar atmosphere lies far from the initial guess. The

neglected higher order terms in Equation 2.5 are not insignificant and the relationship between ∆I

and ∆T
T is not linear. Multiple inversion cycles are needed to get around this issue.

After each inversion cycle, the inverted model from the previous cycle is used as a starting

guess-model in the next. Since the starting guess-model changes with each cycle, so do the response

functions. Further, if the iteration is convergent, as the perturbation amplitude decreases, so do the

non-linear errors, and higher rank pseudo-inverse matrix can be employed to refine the solution.

Motivated by SIR to increase the number of nodes as inversion proceeds, we preferentially use

smaller rank in the starting cycles, to obtain coarse resolution inversions which are less likely to

be error dominated, and higher rank in subsequent cycles, as the inverted model gets closer to the

observed atmosphere (i.e. ∆T
T is getting smaller). If ε decreases with iteration (when iterative

updates are in the ’right’ direction), the system can tolerate larger magnitude coefficients with

lower total error, allowing this increased rank in the later cycles and higher resolution inversions.

The issues are then, how to determine the maximum rank k to be used at the end of the

inversion cycle series, which ultimately determines the quality of the final inversion (in SIR one

sets this manually in terms of the number of nodes), and how to scale up to it from a lower rank

early in the iteration cycle. It is the overall balance between AT
>• ∆T

T and C>• ε, that determines

the maximum rank beyond which the inversion solutions are error dominated. The aim is that

the iterative algorithm itself determines the maximum rank that can be tolerated without knowing
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the actual solution to be achieved. The ’hope’ is that, as the system gets closer to the largest

tolerable rank, if inversion solutions start to get error dominated, that will be reflected in the

spectral difference measure, so that, when the spectral fitting starts to get worse, we can conclude

that we have arrived at the best solution and that any further inversion cycles would lead to a

worse solution. In reality, this hope might not always be met and there may be a lag between when

the solution is error dominated and when it is reflected in the spectral fit measure, as indicated by

the example of Figure 2.7 and discussion above.

It is a bit counter-intuitive to understand why the spectral fit could get worse with increasing

rank k as using a larger rank should result in a smaller residual ∆I. The answer lies in the disconnect

between ∆I in the Equation 2.5, and one computed from the difference between observed and ∆T
T

updated inverted-model spectra. While, using a large rank would result in RT
>•∆T

T to be close to

∆I (in Equation 2.5), the inverted ∆T
T may be error dominated and could thus result in an inverted

T that is away from the underlying T. The problem is that, because of the underdetermined nature

of the problem, ∆I from the updated model may not readily reflect this ’bad’ inversion.

2.2.4.1 Iterative OLA method: implementation

In this section we discuss the implementation of the iterative OLA method i.e. inversion over

multiple cycles. Starting with mean MURaM as the guess-model we compute guess I, ∆I and the

corresponding response functions RT. Given that the error magnitudes are larger at the starting

cycles, we initially employ smaller rank k (safest bet) when constructing the pseudo-inverse matrix.

The intention is to compute coefficients that would (most likely) not result in an error dominated

solutions even though it comes at the expense of inverting with wider averaging kernels at fewer

total depth locations.

From trial and error, we find that a safe value for k can be determined using k most dominant
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singular values si that add up to 95% of the total sum i.e. starting cycle k is given so that it satisfies

k∑
i=1

si

n∑
i=1

si

× 100 ≈ 95.0 % (2.14)

For our starting response function matrix, k = 5 meets this criterion. Using this k, we obtain initial

inversion solutions ∆T
T , and thus ∆T (= T × inverted ∆T

T ). At those depths where kernels cannot

be constructed with this limited eigenmode set, ∆T is set to 0. Note, whether or not kernel can

be constructed at a given depth is determined based on the criteria discussed in Section 2.2.2. An

example of an inverted solution ∆T after the 1st cycle is shown in green-dashed in the top plot

in Figure 2.8. It is the same as that shown in the upper panel of Figure 2.6. As evident from

the figure, the solution is jagged and has sharp edges at the boundaries of the region over which

OLA inversion is possible. These irregularities result because the OLA method does not aim to

find a globally smooth solution but, on the contrary, produces localized solutions independently

at each depth. Moreover, the averaging kernel width varies with depth and in some cases there

may be gaps in the OLA inversion window where kernels can’t be constructed. The inversion

solution obtained by adding this inverted ∆T to the guess T, similarly shows these defects. This is

problematic because the irregular/jagged inverted ∆T is not a final solution, and the irregularities

in the inverted T pose difficulties when it is used as a guess-model for the next iteration cycle.

For each iteration a new set of spectra and response functions must be computed from the input

model atmosphere and, if the underlying model is irregular, the resulting response functions are

also irregular. This is illustrated by Figure 2.8 (middle plot) where abrupt changes in the response

functions are clearly apparent. With such irregular response functions, it gets increasingly harder

to construct smooth-Gaussian averaging kernels with successive iterations.

A simple fix to this issue is to smooth the inverted ∆T at the end of the inversion cycle before

adding it to guess T to obtain a smooth inverted T. In implementation, we linearly interpolate to

fill any gaps in inverted ∆T, and smooth it with a Gaussian kernel. The width of the smoothing

kernel is equal to the narrowest averaging kernel that we were able to constructed during that
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Figure 2.8: (Top plot) OLA inversion result for the test case in Figure 2.1 after 1 inversion cycle
with pseudo-inverse computed using rank k = 5. The OLA inversion solution (green-dashed curve)
is irregular. RT computed using the irregular ∆T updated model is also irregular (middle panel).
Bottom panel shows the smooth RT obtained when the model is updated using smoothed inverted
∆T (green-solid curve in top plot).
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cycle. It is important to note that we smooth ∆T at all depths including the regions outside the

OLA inversion boundary, i.e. where ∆T = 0, resulting in a smeared ∆T at the edges of the OLA

inversion window. This smoothing thus helps with another issue, the ’edge-effect’, inherent to the

iterative OLA method that we will discuss further in Section 2.2.5. The smoothed inverted ∆T

obtained is shown by the green curve in the top plot of Figure 2.8. The spatial resolution of this

smoothed solution no longer corresponds to the averaging kernel width employed at each depth, but

is instead approximately given by the convolution between the averaging kernel and the Gaussian

smoothing kernel.

Before moving on to the next inversion iteration cycle, a decision is required on whether to

continue doing inversions using the same rank, increase the rank or stop inverting altogether. This

decision is based on three spectral difference L1 norm measures:

• Inverted ‖∆Iλ‖l1 = L1 norm of the difference between the observed spectra and the inverted-

model spectra after cycle l.

• Guess ‖∆Iλ‖l1 = L1 norm of the difference between the observed spectra and the guess-

model spectra after cycle l.

• Best ‖∆Iλ‖l1 = L1 norm of the spectral difference between the observed and that corre-

sponding to the inverted model for which inverted ‖∆Iλ‖l1 has been minimum so far after

cycle l. We take this model to also correspond to the best inverted model after cycle l. Note

that the best ‖∆Iλ‖01 (before the very first inversion cycle) is initialized to guess ‖∆Iλ‖01 (L1

norm of the spectral differences between observed and mean MURaM guess-model spectra).

The decision on what rank to use for the next cycle or stop inverting altogether, depends

on which of the following categories the above mentioned spectral norm measures fall into (in the

given order):

• Case 1 (good inversion): inverted ‖∆Iλ‖l1 < best ‖∆Iλ‖l1

• Case 2 (stagnant inversion): inverted ‖∆Iλ‖l1 ≈ guess ‖∆Iλ‖l1
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• Case 3 (bad inversion): inverted ‖∆Iλ‖l1 > best ‖∆Iλ‖l1

In the starting cycles, given that rank k is small, the inversion solutions are most likely not error

dominated, which implies that the inverted models get closer to the underlying atmosphere with

iteration, and thus the spectral differences fall into Case 1 i.e. inverted ‖∆Iλ‖l1 is smaller compared

to the last best ‖∆Iλ‖l1. In this case, we update the best-model with the inverted model (and

the best ‖∆Iλ‖l1) and continue using the same rank in the next inversion cycle with the updated

guess-model. The intention is to employ the low rank as long as the solution is improving to avoid

error amplification.

When using the same rank over multiple inversion cycles, the subsequent inversion update

gets smaller. This is because the guess ∆Tl (observed T − guess Tl), to be inverted for, gets smaller

in magnitude (inverted model getting closer to underlying atmosphere) and more oscillatory with

cycle. The oscillatory nature is a result of the fact that inverted ∆Tl is smoother than the guess ∆Tl

and the guess ∆Tl+1 for the next cycle is given by the difference between guess ∆Tl and inverted

∆Tl. While the underlying response functions get updated as we update the guess-model in each

cycle, the averaging kernel widths do not change noticeably when using the same rank. These

’similarly wide’ kernels are unable to resolve the underlying oscillatory differences (guess ∆Tl) and

the inverted ∆Tl magnitudes get successively smaller. The resulting inverted Tl is similar to the

guess Tl and so are the spectral difference measures i.e. inverted ‖∆Iλ‖l1 ≈ guess ‖∆Iλ‖l1 . This is

shown in Figure 2.9 where both the successive model updates (‖inverted Tl − guess Tl‖1) (shown

in green) and the successive changes in the spectral differences norms (shown in red), as given

by left hand side of Equation 2.15, get smaller with increasing inversion cycle number, holding k

constant. When these values stop changing, we arrive at Case 2. We call this the ’stagnancy stage’

when no more information can be extracted using the same rank pseudo-inverse. Practically, we

determine when the system has reached stagnancy stage by the following criterion:

inverted ‖∆Iλ‖l1 − guess ‖∆Iλ‖l1
guess ‖∆Iλ‖01

× 100 < p1 (2.15)

where p1 is user-specified parameter and the criterion must be met for a few successive cycles (p2).
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Figure 2.9: Quantities obtained when inverting perturbation in Figure 2.1 using OLA. In red, we
plot the successive changes in the spectral differences with iteration using the same rank k = 5
(term on the left side in Equation 2.15). In green, we plot the L1 norm of inverted−guess Tl, which
corresponds to the magnitude of the successive updates when inverting using the same rank.

The latter criterion ensures that the criterion of Equation 2.15 is not met spuriously.

To obtain better inversions in subsequent cycles, we need to increase the pseudo-inverse

rank k to allow us to construct narrower kernels to better resolve underlying perturbations and to

construct kernels at a larger number of depth points. Parameters p1 and p2 determine how quickly

the rank gets changed with cycle. Using a smaller value for p1, combined with a larger value for

p2 is the safest bet. This extracts all information that can possibly be extracted for a given rank,

making it safer to move on to the next larger rank in the subsequent cycle. But this choice comes

with the cost of many inversion iterations at fixed rank. On the other hand, choosing a larger p1

(and/or smaller p2) can lead to error dominated unstable solutions. For our work, we set p1 = 0.5%

and conclude that the system is in stagnancy stage if it stays there for p2 = 3 consecutive cycles.

After establishing that the system is indeed in the stagnancy stage, we increase the rank by 2 and

proceed as for previous cycles. Please note that instead of fixed rank change, we also tried changing

rank based on a fixed singular value percentage difference (similar to that given by Equation 2.14)

but it turns out that that approach generally results in an error dominated solutions in the later
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Figure 2.10: Inversion results for the perturbation in Figure 2.1 is shown here. Underlying perturba-
tion (red) is almost perfectly covered by the iterative OLA inverted solution (green). The vertical
resolution of the OLA inversions (based on the target function width) is shown by pink-dotted
curve. Note that ’true’ vertical resolution is slightly wider than this, and is approximately given
by the convolution between the target function width and the width of the Gaussian smoothing
kernel. For comparison, inversion solution obtained using SIR is shown in blue.

inversion cycles. This is because a fixed singular value percentage difference corresponds to a bigger

change in k in later cycles.

Inversion iteration proceeds by successive stages of rank increase and stagnancy. If the

solutions are not dominated by error, the magnitude of the higher order truncation error εl gets

smaller with each inversion cycle as ∆Tl decreases. As discussed, the rank beyond which the

inversion solutions become error dominated depends on the relative magnitudes of A>T •
∆T
T

l
and

C>• εl over multiple depth locations. Unlike A>T •
∆T
T

l
, C>• εl typically does not have an upper

bound, and unless εl is decreasing faster than the rate at which coefficient magnitudes are increasing,

the inversion solution will eventually enter an error dominated regime. A scheme is needed to

recognize this.

Ideally, once the inversion solutions become error dominated, this would be promptly reflected

in the spectral signatures i.e. inverted ‖∆Iλ‖l1 gets consistently larger (fit worse) compared to the

best ‖∆Iλ‖l1 over subsequent cycles. For such cases, the OLA inversion scheme would converge
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on the optimal solution and iteration could be terminated without difficulty. But, due to the

underdetermined nature of the inverse problems, it is possible that there is some lag between when

the underlying model fit gets worse and when the error amplification is reflected in the spectral

difference. From this work, we find cases where the inverted ‖∆Iλ‖l1 stays close to the best ‖∆Iλ‖l1,

but the underlying inverted model gets significantly worse. Updating the best-model (based on

minimum ‖∆Iλ‖l1) only when the new best inverted ‖∆Iλ‖l1 is significantly smaller than the last

best ‖∆Iλ‖l−1
1 mitigates this issue to some extent. We thus update the best-model only when the

following criteria is met:∣∣∣∣∣ inverted ‖∆Iλ‖l1 − best ‖∆Iλ‖l−1
1

guess ‖∆Iλ‖01

∣∣∣∣∣ > 0.2 % (user-defined). (2.16)

Once inverted ‖∆Iλ‖l1 is consistently larger than best ‖∆Iλ‖l1, we conclude that we are in

the error dominated regime and we take the best-model so far as the final inversion solution. The

final inversion using this iterative OLA method for the test case (shown in Figure 2.1) is plotted in

Figure 2.10. The OLA inverted solution (green) recovers the underlying perturbation (red) quite

well. The corresponding target function widths are shown in pink. We note that the actual width

is slightly coarser than these plotted as the inverted ∆T gets smoothed at the end of each inversion

cycle. For comparison, SIR inversion results are shown in blue using the standard parameters stated

in Appendix B.

2.2.5 Iterative OLA method: ”edge-effect” issue

The Gaussian-shaped perturbation that we inverted using the OLA method in the last section,

while of large amplitude, is highly idealized and localized (see Figure 2.10). The perturbation was

placed in the region where averaging kernels can be readily constructed favoring successful inversion.

Other more realistic perturbations present greater challenge. In particular, there may be large-scale

offsets in addition to localized differences between the guess model and the real Sun (or what we call

the observed/actual/underlying model in our test cases). A simple example is shown in Figure 2.11

where there is a constant offset of 300 K between the observed and the initial guess-model. This
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Figure 2.11: Curves for the underlying 300 K constant offset (red), SIR-only inverted solution (blue)
and HOLA inverted solution (green) lie on top of each other. HOLA inverted solution, with flat
kernel approach of Section 2.2.5, is shown by green-dotted line, and that obtained using iterative
OLA-only method is shown by the green-dashed curve.

constant offset perturbation is trivial for SIR to recover, as the global nodal solution readily matches

large-scale trends. Iterative OLA method (green-dashed), on the other hand, struggles to arrive at

a suitable solution. It displays large oscillations throughout the inversion window.

The failure of OLA to invert for large-scale perturbations has two underlying and intertwined

causes: the OLA inversions are confined to a well defined inversion window outside of which no

inversion updates are made and the averaging kernels are not delta functions, they have finite

widths, so the iterative solution near those edges is effected by ∆T from the non-updated regions.

As a global solver SIR extrapolates the solution to regions where there is little spectral information.

Iterative OLA instead contaminates the solution within the inversion window by ∆T outside this

window. This is only partially mitigated by the solution smoothing we employ between iterations.

To illustrate this, assume that as we iterate we do not smooth inverted ∆T and keep the rank

fixed. This means that the OLA inversion window doesn’t change much with iteration and only

the region inside this window gets updated. After a few inversion cycles, the guess ∆Tl inside this

window would get smaller, while that outside the inversion window remains unchanged. The results
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Figure 2.12: This plot demonstrates the ’edge-effect’ issue when iteratively inverting 300 K constant
offset using OLA. Guess ∆T in the 2nd inversion cycle is shown in (red). Vertical dashed lines
mark the OLA inversion boundary. Blue and pink curves correspond to the target function and
averaging kernel constructed near the left edge of the inversion window.

of such an inversion are plotted in Figure 2.12 with the inversion window marked by the vertical

dashed lines. In the subsequent inversion cycles, the inversion solutions within the inversion window

but close to either boundary disproportionately respond to ∆Tl outside the inversion window. The

contribution of the averaging kernel acting on ∆Tl outside the window contributes an increasingly

larger amount to the update compared to that inside the window, with each iteration. This means

that as we iterate, there is a leakage of information from the outside of the inversion window to

the inside. This defeats the very purpose/strength of OLA, a method that aims to prevent such

leakage by focusing on keeping the information where it belongs.

To get around this ’edge-effect’ issue, we tried using non-symmetrical target functions e.g.

part of the target functions outside the inversion window is set to 0 so that the target function is only

half-Gaussian; skewed target function to have more sensitivity to regions inside the window. But

given that it is usually not possible to construct kernels that ’perfectly’ fit these target functions,

the issue of information leakage remained. We realized that it might be favorable to approach

this issue from the other direction i.e. make inversion updates in the regions outside the OLA
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Figure 2.13: Flat target function with area normalized to 1 is plotted in pink and the corresponding
’flat’ averaging kernel is shown in blue. Note that rank k = 5 is used when constructing the kernel.

inversion window, in any given cycle. This can be done by making large-scale inversion updates

(at all locations) along with the localized OLA inversions. For this, we initially came up with

a scheme within the OLA framework where we used flat/constant (normalized) target functions

(shown by the pink curve in Figure 2.13) to construct flat averaging kernels that are approximately

equally sensitive to all depth locations. If we could construct such a perfectly flat averaging kernel,

then C>• ∆I would correspond to a large-scale average fractional value given by
〈

∆T
T

〉
= A>T •

∆T
T ≡ 1

Nτ

∑
τ

∆T
T (τ), where Nτ is the number of optical depth points (assuming error contribution

is negligible). Even though the flat averaging kernels constructed (Figure 2.13 for rank k = 5,

blue) are approximate only, not perfectly flat, this method showed promise. We interleaved large-

scale inversion updates, computed using flat kernels, between the high-resolution localized OLA

inversions during iteration. The final inversion solution for the 300 K perturbation from this

combined effort is shown in Figure 2.11 (green-dotted). The inversion is significantly improved.

Some difficulties remain however. The main issue is that the large scale inversion component

is a fractional average
〈

∆T
T

〉
from which we compute the the actual inverted ∆T(τi) at each depth
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using ∆T(τi) =
〈

∆T
T

〉
× T(τi). Since T(τi) in the deeper regions is about 3-5 times larger than

the shallower region temperatures, the large-scale inversion corresponds to over-corrected solution

in the deeper regions and under-corrected in the shallower regions (see Figure 2.11). Moreover,

because of this bias, it is harder for this approach to recover large-scale perturbations that get

more negative with increasing depth (perturbation slope is negative). It might make more sense to

use normal non-fractional response functions instead, to compute constant inverted ∆T directly.

But, depending on the perturbation shape, these suffer similar issues. No one method that we have

yet tried that worked well in all cases.

2.2.6 Preliminary hybrid OLA (HOLA) method: SIR + OLA

Instead we pursued a hybrid SIR+OLA approach. To recover any large-scale constant and

linear trend, we employ SIR with limited temperature nodes (see Appendix B). Given that OLA

method excels in doing high-resolution localized inversions while SIR excels in recovering large-

scale offsets, a combined inversion method leads to a much better inversion solution. We called

this combined inversion method the HOLA (hybrid-OLA) method. Note that we assumed that the

large-scale trends are mostly linear with log τ and letting SIR invert this linear trend should be

sufficient. The underlying perturbations in real world scenario do not have to be linear in which

case HOLA using SIR large-scale inversion may struggle (see Chapter 3 and 4 for details). What

we present here is not the final solution and we suggest possible future extensions in Chapter 6.

In implementation, each HOLA inversion iteration cycle has two subparts: we first use SIR

to make large-scale linear updates to the ’starting’ guess-model (for a given cycle) and then use

this large-scale updated inverted-model as input for the OLA method (in the same cycle) to do

high-resolution inversions. The assessment of which spectral difference case (see Section 2.2.4.1) the

inversion solution falls into and whether to update the rank or not is based on the combined effort of

SIR+OLA in each cycle. To be consistent with a single variable inversion, when inverting a variable

using SIR, even when the cross-talk variables may have non-zero inverted value, we manually set
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Figure 2.14: Inversion results for Gaussian shaped localized perturbation + constant 300 K offset.
The underlying perturbation is shown in red, HOLA inverted solution in green, iterative OLA-only
inverted solution in green-dashed and SIR-only inverted solution in blue. The width of the target
function vs. depth of the OLA inverted solution (within HOLA framework) is shown in pink.

this update to 0 e.g. when inverting temperature, we also have to invert for Pe (otherwise SIR

assumes hydrostatic equilibrium) which might lead to non-zero inverted ∆Pe. So, to be consistent

with a single variable T inversion, we set this ∆Pe to 0 in the inverted solution.

The inversion result using HOLA for the constant 300 K offset is shown in green in Fig-

ure 2.11. Given SIR can perfectly recover a linear perturbation in temperature by itself, the HOLA

results overlay the SIR results exactly. Inversion results for a more complicated case are shown

in Figure 2.14. The underlying perturbation is a sum of the two test cases discussed above and

has both, a large-scale trend and a localized perturbation. None of these inversions are fully sat-

isfactory. While SIR (blue) can robustly recover large-scale atmospheric structure, it has trouble

with small-scale perturbations. Conversely, HOLA (or iterative OLA by itself), shown in green and

green-dashed, does an excellent job recovering small-scale structures but struggles with large-scale

offset. The full potential of HOLA requires a more robust solution to the edge-effect. We outline

what that might look like in Chapter 6.
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2.2.7 OLA Inversion in the presence of observational noise

The error ε in 1st order equation 2.5 discussed so far corresponds to the omitted higher

order contributions to the spectral response as we assume linear relationship between ∆I and ∆T.

These are significant when the perturbation magnitudes are not small. Real-world observations are

additionally corrupted by the uncertainties in measurements. These uncertainties (sources of noise)

can be due to photon noise, sky background noise, and detection noise [23, p. 96]. In addition to

these ’random’ noise sources, systematic error also occurs. We do not consider the later.

To investigate its effect we model random noise at each wavelength as a Gaussian distri-

bution, centered at 0 and with width based on the noise level (1/signal-to-noise ratio) of the

instrument. This mimics continuum measurements (real-world observations) which are approxi-

mately Gaussianly distributed. For a given noise-level σc (continuum intensity noise-level) and

observed intensity Iλ (HSRA normalized, [18]), the noise-level σλ for a given wavelength λ is given

by σλ =
√
Iλ × σc. An example case is shown in Figure 2.15 where we plot the SIR synthesized

’observed’ intensity, for the test case model in Figure 2.10, with added random noise σc = 1%. The

random noise is shown in blue and for comparison, the higher-order error term is overplotted in

yellow. It is clear that the higher order error varies smoothly with wavelength while the random

noise is erratic. Both, in this example, have similar amplitudes.

These errors are collectively represented with ε in the 1st order equation 2.5 even though

they have completely different origins. The higher order error is implicit to the system and comes

in because the unknown perturbations we are solving for has finite amplitude (1st order equation

is not perfect), while the random photon noise is explicit and is a part of the observed spectra (and

the spectral differences ∆I). Our goal here is to demonstrate that spectral noise leads to a worse

quality inversion, as compared to when no spectral noise is present. For this we invert the Gaussian

perturbation test case (Figure 2.10) in the presence of noise level σc = 1% using the iterative OLA

method. Note that here we chose iterative OLA, and not HOLA, because to demonstrate the effect

of observational noise on inversion result, it is important to pick a case where the spectral noise is
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Figure 2.15: Synthetic Stokes I through the artificially constructed test case in Figure 2.1, with
added spectral noise (noise-level = 1%), is shown in gray-dashed. The underlying spectral noise is
shown in blue and error from the neglected higher order terms is shown in yellow. Note that the
scaling on the right side of the figure correspond to the errors terms.

the limiting factor in determining the quality of inversion. The current version of the HOLA method

is to some extent limited by the ’edge-effect’ issue and is thus not suitable for this demonstration.

When carrying out iterative OLA inversions in the presence of spectral noise, ∆T gets smaller

with each subsequent inversion cycle (assuming inversion updates are in the ’right’ direction). This

results in a decrease in the magnitude of the higher order terms, while the spectral noise magnitude

remains constant. Thus the overall magnitude of ε is getting smaller allowing us to use larger

rank k for a higher resolution inversion in subsequent cycles. The iteration finally stops when the

difference between the spectra from the observed and the inverted model approximates the spectral

noise. This means that we have arrived at the spectral noise floor and that no further information

can be extracted. Any attempt to better fit the spectra by using larger rank k would likely result

in an error dominated solution fitting the spectral noise.

Mathematically, as already mentioned, it is the balance between C>• ε and AT • ∆T
T that

ultimately decides the largest k (and the best resolution) achievable by the system and when the
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Figure 2.16: Iterative OLA inversion results for the perturbation in Figure 2.1. Green-solid curve
corresponds to inversion in the presence of no spectral noise and overlays the underlying pertur-
bation (red). Corresponding result with 1% noise-level is shown by the green-dotted line. For
comparison, SIR inversion results for the corresponding cases are plotted in blue.

inversion enters error dominated regime. With added spectral noise, the system enters a noise

dominated regime at a smaller rank k compared to if there were no spectral noise. The larger the

noise-level, the larger is the amplitude of ε and the smaller the value of k beyond which solution will

be noise dominated. Thus the presence of spectral noise can degrade the quality of the inversion

that would be otherwise achievable when no noise is present. Nonetheless, high quality inversions

are possible. This is shown in Figure 2.16 where we plot iterative OLA inversion results in the

presence of varying noise-levels: σc = no noise (green) and 1 % (green-dotted). It is evident from

the plots that the overall inversion quality is somewhat degraded in the presence of noise.

2.3 Summary

In this chapter, we applied the OLA inversion method to the spectroscopic data. We discussed

the basic methodology, challenges faced and how we met those challenges. To keep things simple,

we restricted the discussion to single variable temperature inversions.

We started with discussing how inversions are carried out in general. As discussed in Sec-



48

tion 2.1, the basic approach is to start with an initial guess-model and solve for the depth dependent

model differences (∆T or ∆T
T ), between the underlying model (that we intend to recover) and the

guess-model, that accounts for the corresponding spectral differences ∆I. Spectral differences ∆I

and model differences ∆T are related to each other by linear response functions RT. For a set

of wavelengths (that makes up the spectral lines) the relationship can be written as a 1st order

linear system of Equations 2.5. This system is approximate and has error ε contributions from the

omitted higher order sensitivity terms (and spectral noise, if present).

In order to solve this system of equations for ∆T
T , we need to compute the inverse of the

response function matrix RT. This is a highly non-trivial task as the matrix equation belongs

to a severely ill-posed category. This is due to redundancy in the spectral line formation which

results in the response functions (that make up the matrix) to have ’similar’ sensitivity information.

Ill-posedness of the system, combined with non-zero error (mathematically means that ∆I is not

in the range of ∆T
T ), results in the actual number of linearly independent equations to be much

smaller than the total number of unknowns (∆T
T ). The system is underdetermined and it is not

possible to uniquely solve for ∆T
T . Ill-posedness further means that the numerical rank of the

matrix is ill-determined and naively using the normal equations method to compute its pseudo-

inverse (approximate inverse) will likely result in an inverse matrix with large amplitudes that

amplify the error ε, resulting in error dominated solutions. These error dominated solutions are in

general highly oscillatory and lack physical meaning.

In order to obtain a physically meaningful solution, we rely on regularization, employing

a lower rank pseudo-inverse to compute ∆T
T . Lower rank pseudo-inverse matrix doesn’t have

contributions from smaller magnitude singular values (of the RT matrix) which otherwise lead to

larger magnitude terms in pseudo-inverse. The caveat here is that the ’amount’ of regularization

dictates the ’quality’ of solution achievable. Regularizing ’too much’ by removing too many smaller

singular values (or eigenmodes) results in smoother solutions which might fail to recover sharp

gradients in the underlying perturbation (if present). On the other hand, solutions obtained be

regularizing ’too little’ by keeping too many smaller singular values are better equipped to recover
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sharp gradients, but are more likely to be error dominated. Determining the ’optimal’ regularization

parameter to balance resolution vs. error amplification is one of the hardest tasks when carrying out

inversions. This is because the spectral difference metric with which we assess how close the inverted

solution is to the underlying perturbation is degenerate. Different regularization parameters lead

to widely varying solutions with similarly ’good’ fit observed spectra.

In the current state of the art spectropolarimetric inversion method SIR, globally smooth

solutions are obtained by inverting at a limited number of user-defined node locations. This ensures

that the inverted solutions are non-oscillatory below nodal scales. The number of nodes is decided

based on user experience and dictates the resolution (in depth) of the inverted solution. In MURaM

simulations of the Sun, we find atmospheric columns with sharp gradients at scales much smaller

than those that can be recovered using the standard SIR node values. Further, it is likely that SIR

inverted solutions do not correspond to the ’true resolution limit’ achievable using spectral data

that will be provided by the upcoming DKIST. Determining the ’best/true’ inversion resolution

limit that is achievable at each depth (given the data), and be able to invert at that resolution is

critical.

We introduced the general methodology of the OLA method in Section 2.2 in context of

inverting for single variable temperature perturbations for artificially constructed test cases. The

method aims to find the most localized inversion solution at ’each’ depth location. This is achieved

by solving for linear coefficients C (using Equation 2.9) such that the linear combination of response

functions (in RT) using these coefficients leads to averaging kernel (AT) that is ’most’ localized

at that depth. The inner product of the linear coefficients with ∆I then gives the desired inver-

sion solution at this depth and corresponds to the depth averaged value of ∆T
T , weighted by AT

(assuming solution is not dominated by error). Thus, the width of the kernel dictates the spatial

resolution (vertical) of the obtained solution at that depth. The process is then repeated for each

depth to invert at ’all’ depth locations.

OLA inversion is usually not achievable at all depths as the ’amount’ of orthogonal sensitivity

information in the response function matrix is non-uniformly distributed across depths. Failure
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usually occurs above and below a limit range of depths, defining the ’OLA inversion window’. The

width of this window and the corresponding kernel widths (resolution) depends on the rank used

when solving Equation 2.9. A smaller rank will result in a narrower inversion window (with wider

kernel widths at each depth), while a larger rank would result in a wider inversion window (with

narrower kernel widths at each depth) with the caveat that solutions are now more likely to be

dominated by error contributions. Thus the inherent question of what rank to use (or how much

to regularize) still remains.

In Section 2.2.4, we developed an iterative-OLA method that gets around the above issue

by ’slowly’ arriving at the most optimal rank achievable given the data. This also allows us to

invert non-linear (large-amplitude ∆T
T ) perturbations using linear response functions, extending

the inversion capability of the traditional OLA method. Iterative-OLA struggles to recover per-

turbations that have large-scale offsets. This has to do with the fact that OLA inversion window

does not span the entire depth domain, and that averaging kernels are not δ-functions. Iteratively

updating regions inside the inversion window eventually results in a ’leakage’ of information (∆T
T )

from outside the window to inside which may corrupt the entire OLA inversion solution. We called

this the ’edge-effect’ issue. This issue defeats the very strength of OLA which aims to prevent such

leakage by minimizing cross-talk error from other depth locations by trying to construct narrow

width averaging kernels.

In Section 2.2.6, we discussed a preliminary workaround to the ’edge-effect’ issue by employing

a hybrid SIR+OLA approach (HOLA method). The edge-effect is a result of our inability to make

updates outside the OLA inversion window for which there might be non-zero ∆T
T perturbations.

We mitigated this issue by interleaving SIR large-scale updates (constant/linear) at all depths,

in between OLA high-resolution small-scale updates. This works well if the underlying large-

scale offset is constant/linear with depth, but may fail otherwise. In MURaM simulations we find

atmospheres that differ from this assumption. Finding a more robust solution to the edge-effect

issue to successfully invert non-linearly shaped large-scale perturbations is future endeavor. We

suggested a few ways in which this might be accomplished in Chapter 6.



Chapter 3

Statistical assessment of single variable HOLA inversions using MURaM

atmospheres

In this chapter we statistically assessed the capability of the HOLA method to do single

variable T, Pe and Vlos inversions and compared them to that obtained using SIR method. Given

the underdetermined nature of the inverse problems, it is hard to assess the ’true’ inversion quality

solely based on the spectral difference measures, as multiple, widely differing atmospheres exist

that can lead to similarly good-fit observed spectra. A true assessment should be based on how

well the inverted model matches the underlying model. Given that this is not possible in real-

world scenario, as the underlying atmosphere is not available, we inverted for simulated MURaM

atmospheres [51, 52, 63] which reproduce many properties of the solar photosphere [13, 14, 40].

MURaM is a radiative magnetohydrodynamics (MHD) numerical code that simulates upper

solar convection zone and photosphere. The code solves the MHD equations i.e. continuity equation,

momentum equation, energy equation and the induction equations in three dimensions, and solves

the radiative transfer equation under LTE assumptions. The simulation data used in this thesis

corresponds to small-scale dynamo quiet-Sun simulation (run O16b, as described in [51]). The

overall domain size of the simulation is 6 × 6 × 4 Mm3 with 16 km grid spacing, and has vertical

domain size extending to 1.7 Mm above the photosphere. It spans about 1 hour solar time with

about 2 second cadence time series yielding a total of 1801 data cubes for each atmospheric variable.

A statistical assessment of the inversion quality requires inverting a ’sufficiently’ large number

of widely differing atmospheres. Here, in order to satisfy this criteria and be able to invert the
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atmospheres in a reasonable amount of time, we obtained widely differing atmospheres from a

MURaM 3D data cube, at a single time. For simplicity, we picked the atmospheres that correspond

to the central row and column (those passing through the central horizontal pixel) in the data cube,

a total of 767 atmospheres. The intention was to analyze a representative sample.

3.1 Converting MURaM atmospheric columns into SIR compatible format

MURaM atmospheres are computed on a geometrical depth scale i.e. constant ∆z grid [km].

Given that we used forward solving capabilities of SIR to synthesize spectra (and compute response

functions), and SIR capabilities are used in HOLA to recover large-scale perturbations, we first need

to convert MURaM atmospheres from a constant ∆z grid to SIR compatible constant ∆log τ grid.

To facilitate this, we used a subroutine within the SIR framework, which, under LTE assumptions,

uses the local values of T and Pe (at a given z) to compute the level populations and thus λ = 500

nm opacity at each depth. Then, starting at the top of the atmosphere, where we assume τ = 0,

we integrate down to compute the optical depth τ(z) at each depth. Using this non-uniform τ(z),

we interpolate the value of each of the MURaM atmospheric variable to SIR compatible, uniformly

spaced ∆log τ grid. In this work, we took log τ ∈ [−4.8, 1.2] as representative of the solar

photosphere. We used a standard SIR grid-spacing of ∆log τ = 0.05, resulting in a total of 121

log τ depth points.

Using the above mentioned approach, we converted each of the 767 MURaM atmospheres to

SIR compatible format. From these, we computed depth-dependent mean (on constant log τ grid)

for each variable to get mean MURaM atmosphere, which is used as the starting guess-model in

this thesis. Note that this mean atmosphere is assumed to be stationary i.e. Vlos in this model is

manually set to 0.

3.2 Statistical assessment of the inversions results: Basic approach

The assessment of the capabilities of HOLA (and SIR) for single variable inversion goes as

follows: before inverting a given MURaM atmospheric column (in SIR compatible format), we first
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set the cross-talk variable difference between the underlying atmosphere and the guess-model to 0

e.g. if we intend to invert T, then the value for Pe and Vlos for the given atmosphere is set to

that of the guess-model. This is done to make sure that the observed and guess-model spectral

differences are only due to differences in the given variable being inverted, consistent with single

variable inversions. We then use SIR forward solver to compute the observed spectra from the

given atmosphere and invert it using the HOLA method as described in previous chapter (see

Section 2.2.6). Note that inversions here are done in the absence of spectral (photon) noise.

Inversions are done for each of the 767 MURaM atmospheres. Using these, we computed

depth dependent statistics - the mean and standard deviation of the absolute difference between

the underlying and inverted variable at each depth. Depths with small mean (and small standard

deviation) correspond to locations where the inversion methods, on average, do a good job at

recovering the underlying perturbation. On the contrary, depths were mean (or standard deviation)

is large, corresponds to locations where the method struggles. This approach allows us to assess

the capabilities of the methods to recover individual MURaM columns from the mean MURaM

starting guess-model. For comparison, we obtained similar statistics for SIR-only inversion results

(see Appendix B for the SIR node values used for different cases).

3.3 Inverting MURaM Atmospheres

3.3.1 MURaM T inversion results

In Figure 3.1 we show the statistical assessment plot for temperature inversions. Here, HOLA

inversion statistics is shown in green, with the mean shown by green-solid curve, while the boundary

of the green-shaded region mark the ±1 standard-deviation region around the mean curve. For

comparison, similar plot is shown for SIR inverted solutions in blue.

Statistically, both methods do well in the log τ ∈ [−1.5, 0.75] region. The mean and standard

deviation of the difference in this region correspond to 1% of the local T value. Good performance is

expected in this depth range as there the temperature response functions have the most orthogonal
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Figure 3.1: Statistical assessment plot for MURaM T inversion done using HOLA (green) and
SIR (blue). The green-solid line correspond to the depth dependent mean of the absolute value
of the difference between HOLA inverted and underlying MURaM T, while the boundary of the
shaded region signify the ±1 standard-deviation around the mean. Similar plot computed for SIR
is shown in blue. The black vertical dashed lines mark the mean location of the edge of the OLA
inversion window (in final cycle, within HOLA framework) and the gray shaded region mark the
±1 standard-deviation spread of this edge around the mean location.

sensitivities of the spectral range we are using. As we move away from of this region (both towards

deeper and shallower regions), the quality of inversion deteriorates because of the lack of spectral

line sensitivity to these regions. Further, the HOLA method additionally struggles with the ’edge-

effect’ as, unlike our test cases where we assumed linear large-scale perturbation shapes, the shape

of the large-scale perturbations in MURaM atmospheres can be non-linear with log τ . The vertical

dashed lines mark the average boundary location of the OLA inversion window in the final inversion

cycle (within HOLA framework). The gray shaded region mark its ±1 standard deviation spread.

These locations are where we would expect the ”edge-effect” error to affect (on average) HOLA

inversion results the most. We note that error from the ’edge-effect’ is not confined around this

boundary but may affect the entire inversion solution.

In Figure 3.2 we show inversion results for a few handpicked cases to demonstrate the

strengths and weaknesses of the HOLA (and SIR) inversion methods. In these plots, the red

curve corresponds to the underlying ∆T perturbation we intend to recover, the green corresponds
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Figure 3.2: ∆T inversion results for three handpicked MURaM cases. In each plot, underlying
perturbation is shown in red, HOLA inverted solution is shown in green, and SIR-only inverted
solution is shown in blue.
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to HOLA inverted ∆T and the blue corresponds the SIR-only inverted ∆T. The closer the HOLA

(or SIR) solutions are to the underlying perturbations, better is the inversion solution. The top

plot corresponds to an approximately linear perturbation where both HOLA and SIR do a good

job at recovering the perturbation. The true strength of the HOLA method is demonstrated in

the middle plot where the method is able to recover the large-scale constant offset and the higher

spatial frequency perturbation. The bottom plot demonstrates the case where the HOLA inversion

solution is dominated by the edge-effect error because of the current design limitations. The large-

scale perturbation is approximately quadratic in shape which cannot be recovered by SIR linear

updates (within HOLA framework). On the other hand, SIR-only inversion method successfully

recovers a smoother version of the underlying perturbation.

It might be reasonable to consider that recovering large-scale perturbation of any order using

SIR (within HOLA framework), by using larger node values, might fix the edge-effect issue. The

problem with that approach is that SIR tends to find solutions that minimize the spectral difference,

and once we arrive at a solution for which ∆I → 0, it is difficult to make further updates to the

inversion solution. This means that given the underdetermined nature of the inverse problems, the

path taken is of great importance e.g. whether we aim to obtain a globally smooth solution or

an optimally localized solution, both approaches could lead to a well fit observed spectra but the

underlying solutions may be very different, and it is impossible to know which is correct in any

given case.

3.3.2 MURaM Vlos inversion results

In this section, similar to temperature inversions, we discuss inversion results for the line-

of-sight velocity (Vlos) using the HOLA and SIR-only methods. The 1st order equation when

inverting ∆Vlos is given by

∆I = R>Vlos
•

∆Vlos

cs
+ ε (3.1)
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Figure 3.3: (Top plot) Sound-speed cs vs log τ . (Middle plot) Fractional Vlos response functions:
RVlos

= δI
δVlos/cs

. (Bottom plot) Dimensional Vlos response functions: R′Vlos
= δI

δVlos
.
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Figure 3.4: Statistical assessment plot for MURaM Vlos inversion done using HOLA (green) and
SIR (blue). The green-solid line correspond to the depth dependent mean of the absolute value of
the difference between HOLA inverted and underlying MURaM Vlos, while the boundary of the
shaded region signify the ±1 standard-deviation around the mean. Similar plot computed for SIR
is shown in blue. The black vertical dashed lines mark the mean location of the edge of the OLA
inversion window (in final cycle, within HOLA framework) and the gray shaded region mark the
±1 standard-deviation spread of this edge around the mean location.

Here, ∆Vlos is the difference between the underlying atmosphere and the guess-model Vlos, while

RVlos
corresponds to the fractional response functions for Vlos (middle plot in Figure 3.3). The

adiabatic sound speed cs is used to compute non-dimensional Vlos fractional response functions,

as Vlos can be 0.

Single variable HOLA inversion for Vlos is done similar to that described for temperature

in Section 2.2.6, with the SIR node values chosen accordingly (see Appendix B). The statistical

inversion results for Vlos using HOLA (and SIR) is shown in Figure 3.4. Similar to the temperature

case in Figure 3.1, HOLA and SIR do similarly well in the depth range log τ ∈ [−2.5, 0.0], and

are able to recover velocity perturbations with mean differences less than ≈ 0.3 km/sec. Outside

this region, inversion results from both, HOLA and SIR-only methods, have larger absolute mean

difference (and spread) due to lower orthogonal sensitivity.

In Figure 3.5, we show the Vlos inversion results for a few handpicked cases. In the top plot,

the perturbation is approximately linear which HOLA and SIR methods are able to recover well,
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Figure 3.5: ∆Vlos inversion results for three handpicked MURaM cases. In each plot, underlying
perturbation is shown in red, HOLA inverted solution is shown in green, and SIR-only inverted
solution is shown in blue.
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with HOLA being somewhat better at recovering the underlying, slightly higher spatial frequency

perturbations. The middle plot is approximately linear with oscillatory shape at around log τ

= −0.5. While SIR approximately recovers the large-scale trend, HOLA additionally does a better

job at recovering this higher spatial frequency perturbation. The bottom plot corresponds to the

case where the HOLA inversion result is dominated by the edge-effect error. Both HOLA and SIR

struggle to recover the underlying perturbation.

3.3.3 MURaM Pe inversion results

In this section we discuss Pe inversion results obtained using HOLA and SIR methods. The

1st order equation for ∆Pe inversion is given by

∆I = R>Pe
•

∆Pe

Pe
+ ε (3.2)

Unlike, T and Vlos (or cs), Pe varies by a few orders of magnitude over photospheric depths

(see top plot in Figure 3.6). This variation in Pe results in the fractional response functions to be

significantly different from its dimensional counterpart (see middle and bottom plot in Figure 3.6).

Using dimensional response functions when inverting Pe results in an incorrect inversion solution.

This is due to the fact that the averaging kernels are not δ-functions, resulting in the inverted

solution at a given depth (in a given inversion cycle) to have cross-talk error contributions from

’nearby’ depth locations. When inverting for Pe using dimensional response functions, these cross-

talk errors can be very large, especially in the shallower regions. This is because the underlying

perturbation ∆Pe (not ∆Pe
Pe

) magnitude, on average, also increases exponentially as we go deeper

and thus the inverted ∆Pe are likely to be dominated by the cross-talk errors from the ’nearby’

deeper regions. Using fractional response functions mitigates this issue (for the most part) as the

underlying fractional perturbation ∆Pe
Pe

doesn’t show this exponential variation.

It is important to note that fractional response function amplitudes for Pe are about 30 times

smaller than that for T (Figure 2.2) and about 3 times smaller than that for Vlos (Figure 3.3, middle

plot). This relatively smaller spectral sensitivity makes it very hard to invert for Pe when carrying



61

5 4 3 2 1 0 1

10 1

100

101

102

103

P e
   

 [d
yn

e 
/ c

m
2 ]

5 4 3 2 1 0 1
0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

R P
e
=

I
P e

/P
e

5 4 3 2 1 0 1
log 

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

R′ P e
=

I P e
   

 [(
dy

ne
 / 

cm
2 )

1 ]

Figure 3.6: (top plot) Pe vs log τ , (middle plot) fractional Pe response functions: RPe = δI
δPe/Pe

,

(bottom plot) dimensional Pe response functions: R′Pe
= δI

δPe
. Note that the shape of the fractional

and dimensional response functions for Pe are very different from each other because of drastic
variation of Pe magnitudes over photospheric depths.
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Figure 3.7: Statistical assessment plot for MURaM Pe inversion done using HOLA (green) and
SIR (blue). The green-solid line correspond to the depth dependent mean of the absolute value of
the fractional difference between HOLA inverted and underlying MURaM Pe, while the boundary
of the shaded region signify the ±1 standard-deviation around the mean. Similar plot computed
for SIR is shown in blue. The black vertical dashed lines mark the mean location of the edge of the
OLA inversion window (in final cycle, within HOLA framework) and the gray shaded region mark
the ±1 standard-deviation spread of this edge around the mean location.

out multivariable inversions in the presence of more sensitive T and Vlos (see Chapter 4 for more

details).

Single variable HOLA inversion for Pe is similar to that described for temperature in Sec-

tion 2.2.6. The appropriate SIR node values are stated in Appendix B. The statistical plot to

demonstrate the single variable Pe inversion capabilities of the HOLA and SIR methods is shown

in Figure 3.7. Both methods, on average, are able to recover the underlying perturbation within

20% mean differences in log τ ∈ [−2.5,−0.25] region. Outside of this region, solutions suffer from

the limited response function sensitivities.

In Figure 3.8, we show Pe inversion results for a few handpicked cases. In the top plot, HOLA

is able to recover the sharp gradient perturbation shape around log τ = −0.25. In the middle plot,

while HOLA struggles, SIR is able to recover the smoother version of the underlying perturbation.

In the bottom plot, both HOLA and SIR struggle to recover the underlying perturbation.
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Figure 3.8: Fractional ∆Pe
Pe

inversion results for three handpicked MURaM cases. In each plot,
underlying fractional perturbation is shown in red, HOLA inverted solution is shown in green, and
SIR-only inverted solution is shown in blue.
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3.4 Summary

In this chapter, we statistically assessed single variable inversion capabilities of the HOLA

method, and compared it with SIR. For this, we inverted a representative sample of MURaM

atmospheres. The goal here is to figure out, using the mean MURaM as the starting guess-model,

how well individual atmospheres can be recovered using HOLA and SIR. For each of the HOLA and

SIR inverted MURaM columns, we computed the difference between the underlying atmosphere

and the inverted model (for the given variable). Using this, we computed the depth dependent

mean and standard deviation of the absolute value of the differences. These metrics give an insight

into how well (on average) HOLA (or SIR) recover the underlying model.

We find that both inversion methods are able to achieve good inversion result over the range

log τ ∈ [−2, 0]. Even though the overall average inversion quality is very similar for these methods,

the underlying cause of error is much different. SIR, by design, is unable to recover sharp gradients

due to limited number of nodes, while the current version of HOLA struggles with the edge-effect

issue when underlying perturbations have large-scale non-linear shaped offsets. We expect that

once the edge-effect issue is mitigated, the inversion capability of HOLA will significantly improve.



Chapter 4

Hybrid-OLA multivariable inversion

In Section 2.2.6, we introduced the HOLA (hybrid-OLA) method using single-variable inver-

sions, for which one assumes that the spectral differences are a consequence of differences between

the underlying (actual) and guess-models for a given single variable only i.e. the atmospheric mod-

els differ for one variable only. In general, the underlying and guess-models differ for all variables

and thus the resulting spectral differences are a combined contribution from all variable differences.

In this chapter, we extend the HOLA method to a more general multivariable inversion case. We

assume that T, Pe and Vlos completely define the atmosphere. HOLA inversions for magnetic field

remain for the future.

4.1 HOLA multivariable inversion: Methodology

4.1.1 1st order equation for a multivariable system

The 1st order equation for a multivariable system can be written as

∆I = R>T •
∆T

T
+ R>Vlos

•
∆Vlos

cs
+ R>Pe

•
∆Pe

Pe
+ ε (4.1)

Here, the net spectral difference ∆I between the underlying and guess-model spectra corre-

sponds to the depth dependent model differences for all variables (i.e. ∆T
T , ∆Vlos

cs
and ∆Pe

Pe
) weighted

by their respective response functions. We use ε to collectively represent error from the missing

higher order terms from all variables and spectral noise in the observational data (if present).
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4.1.2 Averaging kernel construction

With a RLS/SIR solver one simultaneously inverts for all variables, at all depth locations,

to obtain a globally smooth solution. The basic approach with multivariable OLA inversions is

similar to its single-variable counterpart. We invert for a given variable at each depth location

individually/independently, with the intention to find inversion solutions that are most localized

(minimize error contribution from other depth locations corresponding to the variable we intend

to invert for) and simultaneously least contaminated by the contribution from variables other than

the one we want to invert for (cross-talk variables). This is accomplished by computing linear

coefficients C such that the linear combination of the response functions for the variable we want

to invert for add up to a narrow averaging kernel, while the linear combination of the response

functions (using the same linear coefficients C) for the cross-talk variables add up to nearly 0. This

is mathematically achieved by solving a linear system of equations such as those shown by the

example Equation 4.2. 
RT

RVlos

RPe

 • C =


G (τi, σ)

0

0

 (4.2)

Equation 4.2 aims to construct averaging kernel for temperature at depth τi, while minimizing

the contributions from cross-talk variables Vlos and Pe. To reiterate mathematically, we aim to

compute coefficients C such that RT • C = AT(τi) ≈ G(τi, σ), while the cross-terms sensitivities at

all depths are minimized i.e. RVlos
• C = cAVlos

≈ 0 and RPe
• C = cAPe ≈ 0. The super-script ’c’ in

cAVlos
and cAPe mark that these are cross-talk variable kernels and signify the residual sensitivities

of the respective cross-talk variables when the kernel construction is not exactly 0. Equation 4.2 is

graphically illustrated by Figure 4.1.

Taking the dot product of C> with the 1st order Equation 4.1 and recognizing different kernel

terms yields:

C> • ∆I = A>T(τi) •
∆T

T
+ cA>Vlos

(τi) •
∆Vlos

cs
+ cA>Pe

(τi) •
∆Pe

Pe
+ C> • ε (4.3)
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Figure 4.1: Graphical representation of Equation 4.2. Response functions for all variables are shown
on the left (top panel = RT, middle panel = RVlos

, and bottom panel = RPe), while in the right
plot, we show G (pink), AT (blue), cAVlos

(red), and cAPe (green). We intend to compute C such
that RT • C = AT (blue) ≈ G, while RVlos

• C = cAVlos
→ 0 and RPe

• C = cAPe → 0.

In Equation 4.3, C>• ∆I is the inversion solution and the right hand side is its interpretation.

Ideally, if we could perfectly solve Equation 4.2 such that cAVlos
and cAPe are exactly 0 at all

depths, then the corresponding cA>Vlos
• ∆Vlos

cs
and cA>Pe

• ∆Pe
Pe

would also be 0. In this case, C>• ∆I

would correspond to the desired AT averaged inversion solution i.e.
〈

∆T
T (τi)

〉
(assuming that the

error contribution C>• ε is negligible). The solution thus obtained would not be contaminated by

the error from the cross-talk variable contributions. This also means that the cross-talk variable

contribution to ∆I, in case ∆Vlos
cs

and/or ∆Pe
Pe
6= 0, does not erroneously contribute to the

〈
∆T
T (τi)

〉
solution (through C>•∆I), ensuring that the ’source of the spectral difference is preserved’.

In reality, because ε is not negligible and Equation 4.2 is ill-posed, it can only be approxi-

mately solved by inverting a lower-rank version of response function matrices for all variables using

the pseudo-inverse approach (see section 2.2.1 for details). Since cAVlos
and cAPe usually cannot

be completely suppressed, their contributions in Equation 4.3 act as an additional error source
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(unless fortuitously ∆Vlos
Cs

and ∆Pe
Pe

are 0). This limits the quality of the inversion that would be

otherwise achievable if cross-talk variables were not present. In a multivariable system, there is an

additional inherent issue that dictates how ’actively’ the ’portions’ of the equations corresponding

to different variables get solved. As discussed in more detail below, this constrains the minimum

averaging kernel width that can be constructed for a given variables and how well the cross-talk

variable sensitivities can be suppressed.

4.1.3 Issue with drastically different RT, RVlos
and RPe magnitudes

Spectra have varying levels of sensitivity to different atmospheric variables i.e. it is usually

more responsive to the temperature perturbations ∆T
T (τi), than electronic pressure ∆Pe

Pe
(τi) or line-

of-sight velocity ∆Vlos
cs

(τi) perturbations. This is reflected in the typical magnitudes of the response

functions i.e. RT peak amplitude is about 30 times larger than RPe , and about 3 times larger

than RVlos
(see Figure 4.1). These differing response function sensitivities mean that, when solving

Equation 4.2 (or when directly solving Equation 4.1 in SIR/RLS), the system is biased toward

solving temperature related portions of the equations. When solving Equation 4.2, computed

coefficients would more ’actively’ satisfy RT • C = G, compared to RPe
• C = 0 (or RVlos

• C =

0).

The mathematical reasoning for this is explained as follows. When solving Equation 4.2,

we first need to compute the pseudo-inverse of the ’full’ response function matrix (comprised of

response functions for all variables) using the singular value decomposition (SVD), which results

in U, S and V matrices (see section 2.2.1 for details). The resulting individual ui eigenvectors

(that make up the U matrix) contain depth dependent orthogonal sensitivity information for all

variables. This is illustrated by Figure 4.2. In a given plot row, individual ui stretches across

different blocks with each block representing the part of the eigenvector that is sensitive to a given

variable e.g. the green colored eigenvector (e.g. in the top row) extends across the three blocks with

its top-left block portion depicting T sensitivity, while the top-middle and top-right corresponds to

Vlos and Pe sensitivities, respectively.
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Figure 4.2: Here we show ui eigenvectors obtained from the SVD of the ’full’ matrix composed
of individual variable response functions. Each eigenvector spans across the entire row, while
each column corresponds to the part of the vector that is sensitive to a given variable. Left column
corresponds to T sensitive portion, middle column corresponds to Vlos and right column corresponds
to Pe sensitive portion.
(Top row) ui corresponding to the five largest singular values for the response function matrix used
in Equation 4.2.
(Middle row) ui corresponding to the 16th through 20th largest singular values for the response
function matrix used in Equation 4.2.
(Bottom row) ui corresponding to the five largest singular values for the ’amplified’ response func-
tion matrix used in Equation 4.5.
Note that even with amplification factors, the dominant eigenmodes are not similarly sensitive to
all variables and reflect the difference in the distribution of different ’types’ of response functions
within the matrix, for each variable. For example, the most dominant eigenmode (blue in bottom
row) is still mostly sensitive to the temperature response functions, while green is dominantly
sensitive to Vlos.
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It is evident that the eigenvectors corresponding to the five largest singular values (shown in

the top row) are more sensitive to RT than RPe (or RVlos
). The sensitivity to RPe and RVlos

is

captured by eigenvectors associated with smaller singular values. This is shown in the middle row in

Figure 4.2 where we plot the ui vectors corresponding to 16th through 20th largest singular values.

This fact is a direct consequence of the differing response function magnitude and it becomes a

problem when solving Equation 4.2 (or when directly solving Equation 4.1 in SIR/RLS).

As discussed in Section 2.2.1, when solving Equation 4.2, in order to avoid large-amplitude

coefficients, which lead to an error dominated inverse solution (i.e. C>• ∆I ≈ C>• ε), we compute

pseudo-inverse matrix of a lower-rank k version of the matrix i.e. the pseudo-inverse matrix

is computed using only a limited number of eigenmodes corresponding to the largest magnitude

singular values. If this limited set of eigenvectors do not carry RPe (or RVlos
) sensitivities, then

the computed coefficients will be biased to satisfy RT • C = G, as compared to RPe
• C = 0. The

computed coefficients do not ’actively’ reflect the constraints on Pe in Equation 4.2. This means

that cAPe is not actively suppressed and the temperature inversions can ’eat-up’ ∆Pe contribution

to the spectral difference ∆I.

In practice, even though the system doesn’t actively solve for RPe
• C = 0, the overall

amplitude of RPe
• C is approximately 0, as the terms in RPe itself are small, and the temperature

inversions are little affected. This is shown in the top-left plot in Figure 4.3 where we plot the

narrowest width target function G (pink) that is reasonably fit by AT (blue) when using dominant

singular values that add up to 95 % of the total sum (rank k = 7). As evident from the plot,

the amplitude of the cross-talk kernels cAVlos
and cAPe , shown in red and green, are small, so the

∆T inversion is little affected. However, biased sensitivity of the pseudo-inverse matrix becomes a

critical issue when we intend to construct APe (and invert for ∆Pe
Pe

) and suppress the contribution
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of ∆T
T . This requires the solution of:

RT

RVlos

RPe

 • C =


0

0

G(τi, σ)

 (4.4)

The negligible RPe sensitivity in the pseudo-inverse matrix prevents us from fitting even the widest

allowed target function width, as the coefficients dominantly solve for RT • C = 0. This is shown

in the top-right in Figure 4.3, where the APe (green) does not match the widest target function

G (pink), while cross-talk sensitivities cAT and cAVlos
are minimized. In order to successfully

construct APe we would have to use a larger rank so that the corresponding eigenmodes carry RPe

sensitivities. This is shown in the middle-right curve in Figure 4.3 where we used rank k = 22,

based on dominant singular values that they add up to 99.9 % of the total sum. As mentioned

before, larger rank k solutions are typically error dominated. Thus, the widely differing RT and

RPe magnitudes imply that it is hard to invert for ∆Pe
Pe

in the presence of ∆T
T (or ∆Vlos

cs
).

4.1.4 Workaround to differential response function amplitudes

There is a solution to this problem. Building on Equation 4.4, we solve the following modified

system of equations: 
α1 ·RT

α2 ·RVlos

RPe

 • C =


0

0

G(τi, σ)

 (4.5)

Here, α1 and α2 are the response function amplification factors which we use to manually amplify/de-

amplify the cross-talk variable response functions to make their amplitudes ’similar’ to those of the

variable we are trying to construct averaging kernel for. This mathematical operation is similar

to multiplying both sides of an equation by a constant factor, and does not change the original

Equation 4.4. But, they do change the ’required’ pseudo-inverse, helping to retain information

about lower sensitivity variables in the system. The amplification factor modified matrix raises the
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Figure 4.3: Here we show how well averaging kernel for a given variable can be constructed, while
simultaneously minimizing cross-talk kernel sensitivities. In all plots, pink curve corresponds to
the narrowest width target-function (pink) that we can fit at log τ = −0.5 for different variables,
while kernels (averaging or cross-talk) for T is shown in blue, for Vlos is shown in red, and for Pe is
shown in green. Plots in the left column is where we construct AT, while middle and right column
correspond to AVlos

and APe kernel construction.
(Top-row) Averaging kernel construction and cross-talk kernel minimization done by solving Equa-
tion 4.2 (appropriate version for different variables) using rank k = 7 (based on largest singular
values that add up to 95 % of the total sum). While, it is possible to construct kernels for AT and
AVlos

, APe do not fit even the widest allowed target function (top-right plot).
(Middle-row) Averaging kernels constructed by solving the equations as above, but with rank k = 22
(based on largest singular values that add up to 99.9 % of the total sum). Using a larger number
of eigenmodes result in averaging kernels that fit a narrower width G while cross-talk kernels are
better minimized. Further, this also allows construction of APe . The caveat of using larger rank k
is that it leads to error dominated inversion solutions.
(Bottom-row) Averaging kernels constructed by solving Equation 4.5 (appropriate version for dif-
ferent variables) using rank k = 10 (based on largest singular values that add up to 95 % of the
total sum). Using this approach, we can maintain RPe sensitivity in the pseudo-inverse matrix even
with a smaller rank, which allows us to construct APe in the presence of more spectrally sensitive
variables. Given that amplification factors have to be eventually factored out, the corresponding
cAT is not minimized well.
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sensitivity to the lower magnitude response functions, yielding the eigenvectors of the dominant

singular values with ’similar’ sensitivity across all variables. This is illustrated in the bottom row

in Figure 4.2, where we show the ui eigenvectors corresponding to the five largest singular values

obtained from the SVD of the matrix in Equation 4.5 after amplification. These eigenvectors are

more sensitive to RPe compared to the those in the top row, where no amplification factors were

used.

The question now is what amplification factors to use. If the factors are large, then the

pseudo-inverse matrix are more sensitive to the cross-talk variables and if the factors are small

then the cross-talk variable sensitivity might not get actively suppressed. To determine ’optimal’

amplification factors we tried the ratio of the total sum of the absolute response function matrix

for the variable we intend to invert and cross-talk variables, ratio of the dominant singular value

of the respective response function matrices. We settled on factors obtained by taking the ratio

of the maximum of the absolute value response functions i.e. in Equation 4.5, α1 =
max(|RPe |)
max(|RT|)

and α2 =
max(|RPe |)
max(|RVlos

|) . For our response function matrices (obtained for the mean MURaM guess-

model) these ratios come out to be α1 ≈ 0.03 and α2 ≈ 0.08 . Note that these factors are less than

1 because the amplitudes of RT and RVlos
is larger than RPe . It is always the cross-talk variable

response functions to which the amplification factors get applied to e.g. if we are constructing

averaging kernels for temperature, then the corresponding amplification factors will be applied to

RVlos
and RPe . This removes the additional step of factoring out the amplification factors from

the coefficients before computing the inverse solution C >• ∆I.

Given that the dominant ui eigenvectors are now sensitive to RPe , we can ’actively’ solve for

the Pe-related equations in Equation 4.5 and construct APe in the presence of T and Vlos without

being required to use too many eigenmodes. This is shown in the bottom-right plot in Figure 4.3

where we show the narrowest width APe (green) that reasonably matches the target function (pink),

when computing pseudo-inverse using singular values that add up to 95 % of the total sum (rank

k = 10).

We note that when constructing APe , the cross-talk cAT sensitivity is not entirely suppressed.
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Figure 4.4: Minimum target function width vs. depth curve, with (green) and without (red) re-
sponse function amplification factors. Top panel corresponds to when constructing temperature
kernels, while middle and lower panels correspond to when constructing Vlos and Pe kernels, re-
spectively. Out of the three, temperature has the widest depth range over which inversion can be
done (given the rank). In all cases, pseudo-inverse matrix is computed using rank k such that
dominant singular values add up to 95% of the total sum. This corresponds to k = 10 (with) and
k = 7 (without) amplification factors.

This is because using amplification factors gets around the inherent sensitivity bias but does not

remove it. Due to the inherent sensitivity bias and the finite information in the limited number of

eigenmodes used, one usually cannot construct narrow averaging kernels for Pe while simultaneously

minimizing cross-talk kernel sensitivity to other variables. Mathematically, this can be understood

as follows. Using amplification factors and solving Equation 4.5 results in the computed coefficients
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to actively minimize cross-talk α1 × (RT • C) = 0. But the ’true/actual’ cross-talk kernel is

given by cAT = RT• C. The artificial amplification factors need to be ultimately factored out

when computing cAT. When constructing APe , α1 is usually small (� 1), so once α1 is factored

out, the ’actual’ cross-talk kernel cAT may have large amplitudes and may not be completely

suppressed. The large cross-talk sensitivities poses a risk when inverting ∆Pe
Pe

as the inversion

solution would most likely be corrupted by the cross-talk errors, unless underlying perturbations

∆T
T (and ∆Vlos

cs
) are small. Given that we invert for one variable at a time when doing OLA

inversions, this determines the order in which different variables get inverted. This is discussed in

detail in Section 4.2.

In Figure 4.4, we demonstrate how using amplification factors helps when constructing kernels

for lesser sensitive variables. Here, we show the narrowest kernel width, as a function of depth,

that can be constructed with (green) and without (red) amplification factors (in the presence of

corresponding cross-talk terms). The results are obtained using pseudo-inverse matrix computed

using dominant singular values that add up to 95 % of the total sum. For the non-amplified

response function matrix used in Equation 4.2 (or 4.4), rank k = 7, while for the amplified/de-

amplified matrix of Equation 4.5, k = 10. The increase in rank for the same cumulative singular

value percentage (when using amplified matrix) means that the using amplification factor improves

the overall ill-posedness of the system.

The top plot corresponds to averaging kernel widths for temperature inversions and has the

largest depth range (out of all variables) over which inversion can be done. Using the amplification

factors (green curve) when doing temperature inversions can lead to wider kernels as compared to

when no amplification factor is used (red curve). This is because, without amplification factors, it is

the temperature related equations RT • C = G(τ, σ) that dominate because of the inherent spectral

sensitivity towards temperature perturbations. When using amplification factors, the system has to

now simultaneously minimize cross-talk sensitivities, making it harder to fit narrower width target

functions for temperature. This can also be understood as follows. Using amplification factors

lead to the dominant ui vectors that are similarly sensitive to all variables. Given the constraint
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that these eigenvectors are orthonormal, the overall amplitude of the temperature components of

ui is relatively smaller, as the eigenvectors now also preserve RPe sensitivities, making it relatively

harder to construct narrower width target functions.

The middle and bottom plot in Figure 4.4 corresponds to the narrowest width averaging

kernel when constructing AVlos
and APe , respectively. It is evident from these plots that using

amplification factors helps when construct averaging kernels for lesser sensitive variables. Given

the rank and fitting constraints, APe construction (and ∆Pe
Pe

inversions) is only possible when using

amplification factors.

4.2 Multivariable HOLA inversion method: Implementation

In this section we discuss how the HOLA method is implemented to carry out multivariable

inversions. The approach is similar to its single variable counterpart (see Section 2.2.6) where

inversion is done over multiple inversion cycles, with each cycle made up of two sub-pieces: SIR to

make large-scale updates and OLA to make high-resolution small-scale updates for a given variable.

The difference here is that the single variable OLA averaging kernel construction Equation 2.9 is

replaced with its ’appropriate’ multivariable counterpart (as described in Section 4.1.4) e.g. when

inverting for ∆Pe
Pe

in the presence of ∆T
T and ∆Vlos

cs
, Equation 4.5 is used. The goal here is to

invert a given variable while simultaneously preserving the spectral contributions of the cross-talk

variable perturbations. Preserving spectral contribution is critical as it minimizes cross-talk errors

and allows us to invert for all variables. Given OLA (within HOLA framework) inverts for only one

variable at a time, we need to iterate over each variable in order to do multivariable inversion. Given

that there is an inherent sensitivity bias issue that dictates how well kernels can be constructed for

a given variable and how well cross-talk sensitivities can be simultaneously minimized, it is critical

to follow a specific order in which different variables get inverted. We start with inverting the

largest spectrally sensitive variable (∆T
T in our case) as it is relatively easier to construct averaging

kernels for it and simultaneously suppress cross-talk sensitivities. Once the HOLA inversion for

∆T
T is complete, we update guess-model T with the inverted T, and repeat the inversion process
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Figure 4.5: Multivariable inversion results obtained by inverting an arbitrary MURaM atmospheric
column. In each plot, underlying perturbation is shown in red, HOLA inverted solution is shown
in green, while SIR-only inverted solution is shown in blue. Top panel corresponds to temperature
perturbations, middle panel corresponds to line-of-sight velocity perturbations and bottom panel
corresponds to fractional electronic pressure perturbations.

for the next most dominantly sensitive variable (∆Vlos
cs

in our case) and ultimately, invert for ∆Pe
Pe

.

Using the dominant variable (e.g. T, Vlos) inversion solution updated guess-model helps
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improve our odds when inverting for ∆Pe
Pe

. This is because, even though the cross-talk kernel sensi-

tivities (cAT and cAVlos
) cannot not completely minimized, the cross-talk perturbation amplitudes

are now smaller (assuming ∆T
T and ∆Vlos

cs
updates are in the right direction), resulting in the over-

all cross-talk error contributions to ∆Pe
Pe

to be smaller. In practice, cross-talk variables cannot be

completely minimized and act as an additional error term.

Note that in a given HOLA inversion cycle, irrespective of the variable being inverted for

(using OLA), we make SIR large-scale updates for all variables (see Appendix B for node values).

Making large-scale updates for all variables helps improve the HOLA inversion quality as it lowers

the magnitude of the higher order error terms (assuming updates are in the ’right’ direction),

especially from the cross-talk variables if their perturbation amplitudes are large. A reduced overall

magnitude for higher order error (from all variables) implies that we can employ a larger rank k

(beyond which solution gets error dominated), improving the OLA inversion resolution and thus

the overall HOLA inversion quality.

In Figure 4.5 we show the multivariable inversion solution for an arbitrary MURaM atmo-

spheric column. The top plot corresponds to ∆T inversion, middle to ∆Vlos inversions and bottom

plot corresponds to ∆Pe
Pe

inversion. In each plot, the red curve corresponds to difference between

the underlying and the guess-model, green curve corresponds to the HOLA inverted solution and

the blue curve corresponds to the SIR-only inverted solution. The HOLA method is able to recover

the overall shape of the underlying perturbations (even for ∆Pe
Pe

). The method by design cannot

recover non-linear perturbation shapes in the deeper and shallower regions and struggles due to the

edge-effect issue.

4.3 Summary

In this chapter, we extended the HOLA method to invert for more realistic multivariable

system. We assumed that the multivariable system is completely defined by the thermodynamic

parameters T, Vlos and Pe. We discussed the modifications need to be made to the single variable

kernel construction equation to do multivariable HOLA inversion of these variables. The 1st order
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equation for a multivariable system given by Equation 4.1 states that the spectral differences

∆I between the underlying and guess-model spectra corresponds to the model differences from all

variables weighted by their respective response functions (with error contributions from the omitted

higher order terms for each variable and spectral noise, if present). In multivariable OLA method

(within HOLA framework), one inverts for one variable at one depth location at a time with the

goal of obtaining solutions with minimized cross-talk error contributions from other depth locations

(from the same variable perturbations) and from cross-talk variable perturbations. This is achieved

by computing linear coefficients C that constructs narrow width averaging kernels at a given depth

location (for the variable we intend to invert) and simultaneously minimizes cross-talk variable

sensitivities.

There is an inherent issue faced when inverting variables in a multivariable system. This issue

has to do with the fact that spectra is more sensitive to temperature perturbations, compared to

electronic pressure (or line-of-sight velocity) perturbations. This bias results in the pseudo-inverse

computed using dominant eigenmodes of the matrix (e.g. in Equation 4.2) to be mostly sensitive to

RT, as compare to RPe , and is likely to solve for temperature portions of the equation, compared

to electronic pressure. This makes it harder to invert for ∆Pe
Pe

in the presence of ∆T
T .

We developed a workaround to this issue in Section 4.1.4 where we suggested that artificially

amplifying/de-amplifying cross-talk variable response function matrices with the help of amplifica-

tion factors may help remove this sensitivity bias. This would result in the dominant eigenmodes

of the ’modified full’ matrix to have sensitivity across all variables. We demonstrated that using

amplification factors allows us to construct averaging kernels for APe (with smaller number of

eigenmodes) and gives us a better chance at inverting electronic pressure in a multivariable system.

It is important to note that using amplification factors gets around the inherent sensitivity bias but

doesn’t not eliminate it. This means that we cannot successfully construct kernels for electronic

pressure and simultaneously minimize cross-talk kernel sensitivities for temperature. This forces

us to employ a certain order in which different variables get inverted when using the OLA method

(within HOLA framework).
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We applied the developed multivariable HOLA inversion method to a MURaM column and

the results are promising. The solution quality is limited by the edge-effect issue inherent to the

OLA method. We expect that the overall inversion capability will significantly improve once this

issue is mitigated. We expect that the idea of using amplification factors to maintain the lesser

spectrally sensitive variables should also benefit other inversion methods (e.g. SIR/RLS) as well.



Chapter 5

Information within response function matrix and assessing its ability to do

inversions

As mentioned in Section 2.1.2, inverse problems require us to solve the 1st order linear system

of Equations 2.5 where the first step is to compute the inverse of the response function matrix.

This is a non-trivial task as the system belongs to the ill-posed category. Further, the equations

are not perfect (error ε is non-zero) which compels us to employ a lower-rank pseudo-inverse of the

matrix to solve the system and obtain solutions that are not dominated by error. The caveat of

using a lower rank pseudo-inverse is that the information belonging to smaller singular values get

discarded. Depending on how sensitivity information is distributed in the matrix, these discarded

singular values may contain critical information needed to invert at certain depths/variables. Re-

moving these singular values degrades our ability to invert at these depths/variables. One such

case is discussed in Section 4.1.3, in which, due to the inherent spectral sensitivity bias, dominant

eigenmodes are more sensitive to temperature than electronic pressure. This makes it harder to

invert for electronic pressure perturbations in the presence of temperature perturbations.

In this chapter we focus on another situation with similar sensitivity bias issue. The presence

of a large number of ’almost identical/redundant’ response functions (with non-zero amplitude)

in the matrix, results in dominant eigenmodes with greater sensitivity in those regions where the

redundant response functions peak, degrading the inversion capability in other regions. This issue

can be mitigated by artificially removing some redundant response functions from the matrix.

We also demonstrated that once the redundancies are removed, the slope of the singular value
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curve (log si vs. ith mode) can be used as a metric to quantitatively compare different spectral line

combinations and determine which combinations are likely to produce best inversion results. The

goal is to find x ’best’ spectral lines, out of n total lines, that would be most suitable for a particular

scientific inquiry. We make an estimation of what this inversion potential looks like based on the

averaging kernel width.

For simplicity, we limit the discussion here to single variable temperature inversions of arti-

ficially constructed Gaussian-shaped perturbations (similar to that discussed in Section 2.2), using

mean MURaM as the starting guess-model. We invert these perturbations using iterative-OLA

method i.e. HOLA inversion method without the large-scale SIR updated, as SIR large-scale up-

dates can artificially introduce large-scale offsets which could lead to solutions dominated by the

edge-effect. Additionally, all inversions are done in the absence of observational noise.

5.1 Redundant sensitivity in RT matrix

A typical response function matrix (fractional or dimensional), computed for a given model

and spectral line-set, usually contains disproportionately large number of response functions that

are ’almost identical’ to one another. These response functions typically correspond to continuum

intensity wavelengths that makeup a large fraction of any spectrum, as a typical observed spectral

range (bandwidth) is usually much larger than the width of the line itself. A broad spectral range is

needed to accommodate spectral line shifts (non-zero Vlos). In Figure 5.1 (top panel), we plot the

fractional response function computed for temperature (for mean MURaM model) that makeup the

RT matrix, computed for all spectral lines mentioned in Table A.1. There is a cluster of similarly

sensitive (redundant) response functions at log τ ≈ 0.0 (for visible continuum wavelengths) and

log τ ≈ 0.25 (for infrared continuum wavelengths).

These redundant response functions are most sensitive to deeper regions of the atmosphere,

and since they makeup a large fraction of RT, they introduce a bias in the information captured by

the matrix. This results in the dominant eigenmodes (ui of RT) that are most sensitive to deeper

regions, and the lower rank pseudo-inverse is more capable of inverting in deeper regions, than
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Figure 5.1: (top-plot) Fractional response functions for temperature computed using SIR for the
mean MURaM model, for all spectral lines mentioned in Table A.1. (bottom-plot) Response func-
tions left in RT, after removing redundant response functions using p3 = 5%.

shallower regions. Though there are response functions that are sensitive to shallower regions they

are small in number. A potential workaround is to artificially remove some redundant response

functions. The dominant eigenmodes are then more ’similarly’ sensitive to different regions of

the atmosphere. By removing some redundant response functions we remove the sensitivity bias

in the matrix. This then allows us to invert in the shallower regions using lower rank pseudo-

inverse, improving the overall inversion capability. This is demonstrated in Figure 5.2 where we

show the minimum averaging kernel width vs. depth that can be constructed using RT with (red)

and without (blue) redundancies. The response functions are identified redundant (and removed)
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Figure 5.2: Minimum width target function vs. depth, that can be constructed, with (red) and
without (blue, p3 = 5%) redundancy in RT. The top plot corresponds to rank k such that the sum
of the largest singular values add up to 95% of the total. The middle and bottom plot corresponds
to cases when the cumulative sum is 99% and 99.9%, respectively.
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based on an algorithm described in Appendix 5.5. The three panels shown correspond to kernels

constructed using different rank pseudo-inverse matrices. The top plot corresponds to a rank such

that the sum of the largest singular values add up to 95% of the total, while middle and bottom

plot corresponds to cases when the sum is 99% and 99.9% respectively.

It is evident from these plots that removing the redundant response functions considerably

improves the overall inversion capabilities, both in terms of spatial resolution (width of the kernel)

and depth range. The improvement is most significant for smaller ranks (top and middle plots)

as these include the most dominant eigenmodes only, and those are relatively less sensitive to

shallower regions. The ’quality’ of kernels when using larger rank (bottom plot) is very similar

with and without redundancy, as eigenmodes corresponding to smaller singular values that carry

shallower region sensitivities are also included.

Given that the inversion capabilities, with and without redundancy in RT, are very similar

when using larger rank, it might seem plausible to argue that the two approaches would eventually

produce similar inversion results. This is not correct as the quality of the final inversion after

iterations depends on incremental updates in the ’right direction’ over multiple inversion cycles.

Whether or not an inversion solution (in a given cycle) is in the ’right direction’ in turn depends

on the error contribution to the solution. As mentioned in previous chapters, solutions obtained

using lower rank early in the iteration cycle are less likely to be error dominated. Depending on

the amount of error in the system (from higher order terms and/or observational noise) the highest

rank may not be realized, even in the final iteration. Thus, using RT with ’non-redundant’ response

functions can significantly improve the overall inversion quality.

5.2 Effect of RT redundancy on inversion quality

In this section, we discuss the dependence of the quality of inversion on the redundancy in

RT. The goal here is to get an insight into what happens to the solution when we use matrix with

incrementally less redundant response functions. For this experiment, we employed iterative-OLA

method to invert artificially constructed Gaussian perturbation (red curve in Figure 5.3) using
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Figure 5.3: Underlying Gaussian shaped perturbation with peak location at log τ = −1.5 and width
= 0.4 ∆log τ , is shown in red. Iterative-OLA inversion result obtained using all spectral lines, with
all the redundancies in RT, is shown by the red-dashed curve. Inversion result obtained (using
all spectral lines) after removing redundancy (using p3 = 5%) is shown by the blue curve. That
obtained using the best 3 spectral line-set of Section 5.3 is shown by the green curve (p3 = 5%).

response function matrix with different levels of redundancy (computed based on the approach

described in Appendix 5.5). Note, that a larger value for redundancy parameter p3 (defined in

Appendix 5.5) means that the ’new’ RT matrix has lesser redundancy. It only includes response

functions with normalized difference of at least p3 %.

In implementation, for a given inversion cycle, we compute the response functions at all

wavelengths and remove the redundant ones that comply with a prescribed p3 value. Using this

’non-redundant’ RT, we construct kernels and invert at ’all possible’ depths. We repeat the process

and use the same p3 value in the subsequent inversion cycles. Given that the guess-model (and the

corresponding RT) are different in each cycle, it is likely that the ’new’ non-redundant RT (in each

cycle) is comprised of a different set of wavelengths. After arriving at a final inversion solution, we

compute the inversion quality metric based on the L1 norm of the difference between the actual

(underlying) and inverted T i.e. ‖actual− inverted T‖1.
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Figure 5.4: Inversion quality vs. redundancy parameter p3, for the perturbation in Figure 5.3, is
shown by green-dotted curve. Similar curve obtained for the Gaussian perturbation, with peak
located at log τ = 0.25, perturbation width = 0.3 ∆log τ , is shown by the green-dashed curve. For
both perturbations, inversion results are obtained using all spectral lines. Red curve corresponds
to absolute value of the slope of the singular value curve vs. p3.

The relationship between inversion quality and p3 is shown by the green-dotted curve in

Figure 5.4. Note that p3 = 0 means that redundancy is not removed from RT. It is clear that the

inversion quality improves significantly when using non-redundant matrix to invert the perturbation

in Figure 5.3. The drastic early improvement is expected as the underlying perturbation lies in the

shallower region of the domain, and doesn’t ’necessarily require’ the redundant response functions

which are mostly sensitive to deeper regions. For non-zero p3 values, it is the deeper region sensitive

redundant response functions that primarily get removed, resulting in the dominant eigenmodes

that are more sensitive to shallower regions, improving the ability to invert there. In Figure 5.3,

we show that the solution obtained using ’non-redundant’ matrix (green, p3 = 5%) overlays the

underlying perturbation, while that obtained without removing any redundancies (red-dashed,

p3 = 0%) struggles to recover it.

Using too large value for p3 eventually removes response functions that are dissimilar, which
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degrades the overall inversion capability. This is evident from the worsening of the inversion

quality for p3 > 40%. Thus, there is a trade-off. Using too small value for p3 doesn’t entirely

remove the redundancies in RT while using too large value results in a matrix that contains lesser

overall sensitivity, degrading its ability to do good inversions. The p3 value at which we move

from one limit to another depends on the underlying perturbation, particularly its depth. This is

demonstrated by the green-dashed curve in Figure 5.4 which corresponds to the inversion quality

metric vs. p3 when inverting Gaussian perturbation located at log τ = 0.25. For this case, the

inversion result only slightly improves for p3 = 1% and worsens for larger values, as inverting this

perturbation requires deeper sensitive response functions.

These behaviors make it difficult to determine the optimal response function set to use.

Removing the sensitivity bias without removing ’needed’ response functions should improve the

overall inversion capability. Ongoing work aims to determine the optimal depth dependent strategy

while accounting for multivariable dependencies and observational noise.

5.3 Determining best line combination based on singular value slope

The OLA methodology allows quantitative assessment of different line combinations for po-

tential inversion. Given a set of n spectral lines, we aim to determine the best x line combination

to produce best overall inversion. In Section 2.2.2, we suggested that spectral line combinations

can be assessed based on the minimum width averaging kernel that can be constructed at a given

depth for a given variable. It quickly becomes difficult to objectively compare the overall inversion

capability over multiple depths using this metric, as different combinations may perform differently

at different depths. So, unless there is a particular depth we are interested in, it is tricky to deduce

which combination is good overall solely based on the kernel widths.

Here, we demonstrate that the slope of the RT matrix singular value curve (log si vs. ith

mode, see Figure 2.4) for different line combinations can be used as an objective metric to find

the best line combination. This is motivated by the decreasing absolute slope of the singular value

curve (red dotted in Figure 5.4) with decreasing redundancy in RT (increasing p3 value). A matrix
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with lower redundancy has a smaller singular value slope because the underlying response functions

are dissimilar. It is expected that the line combinations with the most dissimilar response functions

(smallest slope) are likely to be the most capable at doing inversions. The slope can thus be used

as a metric to objectively compare line combinations.

In order to demonstrate that singular value slope can indeed be used to find best x line

combinations out of n total lines, we use the spectral lines (including blends) listed in the Table A.1.

Our goal is to find the best 3 line combination out of the 7 total. For the perturbation (red curve)

plotted in Figure 5.3 we independently invert using all possible 3 line combinations using the

approach mentioned above, with p3 = 5%. Once the inversion is done for a given line combination

we compute the inversion quality metric based on the L1 norm of the difference between the actual

and inverted T i.e. ‖actual− inverted T‖1 (this metric is same as that used in previous section).

We also compute the slope of the singular value curve for the corresponding response function

matrix (for mean MURaM starting guess-model), using the largest singular values that add up to

95% of the total sum. Note that it is critical to compute the slope after removing the redundancy

from the matrix. Without doing so, the slope is dominated by the matrix redundancy and does

not reflect the orthogonality of the useful response functions.

The plot between the inversion quality metric and the absolute value of singular value slope

is shown by green-dots in Figure 5.5. It is evident from the plot that the line combinations with

smallest absolute slopes are able to produce best quality inversion solution. The line combination

that could best recover the perturbation is comprised of Fe II 6147.7 Å, Fe II 6149.2 Å and Fe

I 6301.5 Å, including corresponding blends (see Table A.1). The inversion solution ∆T obtained

using this ’best’ line combination is shown in green in Figure 5.3 (and overlays the underlying

perturbation). The larger symbols in the Figure 5.5 correspond to the inversion results obtained

using all the 7 spectral lines, with (red) and without (blue, p3 = 5%) redundancy. We note that

there is an outlier case which is not able to recover the perturbation at level similar to that achieved

by other combinations in this slope range (see the green dot at slope of 0.25 and L1 norm of ∆T

around 6000 K in Figure 5.5). For this case, we found that after a few inversion cycles the OLA
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Figure 5.5: Inversion quality metric vs. slope for all 3 line combinations (out of the 7 total mentioned
in Table A.1) is depicted by green-dots. Redundant response functions are removed from RT using
p3 = 5%. The bigger dots correspond to inversions done using all spectral lines with (red) and
without (blue, p3 = 5%) redundancy.

inversion window shrunk (instead of widening). This resulted in the ’edge-effect’ errors to corrupt

the solution which eventually resulted in a bad inversion. This suggests that the actual inversion

quality is very case specific and that singular value slope can only be used to make initial/rough

assessments of which combinations are most likely to produce good overall inversions. Moreover,

the best line combinations may differ if a different guess-model is used.

We suspect using the singular value slope as a comparison metric only works when compar-

ing line combinations from a common pool of lines. Further, the slope only reflects the relative

distribution of orthogonal sensitivities within the matrix, not the depths which different response

functions probe. Line combinations that are sensitive to very different depths may have the same

slope. However, information about to what depths response functions are sensitive to is contained

in the ui eigenmodes. This is exploited in the kernel construction and can be used to gain insight

into what the inversion potential for a given line combination might look like (see Figure 5.6). For

the line combinations that produced the best inversion result in Figure 5.5, the averaging kernel

width vs. depth curve computed for the mean MURaM model (after removing redundancy using
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Figure 5.6: Minimum averaging kernel width vs. depth curve for the best 3 line combination found
in Section 5.3. Kernel widths, constructed using rank k determined by the dominant singular
values that add up to 95% and 99.9%, are shown in green and blue, respectively. For both cases,
redundancy from the matrix is removed using p3 = 5%.

p3 = 5%) is shown in Figure 5.6. The two curves correspond to different ranks based on the dom-

inant singular values that add up to 95% (green) and 99.9% (blue). Ideally, these curves give an

estimate of the range of inversions capabilities of the line combinations, assessed in terms of the

depth range (OLA inversion window) and the corresponding depth resolution (kernel width). It is

important to reemphasize that these are rough estimates and exact inversion quality would be case

dependent.

5.4 Summary

In this chapter, we demonstrated that redundancies in the response function matrix (e.g. RT)

degrades the overall inversion capability. Redundancy results from a large fraction of wavelengths

corresponding to continuum intensities for which the response functions are ’almost identical’. This

leads to the dominant eigenmodes to have biased depth sensitivity. This degrades the ability to

invert for the properties of shallower regions using a lower rank pseudo-inverse. We demonstrated
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that a workaround to this issue is to artificially remove these redundant response functions. This

yields dominant eigenmodes that are ’similarly’ sensitive to different depths and thus improves the

overall global inversion capability. Thus, using more spectral lines/wavelengths does not necessarily

improve inversions.

The challenge faced is to optimally identify and remove redundant response functions. Con-

servatively removing the most similar response function may not be sufficient and liberally removing

them may impact sensitivity and degrade the overall inversion capability. Moreover, whether or not

a response function is redundant depends on the underlying perturbation. This makes it non-trivial

to determine an optimal way to remove redundancy. From this work, we suspect that removing the

sensitivity bias should improve the overall inversion capability. We also expect that other inversion

methods e.g. SIR/RLS could benefit from this idea. To optimally identify and remove ’redundant’

response functions, however, for single variable and multivariable system and in the presence of

observational noise, is future work.

We also demonstrated that the slope of the singular value curve (after removal of the re-

dundant response functions) is a quantitative metric of the inversion potential of different spectral

line combinations. Once the best line-set is identified, the averaging kernel width provides insight

into what the inversion capability is with depth. Note that these are estimates and the best line

combination and the inversion capability is ultimately case dependent. They are however useful

because no a posteriori measure of the inversion quality is typically available. Further, the metrics

are not tied to any particular inversion approach as they do not require an inversion to be done.

They can thus be used irrespective of the choice of inversion method. Determining if singular value

slope can consistently find best line-combinations in more complicated situations e.g. multivariable

system, spectral noise, etc., is a part of ongoing effort.
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5.5 Appendix: RT redundancy removal parameter p3

In order to identify if response functions, say, at wavelengths λj and λk, are redundant or

not, we used the following ”redundancy removal metric”:∥∥∥∥ RT(λj)

‖RT(λj)‖1
− RT(λk)

‖RT(λk)‖1

∥∥∥∥
1

× 100 (5.1)

Here, ‖RT(λj)‖1 corresponds to the L1 norm of response function at λj and approximates

the area (assuming linear interpolation) under absolute value response function |RT(λj)|. Similarly,

‖RT(λk)‖1 approximates the area under |RT(λk)|. The metric computes L1 norm of the difference

between the area normalized response functions. Normalization is done to consider the fact that

response functions that only differ by a constant factor are essentially the ’same’ and carry similar

sensitivity information (with different amplitudes). Thus the metric can be interpreted as a %

difference between the two response functions. The response functions are marked redundant if the

metric is smaller than a user defined redundancy parameter p3. Note that the metric serves the

purpose of identifying dissimilar response functions but, in detail, will fail to recognize response

functions as similar if they differ by a constant negative factor. This is not an issue here as none

of the temperature response functions fall into this category (see top plot in Figure 5.1). It would

be future endeavor to figure out a more robust metric.



Chapter 6

Summary and Future work

6.1 Brief thesis summary

In this thesis, we, for the first time, applied the Optimally Localized Averages (OLA) inversion

method to spectroscopic data to invert for the depth dependent thermodynamic parameters of

the solar photosphere, namely, T, Vlos, and Pe. The basic approach to inversions (as discussed

in Chapter 2) is to start with an initial guess-model and solve for the depth dependent model

differences (e.g. ∆T
T ) between the underlying (actual, observed) and the guess-model that accounts

for the spectral differences (∆I) between the observed and the guess-model spectra. Typically, the

spectral differences are related to the corresponding model differences by linear response functions

(e.g. RT). For a set of wavelengths, the relationship can be written as a 1st order linear system

of Equations 2.5. This linear system is only approximate. There are inherent non-zero error ε

contributions from the omitted higher order terms.

Solving the approximate system requires computing the inverse of the response function

matrix RT. This is non-trivial, as the underlying system is severely ill-posed system, as evident

from the exponential decay of the singular values of the matrix (see Figure 2.4). This severe ill-

posedness is due to redundancies in the spectral line formation resulting in the response functions

(that make up the response function matrix) to have similar sensitivity information. Ill-posedness

combined with non-zero error ε results in the employable number of linear independent equations to

be much smaller than the total number of unknowns (∆T
T ) we intend to invert for. This means that

the system is ’effectively’ underdetermined and one cannot uniquely solve for ∆T
T . The ill-posed
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nature also means that the numerical rank of the matrix is ill-determined and naively computing

its pseudo-inverse (approximate inverse) using arbitrary rank will likely result in an inverse matrix

with larger amplitude elements which can amplify error ε, resulting in error dominated solutions.

These error dominated solutions are highly oscillatory and lack physical significance.

To obtain a physically meaningful solution (not dominated by error), some sort of regular-

ization is employed, and a lower rank version of the response function matrix is inverted. This

removes contributions from smaller singular values which would otherwise yield larger amplitude

terms in the pseudo-inverse matrix. The obtained solution depends heavily on the ’amount’ of

regularization. Over-regularization removes many smaller singular values (and eigenmodes), and

leads to solutions that are smoother but fails to capture the sharp gradients in the underlying

atmosphere (if present). Under-regularization improves sensitivity of these gradients, but results

in error amplification. Determining the ’optimal’ regularization to balance resolution vs. error

amplification is one of the hardest tasks when carrying out inversions. This is because the spectral

difference metric used to assess the inversion quality (how well the underlying perturbation is re-

covered) is flawed. Due to the inherently underdetermined nature of the problem, inversions with

different regularization can produce equally good fit spectra.

Current state of the art spectropolarimetric inversion methods (e.g. SIR) aim to obtain

globally smooth solutions by inverting at a limited number of user-defined depth locations (nodes).

This, by design, ensures that the inverted solutions are non-oscillatory below nodal scales. However,

the number of nodes utilized, which is decided based on user experience, limits the inversion depth

resolution. MURaM simulations of the solar photosphere show gradients at scales much smaller than

those recoverable using the standard SIR node values. Further, the inversion solutions most likely

do not correspond to the ’true resolution limit’ that can be recovered using the spectropolarimetric

data, particularly that which will be available from the upcoming DKIST. Determining the inversion

resolution limit that is achievable at each depth, and inverting at that resolution is critical to using

DKIST at its full potential. This is the goal of the OLA inversion method, to find the ’best possible’

inversion solution at each depth, based on how localized a solution can be computed at that depth.
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It is critical to emphasize that one should be mindful of what solution is required and ac-

cordingly decide on what inversion method should be employed. Results obtained from different

inversion approaches may lead to similarly good fit observed spectra (due to the underdetermined

nature of the problem) but may be quite different from one another (and from the underlying per-

turbation). This is because different approaches are influenced by different types of error e.g. SIR

solutions obtained using limited number of nodes are subject to cross-talk errors from other depths

and variables. OLA actively tries to minimize such errors, and though they are not completely

eliminated, solutions are more likely to be dominated by error from the higher order terms ignored

in the linear response function formulation. In addition, solutions using our current version HOLA

are dominated by the edge-effect issue if non-linear shaped large-scale offsets are present.

In Section 2.2, we introduced the OLA method to invert for temperature perturbations (single

variable) for artificially constructed test cases. Unlike SIR/RLS, where one simultaneously inverts

for all depths, OLA inversions are done for one location at a time with the help of averaging

kernels. The width of the kernel dictates the resolution of the obtained solution at a given depth.

The process is repeated for each depth to invert at ’all’ depth locations. There are depths at which

kernels cannot be constructed, as the ’amount’ of orthogonal information in the RT matrix is non-

uniformly distributed across depths. This failure usually occurs above and below a limit range

of depths, defining the ’OLA inversion window’. The range of depths over which we can invert

using OLA, and the corresponding kernel widths at those depths, depends on the rank (number of

eigenmodes) used when computing the pseudo-inverse matrix (when solving for coefficients using

Equation 2.9). A larger rank allows us to construct narrower width kernels over a larger depth

range, but with the caveat that the solutions are more likely to be error dominated. Thus, the

question of what rank to use, or in general, ’how much’ to regularize, remains. This would not be

an issue if we had robust error estimates, but this is not possible, as the error introduced by the

higher order terms, itself depends on the magnitude of underlying ∆T
T we aim to capture.

In Section 2.2.4, we developed an iterative OLA scheme where we aim to ’slowly’ approach

to the optimal rank achievable given the data. Iterative approach allows us to invert non-linear
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perturbations (when ∆T
T is large) using linear response functions, extending the capability of the

original method. But there is an inherent difficulty with iterative-OLA when the underlying per-

turbation has large-scale offsets. This has to do with the finite width of the OLA inversion window

(it does not span the entire depth domain) combined with the fact that the width of the averaging

kernel is not a δ-function. When making iterative updates only to depths ’inside’ the inversion

window, there is a leakage of information (∆T
T ) from outside of the inversion window to the inside,

due to the finite width of the kernels. This can corrupt the entire solution. We termed this the

’edge-effect’ issue. It defeats the very strength of OLA where the method aims to prevent such

leakage by focusing on keeping the information (∆T
T ) where it belongs. In spite of the efforts already

made, resolution of edge-effect remains. In Section 6.2 below, we briefly discuss those efforts and

future directions.

In Chapter 3, we statistically assessed single variable inversion capabilities of the HOLA

method, and compared it with SIR. To make this assessment, we inverted a sufficiently large

number of widely differing semi-real MURaM atmospheres. Using the mean MURaM as the starting

guess-model, the goal was to see how well individual atmospheres can be recovered using HOLA

(and SIR). We inverted individual MURaM columns using HOLA (and SIR) and computed the

difference between the underlying atmosphere and the inverted model (for the given variable).

Both methods produce very similar inversion results and achieve good overall inversion in log τ

∈ [−2, 0] (for each variable). Even though the average inversion quality is very similar for these

methods, the underlying cause of error is very different. The source of error in SIR is its inability

to recover higher spatial frequency offsets, while HOLA struggles with the edge-effect issue when

the underlying perturbation has large-scale non-linear offsets.

In Chapter 4, we extended the HOLA method to invert more realistic multivariable system.

The goal here is to ’simultaneously’ invert for T, Vlos and Pe, assuming that these thermodynamic

variables completely define the system. The 1st order equation for the multivariable system states

that the spectral differences ∆I between the underlying and guess-model spectra corresponds to

the model differences from all variables weighted by their respective response functions (with error
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contributions from the omitted higher order terms for each variable and spectral noise). Unlike

SIR (or RLS), where one simultaneously inverts for all variables at all depth locations with the goal

to attain a globally smooth solution, OLA (within the HOLA framework) inverts for 1 variable

at 1 depth location at a time. The goal here is to compute linear coefficients which constructs

narrow width averaging kernels at a given depth location (for the variable we intend to invert)

and simultaneously minimizes cross-talk variable sensitivities. The computed inversion solution for

this variable (at this depth) then has minimized cross-talk error contributions from other depth

locations (from same variable perturbations) and from cross-talk variables.

The main difficulty faced, and common to all inversion methods, is when using the pseudo-

inverse matrix to invert variables in a multivariable system. This has to do with the inherent

spectral sensitivity bias between different variables as evident from their differing response functions

magnitudes e.g. amplitude of response functions in RT is about 30 times larger than RPe , and

about 3 times larger than RVlos
. This bias results in the dominant eigenmodes of the giant matrix

to be mostly sensitive to RT, as compare to RPe . For example, this makes it harder to invert

for Pe using a lower rank pseudo-inverse matrix as the dominant modes contain little to no RPe

sensitivity. We developed a workaround to this issue by manually amplifying/de-amplifying cross-

talk variable response function matrices to make their amplitude ’similar’ to that of the variable

we intend to invert. This results in the dominant eigenmodes to have similar sensitivity across

all variables and allows for APe construction, in the presence of temperature response functions,

without using too many eigenmodes. We demonstrated that using amplification factors allows us

to construct APe (with smaller eigenmodes) and gives us a better chance at inverting electronic

pressure in a multivariable system with more spectrally sensitive variables.

We concluded the thesis with Chapter 5 where we investigated how redundancies in the

response function matrix degrades its overall inversion capability. These redundancies are due to the

presence of large fraction of wavelengths that correspond to continuum intensities and have almost

identical response functions. The corresponding dominant eigenmodes of the response function

matrix are biased and are more sensitive to deeper regions to which redundant response functions
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are mostly sensitive to. This degrades our ability to invert in shallower regions using a lower rank

pseudo-inverse. This is similar to the issue faced when we try to invert for electronic pressure

in the presence of temperature using smaller rank. We demonstrated that the redundancy bias

can be mitigated by artificially removing these redundant response functions from the matrix.

This results in the dominant eigenmodes (corresponding to redundancy bias removed matrix) to

be similarly sensitive to ’all’ response functions including the ones that are sensitive to shallower

depths, improving the overall inversion capability.

The challenge now faced is how to optimally identify and remove redundant response func-

tions. If we are too conservative when identifying (and removing) the most similar response function

then the bias issue may still remain, while if we are too liberal and remove too many ’dissimilar’

response functions that correspond to ’good’ sensitivity information in the matrix then the overall

inversion capability gets degraded. Moreover, whether or not a response function is redundant

depends on the depth of the underlying perturbation being inverted. These trade-offs make it

non-trivial to determine an optimal way to remove the bias from the matrix. To optimally identify

and remove ’redundant’ response functions, for single variable and multivariable system, and in the

presence of observational noise, would be future endeavor. All inversion methods e.g. SIR/RLS

should be equally benefited from further development of this idea.

Finally, we demonstrated that the slope of the singular value curve (once the redundancy bias

is removed somehow) can be used as a metric to quantitatively compare the inversion capability of

different spectral line combinations. We used this metric to find the best x line combination (out

of n total lines) that has the most potential to produce best inversion results. Once the best line

combination is identified, the minimum averaging kernel width vs. depth can be employed to get an

insight into what the inversion capability may be. Even though these estimates are approximate, as

they depend on the guess-model atmosphere, such metrics can still serve as a good starting point.

Moreover, the metrics do not require any inversion to be done and thus can be used irrespective of

the choice of inversion method. Determining whether slope can identify best line-combination in

more complicated situations e.g. for multivariable system, in the presence of spectral noise, etc.,
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would be a part of our future work.

Our future work also includes estimating error in the inverted solutions, inverting magnetic

field vector from spectropolarimetric data and applying the method to real observations, modi-

fying OLA to actively minimize error from the higher order terms to further widen the range of

perturbations that can be inverted using this method.

6.2 Future work: Resolution of the Edge-effect

In addition to the future work on spectral line selection and wavelength redundancy indicated

above, resolution of the edge-effect issue remains. We discuss it separately here in order to give

justice to its difficulty, clearly outline efforts already made, where these fail and future directions.

As discussed in Section 2.2.5, to get around the edge-effect issue, we initially employed skewed

target functions to suppress the sensitivity of the target functions outside the OLA inversion win-

dow. But given that kernels don’t perfectly mimic target functions, the issue of leakage remains.

We realized it might be better to make updates outside the inversion window, as the ’edge-effect’

issue is a consequence of OLA method’s inability to invert outside the window. To achieve this, we

initially employed flat averaging kernels to compute large-scale average of the underlying pertur-

bations, and made inversion updates at all depths with this average. The large-scale updates were

interleaved in-between high-resolution localized OLA inversions. While this helped with inversions

significantly, some difficulties still remained.

We ultimately pursued a SIR+OLA hybrid approach (HOLA) to recover large-scale constant

and linear trends using SIR (with limited nodes) and high-resolution small-scale updates using

OLA. This method does not suffer the same issues faced by the flat kernels approach. The method

works well if the underlying large-scale offset is constant/linear with log τ , but may fail otherwise.

We find models in MURaM simulations that differ from this assumption. It would be reasonable

to think of making SIR large-scale updates using the largest ’allowed’ node values, as SIR is good

at recovering these large-scale offsets, and then make high-resolution small-scale adjustments using

OLA. The caveat of this approach is that SIR itself aims to find solutions such that ∆I → 0, and
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once ∆I ≈ 0 (a likely scenario when using largest allowed node values), it would be practically

impossible to make further inversion updates using OLA.

Finding a more robust solution to the edge-effect issue to successfully invert non-linearly

shaped large-scale perturbations using HOLA would be future endeavor. Here, we suggest a few

potential ways in which this could be achieved. A general behavior of edge-effect dominated so-

lutions is that they first become oscillatory near the OLA inversion window edge and grows un-

controllably large in amplitude with iteration. This eventually results in the entire solution to

become oscillatory (unless spectral differences accordingly become worse and stop the iteration).

We suspect that this oscillatory behavior (and successive large growth in inversion amplitude) can

be exploited to identify once solutions start to become error dominated. Another potential solution

to the edge-effect issue would be to employ the RLS method, instead of SIR, to make large-scale

updates. We suspect that a smaller rank RLS inversions should be better equipped to ’adjust’

according to the underlying perturbations, as we don’t have to upfront decide on the order of the

large-scale update (in context of shape with log τ , defined by number of nodes in SIR) that we

intend to obtain. It might also be worth considering making large-scale updates only outside the

OLA inversion window using SIR (with largest ’allowed’ nodes), or RLS.
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[6] Åke Björck. Numerical Methods for Least Squares Problems. Society for Indus-
trial and Applied Mathematics, 1996. URL: https://epubs.siam.org/doi/abs/10.1137/
1.9781611971484, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611971484,
doi:10.1137/1.9781611971484.

[7] Richard C Canfield. The height variation of granular and oscillatory velocities. Solar Physics,
50(2):239–254, 1976. doi:10.1007/BF00155287.

[8] Fausto Cattaneo. The Solar Dynamo Problem, pages 201–222. Springer Netherlands, Dor-
drecht, 1997. doi:10.1007/978-94-011-5167-2_21.

[9] J. Christensen-Dalsgaard, P. C. Hansen, and M. J. Thompson. Generalized singular value
decomposition analysis of helioseismic inversions. Monthly Notices of the Royal Astronomical
Society, 264(3):541–564, 10 1993. arXiv:https://academic.oup.com/mnras/article-pdf/

264/3/541/3478967/mnras264-0541.pdf, doi:10.1093/mnras/264.3.541.

[10] J. Christensen-Dalsgaard, J. Schou, and M. J. Thompson. A comparison of methods
for inverting helioseismic data. Monthly Notices of the Royal Astronomical Society,
242(3):353–369, 06 1990. arXiv:https://academic.oup.com/mnras/article-pdf/242/3/

353/3863448/mnras242-0353.pdf, doi:10.1093/mnras/242.3.353.

https://doi.org/10.1086/523671
https://ui.adsabs.harvard.edu/abs/1970RSPTA.266..123B
https://doi.org/10.1098/rsta.1970.0005
https://doi.org/10.1098/rsta.1970.0005
https://ui.adsabs.harvard.edu/abs/1968GeoJ...16..169B
https://ui.adsabs.harvard.edu/abs/1968GeoJ...16..169B
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
https://doi.org/10.1007/s41116-016-0003-4
https://epubs.siam.org/doi/abs/10.1137/1.9781611971484
https://epubs.siam.org/doi/abs/10.1137/1.9781611971484
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611971484
https://doi.org/10.1137/1.9781611971484
https://doi.org/10.1007/BF00155287
https://doi.org/10.1007/978-94-011-5167-2_21
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/264/3/541/3478967/mnras264-0541.pdf
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/264/3/541/3478967/mnras264-0541.pdf
https://doi.org/10.1093/mnras/264.3.541
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/242/3/353/3863448/mnras242-0353.pdf
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/242/3/353/3863448/mnras242-0353.pdf
https://doi.org/10.1093/mnras/242.3.353


103

[11] J. Christensen-Dalsgaard and M. J. Thompson. A Hands-On IDL Program for Helioseismic
Inversion. In Timothy M. Brown, editor, GONG 1992. Seismic Investigation of the Sun and
Stars, volume 42 of Astronomical Society of the Pacific Conference Series, page 249, January
1993. URL: https://ui.adsabs.harvard.edu/abs/1993ASPC...42..249C.

[12] National Research Council. Understanding the Sun and Solar System Plasmas:
Future Directions in Solar and Space Physics. The National Academies
Press, Washington, DC, 2004. URL: https://www.nap.edu/catalog/11188/

understanding-the-sun-and-solar-system-plasmas-future-directions-in,
doi:10.17226/11188.

[13] S. Danilovic, M. Schüssler, and S. K. Solanki. Probing quiet Sun magnetism using MURaM
simulations and Hinode/SP results: support for a local dynamo. Astronomy & Astrophysics,
513:A1, April 2010. arXiv:1001.2183, doi:10.1051/0004-6361/200913379.

[14] S. Danilovic, M. van Noort, and M. Rempel. Internetwork magnetic field as revealed by
two-dimensional inversions. Astronomy & Astrophysics, 593:A93, September 2016. arXiv:

1607.00772, doi:10.1051/0004-6361/201527842.

[15] J. C. Del Toro Iniesta and B. Ruiz Cobo. Stokes Profiles Inversion Techniques. Solar Physics,
164(1-2):169–182, March 1996. URL: https://ui.adsabs.harvard.edu/abs/1996SoPh.

.164..169D, doi:10.1007/BF00146631.

[16] Jose Carlos del Toro Iniesta. Introduction to Spectropolarimetry. Cambridge University Press,
2003. doi:10.1017/CBO9780511536250.

[17] Jose Carlos del Toro Iniesta and Basilio Ruiz Cobo. Inversion of the radiative transfer equation
for polarized light. Living Reviews in Solar Physics, 13(1):4, November 2016. URL: https:
//ui.adsabs.harvard.edu/abs/2016LRSP...13....4D, arXiv:1610.10039, doi:10.1007/

s41116-016-0005-2.

[18] O. Gingerich, R. W. Noyes, W. Kalkofen, and Y. Cuny. The Harvard-Smithsonian reference
atmosphere. Solar Physics, 18(3):347–365, July 1971. URL: https://ui.adsabs.harvard.
edu/abs/1971SoPh...18..347G, doi:10.1007/BF00149057.

[19] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, MD, 3rd edition, 1996. URL: https://twiki.cern.ch/twiki/pub/Main/
AVFedotovHowToRootTDecompQRH/Golub_VanLoan.Matr_comp_3ed.pdf.

[20] D O Gough. Internal rotation and gravitational quadrupole moment of the Sun. Nature,
298(5872):334–339, 1982. doi:10.1038/298334a0.

[21] Douglas Gough. Inverting helioseismic data. Solar Physics, 100(1):65–99, 1985. doi:10.1007/
BF00158422.

[22] David F. Gray. On the Existence of Classical Microturbulence. The Astrophysical Journal,
184:461–472, September 1973. URL: https://ui.adsabs.harvard.edu/abs/1973ApJ...

184..461G, doi:10.1086/152344.

[23] David F. Gray. The Observation and Analysis of Stellar Photospheres. Cambridge University
Press, 3 edition, 2005. doi:10.1017/CBO9781316036570.

https://ui.adsabs.harvard.edu/abs/1993ASPC...42..249C
https://www.nap.edu/catalog/11188/understanding-the-sun-and-solar-system-plasmas-future-directions-in
https://www.nap.edu/catalog/11188/understanding-the-sun-and-solar-system-plasmas-future-directions-in
https://doi.org/10.17226/11188
http://arxiv.org/abs/1001.2183
https://doi.org/10.1051/0004-6361/200913379
http://arxiv.org/abs/1607.00772
http://arxiv.org/abs/1607.00772
https://doi.org/10.1051/0004-6361/201527842
https://ui.adsabs.harvard.edu/abs/1996SoPh..164..169D
https://ui.adsabs.harvard.edu/abs/1996SoPh..164..169D
https://doi.org/10.1007/BF00146631
https://doi.org/10.1017/CBO9780511536250
https://ui.adsabs.harvard.edu/abs/2016LRSP...13....4D
https://ui.adsabs.harvard.edu/abs/2016LRSP...13....4D
http://arxiv.org/abs/1610.10039
https://doi.org/10.1007/s41116-016-0005-2
https://doi.org/10.1007/s41116-016-0005-2
https://ui.adsabs.harvard.edu/abs/1971SoPh...18..347G
https://ui.adsabs.harvard.edu/abs/1971SoPh...18..347G
https://doi.org/10.1007/BF00149057
https://twiki.cern.ch/twiki/pub/Main/AVFedotovHowToRootTDecompQRH/Golub_VanLoan.Matr_comp_3ed.pdf
https://twiki.cern.ch/twiki/pub/Main/AVFedotovHowToRootTDecompQRH/Golub_VanLoan.Matr_comp_3ed.pdf
https://doi.org/10.1038/298334a0
https://doi.org/10.1007/BF00158422
https://doi.org/10.1007/BF00158422
https://ui.adsabs.harvard.edu/abs/1973ApJ...184..461G
https://ui.adsabs.harvard.edu/abs/1973ApJ...184..461G
https://doi.org/10.1086/152344
https://doi.org/10.1017/CBO9781316036570


104

[24] Per Christian Hansen. The discrete picard condition for discrete ill-posed problems. BIT
Numerical Mathematics, 30(4):658–672, 1990. doi:10.1007/BF01933214.

[25] Per Christian Hansen. Truncated singular value decomposition solutions to discrete ill-posed
problems with ill-determined numerical rank. SIAM Journal on Scientific and Statistical
Computing, 11(3):503–518, 1990. arXiv:https://doi.org/10.1137/0911028, doi:10.1137/
0911028.

[26] Per Christian Hansen. Analysis of discrete ill-posed problems by means of the l-curve. SIAM
Review, 34(4):561–580, 1992. arXiv:https://doi.org/10.1137/1034115, doi:10.1137/

1034115.

[27] Per Christian Hansen. Rank-deficient and discrete ill-posed problems: numerical aspects of
linear inversion. SIAM, 1998.

[28] Richard J. Hanson. A numerical method for solving fredholm integral equations of the first
kind using singular values. SIAM Journal on Numerical Analysis, 8(3):616–622, 1971. URL:
http://www.jstor.org/stable/2949679.

[29] W. Jeffrey. Inversion of Helioseismology Data. The Astrophysical Journal, 327:987, April 1988.
URL: https://ui.adsabs.harvard.edu/abs/1988ApJ...327..987J, doi:10.1086/166255.

[30] R I Kostik and T V Orlova. On the microturbulence in the solar photosphere. Solar Physics,
62(1):89–92, 1979. doi:10.1007/BF00150135.

[31] Rasmus Munk Larsen. Efficient algorithms for helioseismic inversion. PhD thesis, Ph. D.
thesis, University of Aarhus, Denmark, 1998.
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Appendix A

Brief Introduction to the Theory of Radiative Transfer

In this chapter we discuss the theory of radiative transfer (transport theory) that describes

light-matter interactions as radiation propagates through a medium. Our goal here is to discuss

how spectral lines form in the solar photosphere and how the spectral line shape depends on the

atmospheric properties. It is these that later allow us to infer for these atmosphere parameters

from an observed spectra. Please note that the derivations follow from the work by Mihalas [34],

Peraiah [44], Puertas [32] and Rutten [56], and COLLAGE course by Ivan Milić [36].

A.1 Radiative transfer equation

In transport theory, the fundamental quantity that describes the radiation field is the monochro-

matic specific intensity Iλ. Specific intensity at point p in an arbitrary direction ŝ is defined as the

amount of energy dEλ transported by the radiation field through an infinitesimal area dA (n̂), in

directions confined to the solid angle dω, over time dt, in the wavelength interval (λ, λ + dλ) (see

Figure A.1). Mathematically, it is given by

Iλ(~r, n̂, t) =
dEλ

dλ dω dt dA (n̂ · ŝ)
[W m−3 sr−1] (A.1)

Transport theory states that as a beam of light travels through a thin slab of thickness dz, absorp-

tion, emission and scattering processes within the medium may add or remove photons from this

beam (see Figure A.2). In a nutshell it means to keep track of photons as radiation travels through

a medium. The relation between the change in intensity dIλ (at wavelength λ) to the underlying
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Figure A.1: Monochromatic specific intensity Iλ at point p in an arbitrary direction ŝ, passing
through an infinitesimal area dA (directed along n̂), into the solid angle dω, at time t.

interaction processes is given by the radiative transfer equation (RTE):

dIλ
dz

= −χλ Iλ + jλ (A.2)

In Equation A.2, we assume that the quantities/processes are time invariant. This assumption

is followed throughout this work. In the next section, we describe individual terms in the RTE.

A.1.1 Absorption and emission processes in RTE

In Equation A.2, −χλIλ corresponds to the intensity attenuation per unit path length due

to absorption/scattering processes. Here, χλ ([m−1]) is the monochromatic opacity (total absorp-

tion/attenuation/extinction coefficient) and is a measure of degree of opaqueness of the medium.

It is defined as the fractional change in intensity per unit path length (along the ray path) and

corresponds to all processes that removes/destroys photons from the radiation beam. Mathemat-

ically, it is given by the product of the number density of absorbers ([m−3]) and their absorption

cross-section ([m2]), where absorption cross-section is a measure of the probability of photon ab-

sorption by an absorber. Thus, a photon has a higher chance of getting absorbed (or scattered) if

the number density of absorbers is large and/or if individual absorbers have a larger cross-section.

Opacity can also be understood in terms of the photon mean free path (1/χλ), which cor-
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Figure A.2: Intensity passing through a thin atmospheric slab of width ∂z (optical depth ∂τλ).
I in
λ is the incident radiation on the lower slab boundary, while Iobs

λ is the emergent (or observed)
intensity. χλ and jλ are the opacity and emissivity of the medium. ∂Iλ corresponds to the change
in intensity due to absorption and emission (and scattering) processes as radiation passes through
the slab.

responds to the average distance a photon travels before it gets absorbed (or scattered). A larger

opacity thus implies a shorter mean free path, which means that the photon would travel a shorter

distance before it would be absorbed by the medium.

Opacity has contribution from both absorption and scattering processes. In ’true’ absorption,

a photon is destroyed completely and its energy (completely or partially) is converted into the

thermal energy of the gas. On the other hand, in scattering processes, a photon is not destroyed but

its interaction with a ’scatterer’ results in it being re-emitted in a new direction with approximately

the same wavelength (and energy). To understand this distinction, let’s consider a case where an

atom (or ion) absorbs a photon and moves into a higher energy electronic state. Subsequently, a

collisional de-excitation of the atom would mean that the energy of the photon went into increasing

the thermal energy of the gas pool and the entire process would be termed ’true’ absorption.

Instead, it would be a scattering event if the atom radiatively de-excites and returns to the original

atomic state. In this case, the photon would be emitted in a ’new’ direction with approximately

the same energy.

In Equation A.2, jλ ([W m−4 sr−1]) is the monochromatic emission coefficient or emissivity
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and is a sum of all emission/scattering processes that adds photons at wavelength λ to the radiation

beam. It can be understood as opposite of absorption. Unlike the attenuation term -χλIλ, emissivity

is independent of the incident intensity.

A.2 Standard form of RTE

Standard form of RTE is expressed in terms of optical depth scale τλ and source function Sλ,

and is obtained by dividing both sides of Equation A.2 by −χλ:

dIλ
dτλ

= Iλ − Sλ (A.3)

Here, source function Sλ is defined as the ratio of total emissivity to total opacity jλ/χλ and

the optical depth difference is defined as dτλ = −χλ dz. Here, negative sign is a consequence of the

sign convention where dz is taken to be positive along the ray path (towards the observer), while

dτλ increases opposite to the ray path, away from the observer (see Figure A.2).

Optical depth scale τλ is a dimensionless quantity and is a measure of how opaque the medium

is along the line-of-sight. For a finite thickness atmospheric slab, the optical depth τλ
′ at depth z

corresponds to the integrated opacity along the line-of-sight i.e. τ ′λ =
∫ τ ′λ

0 dτλ =
∫ z
zmax
−χλ(z) dz

(see Figure A.3). Optical depth can also be understood in terms of the number of photon mean

free paths along the line-of-sight and thus is a measure of how ’deep’ an outside observer located

at τλ = 0 can see into the medium.

Compared to geometrical length scale z, optical depth scale τλ is a natural length scale for

radiation as it carries information about both the geometrical scale and the optical properties of

the medium e.g. absorption, scattering etc. In Figure A.3, as light travels through the slab it is

hard to make claims about the geometrical thickness of the slab simply based on the incident (I in
λ )

and emergent/observed (Iobs
λ ) intensities i.e. for a given I in

λ , a wide slab (large ∆z = zmax− z) with

optically tenuous material (small χλ), and a thin slab (small ∆z) with optically dense material

(large χλ) can result in the same emergent intensity. In other words, as light travels through a

medium, its interaction depends on both the geometrical path length and the opacity along that
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Figure A.3: Radiation through a finite thickness atmospheric slab. Similar to Figure A.2, I in
λ is the

incident radiation on the lower boundary located at z = 0 (τλ = τ ′λ). z = zmax (τλ = 0) corresponds
to the upper boundary of the slab and marks the location where emergent radiation Iobs

λ escapes
out (and also the location of the ’observer’). By convention, τλ = 0 corresponds to the ’observer’
location.

path. Optical depth scale combines these two and thus is a natural length scale for radiation.

A.2.1 Formal solution of RTE

Using the RTE (Equation A.3), our goal is to solve for the emergent intensity through a

medium, given that the incident intensity and the properties of the medium are known i.e. opac-

ity and source function. The emergent intensity Iobs
λ coming out of a finite atmospheric slab in

Figure A.3 is given by

Iobs
λ = I in

λ e−τ
′
λ +

∫ τ ′λ

0
Sλ(τλ) e−τλ dτλ (A.4)

Equation A.4 corresponds to the integral form of RTE and is also called the formal solution.

The solution states that the emergent intensity is a sum of contribution from the incident intensity

I in
λ attenuated by the absorbing material (e−τ

′
λ), and the source function (emission) from all volume

elements located at depths τλ, which also gets attenuated by the absorbing material in between

the observer (τλ = 0) and the location of the emitting element. Thus, source function from the

material closer to the observer contributes more to the Iobs
λ as compared to material further away.
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For a simple test case when the source function is constant and is invariant with optical

depth, the emergent intensity is given by

Iobs
λ = I in

λ e−τ
′
λ + Sλ(1− e−τ ′λ) (A.5)

In the limit τ ′λ → 0, e−τ
′
λ → 1 and Iobs

λ → I in
λ . This states that if there are no sources/sinks

along the ray path, then the intensity stays constant.

In the limit τ ′λ →∞, e−τ
′
λ → 0, and Iobs

λ ≈ Sλ. This means that when looking at an optically

thick medium the information about the incident radiation is lost and the emergent intensity

effectively corresponds to the source function of the medium.

So far we discussed radiative transfer through a finite width atmospheric slab. In the next

section we extend the discussion to boundary condition that is more applicable to the case of

solar/stellar atmospheres.

A.2.2 Radiative transfer through solar/stellar atmosphere

In this section, we discuss radiative transfer through a simplified solar (or stellar) atmosphere

where the boundary conditions are similar to that shown in Figure A.4. Here, the atmosphere is

semi-infinite in the sense that the boundary exists only on one side (τλ = 0, z = zmax) where

radiation escapes out, while on the other side, it extends deep into the sun where τλ = τ ′λ →∞.

Thus, the incident radiation I in
λ here is immaterial as given the boundary condition its contribution

to the emergent intensity I in
λ e
−τ ′λ → 0. The emergent intensity Iobs

λ then only depends on the source

function and its variation with optical depth, and is given by

Iobs
λ =

∫ ∞
0

Sλ(τλ) e−τλ dτλ (A.6)

When representing solar atmosphere in Figure A.4, we assumed a plane-parallel geometry.

Here, properties of the atmospheres and thus optical depth and source function are assumed to vary

only along the radial direction (local z-direction), and are constant along the transverse direction

(local x and y directions). The validity of this assumption lies in the fact that the width of the
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Figure A.4: A simplified plane-parallel atmosphere where medium properties vary along the z-
direction only and are invariant along the horizontal directions. The observer is located at τλ = 0
(upper boundary of the atmosphere) and ŝ marks the line-of-sight direction towards the observer.
Optical depth increases as we go deeper into that atmosphere (away from the observer). Assuming
Milne-Eddington atmosphere, τλ = 1 marks the deepest we can see at this wavelength and the Iobs

λ

effectively corresponds to the source function at this depth location.

photosphere (≈ 500 km) is much small in comparison to the radius of curvature of the sun (≈ 700

Mm). Thus, if we zoom into a small patch containing the photosphere, the geometry will be

essentially flat or plane-parallel.

In Figure A.4, we show a more generalized case of radiative transfer where the line-of-sight

radiation is directed along a general direction ŝ, at an angle θ with respect to the z-direction. In

this case, a correction factor µ = cos θ enters the RTE that relates the ’true’ optical path ds along

the ray to the vertical path dz by ds = dz/µ. The emergent intensity for this generalized case is

then given by

Iobs
λ (µ) =

∫ ∞
0

Sλ(τλ, µ)

µ
e
−τλ
µ dτλ (A.7)

In the next section, we solve for the emergent intensity for a test case where source function

varies linearly with optical depth.
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Figure A.5: Here we show a 2-D cross-sectional top-view of the sun, where blue region corresponds
to the deeper layers and orange region corresponds to the upper layers of the sun. Blue and red
rays, directed towards the observer along ŝ direction, correspond to radiation from the disc-center
and closer to the limb, respectively. For a Milne-Eddington atmosphere, we effectively get radiation
from depth where the ’true’ optical depth/path length τλ,ŝ = 1 or where radial optical depth τλ
= µ = cos θ. For radiation from the disc-center this corresponds to deeper layers of the atmosphere
(µ ≈ 1) where source function is larger. For radiation from the limb, τλ,ŝ = 1 occurs at upper layers
of the atmosphere where source function is smaller. This results in the disc-center to ’appear’
brighter as compared to the limb, resulting in the limb-darkening effect.

A.2.3 Emergent intensity through a Milne-Eddington atmosphere

Milne-Eddington atmosphere is a simplified atmospheric model where source function varies

linearly with optical depth i.e. Sλ= a+ bτλ, where a and b are constants. The emergent intensity

for this model is given by

Iobs
λ (µ) = a+ bµ (A.8)

This solution is called the Eddington-Barbier relationship ([41, 56]) and states that when

source function varies linearly with optical depth, the emergent intensity effectively corresponds to

source function at τλ = µ. This means that closer to the disk center where µ ≈ 1 we are looking

at the deepest layers observable at wavelength λ. On the other hand, as we go closer to the limb
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the emergent intensity corresponds to source function at shallower layers as µ gets smaller (µ < 1).

Given that source function decreases as we go higher up in the solar photosphere i.e. smaller τλ,

this angular dependence of the emergent intensity results in an phenomena where limb ’appears’

darker as compared to the disc-center. This is called the limb-darkening effect (see Figure A.5)

([42, 56]).

The physical reason behind limb-darkening has to do with the difference between the optical

path length τλ = µ along the radial (local z) direction, and the ’actual’ optical path length τλ,ŝ

along the line-of-sight. These are related to each other by τλ = µ× τλ,ŝ. According to Eddington-

Barbier relation mentioned above, the emergent intensity corresponds to source function from the

atmospheric layer where τλ = µ. This means that the observed intensity ’effectively’ corresponds

to source function at the depth where the actual optical path length τλ,ŝ = 1. For a slanted beam

with respect to the local radial direction, τλ,ŝ = 1 occurs at upper layers of the atmosphere, while

for radiation from the disc-center, the two optical path lengths are equal τλ = τλ,ŝ = 1 and we are

looking at the deepest layers possible at wavelength λ (see Figure A.5).

It is evident that in order to solve for the emergent intensity in Equation A.7, we would

need to know the source function and its variation with optical depth. Given that source function

depends on opacity and emissivity, we discuss the physical processes that contributes to these

quantities in the next section.

A.3 Opacity and Emissivity

A.3.1 Physical processes that contribute to opacity and emissivity

As mentioned previously, opacity χλ and emissivity jλ characterize the interaction between

radiation and matter. Total opacity is a sum of contribution from all the absorption (and scattering)

processes that remove photons from a radiation beam, while total emissivity is a sum of contribution

from all the emission (and scattering) processes that add photons to the beam path. Following is

a list of physical processes that contribute to opacity (not exhaustive):
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• Bound-bound absorption (photo-excitation; χλ,bb) - In this process, a photon with energy

equal to the energy level difference of the atomic states involved, is absorbed by an atom

(or ion). Subsequently, if the atom collisionally de-excites then it would mean that the

original photon energy went into increasing the kinetic energy of the colliding particles,

therefore increasing the thermal energy of the gas pool. Instead, if the atom radiatively

de-excites to the original state then the process would be termed scattering.

Opacity and emissivity (at wavelength λ), corresponding to bound-bound line transitions

between two atomic states (upper u and lower l) due to radiative excitation and sponta-

neous/stimulated de-excitation, are given by:

χλ =
hc

4πλ
(nlBlu − nuBul)φλ (A.9)

jλ =
hc

4πλ
nuAulφλ (A.10)

where, h is the Planck constant, c is the speed of light, nl and nu are the level populations in

the lower and upper atomic states, Aul, Bul and Blu are Einstein coefficients (probabilistic

measure of absorption/emission by an atom), and φλ is the absorption line profile (see

Section A.3.2 for details).

• Bound-free absorption (photo-ionization; χλ,bf) - In this process, an atom gets ionized by

absorbing a photon with energy greater than the ionization potential, and the excess photon

energy goes into the kinetic energy of the escaped electron.

• Free-free absorption (χλ,ff) - In this process, a free electron in the vicinity of an ion ’collides’

with a photon and moves into a higher energy continuum state. The process is called free-

free absorption because the electron is not bound to any atom/ion before or after absorbing

the photon.

• Electron (Thompson) scattering - In this process, a free ’isolated’ electron interacts with the

electric field of an incident electromagnetic waves (photon) and oscillates. This accelerated

electron then re-emits the photon (with approximately the same wavelength) in a ’new’
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direction resulting in scattering of the the original photon. Note, in case the ’scatterer’ is

an atom (or molecule) the process would be Rayleigh scattering.

For each of the above mentioned processes that contributes to opacity, there is an equivalent

reverse process that contributes to emissivity e.g. the opposite of photo-ionization is the radiative

recombination process where a free electron is captured by an ion emitting photon in the pro-

cess. So far we discussed physical quantities such as opacity, emissivity etc. in context of single

monochromatic wavelength λ. In the next section we extend this discussion and talk about the

wavelength dependence of these quantities and ultimately the formation of spectral lines.

A.3.2 Wavelength dependence of opacity and emissivity

In the last section, we briefly discussed the physical processes that contribute to opacity (and

emissivity) at a given wavelength. Given that opacity varies with wavelength, these contributions

can be further sub-categorized into line and continuum opacities. This categorization is based on

how quickly the opacity varies with wavelength. Continuum opacities (χλ,bf, χλ,ff, etc), and thus

the magnitude of continuum intensity, vary very slowly with wavelength. On the other hand, line

opacity, which has contribution from the bound-bound transitions only (χλ,bb), may vary drastically

over a short wavelength span. This steep opacity variation with wavelength, close to the line-center

λ0, is one of the reasons for the existence of spectral lines in the solar photosphere, where dark

(less intense) absorption lines are superimposed on top of the bright continuum spectra.

Line opacity is a result of the transition between two bound energy levels within an atom

(or ion). Thus, only those photons should be absorbed (or emitted) that have wavelength λ0

corresponding to the energy difference between the atomic levels involved. The resulting emergent

spectral line should thus have a δ−function shape. In reality, spectral lines are not infinitely

sharp and are ’broadened’. This is due to processes both internal and external to the atom that

allow atoms to absorb and emit over a range of wavelengths near the line center i.e. opacity

(and emissivity) is non-zero over a range of wavelengths around λ0. The normalized absorption
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line profile function φλ describes this variation of opacity (and emissivity) with wavelength and

represents the probability of absorption of photons close to the line center. In other words, it

describes the distribution of absorption (and emission) around the line center. φλ is usually largest

close to the line center (assuming stationary atmosphere i.e. line-of-sight velocity is 0) and gets

smaller further away. This means that for a line process, photons with wavelength close to the line

center have the highest chances of getting absorbed (or emitted).

Following is a list of processes that contribute to the φλ (not exhaustive):

• Natural broadening (Lorentzian-shaped φλ) - This process is a consequence of the Heisen-

berg uncertainty principle which states that the finite lifetime of a given atomic state

(∆tlife) results in an uncertainty in energy ∆E associated with it i.e. ∆E × ∆tlife ≈ ~.

This means that energy levels with smaller lifetimes have larger ∆E uncertainties, and vice-

versa. This uncertainty in energy levels results in a spread in wavelengths and allows for

absorption/emissions of photons over a range of wavelengths. Given that this uncertainty

is independent of factors external to the atom, it determines the ’natural broadening’ of

the transition involved. This broadening is Lorentzian in shape.

• Doppler broadening (Gaussian-shaped φλ) - This is a consequence of the fact that absorbers

(or emitters) are moving with respect to the observer, resulting in the apparent shift in

wavelengths of the ’observed’ photons. The component of the line-of-sight velocity of the

atoms follows a Maxwell-Boltzmann distribution and thus the associated line profile φλ has

Gaussian shape. Further, the velocity distribution and the width of doppler broadening

depends on the temperature (kinetic) of the medium.

• Pressure or collisional broadening (Lorentzian-shaped φλ) - This broadening mechanism

comes into play when atoms are packed very close to each other i.e. when the number

density of the medium is large, resulting in quantum effects to distort (broaden) the energy

levels, resulting in the broadening of spectral line.

• Zeeman splitting - In the presence of magnetic fields, energy levels may split and ’broaden’
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spectral lines.

• Turbulence broadening - Broadening due to micro-turbulence (Vmic) and macro-turbulence

(Vmac) velocities. Vmic ([7, 22, 23, 30, 59, 60]), which is included with the doppler/thermal

width of the line profile, is due to small-scale non-thermal (turbulent) motions of the gas.

Vmac ([7, 23, 59]), on the other hand, is a result of the fact that observations have finite

spatial (horizontal) resolution and thus the observed spectra corresponds to radiation from

the underlying unresolved ’macro’ cells.

In addition to the above process, gradients in the line-of-sight velocity can also add to the

broadening of the line and may result in line asymmetry.

Please note that when multiple broadening mechanisms are active, the net line profile shape

is given by the convolution between all of the underlying processes e.g. in the presence of natural

and doppler broadenings, the line profile is given by the Voigt function, a convolution between

Lorentzian and Gaussian functions. In Voigt line profile, closer to line center, doppler broadening

mechanism dominate and the line profile is similar to a Gaussian profile. Given that a Gaussian

function falls off faster with wavelength, as compared to a Lorentzian function, away from the

line center, the line profile is dominated by natural broadening mechanism. These broadening

mechanisms (apart from Natural broadening) depend on the physical properties of the medium.

A.3.3 Formation of spectral lines

The variation of opacity with wavelength and source function with optical depth are the

reason for the existence of spectral lines in the solar atmosphere. The emergent intensity Iobs
λ is

effectively given by the source function at τλ = 1 for that wavelength (assuming Milne-Eddington

atmosphere). Given that wavelengths closer to the line-center have larger opacity and thus are

more opaque, as compared to the line wings, the corresponding τλ = 1 for these wavelengths occurs

higher up in the atmosphere, where the source function is smaller. This results in intensity in the

line-core to be smaller compared to the line wings, resulting in typical shape of the absorption line



122

in solar atmosphere. This differential sensitivity of different wavelengths within a spectral line later

allows us to do depth dependent inversion of the physical properties of the medium (see Chapter 2

for more details).

It is important to emphasize that the shape of a spectral line is not equal to that of the line

profile function φλ. Line profile shape depends on the ’local’ properties of the medium, and thus

vary with depth, while spectral lines are a net result of this depth dependent variation of the line

profiles (and source functions). Only in the case of an optically thin atmosphere i.e. τλ << 1 for

all wavelengths and assuming a constant source function, the spectral line shape approximates the

line profile function.

A.4 Synthesizing spectra through a model atmosphere

A.4.1 How to compute opacity and emissivity

As discussed in section A.3.1, line opacities are a result of bound-bound transition between

two energy levels within an atom (and processes that broaden the line). In order to compute

the opacity, we would require the level populations corresponding to the energy levels involved

(see Equation A.9). Level populations are determined by the microscopic processes that populate

or de-populate atomic energy levels e.g. spontaneous absorption and emission, induced emission,

thermal (collisional) processes, radiative processes, etc. Thus, in order to compute level populations

we would need to solve the statistical equilibrium equation that couples different atomic states

([34, 57, 64]). This equation states that the net rate of change of the number of atoms in a given

energy level is given by difference in the rate at which atoms get added to that level and the rate at

which they get removed from that level. Statistical equilibrium equation for energy level i is given

by

dni
dt

=
∑
i 6=j

njPji − ni
∑
i 6=j

Pij (A.11)

Where ni and nj corresponds to level population in energy levels i and j, while Pij and Pji

correspond to different processes that dictate the transition rates from level i → j and j → i,



123

respectively. In the case of solar/stellar atmospheres, one usually assumes time invariance i.e. the

net change in level population dni
dt is 0. Under this assumption, the statistical equilibrium equation

simplifies to

∑
i 6=j

njPji = ni
∑
i 6=j

Pij (A.12)

The processes that dictate level populations generally involve both collisional and radiative

processes i.e. level populations depends on the thermodynamic state of the gas and the radiation

field. This dependence of level population on radiation field makes the problem non-local in nature

(Non-LTE) as radiation field depends on the properties of the medium at other locations and

directions. Any changes to remote level population will change the corresponding opacity and source

function and the resulting radiation field, which in turn can change the local level populations.

Thus, the statistical equilibrium equation (that gives the population distribution among energy

levels of the medium) and RTE (that describes how radiation is absorbed/emitted/transported

through the medium) are coupled to each other. One usually has to iteratively solve the coupled

RTE and statistical equilibrium equations until an equilibrium solution is achieved between the

level populations and the radiation field. In general, this is computationally expensive as one needs

to account for ’every’ direction at ’every’ depth in order to compute an exact solution. In the next

section we discuss the LTE assumption which greatly simplifies this system.

A.4.2 Local thermodynamic equilibrium (LTE) approximation

Local Thermodynamic Equilibrium (LTE) ([34, 37, 58]) assumptions are usually employed

to simplify the coupled system of equations mentioned in last section. Here, one assumes that in

a small volume of the atmosphere, level populations are dominantly determined by the collisional

processes only, which depend on the local properties of the medium e.g. local temperature and

density. This decouples the statistical equilibrium equation from the RTE. Note that radiative

excitation/de-excitation do occur in LTE, but collisions are frequent enough to transfer the net

absorbed/emitted photon into the thermal energy of the gas pool. In other words, only matter
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affects the radiation. Thus, the validity of the LTE approximation requires the pressure of the

medium to be large enough so that the collisions are frequent and is assumed to be valid in the

solar photosphere, the atmospheric region of interest in this thesis.

Another way to determine the validity of the LTE approximation is by comparing the photon

mean free path and the typical distance over which atmospheric parameter (e.g. temperature)

changes. A relatively small mean free path length implies that the photon does not travel far

enough before getting absorbed and on average ’sees’ the same (local) temperature plasma. This

ensures that there is less photon scattering and the local plasma properties are not dictated by the

remote properties of the medium.

LTE approximation greatly simplifies the calculation of the level populations for relevant

energy levels and thus the opacity. Under this assumption, relative number of atoms/ions in

different excitation and ionization states is given by Saha-Boltzmann statistics [34], which depend

only on the local temperature. In addition, pressure (or number density etc.) is needed to close

the system i.e. to compute the actual number of atoms in these levels. Opacity further depends on

the absorption line profile function φλ (see Equation A.9) which is dictated by the local properties

of the medium e.g. doppler broadening depends on the local temperature, pressure broadening

depends on the local gas pressure (or total number density) etc. Note that an ’absorption’ line

profile φλ is different from the ’emergent’ line profile, which corresponds to the observed spectra.

The source function, under LTE assumption, which dictates the local rate of energy generation

depends only on the local temperature and is given by the Planck function (Kirchoff-Planck law)

i.e. we assume that the medium locally radiates like a black body. Note that the energy distribution

of the local radiation field may not be Planckian.

A.4.3 Synthesizing spectra under LTE approximation

In this section we discuss the basic step that goes into synthesizing an emergent spectra

through a one-dimensional atmospheric model under the LTE approximation. The model has at-

mospheric parameters specified at each depth location (spatial grid). Under the assumption that
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Table A.1: List of spectral lines used in this thesis

λ0 [Å] Blends (if any) Spectral resolution

∆λ [mÅ]

Fe II (6147.743) Fe I (6147.835) 17.5

Fe II (6149.241) - 17.5

Ti I (6149.725) - 17.5

Fe II (6150.113) V I (6150.167) 17.5

Fe I (6301.499) Fe I (6302.493) 17.5

Fe I (15648.515) Fe I (15647.423) 36.0

Fe I (15652.882) - 36.0

gas behaves ideally, any two thermodynamic variables (in addition to the line-of-sight velocity) is

needed to completely define the state of the gas e.g. temperature and gas pressure (or number den-

sity or electronic pressure). Note that, in this work, other atmospheric variables such as magnetic

field vector, micro- and macro- turbulence velocity are assumed to have negligible magnitude and

thus do not contribute to spectra.

As mentioned in last section, all depths are decoupled in LTE assumption, and using the

atmospheric variables we can compute the level population and the resulting opacity χλ and emis-

sivity jλ at each depth corresponding to the wavelengths that make up the spectral line we intend

to synthesize. The ratio of jλ and χλ gives us the source function and the optical depth at each scale

is computed by integrating opacity on the spatial grid. We finally integrate the source function on

the optical depth grid to compute the emergent spectra at each wavelength, and thus the spectral

line.

The spectral lines (listed in Table A.1) synthesized through the mean MURaM atmosphere

(see Section 3.1) using the forward solving capabilities of SIR are shown in Figure 1.5. The intensity

shown in the plot is normalized to the corresponds intensity through the HSRA [18] model of the

solar atmosphere. These spectral lines are consistently used throughout this thesis.
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A.5 Summary

The main goal of solar spectroscopy is to allow us to infer the atmospheric properties of

the medium that resulted in the spectra. This is possible because the physical properties of the

atmosphere determines the overall shape of this spectral line e.g. temperature determines the source

function, doppler width of the line and the collision frequency; gas pressure puts a constraint on

the Saha equation, determines pressure broadening, and the collision rate; large-scale line-of-sight

velocity shifts the overall line profile and gradients in this velocity can lead to asymmetry in

the emergent line shape. Moreover, variable sensitivity of different wavelengths that make up a

spectral line to different depths in the atmosphere allows us to do depth dependent inversion of these

parameters. This dependence of spectral line shape on the physical properties of the atmosphere

allows us to infer them given a spectra.



Appendix B

SIR node values for different cases

Table B.1: Node values when inverting using SIR

Inverting T nodes Vlos nodes Pe nodes Number of cycles

T 1,2,3,4,5,6,8,10a 0 1b 8

Vlos 0 1,2,3,4,5,6,8,10 0 8

Pe 0 0 1,2,3,4,5c 5

T, Vlos and Pe 1,2,3,4,5,6,8,10 1,2,3,4,5,6,8,10 1,2,3,4,5 8

Notes.
a Comma separated values correspond to the node value used in a given cycle.
b Pe inversion required else SIR inverts for T assuming hydrostatic equilibrium. Inverted ∆Pe is manually set to 0
to be consistent with single variable T inversion.
c SIR inverted Pe solutions (generally) deviate drastically from underlying Pe model for larger node values.

Table B.2: Node values when inverting using SIR within HOLA framework

Inverting T nodes Vlos nodes Pe nodes Number of cycles

T 1,2a 0 1b 2

Vlos 0 1,2 0 2

Pe 0 0 1c 2

T, Vlos and Pe 1,2 1,2 1 2

Notes.
a Node value to make large-scale constant/linear updates.
b Pe inversion required else SIR inverts for T assuming hydrostatic equilibrium. Inverted ∆Pe is manually set to 0
to be consistent with single variable T inversion.
c Unlike for other variables, SIR inverts for Pe in fractional units. So, Pe node value = 1 is more consistent with
linear updates.
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